
An Optimal Control Approach for Plug-In Electric Vehicles 
in Active Distribution Systems Using Deep Reinforcement 
Learning

TAHIR, Yameena, NADEEM, Muhammad Faisal, RAZA, Muhammad Bilal and 
AKMAL, Muhammad <http://orcid.org/0000-0002-3498-4146>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/36627/

This document is the Published Version [VoR]

Citation:

TAHIR, Yameena, NADEEM, Muhammad Faisal, RAZA, Muhammad Bilal and 
AKMAL, Muhammad (2026). An Optimal Control Approach for Plug-In Electric 
Vehicles in Active Distribution Systems Using Deep Reinforcement Learning. IET 
Smart Grid, 9 (1): e70051. [Article] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


IET Smart Grid 

- ORIGINAL RESEARCH OPEN ACCESS

An Optimal Control Approach for Plug‐In Electric Vehicles 
in Active Distribution Systems Using Deep Reinforcement 
Learning
Yameena Tahir1 | Muhammad Faisal Nadeem1 | Muhammad Bilal Raza1 | Muhammad Akmal2

1Department of Electrical Engineering, University of Engineering and Technology (UET) Taxila, Taxila, Pakistan | 2School of Engineering and Built 
Environment, Sheffield Hallam University, Sheffield, UK

Correspondence: Muhammad Akmal (m.akmal@shu.ac.uk)

Received: 29 July 2025 | Revised: 15 November 2025 | Accepted: 8 December 2025

Keywords: distribution networks | electric vehicles | learning (artificial intelligence) | optimal control

ABSTRACT
The penetration of plug‐in electric vehicles (PEVs) and distributed energy resources (DERs) is increasing in distribution sys
tems, potentially leading to significant technical and economic challenges. To tackle these challenges, this paper introduces a 
novel framework for effectively managing DERs and EVs within active distribution systems (ADSs), incorporating time‐varying 
ZIP load models. A deep reinforcement learning (DRL)‐based control approach is developed that simultaneously optimises both 
technical and economic objective functions for the efficient operation of ADSs. For this purpose, the PEVs are integrated with 
different nodes of the ADS through solid‐state transformers (SSTs). Based on available generation, load demand and EV 
charging profiles, the control algorithm regulates reactive power flow using SSTs and minimises the operational cost as well as 
power loss of the ADS. The proposed framework is successfully applied and evaluated on standard IEEE systems, demonstrating 
its efficacy in solving the problem of integrating PEVs and DERs using solid‐state transformers.

1 | Introduction

The high penetration and widespread integration of renewable 
energy‐based distributed energy resources (DERs) are trans
forming power distribution systems from passive to active [1]. 
According to the U.S. Energy Information Administration 
(EIA), the share of U.S. electrical power generation from re
newables is projected to rise from 21% in 2021 to 44% in 2050 
[2]. In addition to the low emissions associated with renewable 
energy resources (RES), they may offer technical and economic 
benefits to distribution systems such as voltage regulation, 
improved power quality, enhanced system reliability, energy 
loss reduction and minimisation of operational cost [1, 3]. Apart 
from RES, plug‐in electric vehicles (PEVs) have gained much 
attention due to their environmental and technological benefits. 

According to the International Energy Agency (IEA), the pro
portion of electric car sales has surged from 9% in 2021 to 14% in 
2022, with a projected increase to 35% by 2030 [4].

In active distribution systems (ADSs), the high penetration of 
renewable energy‐based DERs and PEVs can result in bidirec
tional power flow, leading to potential voltage excursions. One 
natural solution to address this issue is reactive power 
compensation. However, it may also increase reactive power 
flow and power losses in ADSs [5]. Furthermore, the uncoor
dinated charging and discharging of PEVs in ADSs, along with 
DERs and time‐varying loads, may result in economic and en
ergy losses. Therefore, a robust control strategy is required to 
simultaneously optimise the technical (voltage profile and po
wer loss) and economic aspects of ADSs.
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Over the years, an array of control techniques, including model 
predictive control [6], multi‐timescale control [7], distributed 
optimal control [8] and coordinated volt‐var control [9], have 
been presented for optimal voltage control in ADS. However, 
these methods are typically classified as model‐based ap
proaches, necessitating a mathematical model to depict voltage 
characteristics and power losses in ADSs. Although effective in 
optimising system voltages and minimising power losses, they 
depend heavily on comprehensive knowledge of the ADS, 
including active and reactive power injections and distribution 
line parameters. Such detailed information is often not readily 
accessible, posing challenges for accurate ADS modelling [10]. 
To address these limitations, control strategies based on rein
forcement learning (RL) are being explored as a promising so
lution [11, 12].

At first, the Q‐learning approach was utilised for the optimal 
control of shunt capacitors and tap‐changing transformers. 
However, these traditional or non‐SST‐based voltage regulation 
methods lacked the dynamic reactive power management ca
pabilities needed for ADSs [12]. Then, other RL techniques, 
such as batch RL [13] and multiagent RL [14], were utilised to 
resolve the voltage excursion and power loss issues. More effi
cient deep Q‐learning algorithms were applied in many other 
studies [15, 16] for optimal voltage control in power systems. 
However, Q‐learning and deep Q‐learning cannot be simply 
implemented in continuous domains, and unfortunately, both 
the action and state spaces in voltage control problems are 
usually continuous [12–14]. Furthermore, the normal operation 
of ADSs requires different physical constraints to be satisfied, 
but conventional Q‐learning techniques have limitations in 
systematically handling them [17]. To tackle these challenges, 
[18] introduced a constrained optimal control strategy based on 
the safe deep reinforcement learning (SDRL) algorithm for 
voltage control and loss reduction in ADSs through solid‐state 
transformers (SSTs). In this control scheme, both action and 
statespaces are continuous, and information about the ADS 
dynamicmodel is unnecessary.

The literature highlights various control techniques that address 
technical challenges such as voltage violations and power loss 
arising from the presence of DERs and EVs in ADSs. However, 
to our knowledge, no existing methodology simultaneously ad
dresses these technical issues while optimising system eco
nomics. Recent advancements in power electronics, particularly 
SSTs, offer high controllability for smooth voltage regulation 
and reactive power compensation. SSTs facilitate bidirectional 
power flow and efficient voltage control, making them ideal for 
integrating EV charging infrastructure into the grid. Addition
ally, their higher frequency results in reduced volume and 
weight compared to conventional transformers [19]. This makes 
them a top choice for charging stations in densely populated 
urban areas with high land costs, such as New York and Cali
fornia. Figure 1 compares conventional transformers and SSTs 
for EV charging infrastructure, clearly demonstrating the su
periority of SSTs. As a result, this paper introduces SSTs, for the 
first time, for grid integration of EVs to control reactive power 
flows. The control algorithm regulates reactive power flow 
through SSTs and minimises the operational cost of ADSs based 
on the available generation (both from the grid and DERs), load 
demand and charging/discharging patterns of EVs. The original 
contributions of this paper are as follows:

1. For the first time, a robust framework for the optimum 
management of DERs is presented that includes PEVs in 
ADSs with time‐varying ZIP load models.

2. The integration of EVs with ADSs through SSTs for 
improved reactive power optimisation and voltage regula
tion during grid‐to‐vehicle and vehicle‐to‐grid operation 
modes.

3. SDRL‐based control strategy for the effective integration of 
PEVs in ADSs via SSTs while considering time‐varying 
generation and load.

4. A centralised control approach for the simultaneous opti
misation of technical and economic objective functions 
while PEVs are integrated with ADSs through SSTs.

FIGURE 1 | Comparison of conventional and SST‐based PEV charging.
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2 | Framework and Modules of ADS

2.1 | Framework of ADS

The ADS framework in this research incorporates a standard 
distribution system linked with grid supply, DG units, PEVs and 
time‐varying ZIP load models. DG units consist primarily of 
permanent magnet synchronous generators (PMSGs) operated 
via wind turbines. For optimal EV control in ADSs, SSTs are 
employed, capable of voltage conversion, energy transfer and 
reactive power compensation. The primary objective is to 
minimise ADS operational costs and power losses by main
taining bus voltages within allowable ranges using SSTs while 
considering time‐varying ZIP load models. The single‐line dia
gram of the ADS framework is shown in Figure 2. Specifically, 
NW wind DGs and NT SSTs are interconnected in the radial ADS. 
At the point of interconnection, the SST serves as a link between 
low‐ and medium‐voltage levels.

2.2 | SST Modelling

The SST is fundamentally an AC/AC converter, also known as a 
power electronic transformer, that can replace the traditional 
low‐frequency transformer in ADSs. The purpose of the SST is 
shaping the input current and offering bidirectional power flow 
accompanied by reactive power compensation [20] and har
monic elimination [21]. The topological structure of the SST 
considered in this research work is suitable for load flow com
putations and offers enhanced performance in the context of 
efficiency, size and weight [22]. As shown in Figure 3, it consists 
of three stages, that is, the medium‐voltage (MV), isolation and 
low‐voltage (LV) stages. The voltage source converter (VSC) at 
the MV stage initially converts incoming low‐frequency AC 
voltage to DC and then converts it back to higher‐frequency AC 
voltage. Similarly, the VSC at the LV stage of the SST converts 
high‐frequency AC voltage into DC and then back into low‐ 
frequency AC voltage. The third stage involves a high‐ 
frequency transformer (HFT) that isolates the MV and LV 
stages.

The equivalent model of the SST is shown in Figure 4, where P1 

and Q1 represent the active and reactive powers at the primary 

side, and P2 and Q2 represent the active and reactive powers at 
the secondary side. V1 and V2 are, respectively, the AC voltages 
at the MV and LV stages of the SST, V0 and Vs represent the SST 
output voltage and system voltage, Vdc is the DC link voltage, 
and C is the capacitance of the DC link. x1 and x1 are the 
equivalent reactances on both sides of the SST. Furthermore, the 
modulation coefficients and the phase angles at the primary and 
secondary sides of the SST are represented by K1, K2, δ1 and δ2, 
respectively. The equations for Vdc and Q1 at the primary side of 
the SST are as follows:

VDC =
2P1X1

K1Vs sin δ1
, (1)

Q1 =
Vs(Vs − K1VDC cos δ1/2)

X1
. (2)

The safe operation of the SST converter station with a fixed 
value is ensured by setting the values of δ1 usually in the range 
[ − 45°, 45°]. Under such scenario, the partial derivatives of VDC 
and Q1 are given in the following equations:

∂VDC

∂δ1
= −

2P1X1 cos δ1

K1Vs sin2δ1
, (3)

FIGURE 4 | Simplified model of SST [24].

FIGURE 2 | Proposed framework of ADS.

FIGURE 3 | Topology diagram of SST [23].
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∂Q1

∂K1
= −

VDCVs cos δ1

2X1
. (4)

The above equations demonstrate that ∂VDC/∂δ1 < 0 and 
∂Q1/∂K1 < 0. This implies that an almost similar functional 
relationship exists between VDC and δ1 as well as between Q1 
and K1 that permits the decoupling control.

ΔVDC = WDCΔδ1, (5)

ΔQ1 = Wq1ΔK1, (6)

where WDC = − 2P1X1 cos δ1
K1Vs sin2δ1

, Wq1 = − VDCVs cos δ1
2X1

Therefore, VDC and Q1 can be controlled by tuning the δ1 and K1 
parameters of the SST at the primary side. Likewise, the 
following equations of V0 and Q2 are formulated for the sec
ondary side of the SST.

V0 =
2P2X2

K2Vs sin δ2
, (7)

Q2 =
V0(K2VDC cos δ2/2 − V0)

X2
. (8)

The partial derivatives of V0 and Q2 are as follows:

∂V0

∂δ2
= −

2P2X2 cos δ2

K2Vdc sin2δ2
, (9)

∂Q2

∂K2
= −

VdcV0 cos δ2

2X2
. (10)

The above equations demonstrate that ∂V0/ ∂ δ2 < 0 and 
∂Q2/ ∂ K2 < 0. Therefore, after decoupling, Equations (7) and 
(8) can be expressed as follows:

ΔV0 = WvΔδ2, (11)

ΔQ1 = Wq2ΔK2, (12)

where Wv = − 2P2X2 cos δ2
K2Vdc sin2δ2

, Wq1 = − VdcV0 cos δ2
2X2

Therefore, V0 and Q2 can be controlled by tuning the δ2 and K2 
parameters of the SST at the secondary side. Hence, the phase 
angles and modulation coefficients of the VSC on the primary 
and secondary sides of the SST are used as control parameters 
for reactive power compensation and voltage smoothing. Here, 
X1 and X2 represent the reactance at the primary and secondary 
converter sides of the SST. The above equations show that 
converter voltages and reactive power are updated by altering 
the values of the control parameters K1, K2, δ1 and δ2.

2.3 | Load Modelling

In this research work, time‐varying ZIP load models are selected 
for the optimum management of DERs and PEVs in ADSs [25]. 
These load models are dependent on the node voltages and 
variable time, as shown in the following equations:

P(i, t) = P0(i, t)[Zp(
V(i, t)

V0
+ Ip

V(i, t)
V0

+ Pp)], (13)

Q(i, t) = Q0(i, t)[Zq(
V(i, t)

V0
+ Iq

V(i, t)
V0

+ Pq)], (14)

where V0 denotes the ADS nominal voltage and V(i, t) repre
sents the voltage level of bus i at time t; P(i, t) and Q(i, t) are, 
respectively, the real power and reactive power demands of bus i 
at time t; and P0(i, t) and Q0(i, t) are the real power and reactive 
power demands of bus i at the nominal voltage V0. The ZIP 
coefficients of active power are denoted by ZP, Ip and Pp, 
whereas the ZIP coefficients of reactive power are denoted by 
Zq Iq and Pq. This research assumes a normalised hourly load 
profile for three load types: residential, commercial and indus
trial, as provided in Ref. [26]. The ZIP coefficients for com
mercial, industrial and residential load models are obtained 
from Ref. [25].

2.4 | DG Modelling

The DG units in this study are wind turbines based on PMSGs. 
Wind speed data are sourced from the National Renewable 
Energy Laboratory (NREL) database [27]. A Weibull 
distribution‐based probabilistic generation model is used to 
calculate the output power of the wind turbine [26].

f(t)(v(t)) = (
k(t)
v(t)

) (
v(t)
c(t)

)

k(t)−1

e
(−(

v(t)
c(t))

k(t)

)
, (15)

where v(t) is the wind speed and k(t) represents the shape 
parameter, whereas c(t) is the scale factor at time step ‘t’. 
Depending upon the hourly wind speed data, the active power 
output of wind DG, shown in Figure 5, is computed using the 
following function [26]:

PWT =

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

0 v < vci or v > vco

PR × v
vR − vci

− vci vci ≤ v < vr

PR vR ≤ v < vco

, (16)

where PR represents the rated capacity; and vci, vco and vR are 
the cut‐in, cut‐out and rated speeds of the PMSG, respectively.

FIGURE 5 | Equivalent circuit of SST employed with EV.

4 of 13 IET Smart Grid, 2026

 25152947, 2026, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/stg2.70051 by Sheffield H

allam
 U

niversity, W
iley O

nline L
ibrary on [17/02/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2.5 | Plug‐In Electric Vehicle

In this paper, PEVs are integrated with ADSs through SSTs for 
reactive power support, bidirectional power flow and energy 
storage [23]. Furthermore, this compensates for the uncertainty 
imposed by the RES integration in the ADS by controlling the 
charging and discharging strategies of EVs. The design of the 
SST employed with EVs used in the system is shown in Figure 5. 
The mathematical model of the PEV state of charge (SOC) is 
given in the following equation [28, 29]:

soct
PEVs =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

EPEV
Int +∑

t

j=1
(μPEV

Chr × PPEVchr
t −

PPEVdisch

μPEV
disch

),∀t ≤ d − 1

EPEV
Int +∑

t

j=1
(μPEV

Chr × PPEVchr
t −

PPEVdisch

μPEV
disch

) − Et
out ,

∀t ≥ f + 1
(17)

PkPEV
minimum ≤ PkPEV

Chr/disch. ≥ PkPEV
maximum,

EPEV
0 = EPEV

24 ,

EPEV
d−1 = EPEV

maximum.

The PEV charging/discharging is influenced by both DER gen
eration and the network’s demand requirements. PEVs can 
interact with the electrical grid in two ways: (1) storing low‐cost 
energy during off‐peak hours to act as an energy storage device 
and (2) discharging the stored energy during peak hours to serve 
as a cost‐effective energy source. The following equation de
termines the optimal charging/discharging profile of PEVs.

Pdemand + ∑
NPEV

n=1
PPEVChr

n + PL = Pgrid + ∑
NPEV

n=1
PPEVdisch

n +PWT . (18)

PEV charging/discharging cost is calculated as follows [30]:

Costh
PEVs =

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑
NPEVs

j=1
∑
24

h=1
β × PEV

Charging
Discharging
j,h +

⎛

⎜
⎜
⎜
⎝

PEVCharging
j,h × RCharging − PEVDischarging

j,h

× κDischargingh

⎞

⎟
⎟
⎟
⎠
,

(19)

where κDischargingh and β are operation coefficients of PEVs.

3 | Control Problem Formulation

3.1 | Optimal Voltage Control Problem

The ADS considered in this research for the investigation of hosts' 
Bn buses is shown in Figure 2, illustrating its radial network to
pology as a connected tree. The edge set in the tree is represented 
by ε, where (m, n) ∈ε if the ADS bus m is connected to n.

Consider Vm = |Vm|, where m represents the voltage at 
bus m, and then gather all the network voltages to form 

V = [V1,V2,….,VBN]
T . Similarly, at bus m, the active and reac

tive powers are denoted by Pm and Qm and are combined in two 
vectors, Pm = [P1, P2,…,PBN] and Qm = [Q1, Q2,…,QBN], 
respectively. Furthermore, the combination of the SST control
lable reactive powers Qcm and the change in them ΔQcm is 
represented by the vectors QC = [QC1,QC2,…,QCBN]

T and 
ΔQC = [ΔQC1,ΔQC2,…,ΔQCBN]

T . The admittance matrix is 
denoted by Y, and the admittance of the line (m,n) is repre
sented by ymn = gmn + jbmn. These representations are used to 
write the following equations of ADS power flow.

P + j(Q + QC + ΔQC) = Re{diag(VVHYH)} + Im{diag(VVHVH)},

(20)

where diag(.) gathers the diagonal of a square matrix, and the 
Hermitian transpose of V(Y) is VHYH . The active power flow via 
ADS can be calculated as follows:

Pmn = |Vm|
2gmn + |Vm||Vn|[bmn sin(δmn) − gmn cos(δmn)], (21)

where δmn = (δm − δn). Using Equation (21), the overall power 
loss in ADS is calculated as follows:

PL = ∑
m,n:(m,n)∈ε

Pmn + Pnm. (22)

The main aim of this research is to regulate voltage within 
permissible limits at each ADS bus while minimising opera
tional costs and power losses. SSTs are utilised to shape reactive 
power injection profiles, facilitating voltage control across the 
ADS. Consequently, the optimal voltage control problem is 
formulated as an optimisation programme.

min ξPL(QC + ΔQC) + (1 − ξ)‖ΔQC‖
2. (23)

The parameter ξ typically ranges from 0.1 to 0.9. However, in 
this framework, it is set to 0.7 to strike a balance between 
reducing power losses and minimising control effort [18].

Subject to:

Voltage magnitude constraint

Vmin ≤ |Vm| ≤ Vmax,m = 1, 2,…,BN . (24)

Power handling constraint

P + j(Q + QC) = Re{diag(VVHYH)} + Im{diag(VVHVH). (25)

SST power constraints

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P1 = P2

S ≥
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

P2
1 + Q2

1

√

S ≥
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

P2
2 + Q2

2

√
. (26)

SST control constraints

IET Smart Grid, 2026 5 of 13
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ΔQCm(k) ≥ QC,min(PCm(k)) − QHm(k − 1) + QFm(k), (27)

ΔQCm(k) ≤ QC,max(PCm(k)) − QHm(k − 1) + QFm(k). (28)

The optimisation problem in Equation (23) is difficult to solve 
directly due to two reasons. Primarily, it is nonconvex because 
of the nonlinear relationship between ADS power and bus 
voltages, and secondly, the Y parameters of the ADS are 
fundamentally not certain and therefore may not be simply 
available. The following section addresses these challenges by 
formulating the optimisation problem as a constrained Markov 
decision process (CMDP), followed by applying the SDRL 
approach to solve the problem.

3.2 | Optimal Voltage Control as CMDP

The optimum voltage control problem necessitates real‐time 
reactive power dispatch in the ADS. The proposed control 
strategy must coordinate with all ADS SSTs to meet voltage 
constraints and minimise operational costs and power losses. 
This problem involves all components of CMDP, where the 
agent’s actions affect the environment’s states. The agent’s goal 
is to devise the most favourable policy, maximising rewards 
while minimising power losses. Specifically, the policy involves 
the interaction of ADS states with SSTs for reactive power ad
justments, as depicted in Figure 2. Because this paper treats the 
optimum voltage control problem of ADS as a CMDP, it requires 
three parameters: states (S), actions (A) and rewards (R). The 
states represent a real‐time measure of the environment or the 
evolution of system dynamics. For the case of ADSs and SSTs, 
the dynamics of the system are continuous. Therefore, to fully 
characterise the continuous nature of the ADS, the system states 
are represented as continuous variables. The states are defined 
as the voltage magnitudes of all buses in the ADS.

S = [|V1|, |V1|,…
⃒
⃒VBN

⃒
⃒]. (29)

The second parameter is the set of actions, which, in the case of 
ADS, is considered as reactive power adjustments.

A = [|ΔQ1|, |ΔQ2|,…|ΔQSST|]. (30)

The action vector comprises continuous variables, resembling 
the characteristics of states. Thus, we introduce the voltage 
control policy denoted by γ(.) to map actions and states.

at = γ(st). (31)

At each time step t, every element of the action vector at is 
constrained by the reactive power limits of the SST. The reward 
‘r’ is directly related to the control strategy’s goals and is 
formulated as the negative of the overall power loss in the ADS, 
with an added penalty for control effort, aiming to minimise 
power losses and operational costs.

R = −βPL (Qi + ΔQi) − (1−β) |ΔQi|
2. (32)

The reduced reward from time t onwards is denoted by rt and is 
typically called the return.

(33)

The function of the action value, also known as the Q function, 
represents the expected return at state st and action at under the 
control policy γ:

Qγ(st, at) = E(rt|st, at;γ) (34)

The optimum voltage control problem in ADS evolves into 
maximising the performance function through determining γ.

J(γ) = E(rt; γ). (35)

The line parameters and active and reactive power injections are 
not known during the actual operation of the ADS; therefore, it 
is not possible to derive the transition model. Consequently, a 
DRL approach is adopted for solving the CMDP because it does 
not require a definite transition model [18].

4 | Safe Deep Reinforcement Learning for ADS 
Optimal Voltage Control

In this study, the deep deterministic policy gradient (DDPG) 
algorithm is employed to learn the policy γ for optimal voltage 
control in ADS, as outlined in Algorithm 1. Here, the control 
policy γ is constrained by a vector δγ, indicating that learning γ 
essentially involves discerning optimal values for δγ. In policy 
gradient methods, such as DDPG, suboptimal values of δγ are 
learnt, with DNNs approximating both the critic and the actor 
[18]. To maximise J(γ), the direction of δγ has an important role. 
The derivative of J(γ) with respect to δγ is termed the action 
gradient and is expressed as follows:

∇δγJ(γ) = E[∇aQ(s, a)∇δγ γ(s)]. (36)

The performance function J varies with the change in Q, which 
is unknown and therefore required to be approximated. To do 
this, an actor–critic‐based framework is utilised by DDPG, 
which is explained in Algorithm 1. The actor approximates the 
control policy, whereas the critic is utilised to approximate 
function Q. With robust learning capabilities, two DNNs are 
used to formulate the actor and critic networks. These networks, 
constrained by vectors δQ and δγ, represent the Q function and 
the voltage control policy, respectively [31]. Policy gradient 
methods learn these constraint vectors. DDPG employs target 
networks to facilitate smooth learning, with target actor and 
critic networks tracking the main networks’ constraints steadily. 
These networks derive target values, with their constraint vec
tors steadily tracking the critic and actor networks, as shown in 
the following equations:

δQʹ
= ρδQ + (1 − ρ)δQʹ

, (37)

δγʹ
= ρδγ + (1 − ρ)δγʹ

, (38)

where ρ, a positive number, is significantly smaller than 1. 
This ensures that the target parameters change gradually, 
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significantly improving the smooth progress of the DDPG 
learning process. An obstacle in using reinforcement learning 
with DNNs is that many optimisation methods assume samples 
are identically and independently distributed, which is invalid 
when samples are obtained through sequential exploration, 
such as in voltage control in ADS. To address this, DDPG 
constructs a replay buffer filled with transition samples. For 
each time interval, critic and actor values are obtained by uni
formly sampling a subset of training data from the buffer. As 
DDPG is not an online learning method, the buffer size may be 
large, allowing DDPG to learn from uncorrelated transitions. 
The DDPG learning approach for optimal voltage control in 
ADS is detailed in Algorithm 1. The critic network δQ should be 
updated to minimise the loss function, as given in the following 
equation:

1
R
∑

R

m=1
[rm + φQʹ(Sm+1, γ(Sm+1 − Q(Sm, am)]

2, (39)

where the replay buffer size is denoted by ‘R’. Similarly, the 
actor network δγ should be updated to maximise the perfor
mance function J(γ). The direction of update can be determined 
using the following expression:

∇δγJ(γ) ≈
1
R

∑
R

m=1
∇aQ(Sm, γ(Si)) ∇γ

δ γ(Sm). (40)

ALGORITHM 1 | Safe Deep Deterministic Policy Gradient (DDPG). 

Initialize critic network Q(s,a|θ^Q) and actor network μ(s|θ^μ) 
with random weights. 
Initialize target networks Q′ and μ′ with θ^{Q′} ← θ^Q, θ^{μ′} 
← θ^μ. 
For episode = 1 to M: 

Initialize a random process 𝒩 for exploration. 
Receive initial observation state s₁. 
For t = 1 to T: 

Select action a_t = μ(s_t|θ^μ) + 𝒩 _t. 
Apply action constraints: 

a_ti = max(a_ti, Q_{C,max} (P_Ci(t) − Q_Hi(t−1) +
Q_Fi(t))) 

a_ti = min(a_ti, Q_{C,min} (P_Ci(t) − Q_Hi(t−1) +
Q_Fi(t))) 

Correct the action a_t using the safety layer (Eq. 44). 
Execute a_t, observe reward r_t and next state s_{t+1}. 
Store transition (s_t, a_t, r_t, s_{t+1}) in replay buffer ℛ. 
Sample a random minibatch of N transitions from ℛ. 
Set target value: 

y_i = r_i + γ Q′(s_{i+1}, μ′(s_{i+1}|θ^{μ′})|θ^{Q′}) 
Update critic by minimizing: 

L = (1/N) Σ (y_i − Q(s_i, a_i|θ^Q))² 
Update actor using the policy gradient. 
Update target networks using soft updates.

The critic network features 8 hidden layers, including 4 ReLU 
and 3 fully connected layers, whereas the actor network com
prises 6 hidden layers, including 2 ReLU and 3 fully connected 

layers. Additionally, to prevent voltage profile violations, a 
safety layer is introduced. The proposed framework algorithm 
seamlessly operates on continuous action and state spaces, 
reflecting voltage control in the ADS via SSTs.

4.1 | Handling Constraints Using Safety Layer

This paper employs a sensitivity matrix‐based technique to 
address ADS voltage constraints. In this approach, the voltage 
state is modelled in relation to action using a first‐order math
ematical expression, as shown below:

st+1,n = stn + w( stn; δw
n )at, n = 1, 2,…,BN , (41)

where w denotes the mapping function that considers stn as 
input and st+ 1,n as the output vector that has an identical 
dimension to at . The analysis of above function, in view of ADS, 
shows that the mapping function w is fortuitously similar to the 
sensitivity matrix Si, which illustrates the change in bus voltages 
after taking control actions, as follows:

Si =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂V1

∂QC1
⋯

∂V1

∂QCNT

⋮ ⋱ ⋮
∂VBN

∂QCNT

⋯
∂VBN

∂QCNT

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (42)

The sensitivity matrix Si is computed using the transposed in
verse of the Jacobian matrix used in power flow [6]. Subse
quently, an additional safety layer is embedded in the output 
layer (maps state with action) of the DDPG actor network. The 
main purpose of the safety layer is constraint handling during 
the solution of optimisation problems.

min
at

1
2
‖at − γ(st)‖

2. (43)

Subject to

stm + Smat ≤ Vmax,m = 1, 2,…,BN ,

−stm − Smat ≤ −Vmax,

m = BN + 1,…2BN .

The analytical solution of Equation (41) may be simply 
computed using the following equation:

a∗
t = γ(st) − μ∗

nST
i , (44)

where

μj = [
Siγ(st) + stn − (Vmax − σ)

SiST
i

]

+

m = 1, 2,…,BN , (45)

μ∗
j = −[

−Siγ(st) − stn + (Vmax + σ)
SiST

i
]

+

,m = 1, 2,…, 2BN , (46)
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where [.]* represents the operation max, and μ∗
j is the Lagrange 

multiplier corresponding to the jth constraint [18]. By adjusting 
the action at using Equation (44), the voltage violation in 
Equation (24) can be eliminated.

5 | Numerical Simulations

The proposed work presents an SDRL scheme for the optimal 
control of PEVs in ADSs. This scheme enables multiple SSTs 
integrated with PEVs to participate in ADS control for reactive 
power compensation for time‐varying ZIP loads. The hourly 
demand patterns of all load models are obtained from Ref. [26]. 
It is supposed that in the case of all load types, the load con
nected to each bus of the ADS is of the same type; that is, while 
studying the residential time‐varying ZIP load model, the load 
connected to each bus is of the residential type, and the same 
applies for the other load models. The utilisation of the DDPG 
algorithm allows the achievement of both system power loss 
reduction and voltage regulation. Training of the DDPG agent is 
performed using the RL Toolbox in MATLAB 2021a. The 
parametric settings employed during the training are shown in 
Table 1. Moreover, all hyperparametric values, such as the 
number of neurons for each layer, are selected based on com
mon practices [11] and are finely turned using a trial‐and‐error 
method.

5.1 | Case Study

The effectiveness of the proposed approach is verified through 
implementation on both IEEE 33‐bus and 69‐bus systems [26]. 
Within the system, NDG signifies the number of DG units, spe
cifically denoting the use of permanent magnet synchronous 
generators in wind turbines. Notably, the SST’s output power and 
voltage are continuously adjustable. For the 33‐bus system, seven 
DG units are integrated with buses 9, 11, 13, 22, 25, 27 and 29, 

whereas an additional seven SSTs are integrated with PEVs at 
buses 3, 10, 12, 18, 20, 26 and 31, respectively. In the case of the 
69‐bus system, a total of 10 DG units are integrated at buses 9, 5, 8, 
15, 20, 25, 32, 36, 45, 54 and 62. Additionally, there are 9 SSTs 
integrated with EVs installed at buses 4, 9, 24, 28, 30, 34, 53, 61 
and 69. In this context, the SSTs collaborate with the EVs to 
mitigate uncertainties arising from RESs. Different multipliers 
are applied to the original time‐varying ZIP load model data to 
ensure diverse load profiles among the buses. A 20% Gaussian 
noise is incorporated to simulate stochastic uncertainty.

To demonstrate the learning capability of the proposed safe 
DRL framework, we have conducted a series of experiments 
that span deterministic and stochastic policy‐based strategies. 
Our training process comprises 300 days of dataset, with the 
parametric configuration being in Table 1. The simulation re
sults obtained from the trained model across the proposed 
networks are shown in Figure 6. In this figure, the reward, 
power losses and voltage violation rates indicate the daily 
accumulated values. During the training phase, particularly 
between Days 20 and 50, as shown in Figure 6, the Safe‐DDPG 
demonstrates better convergence compared to its state‐of‐the‐ 
art standard counterparts, that is DDPG, SAC and TD3. 
Furthermore, the analysis based on 250 and 300 days exhibits 
that Safe‐DDPG shows higher reward and improved voltage and 
power loss mitigation compared to DDPG, SAC and TD3, as 
supported by the results in Table 2. The findings demonstrate 
that the proposed Safe‐DDPG achieves mean episodic rewards 
of −2.603 and −3.943 on the IEEE 33‐bus and 69‐bus networks, 
indicating the improvements of 30.2% and 28.0%, respectively, 
over standard DDPG and highlighting that the safety layer 
significantly increases the average episodic reward while 
lowering the rate of voltage violation, thereby affirming oper
ational safety. Moreover, these improvements remain consistent 
when compared to TD3 and SAC baselines. Hence, the results 
confirm that each design element, particularly the inclusion of 
the safety layer and SST mapping, significantly enhances the 
learning process by ensuring safety and effective learning 
behaviour.

5.1.1 | No Control Case

The hourly voltage profile at the buses of both ADSs, for all time‐ 
varying ZIP load models without any voltage control or PEV 
integration, is illustrated in Figures 7 and 8. Two overvoltage 
periods can be observed for both the 33‐bus and 69‐bus ADSs. In 
the case of the 33‐bus system, these periods occur from 2 to 4 AM 
and from 11 AM to 2 PM. For the 69‐bus system, the first over
voltage period occurs in the morning when the load is low and 
DGs operate at maximum capacity, and the second occurs 
around mid‐day when DG generation peaks. These overvoltage 
periods occur due to relatively low demand compared to the 
availability of wind generation. As expected, the most problem
atic voltage deviations occur at buses where DGs are installed. 
Undervoltage can be observed during the late hours when de
mand is high, whereas generation is low. Moreover, there are also 
instances of undervoltage occurring when demand is high, but 
DG's output is relatively low.

TABLE 1 | Summary of algorithmic parametric settings.

Items Value
Sampling time 10 s

Smoothing factor 0.001

Experience buffer 105

Discounting factor 0.95

Minibatch size 128

Max episode 104

Critic learning rate 0.001

Critic regularisation factor 10–4

Actor learning rate 0.001

Actor regularisation factor 10–4

Tighten margin 0.05

Vmax 1.05 p.u.

Vmin 0.95 p.u.
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5.1.2 | Control Case Without PEV

First, results are obtained without considering the variable EV 
schedule illustrated in Figures 9 and 10. Notably, when a sub
stantial amount of active power is supplied by DG units to the 
system, voltages at all bus locations tend to rise, leading SSTs to 

absorb reactive power during this period. Conversely, during 
periods of low wind when DG output is minimal, voltages at all 
buses tend to decrease, prompting SSTs to inject reactive power 
to support the system voltage. This control mechanism ensures 
voltage stability at all buses of the ADS, including the critical 
buses where DGs are installed, as shown in Figure 2, effectively 

FIGURE 6 | Simulation results and comparative analysis with and without safety layer learning approaches.

TABLE 2 | Simulation results and comparative analysis of IEEE 33‐bus and 69‐bus systems.

Algorithm
Reward Power losses (MW) Voltage violation rate

33‐bus 69‐bus 33‐bus 69‐bus 33‐bus 69‐bus
Safe‐DDPG −2.603 −3.943 2.6031 3.942 4.317e−6 5.172e−5

TD3 −2.849 −4.597 2.8471 4.596 5.231e−5 7.246e−4

SAC −3.067 −4.917 3.0671 4.916 1.459e−5 7.96e−2

DDPG −3.727 −5.473 3.7262 5.426 8.639e−5 1.246e−4

FIGURE 7 | Voltage profiles of 33‐bus ADS without voltage control.
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maintaining them within the desired range. These findings 
affirm the capability of the proposed SDRL scheme to handle 
constraints. Simulation results indicate that the most improved 
per‐unit voltage profile is observed for residential load types, 
followed by commercial and industrial types.

5.1.3 | Control Case With PEVs

5.1.3.1 | Technical Analysis. The charging/discharging 
pattern of PEVs is determined through Equation (18) and is 
presented in Figure 11. Considering this PEV schedule, the 
voltage profile results of both 33‐ and 69‐bus ADSs for all load 
types are shown in Figures 12 and 13.

The outcomes underscore the robust performance of the SDRL‐ 
based control approach. Recognising that abrupt shifts in power 
demand and the escalating presence of PEVs in ADSs can 
impact system performance, it becomes crucial to ensure that 
DERs’ output and the charging/discharging patterns of PEVs 

align with the time‐varying characteristics of the ADS to effec
tively mitigate renewable‐related uncertainties. In Figure 14, the 
daily evolution of reactive power for the seven SSTs, repre
senting control actions, is shown. The trained agent drives SSTs 
to absorb reactive power during voltage swells, restoring 

FIGURE 8 | Voltage profiles of 69‐bus ADS without voltage control.

FIGURE 9 | Voltage profiles of 33‐bus ADS without EV scheduling.

FIGURE 10 | ADS voltage profiles under the proposed scheme without EV scheduling.

FIGURE 11 | Daily charging/discharging schedule of EVs.
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voltages within acceptable limits and facilitating power transfer 
to the LV side for PEV charging. Conversely, during voltage 
sags, SSTs inject reactive power, rectifying voltages within 
specified limits and enabling power transfer from PEVs to the 
grid for discharge. Furthermore, the results for average power 
loss of ADSs in the case of each time‐varying ZIP load model 
with and without integration of PEV are presented in Figures 15
and 16. The results demonstrate that the integration of PEV 
with the proposed voltage control framework has a significant 

impact on the reduction of average power losses in the case of 
all time‐varying ZIP load models for residential load type, fol
lowed by commercial and industrial load types, respectively.

5.1.3.2 | Economic Analysis. The results obtained indicate 
that the incorporation of PEVs through SSTs using the proposed 
control framework into ADSs with time‐varying ZIP load models 
has a substantial influence on reducing overall generation 
expenses, as illustrated in Table 3. The most significant cost 

FIGURE 12 | Voltage profiles of 33‐bus ADS with EV scheduling.

FIGURE 13 | ADS voltage profiles with EV scheduling.

FIGURE 14 | Hourly SST reactive power in all TVVD.

FIGURE 15 | 33‐bus ADS loss comparison with and without PEVs. FIGURE 16 | 69‐bus ADS loss comparison with and without PEVs.
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reduction is observed in the case of time‐varying industrial load 
models, followed by residential and commercial models.

6 | Conclusion

In conclusion, this paper proposes a novel framework utilising 
DRL for the effective management of DERs and PEVs within 
ADSs. The incorporation of time‐varying ZIP load models 
makes the framework outcome more realistic, enabling a more 
comprehensive optimisation of both technical and economic 
objectives. Through the integration of PEVs at different nodes of 
the ADS using SSTs, the developed control approach success
fully regulates reactive power flow based on available genera
tion, load demand and charging/discharging patterns. The 
application of the proposed framework to standard systems 
demonstrates its efficacy in addressing the challenges associated 
with the increasing penetration of PEVs and DERs. By simul
taneously minimising operational costs and power losses, this 
approach proves to be a valuable contribution to the efficient 
operation of distribution systems in the face of evolving energy 
landscapes. As the energy transition continues, the presented 
framework offers a promising solution for the sustainable and 
optimal integration of renewable energy sources and electric 
vehicles into distribution networks.
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