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ABSTRACT

The penetration of plug-in electric vehicles (PEVs) and distributed energy resources (DERs) is increasing in distribution sys-

tems, potentially leading to significant technical and economic challenges. To tackle these challenges, this paper introduces a

novel framework for effectively managing DERs and EVs within active distribution systems (ADSs), incorporating time-varying

ZIP load models. A deep reinforcement learning (DRL)-based control approach is developed that simultaneously optimises both

technical and economic objective functions for the efficient operation of ADSs. For this purpose, the PEVs are integrated with

different nodes of the ADS through solid-state transformers (SSTs). Based on available generation, load demand and EV

charging profiles, the control algorithm regulates reactive power flow using SSTs and minimises the operational cost as well as

power loss of the ADS. The proposed framework is successfully applied and evaluated on standard IEEE systems, demonstrating
its efficacy in solving the problem of integrating PEVs and DERs using solid-state transformers.

1 | Introduction

The high penetration and widespread integration of renewable
energy-based distributed energy resources (DERs) are trans-
forming power distribution systems from passive to active [1].
According to the U.S. Energy Information Administration
(EIA), the share of U.S. electrical power generation from re-
newables is projected to rise from 21% in 2021 to 44% in 2050
[2]. In addition to the low emissions associated with renewable
energy resources (RES), they may offer technical and economic
benefits to distribution systems such as voltage regulation,
improved power quality, enhanced system reliability, energy
loss reduction and minimisation of operational cost [1, 3]. Apart
from RES, plug-in electric vehicles (PEVs) have gained much
attention due to their environmental and technological benefits.

According to the International Energy Agency (IEA), the pro-
portion of electric car sales has surged from 9% in 2021 to 14% in
2022, with a projected increase to 35% by 2030 [4].

In active distribution systems (ADSs), the high penetration of
renewable energy-based DERs and PEVs can result in bidirec-
tional power flow, leading to potential voltage excursions. One
natural solution to address this issue is reactive power
compensation. However, it may also increase reactive power
flow and power losses in ADSs [5]. Furthermore, the uncoor-
dinated charging and discharging of PEVs in ADSs, along with
DERs and time-varying loads, may result in economic and en-
ergy losses. Therefore, a robust control strategy is required to
simultaneously optimise the technical (voltage profile and po-
wer loss) and economic aspects of ADSs.
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Over the years, an array of control techniques, including model
predictive control [6], multi-timescale control [7], distributed
optimal control [8] and coordinated volt-var control [9], have
been presented for optimal voltage control in ADS. However,
these methods are typically classified as model-based ap-
proaches, necessitating a mathematical model to depict voltage
characteristics and power losses in ADSs. Although effective in
optimising system voltages and minimising power losses, they
depend heavily on comprehensive knowledge of the ADS,
including active and reactive power injections and distribution
line parameters. Such detailed information is often not readily
accessible, posing challenges for accurate ADS modelling [10].
To address these limitations, control strategies based on rein-
forcement learning (RL) are being explored as a promising so-
lution [11, 12].

At first, the Q-learning approach was utilised for the optimal
control of shunt capacitors and tap-changing transformers.
However, these traditional or non-SST-based voltage regulation
methods lacked the dynamic reactive power management ca-
pabilities needed for ADSs [12]. Then, other RL techniques,
such as batch RL [13] and multiagent RL [14], were utilised to
resolve the voltage excursion and power loss issues. More effi-
cient deep Q-learning algorithms were applied in many other
studies [15, 16] for optimal voltage control in power systems.
However, Q-learning and deep Q-learning cannot be simply
implemented in continuous domains, and unfortunately, both
the action and state spaces in voltage control problems are
usually continuous [12-14]. Furthermore, the normal operation
of ADSs requires different physical constraints to be satisfied,
but conventional Q-learning techniques have limitations in
systematically handling them [17]. To tackle these challenges,
[18] introduced a constrained optimal control strategy based on
the safe deep reinforcement learning (SDRL) algorithm for
voltage control and loss reduction in ADSs through solid-state
transformers (SSTs). In this control scheme, both action and
statespaces are continuous, and information about the ADS
dynamicmodel is unnecessary.
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The literature highlights various control techniques that address
technical challenges such as voltage violations and power loss
arising from the presence of DERs and EVs in ADSs. However,
to our knowledge, no existing methodology simultaneously ad-
dresses these technical issues while optimising system eco-
nomics. Recent advancements in power electronics, particularly
SSTs, offer high controllability for smooth voltage regulation
and reactive power compensation. SSTs facilitate bidirectional
power flow and efficient voltage control, making them ideal for
integrating EV charging infrastructure into the grid. Addition-
ally, their higher frequency results in reduced volume and
weight compared to conventional transformers [19]. This makes
them a top choice for charging stations in densely populated
urban areas with high land costs, such as New York and Cali-
fornia. Figure 1 compares conventional transformers and SSTs
for EV charging infrastructure, clearly demonstrating the su-
periority of SSTs. As a result, this paper introduces SSTs, for the
first time, for grid integration of EVs to control reactive power
flows. The control algorithm regulates reactive power flow
through SSTs and minimises the operational cost of ADSs based
on the available generation (both from the grid and DERs), load
demand and charging/discharging patterns of EVs. The original
contributions of this paper are as follows:

1. For the first time, a robust framework for the optimum
management of DERs is presented that includes PEVs in
ADSs with time-varying ZIP load models.

2. The integration of EVs with ADSs through SSTs for
improved reactive power optimisation and voltage regula-
tion during grid-to-vehicle and vehicle-to-grid operation
modes.

3. SDRL-based control strategy for the effective integration of
PEVs in ADSs via SSTs while considering time-varying
generation and load.

4. A centralised control approach for the simultaneous opti-
misation of technical and economic objective functions
while PEVs are integrated with ADSs through SSTs.
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FIGURE 1 | Comparison of conventional and SST-based PEV charging.
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2 | Framework and Modules of ADS

2.1 | Framework of ADS

The ADS framework in this research incorporates a standard
distribution system linked with grid supply, DG units, PEVs and
time-varying ZIP load models. DG units consist primarily of
permanent magnet synchronous generators (PMSGs) operated
via wind turbines. For optimal EV control in ADSs, SSTs are
employed, capable of voltage conversion, energy transfer and
reactive power compensation. The primary objective is to
minimise ADS operational costs and power losses by main-
taining bus voltages within allowable ranges using SSTs while
considering time-varying ZIP load models. The single-line dia-
gram of the ADS framework is shown in Figure 2. Specifically,
Ny wind DGs and Nr SSTs are interconnected in the radial ADS.
At the point of interconnection, the SST serves as a link between
low- and medium-voltage levels.

2.2 | SST Modelling

The SST is fundamentally an AC/AC converter, also known as a
power electronic transformer, that can replace the traditional
low-frequency transformer in ADSs. The purpose of the SST is
shaping the input current and offering bidirectional power flow
accompanied by reactive power compensation [20] and har-
monic elimination [21]. The topological structure of the SST
considered in this research work is suitable for load flow com-
putations and offers enhanced performance in the context of
efficiency, size and weight [22]. As shown in Figure 3, it consists
of three stages, that is, the medium-voltage (MV), isolation and
low-voltage (LV) stages. The voltage source converter (VSC) at
the MV stage initially converts incoming low-frequency AC
voltage to DC and then converts it back to higher-frequency AC
voltage. Similarly, the VSC at the LV stage of the SST converts
high-frequency AC voltage into DC and then back into low-
frequency AC voltage. The third stage involves a high-
frequency transformer (HFT) that isolates the MV and LV
stages.

The equivalent model of the SST is shown in Figure 4, where P;
and Q, represent the active and reactive powers at the primary

DGs

Deep EV1 1
Reinforcement

2| 6I 7I 8I

Learning ? ’
23| 24 l)(.l I)(.z DG3
Control ST
Unit ° if ik

side, and P, and Q, represent the active and reactive powers at
the secondary side. V; and V, are, respectively, the AC voltages
at the MV and LV stages of the SST, V; and V; represent the SST
output voltage and system voltage, Vg is the DC link voltage,
and C is the capacitance of the DC link. x; and x; are the
equivalent reactances on both sides of the SST. Furthermore, the
modulation coefficients and the phase angles at the primary and
secondary sides of the SST are represented by K;, K, §; and &,
respectively. The equations for V. and Q, at the primary side of
the SST are as follows:

2P X
VWoc=———7— 1
PCT KV, sin &, ®
Vi(Vs — K1V 61/2
Q, = 5(Vs 1X11)c cos 81/2) )

The safe operation of the SST converter station with a fixed
value is ensured by setting the values of 6; usually in the range
[ —45° 45°]. Under such scenario, the partial derivatives of Vpc
and Q, are given in the following equations:

dVDC _ 2P1X; cos 51
651 K,V sinzdl

3
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LVDC Link
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IvDC Link HFT
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FIGURE 3 | Topology diagram of SST [23].
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FIGURE 4 | Simplified model of SST [24].

EV2 EW EV4

-

11 1? 14| lil 16| l7| 18|J

1
_ PP PBER

bbb bbbb

26| 27| 28| 29| 30| 31| 32| 33|

v

|HH’_’ [|—>
Lot

FIGURE 2 | Proposed framework of ADS.
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@ _ _VDCVS cos 51. )

0K 2X
The above equations demonstrate that 0Vpc/dd; <0 and
0Q,/0K; < 0. This implies that an almost similar functional
relationship exists between Vpc and 6; as well as between Q,
and K; that permits the decoupling control.

AQ, = W AKy, (6)

Therefore, Vpc and Q, can be controlled by tuning the §; and K;
parameters of the SST at the primary side. Likewise, the
following equations of V;, and Q, are formulated for the sec-
ondary side of the SST.

2PX
Ww=0F—"——2 7
0 K,V sin 52 ( )
Q, = Vo(K2Vpe (;C()S 62/2 = Wy ®)
2
The partial derivatives of V; and Q, are as follows:

Wy 2P2X2 cos 52 ©)

5, Kszc sin 52
0Q, _ VacV, cos 52' (10)

0K, 2X,

The above equations demonstrate that dV,/08, <0 and
00, / 0 K; < 0. Therefore, after decoupling, Equations (7) and
(8) can be expressed as follows:

AVy = WAS,, (€3))
AQI = u/quKz, (12)

VacVo cos &,

__2P)X, cos &, W1 —
q 3

where W, = Kz Vi sin?sy’ =

Therefore, V5 and Q, can be controlled by tuning the §, and K,
parameters of the SST at the secondary side. Hence, the phase
angles and modulation coefficients of the VSC on the primary
and secondary sides of the SST are used as control parameters
for reactive power compensation and voltage smoothing. Here,
X and X; represent the reactance at the primary and secondary
converter sides of the SST. The above equations show that
converter voltages and reactive power are updated by altering
the values of the control parameters K;, K,, §; and &,

2.3 | Load Modelling

In this research work, time-varying ZIP load models are selected
for the optimum management of DERs and PEVs in ADSs [25].
These load models are dependent on the node voltages and
variable time, as shown in the following equations:

4CD) g,—Vs’ D, Pp)], 13)
0

O L e )| I

where V; denotes the ADS nominal voltage and V(i, t) repre-
sents the voltage level of bus i at time ¢; P(i, t) and Q(, t) are,
respectively, the real power and reactive power demands of bus i
at time t; and Py(i, t) and Q(i, t) are the real power and reactive
power demands of bus i at the nominal voltage V;. The ZIP
coefficients of active power are denoted by Zp I, and P,
whereas the ZIP coefficients of reactive power are denoted by
Zg Iy and P,. This research assumes a normalised hourly load
profile for three load types: residential, commercial and indus-
trial, as provided in Ref. [26]. The ZIP coefficients for com-
mercial, industrial and residential load models are obtained
from Ref. [25].

P(i, t) = Py(i, t)[ <

2.4 | DG Modelling

The DG units in this study are wind turbines based on PMSGs.
Wind speed data are sourced from the National Renewable
Energy Laboratory (NREL) database [27]. A Weibull
distribution-based probabilistic generation model is used to
calculate the output power of the wind turbine [26].

Kty
o L))
f@(u@)_( “)) (@) ) e( (m i (15)

Yo/ \Co

where v is the wind speed and k() represents the shape
parameter, whereas c() is the scale factor at time step ‘¢’
Depending upon the hourly wind speed data, the active power
output of wind DG, shown in Figure 5, is computed using the
following function [26]:

0 V<V Or V> Vo
Pr Xv
Py = -V Vi <V<Y, , (16)
VR — Vei
Py VR SV <V

where Py represents the rated capacity; and v, v, and vg are
the cut-in, cut-out and rated speeds of the PMSG, respectively.

Pyi+jQui
£
MYV side LYV side
Vv I PeitjQci Voo i
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Ve Zc
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Ci
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FIGURE 5 | Equivalent circuit of SST employed with EV.
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2.5 | Plug-In Electric Vehicle

In this paper, PEVs are integrated with ADSs through SSTs for
reactive power support, bidirectional power flow and energy
storage [23]. Furthermore, this compensates for the uncertainty
imposed by the RES integration in the ADS by controlling the
charging and discharging strategies of EVs. The design of the
SST employed with EVs used in the system is shown in Figure 5.
The mathematical model of the PEV state of charge (SOC) is
given in the following equation [28, 29]:

PEV . O [ PRV o pPEV, P dsh
EInt +Z Mchr XP! - PEV ,V[Sd— 1
j=1 disch
L= t PEVgisc
SOCprvs = EPEV 4 PEV g pPEVan _ prtaseny g
Int HMchr t PEV out *
j=1 disch

Vi>f+1
17

PEV PEV PEV
Pk < P kChr/disch. =P k

minimum — ‘maximum?’

PEV _ PEV
EO _E24 ’

ESE\I/ = Es*lEa\):imum‘

The PEV charging/discharging is influenced by both DER gen-
eration and the network’s demand requirements. PEVs can
interact with the electrical grid in two ways: (1) storing low-cost
energy during off-peak hours to act as an energy storage device
and (2) discharging the stored energy during peak hours to serve
as a cost-effective energy source. The following equation de-
termines the optimal charging/discharging profile of PEVs.

Negy . Negy
plemand 4 N pPEVaw 1 pp = perid 4 ) pPEVan 1Py (18)

PE]
n=1 n=1

PEV charging/discharging cost is calculated as follows [30]:

NPEVs 24 D?hiﬂ
2 Z 5 x PEV! ischarging +
J.h
j=1 h=1
h
Costppys = (19)

PEVJQE&rging % Rcharging _ PEV});SCharging
3

X KDlschargmgh

where xPischargingh and 8 are operation coefficients of PEVs.

3 | Control Problem Formulation
3.1 | Optimal Voltage Control Problem

The ADS considered in this research for the investigation of hosts’
B, buses is shown in Figure 2, illustrating its radial network to-
pology as a connected tree. The edge set in the tree is represented
by ¢, where (m, n) e if the ADS bus m is connected to n.

Consider V,, = |V;y|, where m represents the voltage at
bus m, and then gather all the network voltages to form

V=W, Vs V};N]T. Similarly, at bus m, the active and reac-
tive powers are denoted by P, and Q,, and are combined in two

vectors, Py =[Py, Py ..Pg| and Q, =[Q;, Q..Qp]
respectively. Furthermore, the combination of the SST control-
lable reactive powers Q., and the change in them AQ,, is
represented by the vectors Q¢ = [Qc1 Qcas v Qepy] T and

AQc = [AQc1, AQcy, ... AQCBN]T. The admittance matrix is
denoted by Y, and the admittance of the line (m, n) is repre-
sented by Ymn = &mn + jbmn- These representations are used to
write the following equations of ADS power flow.

P +j(Q+ Q¢ + AQc) = Re{diag(VV*Y")} + Im{diag(VV"V")},
(20)
where diag(.) gathers the diagonal of a square matrix, and the

Hermitian transpose of V(Y) is V¥ YH. The active power flow via
ADS can be calculated as follows:

Pyun = [Vou*8mn + [Vinl Vil [ SINSyin) = rmn €0S(8pun)],  (21)

where 8,,, = (6, — 8,). Using Equation (21), the overall power
loss in ADS is calculated as follows:

Pr= )" Pun+Pun (22)

m,n:(m,n)€e
The main aim of this research is to regulate voltage within
permissible limits at each ADS bus while minimising opera-
tional costs and power losses. SSTs are utilised to shape reactive
power injection profiles, facilitating voltage control across the

ADS. Consequently, the optimal voltage control problem is
formulated as an optimisation programme.

min £P1(Qc +AQc) + (1~ §I|AQc| (23)
The parameter ¢ typically ranges from 0.1 to 0.9. However, in
this framework, it is set to 0.7 to strike a balance between
reducing power losses and minimising control effort [18].
Subject to:
Voltage magnitude constraint

Viin < |Vm| < Vmaxm=12, .., Bn. (24)

Power handling constraint

P +j(Q + Qc) = Re{diag(VV*Y")} + Im{diag(VV"VH). (25)

SST power constraints

P1=P2

S>\/P1+Q7 (26)
S>4/P}+Q

SST control constraints
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AQCm(k) > QC,min(PCM(k)) - QHm(k - 1) + QFm(k)’ (27)

AQcm(k) £ Qcmax(Pem(K)) = Qum(k — 1) + Qp(k).  (28)

The optimisation problem in Equation (23) is difficult to solve
directly due to two reasons. Primarily, it is nonconvex because
of the nonlinear relationship between ADS power and bus
voltages, and secondly, the Y parameters of the ADS are
fundamentally not certain and therefore may not be simply
available. The following section addresses these challenges by
formulating the optimisation problem as a constrained Markov
decision process (CMDP), followed by applying the SDRL
approach to solve the problem.

3.2 | Optimal Voltage Control as CMDP

The optimum voltage control problem necessitates real-time
reactive power dispatch in the ADS. The proposed control
strategy must coordinate with all ADS SSTs to meet voltage
constraints and minimise operational costs and power losses.
This problem involves all components of CMDP, where the
agent’s actions affect the environment’s states. The agent’s goal
is to devise the most favourable policy, maximising rewards
while minimising power losses. Specifically, the policy involves
the interaction of ADS states with SSTs for reactive power ad-
justments, as depicted in Figure 2. Because this paper treats the
optimum voltage control problem of ADS as a CMDP, it requires
three parameters: states (S), actions (A) and rewards (R). The
states represent a real-time measure of the environment or the
evolution of system dynamics. For the case of ADSs and SSTs,
the dynamics of the system are continuous. Therefore, to fully
characterise the continuous nature of the ADS, the system states
are represented as continuous variables. The states are defined
as the voltage magnitudes of all buses in the ADS.

S=[IVil, Vi, - |Vay| ] (29)

The second parameter is the set of actions, which, in the case of
ADS, is considered as reactive power adjustments.

A=TAQ], |AQ,], ..[AQssr|]- (30)

The action vector comprises continuous variables, resembling
the characteristics of states. Thus, we introduce the voltage
control policy denoted by y(.) to map actions and states.

a; = y(sy). (31)

At each time step t, every element of the action vector a; is
constrained by the reactive power limits of the SST. The reward
¥ is directly related to the control strategy’s goals and is
formulated as the negative of the overall power loss in the ADS,
with an added penalty for control effort, aiming to minimise
power losses and operational costs.

R=—-BP, (Q; + AQ) — (1-B) |AQ;|. (32)

The reduced reward from time t onwards is denoted by r; and is
typically called the return.

[ee]

e = Z V{T_t}rt (33)

t

The function of the action value, also known as the Q function,
represents the expected return at state s; and action a; under the
control policy y:

Q¥ (s, ar) = E(1elss, assy) (34)

The optimum voltage control problem in ADS evolves into
maximising the performance function through determining y.

J(y) = E(r;). (35)

The line parameters and active and reactive power injections are
not known during the actual operation of the ADS; therefore, it
is not possible to derive the transition model. Consequently, a
DRL approach is adopted for solving the CMDP because it does
not require a definite transition model [18].

4 | Safe Deep Reinforcement Learning for ADS
Optimal Voltage Control

In this study, the deep deterministic policy gradient (DDPG)
algorithm is employed to learn the policy y for optimal voltage
control in ADS, as outlined in Algorithm 1. Here, the control
policy y is constrained by a vector &”, indicating that learning y
essentially involves discerning optimal values for §”. In policy
gradient methods, such as DDPG, suboptimal values of & are
learnt, with DNNs approximating both the critic and the actor
[18]. To maximise J(y), the direction of § has an important role.
The derivative of J(y) with respect to 6" is termed the action
gradient and is expressed as follows:

V&"I(y) = E[VaQ(s, )Vey(s)]. (36)

The performance function J varies with the change in Q, which
is unknown and therefore required to be approximated. To do
this, an actor—critic-based framework is utilised by DDPG,
which is explained in Algorithm 1. The actor approximates the
control policy, whereas the critic is utilised to approximate
function Q. With robust learning capabilities, two DNNs are
used to formulate the actor and critic networks. These networks,
constrained by vectors 89 and &, represent the Q function and
the voltage control policy, respectively [31]. Policy gradient
methods learn these constraint vectors. DDPG employs target
networks to facilitate smooth learning, with target actor and
critic networks tracking the main networks’ constraints steadily.
These networks derive target values, with their constraint vec-
tors steadily tracking the critic and actor networks, as shown in
the following equations:

69 =p8% +(1-p)8?, (37)
& =p& +(1-p)&, (3%)

where p, a positive number, is significantly smaller than 1.
This ensures that the target parameters change gradually,
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significantly improving the smooth progress of the DDPG
learning process. An obstacle in using reinforcement learning
with DNNs is that many optimisation methods assume samples
are identically and independently distributed, which is invalid
when samples are obtained through sequential exploration,
such as in voltage control in ADS. To address this, DDPG
constructs a replay buffer filled with transition samples. For
each time interval, critic and actor values are obtained by uni-
formly sampling a subset of training data from the buffer. As
DDPG is not an online learning method, the buffer size may be
large, allowing DDPG to learn from uncorrelated transitions.
The DDPG learning approach for optimal voltage control in
ADS is detailed in Algorithm 1. The critic network 82 should be
updated to minimise the loss function, as given in the following
equation:

1 R
225 [+ 9Q St ¥(Smir = QSm am)I’, (39)
=1

where the replay buffer size is denoted by ‘R’. Similarly, the
actor network & should be updated to maximise the perfor-
mance function J(y). The direction of update can be determined
using the following expression:

R
VI R D VaQSm W) VipSm) (40)

ALGORITHM 1 | Safe Deep Deterministic Policy Gradient (DDPG).

Initialize critic network Q(s,al6”"Q) and actor network p(sI6"w)
with random weights.
Initialize target networks Q' and u’ with 6MQ’} « 67Q, 6N u'}
« BMu.
For episode = 1 to M:
Initialize a random process N for exploration.
Receive initial observation state s;.
Fort=1to T:
Select action a_t = u(s_tl6"w) + N _t.
Apply action constraints:
a_ti = max(a_ti, Q_{C,max} (P_Ci(t) — Q_Hi(t-1) +
Q_Fi(D))
a_ti = min(a_ti, Q_{C,min} (P_Ci(t) — Q_Hi(t-1) +
Q_Fi(V))
Correct the action a_t using the safety layer (Eq. 44).
Execute a_t, observe reward r_t and next state s_{t+1}.
Store transition (s_t, a_t, r_t, s_{t+1}) in replay buffer R.
Sample a random minibatch of N transitions from R.
Set target value:
ya =ri+y Q(s_{i+1}, w(s_{i+1}0MwHIoNQD
Update critic by minimizing:
L =(1/N) Z (y_i — Q(s_i, a_il6"Q))?
Update actor using the policy gradient.
Update target networks using soft updates.

The critic network features 8 hidden layers, including 4 ReLU
and 3 fully connected layers, whereas the actor network com-
prises 6 hidden layers, including 2 ReLU and 3 fully connected

layers. Additionally, to prevent voltage profile violations, a
safety layer is introduced. The proposed framework algorithm
seamlessly operates on continuous action and state spaces,
reflecting voltage control in the ADS via SSTs.

4.1 | Handling Constraints Using Safety Layer

This paper employs a sensitivity matrix-based technique to
address ADS voltage constraints. In this approach, the voltage
state is modelled in relation to action using a first-order math-
ematical expression, as shown below:

Seein = St + W(Sm; 6y )a, n=1,2,.., By, (41)

where w denotes the mapping function that considers s, as
input and s;4+1,, as the output vector that has an identical
dimension to a; . The analysis of above function, in view of ADS,
shows that the mapping function w is fortuitously similar to the
sensitivity matrix S;, which illustrates the change in bus voltages
after taking control actions, as follows:

oV, vy
0Qc1 0Qcn,

Si= . (42)
oV, oV,
Qcy, Qe

The sensitivity matrix S; is computed using the transposed in-
verse of the Jacobian matrix used in power flow [6]. Subse-
quently, an additional safety layer is embedded in the output
layer (maps state with action) of the DDPG actor network. The
main purpose of the safety layer is constraint handling during
the solution of optimisation problems.

mi
az

nl
Sllae = vl (43)
Subject to
Stm + Smay < Vinaxs m =1, 2, ..., By,
—Stm — Smat < _Vmax:

m=By+1,..2By.

The analytical solution of Equation (41) may be simply
computed using the following equation:

a; =y(s;) —uS;, (44)

where

_ [S,T(S[) + Sin — (Vimax — 0)
M=

.
m=1,2,.., By, 45
i ] v (45)

s 2By, (46)

/[f - _ [_Siy(st) —Sm + (Vmax + U)]+ m=12
' SiSiT B s 4y

IET Smart Grid, 2026

7 of 13

85U8017 SUOWILLOD BAIEa1D 3|t jdde aup Aq peussAob afe 3ol VO ‘8sn JO Ss|n. 10} ARIqIT8UIIUO /8|1 UO (SUORIPUOD-PUR-SWIBI WD A8 | 1M A e1q 1 U1 |UO//SdNL) SUORIPUOD PUe SWwis 1 84} 89S *[9202/20/2T] Uo ARiqiauluo AeIMm ‘AISBAIUN WeleH PRHBUS Ad TS00L Z61S/60T 0T/I0p/W0 A8 | iM ARIq 1 U1 U0 ess3. 18 //SdY W1y papeojumod ‘T ‘9202 ‘L¥625TSE



where [.]* represents the operation max, and 4 is the Lagrange
multiplier corresponding to the jth constraint [18]. By adjusting
the action a; using Equation (44), the voltage violation in
Equation (24) can be eliminated.

5 | Numerical Simulations

The proposed work presents an SDRL scheme for the optimal
control of PEVs in ADSs. This scheme enables multiple SSTs
integrated with PEVs to participate in ADS control for reactive
power compensation for time-varying ZIP loads. The hourly
demand patterns of all load models are obtained from Ref. [26].
It is supposed that in the case of all load types, the load con-
nected to each bus of the ADS is of the same type; that is, while
studying the residential time-varying ZIP load model, the load
connected to each bus is of the residential type, and the same
applies for the other load models. The utilisation of the DDPG
algorithm allows the achievement of both system power loss
reduction and voltage regulation. Training of the DDPG agent is
performed using the RL Toolbox in MATLAB 202la. The
parametric settings employed during the training are shown in
Table 1. Moreover, all hyperparametric values, such as the
number of neurons for each layer, are selected based on com-
mon practices [11] and are finely turned using a trial-and-error
method.

5.1 | Case Study

The effectiveness of the proposed approach is verified through
implementation on both IEEE 33-bus and 69-bus systems [26].
Within the system, Npg signifies the number of DG units, spe-
cifically denoting the use of permanent magnet synchronous
generators in wind turbines. Notably, the SST’s output power and
voltage are continuously adjustable. For the 33-bus system, seven
DG units are integrated with buses 9, 11, 13, 22, 25, 27 and 29,

TABLE 1 | Summary of algorithmic parametric settings.

whereas an additional seven SSTs are integrated with PEVs at
buses 3, 10, 12, 18, 20, 26 and 31, respectively. In the case of the
69-bus system, a total of 10 DG units are integrated at buses 9, 5, 8,
15, 20, 25, 32, 36, 45, 54 and 62. Additionally, there are 9 SSTs
integrated with EVs installed at buses 4, 9, 24, 28, 30, 34, 53, 61
and 69. In this context, the SSTs collaborate with the EVs to
mitigate uncertainties arising from RESs. Different multipliers
are applied to the original time-varying ZIP load model data to
ensure diverse load profiles among the buses. A 20% Gaussian
noise is incorporated to simulate stochastic uncertainty.

To demonstrate the learning capability of the proposed safe
DRL framework, we have conducted a series of experiments
that span deterministic and stochastic policy-based strategies.
Our training process comprises 300 days of dataset, with the
parametric configuration being in Table 1. The simulation re-
sults obtained from the trained model across the proposed
networks are shown in Figure 6. In this figure, the reward,
power losses and voltage violation rates indicate the daily
accumulated values. During the training phase, particularly
between Days 20 and 50, as shown in Figure 6, the Safe-DDPG
demonstrates better convergence compared to its state-of-the-
art standard counterparts, that is DDPG, SAC and TD3.
Furthermore, the analysis based on 250 and 300 days exhibits
that Safe-DDPG shows higher reward and improved voltage and
power loss mitigation compared to DDPG, SAC and TD3, as
supported by the results in Table 2. The findings demonstrate
that the proposed Safe-DDPG achieves mean episodic rewards
of —2.603 and —3.943 on the IEEE 33-bus and 69-bus networks,
indicating the improvements of 30.2% and 28.0%, respectively,
over standard DDPG and highlighting that the safety layer
significantly increases the average episodic reward while
lowering the rate of voltage violation, thereby affirming oper-
ational safety. Moreover, these improvements remain consistent
when compared to TD3 and SAC baselines. Hence, the results
confirm that each design element, particularly the inclusion of
the safety layer and SST mapping, significantly enhances the
learning process by ensuring safety and effective learning
behaviour.

5.1.1 | No Control Case

The hourly voltage profile at the buses of both ADSs, for all time-
varying ZIP load models without any voltage control or PEV
integration, is illustrated in Figures 7 and 8. Two overvoltage
periods can be observed for both the 33-bus and 69-bus ADSs. In
the case of the 33-bus system, these periods occur from 2 to 4 AM
and from 11 AM to 2 PM. For the 69-bus system, the first over-
voltage period occurs in the morning when the load is low and
DGs operate at maximum capacity, and the second occurs
around mid-day when DG generation peaks. These overvoltage
periods occur due to relatively low demand compared to the
availability of wind generation. As expected, the most problem-
atic voltage deviations occur at buses where DGs are installed.
Undervoltage can be observed during the late hours when de-
mand is high, whereas generation is low. Moreover, there are also
instances of undervoltage occurring when demand is high, but
DG's output is relatively low.

Items Value
Sampling time 10s
Smoothing factor 0.001
Experience buffer 10°
Discounting factor 0.95
Minibatch size 128
Max episode 10*
Critic learning rate 0.001
Critic regularisation factor 107
Actor learning rate 0.001
Actor regularisation factor 107
Tighten margin 0.05
Vimax 1.05 p.u.
Vinin 0.95 p.u.
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FIGURE 6 | Simulation results and comparative analysis with and without safety layer learning approaches.
TABLE 2 | Simulation results and comparative analysis of IEEE 33-bus and 69-bus systems.
Reward Power losses (MW) Voltage violation rate
Algorithm 33-bus 69-bus 33-bus 69-bus 33-bus 69-bus
Safe-DDPG -2.603 -3.943 2.6031 3.942 4.317¢7° 5.172e7°
TD3 —2.849 —4.597 2.8471 4.596 5.231e”° 7.246e™*
SAC —3.067 —4.917 3.0671 4.916 1.459e™° 7.96e2
DDPG —3.727 —5.473 3.7262 5.426 8.639¢° 1.246e™*
Voltages in Residential Demand Voltages in Industrial Demand Voltages in Commercial Demand
1.15 ::: 11 11 -
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(a) (b) (©)

FIGURE 7 | Voltage profiles of 33-bus ADS without voltage control.

5.1.2 | Control Case Without PEV

First, results are obtained without considering the variable EV
schedule illustrated in Figures 9 and 10. Notably, when a sub-
stantial amount of active power is supplied by DG units to the
system, voltages at all bus locations tend to rise, leading SSTs to

absorb reactive power during this period. Conversely, during
periods of low wind when DG output is minimal, voltages at all
buses tend to decrease, prompting SSTs to inject reactive power
to support the system voltage. This control mechanism ensures
voltage stability at all buses of the ADS, including the critical
buses where DGs are installed, as shown in Figure 2, effectively
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FIGURE 8 | Voltage profiles of 69-bus ADS without voltage control.
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FIGURE 9 | Voltage profiles of 33-bus ADS without EV scheduling.
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FIGURE 10 | ADS voltage profiles under the proposed scheme without EV scheduling.

maintaining them within the desired range. These findings
affirm the capability of the proposed SDRL scheme to handle
constraints. Simulation results indicate that the most improved
per-unit voltage profile is observed for residential load types,
followed by commercial and industrial types.

5.1.3 | Control Case With PEVs

5.1.3.1 | Technical Analysis. The charging/discharging
pattern of PEVs is determined through Equation (18) and is
presented in Figure 11. Considering this PEV schedule, the
voltage profile results of both 33- and 69-bus ADSs for all load
types are shown in Figures 12 and 13.

The outcomes underscore the robust performance of the SDRL-
based control approach. Recognising that abrupt shifts in power
demand and the escalating presence of PEVs in ADSs can
impact system performance, it becomes crucial to ensure that
DERs’ output and the charging/discharging patterns of PEVs

300
Charging
I Discharging
200 | 1
z
= 100 ] 1
.§
$ 11 (HEN
o
I~ Il I
w
-100
-200
5 10 15 20
Time (h)
FIGURE 11 | Daily charging/discharging schedule of EVs.

align with the time-varying characteristics of the ADS to effec-
tively mitigate renewable-related uncertainties. In Figure 14, the
daily evolution of reactive power for the seven SSTs, repre-
senting control actions, is shown. The trained agent drives SSTs
to absorb reactive power during voltage swells, restoring
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FIGURE 15 | 33-bus ADS loss comparison with and without PEVs. FIGURE 16 | 69-bus ADS loss comparison with and without PEVs.

voltages within acceptable limits and facilitating power transfer
to the LV side for PEV charging. Conversely, during voltage
sags, SSTs inject reactive power, rectifying voltages within
specified limits and enabling power transfer from PEVs to the
grid for discharge. Furthermore, the results for average power
loss of ADSs in the case of each time-varying ZIP load model
with and without integration of PEV are presented in Figures 15
and 16. The results demonstrate that the integration of PEV
with the proposed voltage control framework has a significant

impact on the reduction of average power losses in the case of
all time-varying ZIP load models for residential load type, fol-
lowed by commercial and industrial load types, respectively.

5.1.3.2 | Economic Analysis. The resultsobtained indicate
that the incorporation of PEVs through SSTs using the proposed
control framework into ADSs with time-varying ZIP load models
has a substantial influence on reducing overall generation
expenses, as illustrated in Table 3. The most significant cost
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TABLE 3 | Cost analysis of different load models with and without
PEVs.

Cost ($)

ADS Load type No EVs With EVs % reduction
33-bus  Residential 907 698 23.05
Industrial 718 501 30.23
Commercial 963 752 21.92
69-bus Residential  959.46 750.46 21.79
Industrial 770.46 553.46 28.17
Commercial 1015.46 804.46 20.78

reduction is observed in the case of time-varying industrial load
models, followed by residential and commercial models.

6 | Conclusion

In conclusion, this paper proposes a novel framework utilising
DRL for the effective management of DERs and PEVs within
ADSs. The incorporation of time-varying ZIP load models
makes the framework outcome more realistic, enabling a more
comprehensive optimisation of both technical and economic
objectives. Through the integration of PEVs at different nodes of
the ADS using SSTs, the developed control approach success-
fully regulates reactive power flow based on available genera-
tion, load demand and charging/discharging patterns. The
application of the proposed framework to standard systems
demonstrates its efficacy in addressing the challenges associated
with the increasing penetration of PEVs and DERs. By simul-
taneously minimising operational costs and power losses, this
approach proves to be a valuable contribution to the efficient
operation of distribution systems in the face of evolving energy
landscapes. As the energy transition continues, the presented
framework offers a promising solution for the sustainable and
optimal integration of renewable energy sources and electric
vehicles into distribution networks.
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