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Abstract— Modern power distribution systems face 

significant challenges, including voltage violations and active 

power losses, due to the high penetration of renewable energy 

sources (RESs). Conventional voltage regulation devices are slow 

and constrained by operational limitations while existing 

Volt/VAR Control (VVC) techniques for reactive power 

compensation primarily rely on model-based optimization 

approaches. In contrast, model-free deep reinforcement learning 

(DRL) methods, such as Deep Deterministic Policy Gradient 

(DDPG), can adapt to changing grid conditions. However, DDPG 

suffers from Q-value overestimation and unstable learning issues, 

leading to suboptimal control policies. To address these 

challenges, a Multi-Agent Twin Delayed Deep Deterministic 

Policy Gradient (MA-TD3) technique is proposed in this paper to 

optimize the setpoints of modern voltage control devices. By 

leveraging twin critics with delayed policy updates, MA-TD3 

enhances learning stability and mitigates overestimation bias. The 

distribution network is partitioned into sub-areas, with each sub-

area formulated as a Markov game and solved cooperatively using 

MA-TD3. The proposed approach is validated on a modified IEEE 

33-bus system, demonstrating superior performance over existing 

DRL methods in minimizing voltage violations and active power 

losses. 

Keywords—Deep Reinforcement Learning (DRL), Multi-

Agent systems, Markov Game, Renewable Energy Sources (RESs), 

Volt-Var Control (VVC) 

I. INTRODUCTION  

The need to produce clean energy has driven the 
incorporation of renewable energy sources (RESs) into power 
distribution systems. However, the widespread integration of 
these RESs presents substantial challenges e.g., voltage 
violations and active power losses due to reversed power flow, 
and intermittency associated with distributed generators 
(DGs). Conventional devices used to maintain voltage within 
acceptable ranges in distribution systems include transformers 
having on-load tap changers (OLTCs) and shunt capacitors 
(SCs). Although these devices mitigate voltage violations, 
their mechanical operation results in slow response times and 
limits their ability to address rapid voltage fluctuations caused 
by varying DG’s power. Additionally, the switching 
operations of these legacy devices are limited by the 
distribution system operators (DSOs). Considering the 
challenges associated with conventional voltage regulating 
devices, the IEEE 1547 standard [1] allows smart inverters 
integrated with DGs to exchange reactive power for voltage 
control, commonly referred to as the volt-VAR control (VVC) 
problem. Recent approaches to address the VVC problem are 
generally classified into model-based and data-driven 
optimization methods [2]. Model-based methods are further 

divided into classical and heuristic optimization techniques. 
Classical approaches such as Linear and Quadratic 
Programming, and Mixed-Integer Programming (MIP) [2], 
involve continuous and discrete variables. Although classical 
methods have demonstrated significant performance in 
achieving the goal of voltage control, they often lack 
computational efficiency, rendering them unsuitable for real-
world grid applications [3]. Heuristic optimization techniques 
include well-known methods like particle swarm optimization 
(PSO) and genetic algorithm (GA). While heuristic methods 
are effective for solving the VVC problem, their performance 
heavily depends on parameter selection [3]. A common 
limitation of both classical and heuristic approaches is their 
reliance on an accurate physical distribution model, which is 
challenging to achieve in practical scenarios [4].  

Data-driven approaches are model-free methods that 
utilize historical data to address uncertainties in grid models 
by learning optimal actions. Recent advancements in data-
driven methods leverage reinforcement learning (RL), where 
an agent adapts to dynamic system conditions through 
continuous interaction with an environment. Several RL-
based approaches have been suggested in the literature to 
regulate the distribution system voltage and reduce active 
power losses. A Q-learning-based optimal reactive power 
control strategy has been proposed in [5] to maintain the 
voltage in the allowed range. A similar Q-learning approach 
has been proposed in [6] to regulate voltage in distribution 
systems by optimally determining the tap positions of an 
OLTC in fluctuating load demands. 

However, Q-learning-based methods are limited to only 
discrete and finite state-action spaces, making them 
inadequate for real-time voltage control involving continuous 
actions associated with inverter-based photovoltaics (IBPVs) 
and SVCs [7]. Deep reinforcement learning (DRL) addresses 
these limitations by employing deep neural networks as 
function approximators to extract high-dimensional features 
while reducing computational burden. 

Various DRL approaches have been applied for voltage 
regulation in distribution systems. A deep Q-network (DQN) 
based autonomous voltage regulation scheme has been 
proposed in [8] to adjust generator setpoints under varying 
load conditions. Another two-level DQN-based VVC 
technique has been proposed to manage the reactive power of 
discrete SCs by adjusting their ON/OFF states. While DQN is 
limited to discrete actions of OLTCs and SCs, DDPG has been 
widely adopted for continuous control of IBPVs and SVCs. 
For instance, [9] applies DDPG to adjust IBPV setpoints for 
instantaneous voltage deviations and capacitor actions for 



long-term violation mitigation. A multi-agent DDPG scheme 
has been proposed in [10], [11] to dispatch the conventional 
and fast voltage controllers on different time scales to regulate 
the voltage in the distribution system.   

The primary limitations of the DDPG algorithm are the 
unavoidable overestimation error of the Q-value generated by 
the critic networks and unstable learning, leading to slight 
deviations from optimal solutions [12]. To mitigate the 
estimation error in DDPG, the twin delayed deep deterministic 
policy gradient (TD3) algorithm has been introduced [13], 
incorporating a clipped double-Q learning with a delayed 
policy update approach. Recently, TD3 has been applied to 
address voltage stability in nonlinear DC-DC converters [14] 
and energy management of electric vehicles [15] . However, 
its application to voltage control in distribution systems still 
needs to be explored in detail. This paper proposes a VVC 
approach for distribution systems using MA-TD3 to optimally 
determine the setpoints of IBPVs and SVCs. The major 
contributions of this paper are as follows:  

1) To address the Q-value overestimation and unstable 
learning issues in existing DRL methods, the 
proposed MA-TD3 uses twin critics with delayed 
policy update to effectively reduce voltage violation 
and active power losses in the distribution system. 

2) MA-TD3 partitions the distribution system into sub-
areas, with agents controlling each area 
cooperatively to enable coordinated voltage control, 
reflecting realistic distributed system operations. 

3) The approach employs centralized training of 
different agents with decentralized execution using 
only local observations, thereby addressing the 
communication challenges of centralized control 
architectures. 

The rest of the paper is organized as follows: Section II 
presents the mathematical formulation of voltage regulation 
devices and the problem formulation of VVC. Section III 
details the proposed approach. Case studies and result 
discussion are provided in Section IV. 

II. MATHEMATICAL MODELING  

This section covers the mathematical modeling of voltage 
regulating devices e.g., followed by the problem formulation 
of VVC. 

A. Mathematical models of voltage controllers 

The primary objective of VVC is to maintain the voltage 
within predefined limits and minimize the active power losses 
in the distribution system.  This is achieved by determining 
the optimal reactive power set points of IBPVs and SVCs. 

1) Inverter-based PV (IBPV)  
The IBPV associated with any bus j can release or absorb 

reactive power depending on the requirements at every � to 
mitigate the voltage fluctuations as defined in (1) and (2). 

   Q
j

IBPV�t� = αj
IBPV�t�.Q

j

IBPV�t�  (1) 
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where, Q
j

IBPV�t� is the maximum reactive power delivered by 

the IBPV while Sj
IBPV�t� and Pj

IBPV�t� represent the apparent 

and active power from IBPV respectively. The parameter ��	
����� is defined in the range  αj
IBPV�t� ∈ [-1,1]. 

2) Static VAR compensator (SVC) 

SVC belongs to a family of flexible AC transmission 
(FACTS) devices and is capable of continuously exchanging 
reactive power to realize VVC. The reactive power of SVC  ����� is defined in (3) as: 

��������  ≤  ��������  ≤  �������� (3) 

where ��������  and  ��������  represent the lower and upper 

limit of reactive power supplied by the SVC.  

B. VVC problem Formulation  

A radial distribution system is generally represented with a 

set ℕ = �1,2. . ��� where �� is the total number of buses. The 
power flow equations of the branches are given by the 
Distflow equation as follows;  
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where, the objective function in (4) defines the minimization 

problem of the sum of voltage violation and active power 

losses in distribution system;  (5)-(6) ensure active & reactive 

power balance at each node with '�(� and )�(� as the parent 

and child bus set of node j; *+� , �+� are the active and reactive 

power flows from bus ,  to j; -+� , .+�  are the resistance and 

reactance of the line segment (,, j);  (7) models the voltage 

drop along (,, j); (8) relates squared branch current to power 

flows and sending‐end voltage; (9)–(10) define the net active 

& reactive power injections at bus j;  *�/ , ��/   are load’s active 

& reactive power; (11) bounds each bus voltage magnitude 

within the upper 0 +��� and lower limit 0 +��� . The 

minimization problem in (4) is inherently non-convex and 

NP-hard due to nonlinear power and voltage relationship in 

(8). Given the dynamic and reconfigurable nature of 

distribution systems, model-based VVC solutions often yield 

suboptimal results. Therefore, a model-free DRL-based 

solution for the VVC problem is proposed in the next section. 



III. PROPOSED MA-TD3 BASED VVC  

This section covers the mathematical formulation of VVC 
problem in the form of Markov games, followed by the 
proposed multi-agent DRL technique to solve the VVC 
problem. 

A. Formulation of Markov game 

To address the VVC problem using a multi-agent DRL 

approach, the distribution system is partitioned into sub-areas 

based on voltage and reactive power sensitivity, with each 

sub-area managed by a voltage controller, acting as an agent. 

By operating cooperatively, all agents work together to 

achieve VVC objectives. The agents' optimal set points are 

formulated as a Markov game, and are defined as a tuple, 

(1Ob2n, 3, 14�25, 6, 7) in which the variable 8 ∈ 3 comprise 

global state of system , 9:� ∈ ;� is the local observation of an 

agent at time t belonging to area b, <:� ∈ =�  is the agent b's 

action, while the reward of all the agents is  > → @ × =B  ×=C … =5  and 7 denotes the transition probability: @ × =B  ×=C … =5 ×  @ →  10, 12. Whenever an agent observes a state 9:� 

at any time t, selects an action <:� based on its policy F: @ →4,  gets a reward >. 

1) State 

The local observation of an agent at time t is 

ob�t�=!VT,  Pg
T,  PLoad

T ,  Q
g

T"T
 where PH , Q

g
 are the vectors of 

active and reactive power injection, I is the vector of voltage 
magnitude at all the nodes and JKLMNO  indicates the load’s 
active power in area b.  

2) Action 

The action set of IBPV and SVCs agents are defined as: 
AIBPV�t�=1 aIBPV1�t�,  aIBPV2�t�,…aIBPVN �t� 2T,  ASVC�t�=1 
aSVC1�t�,  aSVC2�t�,…aSVCN �t� 2T with ASVC�t�=AIBPV�t�= 

Q
g
∈ [-1,1] representing that action will inject or absorb the  

reactive power to attain the objectives of VVC.  

3) Reward  

The VVC problem is generally expressed as a multi-objective 
function, for the minimization of voltage violations and 
active power losses. Thus, the reward function of an agent b  

is a weighted sum of these two terms, defined in (12) as: 

 The voltage violation term in the reward function is 
penalized using a reward scaling strategy adopted from [16], 
highlighting that learning voltage violation rewards is more 
challenging. 

B. Proposed MA-DRL scheme for VVC 

To solve the formulated VVC problem, MA-TD3 framework 

involves centralized training followed by decentralized 

execution. Each agent is associated with an actor and two 

critic networks. The actor selects an action based on its local 

observation, while the critic evaluates the actor's actions by 

using the global state to compute the state-action value, also 

known as Q-value. The expected cumulative future reward 

attained by all the agents is termed as Q-function defined in 

(15) as: 

Qπ(s,at
1…at

n)= E
ab∼πb

��γtrt∣s,at
1…at

n� 

∞

t=0

 
         

(15) 

 
Fig. 1.  Framework of proposed TD3 for VVC  

DRL aims to maximize its cumulative reward by finding an 

optimal policy R∗, defined in (16) as:  
 

π* =argmax 
πb

Eπ Qπ(s,ab) 

         

(16) 

 

In practical implementation, actor and critic networks are 

realized by deep neural networks (DNNs). The critic network �TU learns the state-action value function using the Bellman 

equation defined in (17) as: 
 

y
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where, y
t
 is the estimated value of �T��8: , <:� from the last 

iteration. The critic network learns to minimize the loss 

function defined in (18): 
 

Lb =arg min 
ψb

�Q
ψb
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t
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The actor-network adjusts the parameters V� in the direction 
of maximizing the objective function defined in (19) as: 

 ∇ϴb
J�ϴb�= E

st, at∼M
!∇ϴb

πϴb
(at

b∣st
b)∇at

bQ
b
π�st,at

1…at
n�"          

(19) 

The critic function is optimized by minimizing the difference 
between the estimated Q-value and its target value. However, 
training instability arises as the same critic being updated is 
also used to compute the target value. To address this, copies 
of actor and critic networks, termed target actor and target 

critic networks with parameters RXY  and �TY  are created. 

These networks track the online critic using a soft update 
mechanism defined in (20)-(22) as: 
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where, ω ≪ 1   is used to update the target networks. 
Equation (17) is re-defined considering target networks as: 

 

y
t
= E

ab∼πb

# rb,t+γ Q
ψb
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To mitigate overestimation bias arising from function 
approximation errors, TD3 employs two critic networks and 
uses the minimum of their outputs to compute the target value \: , as defined in (24).  

 

Here, the minimum of two target critics Q
ψb,n

' evaluates next 

step joint actions at+1
1]  sampled from the agents’ target policies, 

conditioned on current state st and action at. 
To alleviate the overfitting problem and smooth target policy, 

Gaussian noise ��0, ^� is incorporated to the target action 

at+1
1] , and clipped within the range !ξ , ξ" as defined in (25) 

 

at+1
1] = at+1

1] + clip�N(0, σ) , ξ , ξ� 

 

         

(25) 

 

During execution, actions are taken without noise, while 
clipping enforces reactive power limits. A replay buffer 
stores the agent's interaction with the environment, from 
which M mini-batch samples are drawn to train actor and 
critic networks. The use of a replay buffer requires redefining 
the optimization of actor and critic parameters. The critic 
networks learn by minimizing mean square error loss (MSE) 
defined in (26) as: 

LQ
ψ
=

1|M| � %Q
ψ
(st,at

1…at
n)-y

t&2

  (s,a1…an,  rpl ) ∈ M

 
         

(26) 
 

The parameter update mechanism for `  uses the gradient 
descent method as:  
 

ψ ← ψ-λQ∇ψLQ
ψ
 

         

(27) 

 

Here, λb  is the critic network’s learning rate. The actor 

networks are updated in (28) using the gradient ascent 
method to maximize their respective objective functions. 
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bQ
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(28) 

Where, the first term is the gradient of the policy output with 
respect to its parameters, and the second term is the gradient 

of the centralized critic with respect to agent b 's action, 

capturing the joint impact of all agents' actions in state st. The 
updated mechanism of actor networks’ parameters VB, … V5 is 
given in (29) as: 

 

ϴ←ϴ+λπ∇ϴb
J�ϴb� 

         

(29) 

 

The details of the proposed approach are summarized in the 
algorithm presented in Table 1 while the framework is 
illustrated in Fig. 1. 
 
 

TABLE I THE PROPOSED MA-TD3 ALGORITHM FOR VVC 

IV. CASE STUDIES AND RESULT DISCUSSION 

This section validates the effectiveness of the proposed MA-
TD3 approach to solve VVC problem for IEEE 33-bus 
system. The load and generation data are sourced from 
eastern China [17]. The proposed DRL algorithm is 
implemented using the PyTorch framework, while the 
modeling of test system and balanced power flow 
calculations are conducted with Pandapower [18]. The test 
system data is obtained from Matpower [19]. To train the 
DRL algorithm, data from 300 days is utilized, where the 
generation, as well as load levels have been scaled according 
to the daily fluctuation ratio. To alleviate the impact of 
randomness, the proposed method is evaluated using three 
distinct random seeds, and average results are presented.  
These seeds influence neural network weight initialization 
and action exploration noise. This multi-seed evaluation aims 
to ensure the learned voltage control policy's robustness. The 
parameters of the proposed MA-TD3 algorithm are detailed 
in Table II. 
The effectiveness of the proposed algorithm is evaluated 
against two state-of-the-art DRL algorithms:  multi-agent 
DDPG and multi-agent SAC.  
Fig 2 illustrates the network topology of the modified IEEE 
33-bus system, where the test system has been divided into 
four sub-areas using the shortest route starting from the 
terminal to the main branch comprising the nodes 1-6 [20], 
and each sub-area is controlled by an agent. In sub-areas one, 
two, and three, total three IBPVs are installed at buses 17, 21, 
and 24 respectively, each with a capacity of 1.5 MW active 
and 2 MVAR reactive power. Additionally, one SVC with a 
capacity of 2 MVAR reactive power is connected at bus 32. 
Fig. 3 presents the testing results during the training phase on 
the IEEE 33-bus system, showing daily accumulated reward, 
active power loss, and voltage violation rate over episodes. 
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1: for each agent IBPVs, SVCs do 

2:       Randomly initialize actor-network’s parameter Ve and critic 

network `fB, `fC and empty replay memory g; 

3: end for 

4:  Initialize parameters of target actor and critic networks `fBY ← `fB, `fCY ← `fC, VeY  ← Ve for each agent  

5:        for   � = 1 �i j do         

              Get the initial state 8: for each agent � 

6:       Select the action using (28), execute the action <:B … <:5 in 

the environment, collect reward -����, and new state 8:kB 

7:               Store �8:, <:B … <:5 , -����, 8:kB� in g 

8:               for agent b = 1…N, do 

9:                   sample a random mini-batch transition from g 

10:                          find target \: based on (24) 

11:                   update critic networks using (26-27)  

12:                    if t mod policy update frequency = 0 then 

13:                        update actor network using (28-29) 

14:                          soft update target networks using (20-22)  

15:               end for 

16:    end for 



TABLE II PARAMETER SETTING FOR THE PROPOSED ALGORITHM 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The training phase was tested using three independent 
random seeds to ensure consistency and robustness. 
The proposed MA-TD3 algorithm demonstrates superior 
performance across all metrics, outperforming the baseline 
algorithms MA-DDPG and MA-SAC. 
 

 
Fig. 2.  The modified IEEE-33 bus topology 

 
In the cumulative reward plot, MA-TD3 achieves the highest 
cumulative reward (2.32), with a remarkably fast 
convergence, indicating the agent's ability to rapidly learn an 
effective control policy. This high reward value reflects the 
algorithm’s efficient balance between minimizing voltage 
violations and reducing power loss, since the reward function 
combines both objectives. In contrast, MA-DDPG (-3.37) 
and MA-SAC (-2.96) settle at lower reward levels and exhibit 
slower convergence, highlighting their relative inefficiency 
in multi-objective optimization. 
The active power loss plot further reinforces the effectiveness 
of MA-TD3. It converges quickly to the lowest steady-state 
value (2.28 p.u.), outperforming MA-DDPG (3.21 p.u.) and 
MA-SAC (2.89 p.u.). MATD3’s smoother trajectory with 
minimal oscillations reflects greater training stability and 
energy efficiency, which are essential for reliable grid 
operation. This improvement is largely due to TD3's 
architectural features, including twin critics to reduce Q-
value overestimation and delayed policy updates contribute 
to more stable and reliable learning dynamics. 
In the voltage violation rate plot, MA-TD3 again 
demonstrates superior performance, achieving a sharp 
decline in violations by episode 10, which is faster than MA-
DDPG (11th episode) and MA-SAC (12th episode). 
Moreover, the steady-state voltage violation rate of MA-TD3 
is the lowest (1.0337e−7), compared to MA-DDPG 
(2.483e−7) and MA-SAC (1.509e−7). The zoomed-in insets 
further reveal that TD3 maintains an extremely low violation 
rate throughout training, with minimal transient spikes, while 
the other methods show frequent deviations, suggesting less 
robust voltage regulation behavior. 

These observations are further validated in Table III. The 
proposed MA-TD3 algorithm achieves the highest final 
reward (−2.32), lowest power loss (2.28 p.u.), and the least 
voltage violation in the final 50 episodes, confirming its 
robustness and superiority over the baseline algorithms. 
Overall, MA-TD3 not only ensures faster convergence and 
stable learning but also delivers the most optimal 
performance in Volt/VAR control for active distribution 
networks. 

 
Fig. 3. Testing outcomes during training for IEEE 33-bus system 
 
TABLE III PERFORMANCE EVALUATION AGAINST DRL METHODS 
 

 

V. CONCLUSION 

This paper addresses the challenges of voltage violations and 
active power losses in modern power distribution systems. 
Conventional VVC methods, constrained by operational 
limitations, often rely on model-based optimization, while 
DRL-based approaches like DDPG struggle with unstable 
learning issues and Q-value overestimation. To overcome 

Parameter  Value 

Activation Function  ReLU 

Optimizer Adam 

Hidden layers 2 

Policy update frequency 2 

Replay memory size  30000 

Mini-batch size  128 

Actor-network’s learning rate 0.0001 

Critic-network’s learning rate 0.0003 

Coefficient of voltage violation  50 

Target policy smoothing noise 0.2 

Discount factor  0.90 

Soft update parameter  0.001 

Exploration noise  �(0, 0.05) 

Neurons for actor & critic hidden layer 512 

 

Algorithm 

Performance indices  

Ploss/MW  VVR/p.u Reward 

MA-DDPG  3.210 2.483e-7 -3.371 

MA-SAC  2.897 1.509e-7 -2.967 

Proposed  2.280 1.037e-7 -2.320 



these limitations, we proposed a MA-TD3 approach for 
optimal voltage control. By incorporating twin critics and 
delayed policy updates, the proposed method enhances 
learning stability, enabling decentralized yet cooperative 
coordination of voltage regulation devices.  
Simulations on the IEEE 33-bus system show that MA-TD3 
achieves faster convergence, higher rewards, and superior 
control performance, significantly reducing power loss 
(2.280 p.u.) and maintaining a low voltage violation rate with 
minimal transients. These results demonstrate MA-TD3’s 
robustness and effectiveness for scalable and real-world 
voltage control applications. 
Future work will extend the proposed method to larger 
distribution systems and incorporate discrete action voltage 
control devices such as OLTC and SCs to enhance voltage 
support and overall system flexibility. 
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