Sheffield
Hallam _
University

Multiagent Twin Delayed Deep Deterministic Policy
Gradient Approach for Voltage Control of Distribution
System

RIAZ, Hafiz Mehboob, SAJJAD, Malik Intisar Ali and AKMAL, Muhammad
<http://orcid.org/0000-0002-3498-4146>

Available from Sheffield Hallam University Research Archive (SHURA) at:
https://shura.shu.ac.uk/36622/

This document is the Accepted Version [AM]
Citation:

RIAZ, Hafiz Mehboob, SAJJAD, Malik Intisar Ali and AKMAL, Muhammad (2025).
Multiagent Twin Delayed Deep Deterministic Policy Gradient Approach for Voltage
Control of Distribution System. In: 2025 60th International Universities Power
Engineering Conference (UPEC). IEEE, 1-6. [Book Section]

Copyright and re-use policy
See http://[shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk



http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Multiagent Twin Delayed Deep Deterministic
Policy Gradient Approach for Voltage Control of
Distribution System

Hafiz Mehboob Riaz
Electrical Engineering Department
Univ. of Engg. & Tech. Taxila
Taxila, Pakistan
mehboob.riaz@uettaxila.edu.pk

Abstract— Modern power distribution systems face
significant challenges, including voltage violations and active
power losses, due to the high penetration of renewable energy
sources (RESs). Conventional voltage regulation devices are slow
and constrained by operational limitations while existing
Volt/VAR Control (VVC) techniques for reactive power
compensation primarily rely on model-based optimization
approaches. In contrast, model-free deep reinforcement learning
(DRL) methods, such as Deep Deterministic Policy Gradient
(DDPG), can adapt to changing grid conditions. However, DDPG
suffers from Q-value overestimation and unstable learning issues,
leading to suboptimal control policies. To address these
challenges, a Multi-Agent Twin Delayed Deep Deterministic
Policy Gradient (MA-TD3) technique is proposed in this paper to
optimize the setpoints of modern voltage control devices. By
leveraging twin critics with delayed policy updates, MA-TD3
enhances learning stability and mitigates overestimation bias. The
distribution network is partitioned into sub-areas, with each sub-
area formulated as a Markov game and solved cooperatively using
MA-TD3. The proposed approach is validated on a modified IEEE
33-bus system, demonstrating superior performance over existing
DRL methods in minimizing voltage violations and active power
losses.

Keywords—Deep Reinforcement Learning (DRL), Multi-
Agent systems, Markov Game, Renewable Energy Sources (RESs),
Volt-Var Control (VVC)

L INTRODUCTION

The need to produce clean energy has driven the
incorporation of renewable energy sources (RESs) into power
distribution systems. However, the widespread integration of
these RESs presents substantial challenges e.g., voltage
violations and active power losses due to reversed power flow,
and intermittency associated with distributed generators
(DGs). Conventional devices used to maintain voltage within
acceptable ranges in distribution systems include transformers
having on-load tap changers (OLTCs) and shunt capacitors
(SCs). Although these devices mitigate voltage violations,
their mechanical operation results in slow response times and
limits their ability to address rapid voltage fluctuations caused
by varying DG’s power. Additionally, the switching
operations of these legacy devices are limited by the
distribution system operators (DSOs). Considering the
challenges associated with conventional voltage regulating
devices, the IEEE 1547 standard [1] allows smart inverters
integrated with DGs to exchange reactive power for voltage
control, commonly referred to as the volt-VAR control (VVC)
problem. Recent approaches to address the VVC problem are
generally classified into model-based and data-driven
optimization methods [2]. Model-based methods are further
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divided into classical and heuristic optimization techniques.
Classical approaches such as Linear and Quadratic
Programming, and Mixed-Integer Programming (MIP) [2],
involve continuous and discrete variables. Although classical
methods have demonstrated significant performance in
achieving the goal of voltage control, they often lack
computational efficiency, rendering them unsuitable for real-
world grid applications [3]. Heuristic optimization techniques
include well-known methods like particle swarm optimization
(PSO) and genetic algorithm (GA). While heuristic methods
are effective for solving the VVC problem, their performance
heavily depends on parameter selection [3]. A common
limitation of both classical and heuristic approaches is their
reliance on an accurate physical distribution model, which is
challenging to achieve in practical scenarios [4].

Data-driven approaches are model-free methods that
utilize historical data to address uncertainties in grid models
by learning optimal actions. Recent advancements in data-
driven methods leverage reinforcement learning (RL), where
an agent adapts to dynamic system conditions through
continuous interaction with an environment. Several RL-
based approaches have been suggested in the literature to
regulate the distribution system voltage and reduce active
power losses. A Q-learning-based optimal reactive power
control strategy has been proposed in [5] to maintain the
voltage in the allowed range. A similar Q-learning approach
has been proposed in [6] to regulate voltage in distribution
systems by optimally determining the tap positions of an
OLTC in fluctuating load demands.

However, Q-learning-based methods are limited to only
discrete and finite state-action spaces, making them
inadequate for real-time voltage control involving continuous
actions associated with inverter-based photovoltaics (IBPVs)
and SVCs [7]. Deep reinforcement learning (DRL) addresses
these limitations by employing deep neural networks as
function approximators to extract high-dimensional features
while reducing computational burden.

Various DRL approaches have been applied for voltage
regulation in distribution systems. A deep Q-network (DQN)
based autonomous voltage regulation scheme has been
proposed in [8] to adjust generator setpoints under varying
load conditions. Another two-level DQN-based VVC
technique has been proposed to manage the reactive power of
discrete SCs by adjusting their ON/OFF states. While DQN is
limited to discrete actions of OLTCs and SCs, DDPG has been
widely adopted for continuous control of IBPVs and SVCs.
For instance, [9] applies DDPG to adjust IBPV setpoints for
instantaneous voltage deviations and capacitor actions for



long-term violation mitigation. A multi-agent DDPG scheme
has been proposed in [10], [11] to dispatch the conventional
and fast voltage controllers on different time scales to regulate
the voltage in the distribution system.

The primary limitations of the DDPG algorithm are the
unavoidable overestimation error of the Q-value generated by
the critic networks and unstable learning, leading to slight
deviations from optimal solutions [12]. To mitigate the
estimation error in DDPG, the twin delayed deep deterministic
policy gradient (TD3) algorithm has been introduced [13],
incorporating a clipped double-Q learning with a delayed
policy update approach. Recently, TD3 has been applied to
address voltage stability in nonlinear DC-DC converters [14]
and energy management of electric vehicles [15] . However,
its application to voltage control in distribution systems still
needs to be explored in detail. This paper proposes a VVC
approach for distribution systems using MA-TD3 to optimally
determine the setpoints of IBPVs and SVCs. The major
contributions of this paper are as follows:

1) To address the Q-value overestimation and unstable
learning issues in existing DRL methods, the
proposed MA-TD3 uses twin critics with delayed
policy update to effectively reduce voltage violation
and active power losses in the distribution system.

2) MA-TD3 partitions the distribution system into sub-
areas, with agents controlling each area
cooperatively to enable coordinated voltage control,
reflecting realistic distributed system operations.

3) The approach employs centralized training of
different agents with decentralized execution using
only local observations, thereby addressing the
communication challenges of centralized control
architectures.

The rest of the paper is organized as follows: Section II
presents the mathematical formulation of voltage regulation
devices and the problem formulation of VVC. Section III
details the proposed approach. Case studies and result
discussion are provided in Section I'V.

II. MATHEMATICAL MODELING

This section covers the mathematical modeling of voltage
regulating devices e.g., followed by the problem formulation
of VVC.

A. Mathematical models of voltage controllers

The primary objective of VVC is to maintain the voltage
within predefined limits and minimize the active power losses
in the distribution system. This is achieved by determining
the optimal reactive power set points of IBPVs and SVCs.

1) Inverter-based PV (IBPV)
The IBPV associated with any bus j can release or absorb
reactive power depending on the requirements at every t to
mitigate the voltage fluctuations as defined in (1) and (2).

Q;BPV(f) _ aj[BPV(t).W(t) (1)
QJ{BPV@S\/ (SJ(BPV(t))Z_ (R/’»BPV@)Z ()

where, QJ(BP "(©) is the maximum reactive power delivered by

the IBPV while $/*”"(r) and P/*"" () represent the apparent
and active power from IBPV respectively. The parameter
afPFY(t) is defined in the range o () € [-1,1].
2) Static VAR compensator (SVC)

SVC belongs to a family of flexible AC transmission
(FACTS) devices and is capable of continuously exchanging
reactive power to realize VVC. The reactive power of SVC
Q"¢ is defined in (3) as:

Q3Ve(e) < Q§C(e) < Q§"C(D) ®)

where Q7" (t) and vac(t) represent the lower and upper

limit of reactive power supplied by the SVC.

B. VVC problem Formulation

A radial distribution system is generally represented with a
set N = {1,2.. N,} where N, is the total number of buses. The
power flow equations of the branches are given by the

Distflow equation as follows;
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where, the objective function in (4) defines the minimization
problem of the sum of voltage violation and active power
losses in distribution system; (5)-(6) ensure active & reactive
power balance at each node with m(j) and n(j) as the parent
and child bus set of node j; P;j, @;; are the active and reactive
power flows from bus i to j; r;;, x;; are the resistance and
reactance of the line segment (i, j); (7) models the voltage
drop along (i, j); (8) relates squared branch current to power
flows and sending-end voltage; (9)—(10) define the net active
& reactive power injections at busj; le, le- are load’s active
& reactive power; (11) bounds each bus voltage magnitude
within the upper v;(t) and lower limit v;(t) . The
minimization problem in (4) is inherently non-convex and
NP-hard due to nonlinear power and voltage relationship in
(8). Given the dynamic and reconfigurable nature of
distribution systems, model-based VVC solutions often yield
suboptimal results. Therefore, a model-free DRL-based
solution for the VVC problem is proposed in the next section.



III. PROPOSED MA-TD3 BASED VVC

This section covers the mathematical formulation of VVC
problem in the form of Markov games, followed by the
proposed multi-agent DRL technique to solve the VVC
problem.

A. Formulation of Markov game

To address the VVC problem using a multi-agent DRL
approach, the distribution system is partitioned into sub-areas
based on voltage and reactive power sensitivity, with each
sub-area managed by a voltage controller, acting as an agent.
By operating cooperatively, all agents work together to
achieve VVC objectives. The agents' optimal set points are
formulated as a Markov game, and are defined as a tuple,
([O4],5 S, [Aplns A A) in which the variable s € S comprise
global state of system , 0? € 0, is the local observation of an
agent at time ¢ belonging to area b, af € A, is the agent b's
action, while the reward of all the agents is R - S x A; x
A, ... A, and P denotes the transition probability: § x A; x
A,..A, x S— [0,1]. Whenever an agent observes a state 0?
at any time ¢, selects an action a? based on its policy 1: § —
A, gets a reward R.

1) State
The local observation of an agent at time ¢ is
oy (D=[V", Pl Ploua QgT]T where Py, @, are the vectors of
active and reactive power injection, V is the vector of voltage
magnitude at all the nodes and P?,,, indicates the load’s
active power in area b.

2) Action
The action set of IBPV and SVCs agents are defined as:
Apr@D=[ apy; @, appy:(0),...appyy ()17, Agyc()=[
agye/ (D), aspc2 (D, agyey O 17 with Agc(D=Appr() =
QgE [-1,1] representing that action will inject or absorb the
reactive power to attain the objectives of VVC.

3) Reward
The VVC problem is generally expressed as a multi-objective
function, for the minimization of voltage violations and
active power losses. Thus, the reward function of an agent b
is a weighted sum of these two terms, defined in (12) as:

rpy() = 1,0 + cr, () (12)
Np

Vp(t):- ZP/()SS (t) (13)
i=0

Np
r (D)= - Z [max (- 770, 0)+ max (vi@-v(0,0)] (14)
=0

The voltage violation term in the reward function is
penalized using a reward scaling strategy adopted from [16],
highlighting that learning voltage violation rewards is more
challenging.

B. Proposed MA-DRL scheme for VVC

To solve the formulated VVC problem, MA-TD3 framework
involves centralized training followed by decentralized
execution. Each agent is associated with an actor and two
critic networks. The actor selects an action based on its local
observation, while the critic evaluates the actor's actions by

using the global state to compute the state-action value, also
known as Q-value. The expected cumulative future reward
attained by all the agents is termed as Q-function defined in
(15) as:

(15)

o0
O"(s,a! ..‘a?):abEﬂ Z(y’rtls,af...a;’
~Tp
=0

Mini-Batch
M(5,ar,5)

Target
Actor network

Fig. 1. Framework of proposed TD3 for VVC

DRL aims to maximize its cumulative reward by finding an

optimal policy *, defined in (16) as:
n* =argmax E, Q" (s,a;) (16)

Ty

In practical implementation, actor and critic networks are

realized by deep neural networks (DNN5). The critic network

Qy, learns the state-action value function using the Bellman

equation defined in (17) as:

a7

=FE |r,+ Sndl.dlls,a ]
Y, oo bt le//b( (+1 Q-+ Arr 1Sy ,z)

where, y, is the estimated value of Qy, (s;, a;) from the last

iteration. The critic network learns to minimize the loss
function defined in (18):

2
_ . I (18)
L, =arg min (Qy,b(s,,af-.-at) y,)

The actor-network adjusts the parameters 6, in the direction
of maximizing the objective function defined in (19) as:

VQbJ(Gb):St £~M[ Vo, e, (! Is)) Vp OF (s,af ...a!) (19)

The critic function is optimized by minimizing the difference
between the estimated Q-value and its target value. However,
training instability arises as the same critic being updated is
also used to compute the target value. To address this, copies
of actor and critic networks, termed target actor and target
critic networks with parameters 7y and Q{/) are created.
These networks track the online critic using a soft update
mechanism defined in (20)-(22) as:

Tg—wng+(1-m)Ty (20)
9, <0, +(1-v)Q, 1)
Q,,—»0, +(1-0)Q, (22)



where, w <1 is used to update the target networks.
Equation (17) is re-defined considering target networks as:

_ ! 1
yt_abE‘;Th Pyt wa(s,ﬂ,aw...a;’ﬂls,,a,,)] (23)

To mitigate overestimation bias arising from function
approximation errors, TD3 employs two critic networks and
uses the minimum of their outputs to compute the target value
V¢, as defined in (24).

y=E

. ’ ’1\ —_—
Fpe Ty minQ (Se1.6f, iy ISt,a,)] (24)
ap~m, n=1,2

Ybn

Here, the minimum of two target critics Q{M evaluates next

step joint actions 4/, sampled from the agents’ target policies,
conditioned on current state s, and action a,.

To alleviate the overfitting problem and smooth target policy,
Gaussian noise N(0,0) is incorporated to the target action

a’f:l, and clipped within the range [é , E] as defined in (25)

afy=al+ clip(N(©, 0), &, 2) (25)

During execution, actions are taken without noise, while
clipping enforces reactive power limits. A replay buffer
stores the agent's interaction with the environment, from
which M mini-batch samples are drawn to train actor and
critic networks. The use of a replay buffer requires redefining
the optimization of actor and critic parameters. The critic
networks learn by minimizing mean square error loss (MSE)
defined in (26) as:

e D)

(8,a1.-ap, Tp1) EM

(Q,/,(St’atl ‘-'a;l)'yt)z (26)

The parameter update mechanism for 1 uses the gradient
descent method as:

ye—wioVLg, 27

Here, A, is the critic network’s learning rate. The actor
networks are updated in (28) using the gradient ascent
method to maximize their respective objective functions.

1
Ve ebJ (0,)= M

(5,a1...ap, 1p1) EM
Where, the first term is the gradient of the policy output with
respect to its parameters, and the second term is the gradient
of the centralized critic with respect to agent b's action,
capturing the joint impact of all agents' actions in state s,. The
updated mechanism of actor networks’ parameters 6, ... 6, is

given in (29) as:

Vo,mo,(a; Is}) Vp Q7 (spa; ...a})°

O—0+1,V,J(6}) (29)

The details of the proposed approach are summarized in the
algorithm presented in Table 1 while the framework is
illustrated in Fig. 1.

(28)

TABLE I THE PROPOSED MA-TD3 ALGORITHM FOR VVC

1:  for each agent IBPVs, SVCs do

Randomly initialize actor-network’s parameter 6, and critic
network ¥q1, Pq, and empty replay memory D;

3:  end for
4: Initialize parameters of target actor and critic networks
1/)(’21 < YPo1, 1[1{12 < Pqz, B, « 6, for each agent
S: for t=1toT do
Get the initial state s, for each agent b
6: Select the action using (28), execute the action a} ... al in
the environment, collect reward 73, (t), and new state s, 4
7: Store (s, @i ... al, 1, (t), Spq) in D
8: for agent b =1...N, do
9: sample a random mini-batch transition from D
10: find target y, based on (24)
11: update critic networks using (26-27)
12: if t mod policy update frequency = 0 then
13: update actor network using (28-29)
14: soft update target networks using (20-22)
15: end for
16: end for

IV. CASE STUDIES AND RESULT DISCUSSION

This section validates the effectiveness of the proposed MA-
TD3 approach to solve VVC problem for IEEE 33-bus
system. The load and generation data are sourced from
eastern China [17]. The proposed DRL algorithm is
implemented using the PyTorch framework, while the
modeling of test system and balanced power flow
calculations are conducted with Pandapower [18]. The test
system data is obtained from Matpower [19]. To train the
DRL algorithm, data from 300 days is utilized, where the
generation, as well as load levels have been scaled according
to the daily fluctuation ratio. To alleviate the impact of
randomness, the proposed method is evaluated using three
distinct random seeds, and average results are presented.
These seeds influence neural network weight initialization
and action exploration noise. This multi-seed evaluation aims
to ensure the learned voltage control policy's robustness. The
parameters of the proposed MA-TD3 algorithm are detailed
in Table II.

The effectiveness of the proposed algorithm is evaluated
against two state-of-the-art DRL algorithms: multi-agent
DDPG and multi-agent SAC.

Fig 2 illustrates the network topology of the modified IEEE
33-bus system, where the test system has been divided into
four sub-areas using the shortest route starting from the
terminal to the main branch comprising the nodes 1-6 [20],
and each sub-area is controlled by an agent. In sub-areas one,
two, and three, total three IBPVs are installed at buses 17, 21,
and 24 respectively, each with a capacity of 1.5 MW active
and 2 MVAR reactive power. Additionally, one SVC with a
capacity of 2 MV AR reactive power is connected at bus 32.
Fig. 3 presents the testing results during the training phase on
the IEEE 33-bus system, showing daily accumulated reward,
active power loss, and voltage violation rate over episodes.



TABLE Il PARAMETER SETTING FOR THE PROPOSED ALGORITHM

Parameter Value
Activation Function ReLU
Optimizer Adam
Hidden layers 2
Policy update frequency 2
Replay memory size 30000
Mini-batch size 128
Actor-network’s learning rate 0.0001
Critic-network’s learning rate 0.0003
Coefficient of voltage violation 50
Target policy smoothing noise 0.2
Discount factor 0.90
Soft update parameter 0.001
Exploration noise N(0, 0.05)
Neurons for actor & critic hidden layer 512

The training phase was tested using three independent
random seeds to ensure consistency and robustness.

The proposed MA-TD3 algorithm demonstrates superior
performance across all metrics, outperforming the baseline
algorithms MA-DDPG and MA-SAC.

Sub-Area 3 Sub-Area 4

Sub-Area 1

Sub-Area 2

Fig. 2. The modified IEEE-33 bus topology

In the cumulative reward plot, MA-TD3 achieves the highest
cumulative reward (2.32), with a remarkably fast
convergence, indicating the agent's ability to rapidly learn an
effective control policy. This high reward value reflects the
algorithm’s efficient balance between minimizing voltage
violations and reducing power loss, since the reward function
combines both objectives. In contrast, MA-DDPG (-3.37)
and MA-SAC (-2.96) settle at lower reward levels and exhibit
slower convergence, highlighting their relative inefficiency
in multi-objective optimization.

The active power loss plot further reinforces the effectiveness
of MA-TD3. It converges quickly to the lowest steady-state
value (2.28 p.u.), outperforming MA-DDPG (3.21 p.u.) and
MA-SAC (2.89 p.u.). MATD3’s smoother trajectory with
minimal oscillations reflects greater training stability and
energy ecfficiency, which are essential for reliable grid
operation. This improvement is largely due to TD3's
architectural features, including twin critics to reduce Q-
value overestimation and delayed policy updates contribute
to more stable and reliable learning dynamics.

In the voltage violation rate plot, MA-TD3 again
demonstrates superior performance, achieving a sharp
decline in violations by episode 10, which is faster than MA-
DDPG (11th episode) and MA-SAC (12th episode).
Moreover, the steady-state voltage violation rate of MA-TD3
is the lowest (1.0337¢e—7), compared to MA-DDPG
(2.483e—7) and MA-SAC (1.509¢—7). The zoomed-in insets
further reveal that TD3 maintains an extremely low violation
rate throughout training, with minimal transient spikes, while
the other methods show frequent deviations, suggesting less
robust voltage regulation behavior.

These observations are further validated in Table III. The
proposed MA-TD3 algorithm achieves the highest final
reward (—2.32), lowest power loss (2.28 p.u.), and the least
voltage violation in the final 50 episodes, confirming its
robustness and superiority over the baseline algorithms.
Overall, MA-TD3 not only ensures faster convergence and
stable learning but also delivers the most optimal
performance in Volt/VAR control for active distribution
networks.
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Fig. 3. Testing outcomes during training for IEEE 33-bus system

TABLE 11l PERFORMANCE EVALUATION AGAINST DRL METHODS

Performance indices
Algorithm
Pioss/ MW VVR/p.u Reward
MA-DDPG 3.210 2.483e-7 -3.371
MA-SAC 2.897 1.509¢-7 -2.967
Proposed 2.280 1.037e-7 -2.320

V. CONCLUSION

This paper addresses the challenges of voltage violations and
active power losses in modern power distribution systems.
Conventional VVC methods, constrained by operational
limitations, often rely on model-based optimization, while
DRL-based approaches like DDPG struggle with unstable
learning issues and Q-value overestimation. To overcome



these limitations, we proposed a MA-TD3 approach for
optimal voltage control. By incorporating twin critics and
delayed policy updates, the proposed method enhances
learning stability, enabling decentralized yet cooperative
coordination of voltage regulation devices.

Simulations on the IEEE 33-bus system show that MA-TD3
achieves faster convergence, higher rewards, and superior
control performance, significantly reducing power loss
(2.280 p.u.) and maintaining a low voltage violation rate with
minimal transients. These results demonstrate MA-TD3’s
robustness and effectiveness for scalable and real-world
voltage control applications.

Future work will extend the proposed method to larger
distribution systems and incorporate discrete action voltage
control devices such as OLTC and SCs to enhance voltage
support and overall system flexibility.
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