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Abstract

Fermentation is a complex biochemical process that transforms brewer’s wort into beer.
Beer fermentation is driven by yeast and is influenced by process parameters such as
the content of fermentable sugars in wort, temperature, and pH. Traditional methods of
modelling this process rely heavily on empirically tuned kinetic models. However, these
models tend to be recipe-specific and often require retuning when processes change. This
paper proposes a data-driven approach using a Long Short-Term Memory (LSTM) network,
a type of recurrent neural network, to model beer fermentation dynamics. By training
the LSTM model on real-world fermentation data (1305 fermentations across ales, IPAs,
lagers, and mixed-culture beers), including variables such as apparent extract (derived from
specific gravity), temperature, and pH, we demonstrate that this technique can accurately
predict key fermentation trajectories and support process monitoring and optimisation.
When evaluated on representative medoid fermentations as one-step-ahead roll-outs over
0-300 h, the model produces accurate predictions with low errors and minimal residuals.
These results show that the LSTM-based model provides accurate and robust predictions
across beer styles and operating conditions, offering a practical alternative to traditional
mechanistic kinetic models. This work highlights the potential of LSTM networks to
enhance our understanding, monitoring, and control of fermentation processes, providing a
scalable and efficient tool for both research and industrial applications. The findings suggest
that LSTM models can be effectively adapted to model other fermentation processes in
beverage production, opening new possibilities for advancing food science and engineering.

Keywords: beer fermentation; artificial intelligence; data-driven modelling; LSTM networks;
fermentation dynamics

1. Introduction

Fermentation sits at the heart of brewing. During fermentation, fermentable sugars
in brewer’s wort are converted into ethanol, carbon dioxide, and a wide range of flavour-
active secondary metabolites that define the organoleptic profile of the finished beer [1-3].
In production vessels, fermentation dynamics are shaped by yeast physiology, recipe
formulation, temperature control, and fermentation-vessel geometry. The growth of the
modern craft sector has further expanded this design space through the exploration of
novel yeasts and recipes, and the use of mixed-culture fermentations [4—6]. Further, many
breweries now operate with continuous inline sensing and automated data logging of
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apparent extract (°P) and fluid temperature, creating an opportunity for digital tools that
anticipate fermentation behaviour rather than simply recording it.

Mechanistic models of beer fermentation typically describe changes in yeast biomass,
fermentable sugars, and ethanol through coupled ordinary differential equations (ODEs),
often incorporating substrate inhibition or oxygen effects [7-9]. Such models have been
used successfully for simulation and optimisation in specific breweries. However, such
models are not robust to process changes, requiring key parameters to be tuned to empirical
data, meaning recipe or yeast changes require reparametrisation for the model to perform
optimally [10]. In everyday operation, many breweries primarily measure the following
parameters inline: fluid temperature, apparent extract (expressed in degrees Plato), and pH
(less commonly measured inline) rather than the full state vector assumed in most kinetic
formulations [8]. In particular, biomass is rarely monitored inline, leading to a discrepancy
between the data collected in practice and the values forecast by conventional models.

Data-driven approaches offer an alternative route. For fermentation and bioprocessing,
neural networks and related methods have been applied to soft sensing, fault detection,
and the prediction of biomass or product concentrations from routinely measured vari-
ables [11-13]. Recent work has also explored hybrid models that combine mechanistic
structure with flexible empirical components [14,15]. More broadly, there has been in-
creasing interest in data-driven dynamical systems and the use of digital twins within
process systems engineering [16,17]. Recurrent neural networks, and in particular long
short-term memory (LSTM) architectures [18-20], are also well suited to this context, as
they can represent non-linear temporal dependencies without requiring ODEs derived
from first principles.

In brewing, most reported neural-network models have been trained on relatively
small datasets, often focusing on monoculture fermentations under tightly controlled
conditions [11]. There are fewer examples of a single data-driven model trained on an
extensive, heterogeneous collection of fermentations spanning multiple beer styles and
mixed-culture inocula. Yet this is precisely the situation encountered in practice: breweries
accumulate archives of hundreds or thousands of fermentations from a diverse product line,
collected under slightly different process conditions, and an effective plant model must cope
with this diversity while still providing reliable predictions for individual fermentations.
Studies such as “From Data to Draught” have shown that diverse fermentation datasets
can, in principle, be leveraged to develop models robust to a range of temperature and
inoculum configurations [21]. Still, a robust process model trained on a large, diverse
fermentation dataset from real-world commercial breweries remains needed.

The present work addresses this need by developing a data-driven plant model for
beer fermentation using an LSTM-based architecture. The model is trained on a large
dataset of inline-monitored fermentations recorded using a Sennos (US) BrewlIQ IoT sensor
array. This dataset is primarily comprised of fermentations carried out in commercial
breweries and is augmented by some pilot-scale fermentations conducted in a laboratory
setting. After filtering to include only ales, India pale ales (IPAs), lagers, and mixed-culture
beers, 1305 fermentations were available for use in modelling. The dataset encompasses a
broad range of recipes, yeast strains, and temperature profiles, resulting in diverse apparent
extract and pH trajectories.

Using this dataset, we develop a multi-output, sequence-to-sequence LSTM plant
model that forecasts apparent extract and pH over short horizons, conditioned on the
intended future temperature schedule; full architectural and training details are provided
later in the paper.
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Model performance is assessed on rolling short-horizon forecast windows and through
open-loop rollouts on representative fermentations in each beverage category, providing
an interpretable view of fidelity in brewer-relevant terms.

The primary objectives of this work are to describe a large, stylistically diverse beer
fermentation dataset suitable for data-driven modelling, to detail the design, training,
and validation of a multi-output LSTM plant model that uses inline measurements of
temperature, apparent extract, and pH as key modelling parameters, and to evaluate the
model’s capability to replicate typical fermentations for ales, IPAs, lagers, and mixed-culture
beers. The findings demonstrate that the LSTM plant model achieves root-mean-square
prediction errors for apparent extract and pH that are comparable to standard sensor
tolerances, particularly for pH, indicating that LSTM-based neural networks of this type
can provide a practical foundation for monitoring and short-term forecasting of beer
fermentation in modern breweries.

2. Materials and Methods
2.1. Experimental Facilities and Instrumentation

All pilot-scale fermentations were carried out at the Advanced Food Innovation Centre
(AFIC) at Sheffield Hallam University (Sheffield, UK). Wort was produced using a 200 L
Speidel’s Braumeister brewhouse (Figure 1) and transferred to a 240 L fermenter (Figure 2),
which has been cleaned in place (CIP) and sanitised thoroughly prior to use (see Figure 3).
This in-house pilot brewery enabled the production of fermentations analogous to those in
small craft breweries. However, the majority of the data are sourced from data collected in
commercial breweries at a range of scales using a wide variety of recipes and equipment.

Figure 1. The 200 L Speidel’s Braumeister brewhouse used to produce the IPA-style wort.
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Figure 3. The Speidel clean-in-place (CIP) apparatus used to clean and sanitise the 240 L fermenter
(Figure 2).

All inline measurements within the dataset were recorded using the Sennos (Durham,
NC, USA) BrewlQ multi-sensor fermentation monitor, shown in Figure 4. The device
measures fluid temperature, specific gravity and apparent extract (°P), pH, dissolved
oxygen, and conductivity, and streams data to a secure cloud platform at regular intervals.
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In this study, temperature, apparent extract, and pH are used directly in the modelling
pipeline, while the remaining channels are omitted.

Figure 4. BrewlQ fermentation sensor array used to collect inline temperature, Plato, and pH
measurements.

2.2. Wort Recipe, Yeast Inocula, and Operating Conditions

All pilot-scale batches were based on a single, IPA-style wort designed to provide a
consistent substrate across fermentations. The grain bill comprised predominantly pale
ale malt and Carapils, and hop additions chosen to produce a contemporary IPA aroma
and bitterness profile (Cascade and Centennial). Using a standardised recipe isolates the
influence of yeast strain, inoculum configuration, and temperature programme on the
observed dynamics. This recipe was particularly important as these pilot-scale experiments
constitute the overwhelming majority of data within the mixed-culture beers category.

Pilot-scale fermentations were performed by directly pitching active dry brewing
yeast produced by Fermentis (Marquette-lez-Lille, France). Ale fermentations used a
Saccharomyces cerevisiae strain suited to American pale ales and IPAs (Fermentis (Marquette-
lez-Lille, France) SafAle US-05), while lager fermentations used Saccharomyces pastorianus
(Fermentis (Marquette-lez-Lille, France) SafLager S-23). Mixed-culture beers combined ale
and lager strains to create more complex flavour profiles.

Fermentations were grouped into four beverage categories: ales, IPAs, lagers, and
mixed-culture beers. They were categorised based on the recorded style descriptor within
the metadata of each fermentation batch.

Figure 5 illustrates three representative beers produced from the IPA-style wort using
different yeast configurations at 22 °C. Even with identical wort, differences in yeast
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physiology and fermentation temperature yield distinct appearance and flavour profiles,
reflected in the corresponding apparent extract and pH trajectories.

Figure 5. Example beers produced from the IPA-style wort using different inocula at a primary fer-
mentation temperature of 22 °C, photographed after two weeks of conditioning: (a) ale monoculture
(SafAle US-05 at 80 g/hL); (b) mixed ale and lager culture (SafAle US-05 at 40 g/hL and SafLager
S-23 at 40 g/hL); (c) lager monoculture (SafLager S-23 at 80 g/hL).

2.3. Dataset Construction and Preprocessing

Raw data were exported from the BrewIQ platform as comma-separated value files,
each corresponding to a single fermentation. For every batch, the data included the follow-
ing required attributes: the elapsed time since yeast pitch (hours_from_pitch, in hours),
apparent extract (plato, in °P), fluid temperature (fluid_temp, in °C), and a style descriptor
(style_name). Additional variables such as pH, dissolved oxygen, and conductivity were
recorded for many fermentations, depending on the configuration used at each brewery.

The data were preprocessed and resampled before modelling. Batches lacking finite
values for any of the required columns (time, Plato, temperature, style name) were dis-
carded and two fermentations were removed on this basis. The remaining fermentations
came from a mixture of pilot-scale trials and routine production in commercial breweries.
The commercial data covered a wide variety of monoculture yeast inocula, temperature
profiles, and recipes, including a broad range of ale and lager styles. Style names were
normalised by stripping accents and diacritics, standardising capitalisation and spelling,
and then mapped to beverage categories using rule-based pattern matching against curated
lists. The following categories were identified: ales, IPAs, lagers, mixed-culture beers,
stouts and porters, Belgian styles, sour beers, wheat beers, wines, seasonal and historical
beers, flavoured and experimental beers, spirits, and uncategorised entries.

The LSTM plant model was trained on the four most populous categories: ales, IPAs,
lagers, and mixed-culture beers. Restricting to these categories yielded 1305 fermentations
in total. Within this modelling subset, the sampling period was 30 min, the time since
pitch was capped at 300 h, and the median duration ranged from 141 h for ales to 300 h for
lagers and mixed-culture fermentations. For each batch, original gravity descriptors were
computed from the apparent extract (°P) time series. The initial gravity OGiuj was defined
as the first finite degrees Plato value at ¢t = 0 h where available. A reference original gravity,
OG,.f, was then obtained as the median Plato over the first 2 h of the fermentation; this
approach was chosen to mitigate against measurement noise.

Temperature setpoints were reconstructed from the fluid temperature time series to
provide a smoothed representation of the brewer’s intended temperature programme. The
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recorded temperatures were first smoothed using a three-point centred moving average,
then rounded to the nearest 0.5 °C. Changes smaller than 0.5 °C were treated as noise, while
sequences of approximately constant temperature were treated as plateaux. The resulting
piecewise-constant trajectory, denoted uget(t), captures the main steps of the temperature
schedule while filtering sensor noise and short-lived perturbations.

Table 1 summarises the modelling dataset by beverage category. Ales and IPAs domi-
nate in terms of batch count and time points, reflecting their prevalence in contemporary
production. The number of lager and mixed-culture fermentations is smaller but still
sufficient to provide meaningful coverage for modelling. Almost all ale, IPA, and lager
fermentations included pH measurements, whereas pH coverage was lower in mixed-
culture fermentations.

Table 1. Summary of the modelling dataset used to train the LSTM plant model, grouped by beverage
category. Durations are measured from yeast pitch to the last BrewIQ observation. Median values are
reported for OG,¢ and fluid temperature.

Metric Ales IPAs Lagers Mixed-Culture
Batches 575 503 193 34
Median duration (h) 141.0 212.0 300.0 300.0
Median OG, (°P) 11.62 14.27 12.05 12.37
Median Tpyiq (°C) 196  20.1 139 132
Fermentations with pH (%) 99.8 974 96.4 55.9

2.4. LSTM Plant Model Formulation

The plant model (see Figure 6) is formulated as a multi-output, sequence-to-sequence
LSTM network implemented in PyTorch (version 2.9.1). Its purpose is to predict short-
horizon trajectories of degrees Plato and pH given a recent history of process measurements
and a planned future temperature schedule. This model structure was chosen as, in
combination with an optimiser, it is suitable for direct integration within a model predictive
control (MPC) controller.

The model operates at a fixed sampling interval of 0.5 h. For each fermentation, a
history window of length Ly;s; = 12.0 h and a forecast horizon of length Hgy. = 12.0 h are
considered, yielding L = H = 24 time steps per history and forecast segment. At each time
step in the history window, the inputs to the model comprise the reconstructed temperature
setpoint uget(t), the time since pitch, the original gravity descriptor (OG,ef), the current
apparent extract value (°P), and a categorical beer style label. The style label is mapped to an
integer index and embedded into a low-dimensional continuous vector through a learnable
embedding layer. All continuous inputs are standardised using dataset-wide means and
standard deviations, so that the network operates on inputs with approximately zero mean
and unit variance per channel. The original gravity descriptor (OG,s) is broadcast across
time to give a constant sequence for each batch.

The recurrent backbone is a two-layer LSTM with 128 hidden units per layer. For the
history window, the input sequence is formed by concatenating the scaled temperature,
time, original gravity (OG.f), apparent extract (°P), and style embedding at each time step,
giving an input dimension of 4 + E, where E is the 16-dimensional embedding vector. The
LSTM processes this sequence and returns the sequence of hidden states, together with
the final hidden and cell states. Two output heads, implemented as small feed-forward
networks, map the hidden state at each forecast step to apparent extract and pH predictions,
respectively. Both heads consist of a linear layer, a rectified linear unit activation, and a
final linear layer that outputs a single scalar per time step.

https://doi.org/10.3390/pr14020233
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Figure 6. LSTM plant model: Per-step inputs pass through a 16-D style embedding, a two-layer
LSTM backbone (128 units per layer with dropout between layers), and separate output heads. Each
head consists of a hidden Linear-ReLU layer (128 units) followed by a final linear layer that outputs
degrees Plato or pH. Predicted apparent extract is fed back autoregressively during forecasting.

Inference proceeds in two phases. First, the history window is passed through the
LSTM to initialise the hidden and cell states. The last apparent extract value (°P) in the
history segment is retained as the starting point for the autoregressive decoder. Second,
the model rolls forward step by step over the forecast horizon. At each forecast step, the
decoder forms an input vector by concatenating the scaled future temperature setpoint,
future time, original gravity (OG,f), the previously predicted degrees Plato value, and the
style embedding. This input is passed through the same LSTM, using the hidden and cell
states carried over from the previous step. The apparent extract (°P) and pH heads then
produce predictions for the current forecast step, and the degrees Plato prediction is fed
back as the apparent extract (°P) input for the next step. In this way, predicted apparent
extract acts as a surrogate state variable in the decoder, allowing the network to propagate
its own predictions forward in time.

2.5. Training Procedure and Loss Function

Before training, global scaling factors are estimated for each continuous variable. For
every fermentation in the modelling subset, the sequences of temperature setpoint, time
since pitch, original gravity (OG,f), degrees Plato, and pH are concatenated, and a mean
and standard deviation are computed across the combined dataset for each channel. These
statistics are used to transform all inputs and targets to zero mean and unit variance. Scaling
is applied identically to training and evaluation data.

Overlapping training examples are constructed by sliding a window across each
fermentation. For each valid time index, a history segment of duration Ly = 12 h and
an immediately following forecast segment of duration H¢,, = 12 h are extracted at 0.5 h
resolution. The history contains scaled sequences of temperature setpoint, time since pitch,
original gravity (OG.¢), degrees Plato, and the style embedding. The forecast contains
scaled temperature, time, original gravity (OG,e), and the corresponding degrees Plato
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and pH targets. Windows containing any missing values in the input series or in the Plato
targets are discarded. Windows with missing pH values are retained, but the missing
entries are marked in a binary pH mask. This approach allows the model to use incomplete
pH information without discarding otherwise useful windows.

Noise augmentation is applied to the training inputs to improve robustness to mea-
surement variation. During training, the reconstructed temperature setpoint and apparent
extract sequences are perturbed by truncated Gaussian noise. For each of these variables
x, a zero-mean Gaussian noise term is added with a standard deviation chosen so that
three standard deviations match the nominal sensor tolerance (approximately 1.0 °C for
temperature and 30.2 °P for Plato). The perturbation is clipped to lie within the corre-
sponding tolerance band, and the result is further restricted to physically plausible limits
of 0-30 °C for temperature and 0-20 °P for apparent extract. The perturbed sequences are
then scaled and used as inputs, while the original, unperturbed apparent extract and pH
sequences form the targets. This procedure mimics realistic sensor noise without corrupting
the ground truth.

To construct training and validation sets, all admissible windows are first enumerated
without augmentation. A random subset comprising 10% of these windows is assigned to
the validation set, and the remaining 90% form the training window pool. For validation,
the windows are used in their unaugmented form. For training, windows are regenerated
with noise augmentation, using independent random draws at each epoch. Because the
split is performed at the window level rather than the batch level, windows from the same
fermentation can appear in both the training and validation sets. The resulting training
and validation losses therefore quantify generalisation across overlapping windows drawn
from the same population of fermentations, rather than strictly held-out fermentations.

The model is trained using the Adam optimiser with a learning rate of 10~3, mini-batch
size of 32, and 20 epochs. Gradients are clipped to a global norm of 1.0 to improve stability,
and a dropout rate of 0.1 is applied between the two LSTM layers. These hyperparameters
were chosen to balance model capacity, training stability, and computational cost, and are
consistent with standard practice for recurrent neural networks in process modelling [17,22].

The training objective is a masked Huber loss. For a set of predictions Z, targets z, and
a binary mask m, we denote each prediction-target pair by (x,y) = (£,z). With a threshold
parameter 6 > 0, the per-element Huber loss is defined as

%(x—y)z, if |[x —y| <4,

lxy) = 1)

6(Jx —y| — 16), otherwise,

and the masked Huber loss is the mean of /(x, y) over all entries where m = 1. In this work,
6 = 1.0 is used for both apparent extract and pH in scaled units. During training, the total
loss for a mini-batch is

L= ‘CHuber(p/ P; MP) + % 'CHuber(p/I\_I/ PH/’ MpH)/ (2)

where Ligper denotes the masked Huber loss with § = 1.0, Mp is a mask of ones for the
degrees Plato targets, and M,y is the pH mask. Apparent extract (degrees Plato), therefore,
acts as the primary objective, with pH contributing a secondary but non-negligible term.

To encourage robustness to missing pH measurements, an additional dropout mecha-
nism is applied to the pH mask during training. At each batch, a random binary matrix D
is sampled with entries drawn independently from a Bernoulli distribution with parameter
p = 0.30. The effective training mask for pH is then

MEE" = Mpn © (1 - D), )
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where © denotes element-wise multiplication. This mechanism effectively turns off a
proportion of pH targets during training, even where measurements are available, and
encourages the network to infer pH dynamics from context rather than relying solely on
densely labelled trajectories. At the end of each epoch, mean training and validation losses
are recorded, and the model with the lowest validation loss is retained for subsequent analysis.

2.6. Medoid Selection and Full-Run Evaluation

The training objective is defined on short forecast windows. To assess how well the
LSTM plant model reproduces complete fermentations, it is evaluated in a one-step-ahead,
open-loop configuration over the full 0-300 h horizon for a representative fermentation in
each beverage category.

Representative fermentations are selected using a medoid approach. For each of the
four categories (ales, IPAs, lagers, mixed-culture beers), only fermentations with BrewlQ
data covering the entire 0-300 h interval are considered. Their degrees Plato trajectories are
interpolated onto a uniform 1 h grid, and pairwise distances are computed between these
interpolated trajectories as root-mean-square differences over time. For each candidate
trajectory, the mean distance to all others in the same category is calculated. The medoid is
defined as the fermentation whose mean distance is minimal. Where possible, the candidate
pool is restricted to fermentations with pH measurements throughout most of the horizon,
so that both degrees Plato and pH can be assessed.

For a chosen medoid, the trained LSTM plant model is rolled forward as follows:
at each time step t in 0.5 h increments, a 12 h history window ending at t is extracted,
scaled, and passed through the encoder to update the hidden state. The decoder then
receives the next planned temperature setpoint and time index, together with original
gravity (OG.), the style embedding, and the most recent degrees Plato value, and returns
a one-step-ahead forecast for apparent extract (°P) and pH at time ¢ + 0.5 h. Predictions
are transformed back to physical units using the stored scalers. This procedure is repeated
across the entire 0-300 h horizon. Root-mean-square error (RMSE) and mean absolute error
(MAE) are computed for each medoid, using only those time points for which the relevant
ground truth measurements are available. These medoid trajectories and metrics provide
an intuitive picture of model performance across complete fermentations, complementing
the window-based training and validation losses.

3. Results
3.1. Training and Validation Behaviour

Figure 7 shows the evolution of the training and validation losses over 20 epochs. The
quantities plotted are the mean mini-batch losses at the end of each epoch, computed using
the masked Huber objective on the scaled apparent extract and pH variables, as described
in Section 2.5. The loss is therefore dimensionless and reflects the average discrepancy
between predictions and measurements in standardised units.

Training begins from mean losses of 0.0775 on the training windows and 0.0556 on
the validation windows. Both curves decrease steadily and remain close to each other
throughout. By epoch 20, the mean training and validation losses have converged to
0.0128 and 0.0124, respectively. This behaviour indicates that the chosen architecture and
regularisation provide a good fit to the windowed data without obvious overfitting at the
window level.

Because the training vs validation split is constructed at the window level, with sub-
stantial overlap between windows drawn from the same fermentations, these losses should
be interpreted as measures of within-dataset consistency rather than as fully independent
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batch-level generalisation. Batch-level performance is explored qualitatively through the
medoid trajectories presented in the following subsections.

LSTM plant model training
Training vs validation loss

0.08 A
—— Training loss

0.07 A Validation loss
0.06 -
0.05 A

0.04 -

Loss (Huber)

0.03 A

0.02 A

e

0.01 -

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epoch

Figure 7. Training and validation losses for the LSTM plant model over 20 epochs, computed using
the masked Huber objective on scaled degrees Plato and pH values.

3.2. Medoid Fermentations: Apparent Extract and pH Trajectories

The performance of the LSTM plant model across complete fermentations is illustrated
by medoid trajectories for each beverage category. For each medoid, apparent extract and
pH predictions are generated in a one-step-ahead, open-loop mode over the full 0-300 h
horizon, as described in Section 2.6. The corresponding plots (Figures 8-15) show measured
and predicted trajectories, together with residuals and tolerance bands of +0.2 °P for
apparent extract and £0.1 for pH.

Figures 8 and 9 present the medoid ale fermentation. The ale medoid corresponds to an
American pale ale with an original gravity (OG,f) of 11.6 °P and a typical ale temperature
schedule. The LSTM plant model follows the steep attenuation phase between roughly
25 and 100 h, reproducing both the rapid drop in degrees Plato and the subsequent approach
to terminal gravity. The pH trajectory is also captured well, including the characteristic
decline during active fermentation and the gradual recovery during conditioning. Across
the full horizon, the degrees Plato predictions yield an RMSE of 0.304 °P and an MAE of
0.200 °P, while pH predictions achieve an RMSE of 0.096 and an MAE of 0.056.

Figures 10 and 11 show the medoid IPA fermentation, representing a higher gravity,
more heavily hopped beer with an original gravity (OG,ef) of approximately 15.2 °P. The
model again reproduces the overall shape of the degrees Plato trajectory, including the faster
attenuation and slightly extended conditioning compared with the ale medoid. Errors peak
at the end of the lag stage and during the most active phase of fermentation, where steeper
gradients and potentially greater sensor noise are present, but remain within acceptable
limits for process supervision in many settings. The apparent extract RMSE and MAE
for the IPA medoid are 0.467 and 0.262 °P, respectively. For pH, the RMSE and MAE are
0.082 and 0.056, respectively.

https://doi.org/10.3390/pr14020233
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LSTM plant model (Degrees Plato)
Ales medoid: 8448

16 RMSE = 0.304

—— Actual
~ Predicted

14
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Degrees Plato (°P)
oo

Residual (°P)
o
e
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i3
b
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4
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‘W
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Hours from pitch (h)

Figure 8. Medoid ale fermentation: LSTM plant model predictions versus BrewlQ observations for
degrees Plato over the 0-300 h horizon. Residuals and tolerance bands are shown in the lower panel.

LSTM plant model (pH)
Ales medoid: 8448

6.0 RMSE = 0.096

—— Actual
—— Predicted

5.5

5.0
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Figure 9. Medoid ale fermentation: LSTM plant model predictions versus BrewlQ observations for
pH over the 0-300 h horizon. Residuals and tolerance bands are shown in the lower panel.
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Figure 10. Medoid IPA fermentation: LSTM plant model predictions versus BrewIQ observations for
degrees Plato over the 0-300 h horizon. Residuals and tolerance bands are shown in the lower panel.
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Figure 11. Medoid IPA fermentation: LSTM plant model predictions versus BrewIQ observations for
pH over the 0-300 h horizon. Residuals and tolerance bands are shown in the lower panel.

The medoid lager fermentation is presented in Figures 12 and 13. Lager fermentations
typically exhibit slower attenuation (reflected in the degrees Plato curve), a diacetyl rest, and
an extended cold conditioning period. Despite the longer duration and lower temperatures,
the LSTM-based plant model closely tracks the trajectory. The apparent extract RMSE and
MAE are 0.355 and 0.236 °P, and the pH RMSE and MAE are 0.046 and 0.030. The pH
residuals are small and largely unbiased, suggesting that the model has learnt consistent
relationships between temperature, attenuation, and pH evolution in lager fermentations.
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Figure 12. Medoid lager fermentation: LSTM plant model predictions versus BrewIQ observations for
degrees Plato over the 0-300 h horizon. Residuals and tolerance bands are shown in the lower panel.
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Figure 13. Medoid lager fermentation: LSTM plant model predictions versus BrewIQ observations
for pH over the 0-300 h horizon. Residuals and tolerance bands are shown in the lower panel.

Mixed-culture fermentations pose a more challenging modelling problem because
they involve interactions among multiple yeast species. Figures 14 and 15 show the medoid
of mixed-culture fermentations present within the dataset. The LSTM plant model captures
the decline in degrees Plato and the overall pH change associated with acidification. Over
0-300 h, the Plato RMSE and MAE are 0.228 and 0.128 °P, respectively. The pH RMSE and
MAE are 0.071 and 0.033.
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Figure 14. Medoid mixed-culture fermentation: LSTM plant model predictions versus BrewIQ

observations for degrees Plato over the 0-300 h horizon. Residuals and tolerance bands are shown in
the lower panel.
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Figure 15. Medoid mixed-culture fermentation: LSTM plant model predictions versus BrewIQ
observations for pH over the 0-300 h horizon. Residuals and tolerance bands are shown in the
lower panel.

These medoid trajectories should be viewed as representative examples rather than
exhaustive summaries of performance across all batches. They highlight how the LSTM
plant model behaves during typical fermentations in each category, but do not capture the
full distribution of errors across the entire dataset.
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3.3. Aggregate Medoid Metrics

Table 2 summarises the one-step-ahead, open-loop errors for the medoid fermentations
in each category. Averaged over the four medoids, the mean Plato RMSE is 0.339 °P and
the mean Plato MAE is 0.207 °P. For pH, the mean RMSE and MAE are 0.074 and 0.044,
respectively. For pH, these values are similar in magnitude to the 0.1 pH unit tolerance
assumed in the noise model. For Plato, the errors are somewhat larger than the 0.2 °P
tolerance used in augmentation, but still of the same order of magnitude.

Table 2. LSTM plant model performance on medoid fermentations for each beverage category,
evaluated as one-step-ahead, open-loop predictions over 0-300 h.

Category Plato RMSE (°P) Plato MAE (°P) pHRMSE pH MAE
Ales 0.304 0.200 0.096 0.056
IPAs 0.467 0.262 0.082 0.056
Lagers 0.355 0.236 0.046 0.030
Mixed-culture beers 0.228 0.128 0.071 0.033
Mean over categories 0.339 0.207 0.074 0.044

The pattern of errors differs between categories. IPAs show the largest apparent
extract errors, consistent with their higher original gravities and fast attenuation, which
magnify any mismatch between the model and the process. Conversely, mixed-culture
fermentations yield the smallest apparent extract errors, as these batches share a common
IPA-style wort and a mixed S. cerevisiae and S. pastorianus inoculum, and such combinations
of Saccharomyces strains with complementary sugar utilisation profiles are known to support
reliable, well-attenuated fermentations rather than simply altering their speed [23-26].
Across all categories, the relatively low pH errors suggest that the multi-output design,
in which degrees Plato and pH share the same recurrent backbone, has captured useful
cross-correlations between attenuation and acidification.

3.4. Errors and Temporal Behaviour

Inspection of the residuals across all medoids indicates that prediction errors are not
uniformly distributed in time. For degrees Plato, the largest residuals occur during rapid
changes in apparent extract, particularly in the early stages of active fermentation and
around temperature ramps. During lag and late conditioning phases, residuals are typically
small and centred near zero. For pH, residuals tend to be slightly biased around the point
of maximum acidification, with the LSTM sometimes overestimating the depth of the pH
minimum before converging back towards the observed trajectory. These biases remain of
limited magnitude and do not accumulate over time.

Importantly, neither the apparent extract nor the pH prediction residuals exhibit signs
of long-term drift across the 0-300 h model roll-outs. Suggesting that the autoregressive
decoder remains stable when applied iteratively, even though it was trained only on 12 h
forecast windows. Instead, the residual patterns align with a model whose errors are
primarily driven by local dynamical discrepancies and moderate input noise, rather than
by systematic biases or fundamental structural flaws. A more comprehensive analysis of
variability across all fermentations—such as examining the distribution of RMSE values
over the entire dataset—is deferred to future work.

4. Discussion

The results indicate that a single LSTM plant model can represent beer fermentation
dynamics across ales, IPAs, lagers, and mixed-culture beers with an accuracy that is broadly
compatible with inline measurement tolerances, especially for pH. This is achieved without
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separate parameter sets for each category and without explicit mechanistic equations
for biomass, sugar, or ethanol concentrations. Instead, the model operates directly on
temperature, degrees Plato, pH, original gravity descriptors, and beer style labels, learning
the collective behaviour of 1305 fermentations. Several aspects of the formulation contribute
to this performance.

Firstly, the input feature set is deliberately close to what brewers observe in practice.
The reconstructed temperature setpoint captures the main steps of the thermal control
strategy, while the original gravity (OG,e) summarises wort strength in a form that is
robust to measurement noise. The use of time since pitch as an explicit input allows the
LSTM to locate each forecast within the broader fermentation timeline, a key consideration
given that fermentation is a time-variant process. Combined with the recent degrees Plato
history, these features provide a compact yet informative representation of the present state
of the process.

Secondly, the multi-output design, with a shared recurrent backbone and separate
degrees Plato and pH output heads, allows the model to exploit relationships between
attenuation and acidification. In many fermentations, pH dynamics are strongly coupled to
yeast metabolism, and changes in pH can provide indirect information about the underlying
state of the culture [27,28]. By jointly predicting apparent extract and pH, the network can
use pH measurements when available to refine its internal representation, even though
pH is not used as an input. The masked Huber loss, together with pH-specific dropout,
prevents windows with sparse pH measurements from dominating training while still
contributing useful information for soft-sensing.

Moreover, the choice of an LSTM architecture is well aligned with the data’s char-
acteristics. Beer fermentations display long-range temporal dependencies, for example,
decisions made in the first 24 h can influence attenuation, pH, and flavour many days later.
LSTMs are designed precisely to handle such long-range time dependencies [18,19]. The
present model uses a relatively modest architecture by modern standards, with only two
layers of 128 units and a 16-dimensional style embedding. Yet, the training curves and
medoid results indicate that this capacity is sufficient for the process modelling challenge.
In this respect, the LSTM plant model extends previous data-driven work in brewing [11,29]
by operating on a larger, more varied dataset and by modelling both apparent extract and
pH directly, without reliance on offline biomass measurements.

From an operational perspective, prediction error magnitudes in excess of 0.3-0.5 °P
in apparent extract and 0.05-0.10 pH units relative to ground truth are meaningful. For
many breweries, such errors are comparable to the variability observed between replicate
fermentations under nominally identical conditions. A plant model with this level of
fidelity can support several tasks. It can provide short-horizon forecasts of apparent extract
and pH, helping brewers to anticipate when a fermentation will reach target attenuation
or pH limits. It can act as a soft sensor for pH, providing consistency checks against noisy
measurements or suggesting likely trajectories when pH measurements are temporarily
unavailable. It can also serve as a basis for anomaly detection by identifying fermentations
whose trajectories deviate significantly from the behaviour encoded in the training data.

At the same time, there are important limitations. The LSTM plant model, at present,
is trained predominantly on fermentations drawn from a variety of commercial breweries,
encompassing a broad mix of monoculture yeasts, recipes, and process equipment, with the
mixed-culture beers representing the category in which laboratory-scale datasets contribute
most strongly. Although this provides a richer basis than a single-wort, single-site study; it
still covers only a subset of the diversity found in the wider brewing industry. Generalising
the model to breweries with substantially different vessel designs, control philosophies, or
product portfolios may therefore require additional data volumes and attributes. Similarly,
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while the style embedding allows the network to adapt to different beer styles within the
dataset, it does not have explicit access to formulation variables such as hop additions,
adjunct use, or yeast generation, which are important factors of fermentation behaviour in
other contexts.

Another limitation is that the model is purely data-driven. It does not explicitly
enforce physical constraints such as non-negative extract, limits on achievable attenuation,
or monotonic relationships between certain variables. Within the range of the training
data, these constraints are respected implicitly, but there is no guarantee that extrapolations
will remain physically realistic. Physics-informed or hybrid approaches, which embed
approximate kinetic relationships or monotonic behaviours into the network [15,30], could
be explored to improve extrapolation and provide stronger guarantees on model behaviour
in sparse or novel operating regimes.

The way in which training and validation sets are constructed also warrants careful
interpretation. Windows are sampled at 0.5 h intervals with substantial overlap, and the
training and validation split is performed at the window level, not at the batch level. This
means that windows from the same fermentation can be used for both training and valida-
tion. The excellent agreement between training and validation losses, therefore, indicates
consistency across overlapping windows from the same population of fermentations, but
may overestimate performance on entirely unseen fermentations. A stricter evaluation, in
which complete fermentations are held out at the batch level, would provide a more conser-
vative measure of generalisation. Similarly, the medoid-based analysis, while intuitive and
informative, reports full-run errors for only one representative fermentation per category.
It does not capture the full distribution of errors across all batches, nor does it quantify
worst-case performance. This, however, is to be treated strictly as an exemplar of “typical”
model performance, as a complement to the reported error metrics.

The term “digital twin” in the wider literature encompasses a broad spectrum of
models and couplings [17]. In the context of this research, the LSTM plant model is best
viewed as a data-driven surrogate of the fermentation dynamics that could be embedded
within a digital twin or MPC architecture, rather than as a complete digital twin in its
own right. The present study focuses on establishing that a compact, recurrent model can
reproduce the core dynamics of typical fermentations with useful accuracy.

Finally, there is scope to refine the representation of batch-level information and to
optimise hyperparameters. In the current formulation, original gravity (OG,¢) and the style
embedding are the only batch-level descriptors. Future models could incorporate additional
descriptors, such as yeast generation, fermentation volume, or key recipe parameters, or
could use learned embeddings of entire recipes or process histories. However, accessing or
producing such a dataset presents a significant research challenge. Hyperparameters such
as the number of LSTM layers, the hidden size, and the style embedding dimension were
chosen to balance model capacity and training stability based on “best practices” and the
scale of the dataset, rather than through an exhaustive search. Systematic hyperparameter
optimisation, possibly using Bayesian optimisation or more sophisticated methods, could
further improve performance.

Overall, the present results suggest that LSTM networks provide a practical route to
building data-driven plant models of beer fermentations from routinely collected brewery
data. They complement rather than replace mechanistic models and brewing expertise,
and they provide a flexible foundation for developing more advanced monitoring and
control strategies.
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5. Conclusions

This paper has presented a long short-term memory (LSTM) plant model for beer
fermentation, trained on a large collection of inline-monitored fermentations using Sennos’
BrewlQ sensor array (see Figure 4). The model is built upon reconstructed temperature set-
points, time since pitch, original gravity descriptors, apparent extract, and beer style labels,
and predicts short-horizon trajectories of apparent extract and pH. The training dataset
comprises 1305 fermentations drawn from ales, IPAs, lagers, and mixed-culture beers.

The LSTM plant model uses a two-layer architecture with a style embedding and
a multi-output head structure for apparent extract and pH. Training is carried out on
overlapping 12 h history and 12 h forecast windows, using a masked Huber loss to accom-
modate incomplete pH data and modest noise augmentation on temperature and degrees
Plato inputs.

When evaluated on representative medoid fermentations in each beverage category,
the model reproduces degrees Plato and pH trajectories over the full 0-300 h horizon with
errors that are on the same order as the underlying sensor tolerances. Across the four
medoids, the mean apparent extract RMSE and MAE are 0.339 and 0.207 °P, and the mean
pH RMSE and MAE are 0.074 and 0.044. For pH, these values are close to a 0.1 pH unit
tolerance and for apparent extract, they are modestly larger than a 0.2 °P sensor tolerance,
but remain within a range that is likely to be useful for monitoring and forecasting.

The research underscores the importance of careful data handling in industrial
machine-learning applications. Uniform resampling at 0.5 h, robust estimation of original
gravity (OGg,f), reconstruction of temperature setpoints, and explicit encoding of beer style
all contribute to the success of the model. The masked Huber loss and pH-aware dropout
provide a straightforward way to learn from incomplete pH measurements while retaining
the benefits of joint apparent extract and pH modelling.

From an application standpoint, the LSTM plant model can support short-horizon
forecasting of attenuation and pH (via soft sensing), and anomaly detection during fermen-
tation. With further development, it could also be embedded within a model predictive
control framework, allowing breweries to explore alternative temperature schedules and
assess their likely impact on fermentation trajectories “in silico” before committing to
process changes.

Key limitations are the reliance on the variables available from inline sensing (ex-
cluding biomass and other biochemical states), incomplete pH coverage, and the limited
representation of mixed-culture fermentations in the training data. For future work and
deployment, priorities include external validation across additional breweries and vessel
geometries, uncertainty quantification and drift monitoring, and incorporation of richer
operational metadata (e.g., yeast strain, pitching rate, oxygenation) where available.

In conclusion, the LSTM-based plant model introduced in this work delivers a data-
driven yet computationally efficient model of beer fermentation behaviour. It demonstrates
how recurrent neural networks trained on production data can serve as practical building
blocks for brewery digital twins and decision-support workflows.
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