
Adaptive Volt-Var Control with PV inverter and Solid State 
Transformer Interface Mobile Energy Storage Systems

RAZA, Muhammad Bilal, NOUMAN, Muhammad, NADEEM, Muhammad 
Faisal, SAJJAD, Intisar Ali and AKMAL, Muhammad <http://orcid.org/0000-
0002-3498-4146>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/36621/

This document is the Accepted Version [AM]

Citation:

RAZA, Muhammad Bilal, NOUMAN, Muhammad, NADEEM, Muhammad Faisal, 
SAJJAD, Intisar Ali and AKMAL, Muhammad (2025). Adaptive Volt-Var Control with 
PV inverter and Solid State Transformer Interface Mobile Energy Storage Systems. 
In: 2025 60th International Universities Power Engineering Conference (UPEC). 
IEEE, 1-6. [Book Section] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


Adaptive Volt-Var Control with PV inverter and
Solid State Transformer Interface Mobile Energy

Storage Systems

Muhammad Bilal Raza Muhammad Nouman Muhammad Faisal Nadeem
Electrical Engineering Department Electrical Engineering Department Electrical Engineering Department

University of Engineering & Technology University of Engineering & Technology University of Engineering & Technology
Taxila, Pakistan Taxila, Pakistan Taxila, Pakistan

22MS-EE-7@students.uettaxila.edu.pk engr.nouman1214@gmail.com faisal.nadeem@uettaxila.edu.pk

Intisar Ali Sajjad Muhammad Akmal
Electrical Engineering Department Electrical Engineering Department

University of Engineering & Technology Sheffield Hallam University
Taxila, Pakistan S1 1WB Sheffield, United Kingdom

intisar.ali@uettaxila.edu.pk m.Akmal@shu.ac.uk

Abstract—The growing integration of distributed energy re-
sources (DERs) such as PV systems and mobile energy storage
systems (MESSs) is transforming the conventional distribution
model into the active distribution networks (ADNs). However,
this transition introduces a highly dynamic and non-linear
nature into the system, posing significant challenges to voltage
stability and reactive power management. Conventional volt-var
control (VVC) approaches incorporating slow-responding devices
lack the capability to respond against dynamic environmental
conditions, limiting their potential to mitigate voltage violation
rate (VVR) and network power losses. To address these issues,
this paper proposes an intelligent VVC strategy leveraging PV
inverters and solid-state transformer-enabled mobile energy stor-
age systems (SST-MESS). The SST-MESS is capable of providing
bidirectional power flow along with reactive power compensation,
alongside PV inverters to improve real-time system efficiency.
To optimize the proposed multi-objective framework, a novel
two-critic reinforcement learning scheme has been implemented.
The conceptualized strategy has been tested on the IEEE-69
bus system; a comparative analysis with the baseline VVC
approach indicates the effectiveness of the presented strategy,
resulting in a 15.645% and 16.015% improvement for two-critic
deep deterministic policy gradient (TC-DDPG) and two-critic
soft actor-critic (TC-SAC) compared to the baseline scenario,
respectively, showing the effectiveness of the presented strategy.
Hence, contributing to the optimal integration of DERs in ADNs.

Index Terms—Deep reinforcement learning, Mobile energy stor-
age system, PV inverter, solid-state transformer, volt-var control

I. INTRODUCTION

Motivated by the goal to recarbonize electricity genera-
tion, the advancement of power electronics has facilitated
the widespread integration of decentralized generation (DG)
and mobile energy storage systems (MESSs), shifting con-
ventional distribution systems into active distribution networks
(ADNs) [1]. However, the bidirectional power flow from DG
and MESS raises concerns about voltage regulation issues.

Although reactive power compensation helps stabilize voltage
fluctuations, it might also contribute to high power losses in
the system [2]. Therefore, a well-organized volt-var control
(VVC) strategy is crucial for ensuring a reliable and efficient
operation of ADNs.

For instance, in [3] a multi-time scale VVC coordination has
been introduced utilizing PV systems, electric vehicles (EVs),
and on-load tap changer (OLTC) voltage setpoints to regulate
voltage deviations and minimize power losses. Similarly, [4]
presented a double-time scale optimization framework based
on robust model predictive control (RMPC). The coordination
process involved multiple voltage regulation devices. In the
slow-time scale control, OLTC, step-voltage regulators (SVR),
and capacitor banks (CBs) are optimized to reduce voltage
deviations. Based on this, fast-time scale control (FTC) coor-
dinated active and reactive power outputs of DGs to deal with
the fast voltage fluctuations while considering the intermittent
nature of DG outputs. In [5], an optimization framework has
been modeled based on the non-dominated sorting dung beetle
optimizer (NSDBO) and model predictive control (MPC) to
design a scheduling plan for PV systems, EVs, and energy
storage elements. Furthermore, a joint optimization scheme for
dynamic network reconfiguration (DNR) and MESS has been
introduced and reformulated as a mixed-integer second-order
cone programming (MISOCP) model. The proposed strategy
leverages the penalty alternating direction method (PADM)
being implemented on the IEEE 33-bus network integrated
with the transportation network to achieve enhanced voltage
stability, reduced distribution losses, and improved renewable
integration [6].

After reviewing the above literature study, we find that all
of them can be classified as model-based schemes that rely
on complete model information which is inherently uncertain,
making accurate modeling of ADN even more challenging979-8-3315-6520-6/25/$31.00 ©2025 IEEE



[7]. To address the limitation of model-based control [8],
data-driven deep reinforcement learning (DRL) schemes have
been introduced [9], finding extensive application in areas
like games [10], robotics control [11], and energy manage-
ment [12]. In [13], data-driven modeling based on centralized
training and decentralized execution has been nominated for
voltage regulation in PV-rich networks. In [14], a data-driven
day-ahead VVC scheduling framework has been modeled
to incorporate flexible energy resources, particularly MESS,
to deal with voltage deviations in a dynamic environment.
A two-stage hybrid energy dispatch framework has been
modeled for energy storage systems (ESS) to help smooth
out the intermittency nature of DGs and respond to real-
time disturbances [15]. Meanwhile, [16] introduced a joint
scheduling approach that integrates MESS with VVC, taking
into account voltage and state of charge (SOC) constraints.
To improve VVC performance, modeling strategies based on
two-time scale [17], three-time scale [18] have been devised
to mitigate voltage deviations and power losses. In [19],
a graph-convolutional network (GCN) to determine optimal
voltage control actions based on network topology. Moreover,
[20] proposed a human-in-the-loop soft actor-critic (HL-SAC)
for voltage variations in unbalanced three-phase distribution
systems.

In the above study, a key exception is persistent suboptimal
errors resulting from inaccuracies in the critic network for
the evaluation of the state-action value function [21], which
caused underestimation bias [22]. Liu et al. [23] presented
a two-critic deep reinforcement learning (TC-DRL) approach
to address the approximation complexity of the single-critic
learning strategy, by isolating the two tasks for each critic,
leading to a faster convergence rate.

Conventional VVC approaching based on capacitor bank
[3], OLTCs [4], and static var compensator [23] often suffers
from slow responding nature and limited capability to adapt
to dynamic voltage fluctuations caused by the integration of
DGs and MESS in ADNs. The optimal solution lies in using
solid-state transformer (SST) and PV inverter. The SST is
capable of providing fast, flexible, and localized reactive power
compensation based on real-time charging and discharging
patterns of MESS, hence ensuring system efficiency.

The key research contributions are given as follows:
• An innovative VVC approach has been presented to han-

dle intermittent nature of DGs by leveraging the concept
of SST-enabled MESS, able to handle bidirectional power
flow and dynamic reactive power support along with
smart PV inverter, based on energy demand, generation,
and charging/discharging behavior of MESS.

• State-of-the art TC-DRL algorithms has been utilized
name two-critic deep deterministic policy gradient (TC-
DDPG) and two-critic soft actor critic (TC-SAC) to
model the control framework based on multi-objective
nature of VVC problem.

• A comparative analysis has been presented by taking into
account conventional VVC as a baseline scenario, along
with that single-critic scheme also has been implemented

Fig. 1. PV inverter Volt-Var Contorl Setting (VVCS) curve

to showcase the effectiveness of TC-DDPG and TC-SAC
in mitigation of voltage violation rate (VVR), along with
minimization of network losses.

II. MATHEMATICAL MODELING

A. Smart inverter

The smart inverter handles voltage deviations by leveraging
the volt-var control setting (VVCS) shown in Fig 1 [24]. The
inverter dynamically regulates reactive power output based
on terminal voltage fluctuations. It provides reactive power
(behaving as a capacitor) when the voltage decreases below
the threshold point v2 and absorbs reactive power (operating as
an inductor) when the voltage violates the limit v3. In VVCS,
vc is considered as a reference point, the voltage width D, and
the deadband d. In the VVCS configuration, the curve points
(v1, v2, v3, and v4) are modeled as v1 = vc− D

2 , v2 = vc− d
2 ,

v3 = vc +
d
2 and v4 = vc +

D
2 .

QPV i = g(Vi) =



Qmax
PVi , Vi ≤ v1,

v2−Vi

v2−v1
Qmax

PVi , v1 ≤ Vi ≤ v2,

0, v2 ≤ Vi ≤ v3,

v3−Vi

v4−v3
Qmax

PVi , v3 ≤ Vi ≤ v4,

−Qmax
PVi , Vi ≥ v4.

(1)

Here, Vi denotes local bus voltage, while QPV presents the
inverter’s reactive power given as follows:

QPVi
≤

√
S2
PVi
− P 2

PVi
. (2)

where, SPVi
and PPVi

present the apparent power and active
power, respectively.

B. Solid State transformer-enabled Mobile energy storage
system

The SST behaves as a smart transformer, capable of dy-
namic voltage regulation to suit MESS requirements while
allowing bidirectional power flow. Fig 2 presents the SST-
enabled MESS interfaced with the distribution system using a
modular active rectifier. It produces high-voltage DC (HVDC)
and gives it to a high-frequency DC-to-DC converter. This
step comprises a bidirectional converter known as a dual-active
bridge (DAB), that allows the transformation of HVDC into



Fig. 2. Solid state transformer-enabled mobile energy storage system

low-voltage DC (LVDC) while providing isolation. The output
DC link then makes interference with MESS [25].

1) Active rectifier: In this module, the relationship between
the input current Iα, Iβ , along with active and reactive power
P,Q can be modeled as follows:[

P (t)
Q(t)

]
= ω

[
ϕα −ϕβ

ϕα ϕβ

] [
Iα
Iβ

]
(3)

where ω presents angular frequency of grid and ϕα, ϕβ models
the virtual source fluxes. Moreover, using the forward Euler
scheme, we have formulated the following relationship.

P k+1 = P k + ωTs

(
dϕα

dt
iβ −

dϕβ

dt
iα +

diβ
dt

ϕα −
diα
dt

ϕβ

)
(4)

Qk+1 = Qk + ωTs

(
dϕα

dt
iα +

dϕβ

dt
iβ +

diα
dt

ϕα +
diβ
dt

ϕβ

)
(5)

where Ts indicate sampling period, and t = k and t = k + 1
represent present and future system state. Moreover, relation-
ship between the input voltage Uα, Uβ and the output voltage
VCα ,VCβ

can be modeled as follows:

∂

∂t

[
Iα
Iβ

]
=

1

L

([
Uα

Uβ

]
−R

[
Iα
Iβ

]
−
[
VCα

VCβ

])
(6)

here, R and L denote resistance and inductance of the active
rectifier, respectively.

2) Dual active bridge: DAB works as a power converter,
capable of providing bidirectional power flow using phase-
shift control. The power transferred can be modeled as follows:

PO =
ViVO

2nLrfswdab

φ(1− φ) (7)

where, φ represents the phase angle of the primary side with
respect to the secondary side. Meanwhile, Lr denotes auxiliary
inductance, fswdab

presents switching frequency, Vi and VO

correspond to input and output voltages, respectively.

III. PROBLEM FORMULATION

The Markov decision process has been systemized to model
VVC problem formulation in ADNs. In the learning frame-
work, the DRL agent observes a state s ∈ S, performs an
action a ∈ A based on its optimal policy π : S → A, obtains
a reward r ∈ R, and transition towards next state s′ with
probability P (s′|s, a).

1) State: The state presents condition of the DRL en-
vironment and can be defined as s = [pT , qT , vT , qTg ]

T ,
where p, q, and v is the vector presentation of active power,
reactive power and voltage profile, respectively. Meanwhile,
qg presents reactive power generation of controllable devices
such as smart inverters and SST-enabled MESS.

2) Action: The action determined system response after
state observation i.e. a = q′g . In current scenario, the action is
reactive power adjustment from PV inverter and SST-enabled
MESS, constrained by boundary limits |qg| ≤

√
s2g − p2g and

qg ≤ qg ≤ qg , respectively.
3) Reward: The reward is modeled based on the next state

s′, comprising negative power losses rp and VVR rv . The
reward structure is modeled as follows:

rp = −
N∑
i=0

pi (8)

rv = −
N∑
i=0

[
max(v

′

i − v̄i, 0) + max(vi − v
′

i, 0)
]

(9)

where, N represents the number of buses. The total reward
structure r is modeled as sum of rp and cvrv , where cv is a
penalty coefficient.

A. Two reward structure modeling

The reward function of VVC comprises active power losses
rp and VVR rv with distinct mathematical structures. Based
on branch i→ j, the flow of active pij and reactive power qij
can be modeled as follows:∑

i:i→j

pij + pj =
∑

k:j→k

pjk∑
i:i→j

qij + qj =
∑

k:j→k

qjk

plij = rij(p
2
ij + q2ij)

vj = vi − (rijpij + xijqij)

(10)

here, the resistance and reactance parameters are denoted with
rij and xij , respectively.

pj =


p0, ∀j = 0

pgj − pdj , ∀j ∈ Ng

pcj − pdj , ∀j ∈ Nc

−pdj , ∀j ∈ N \Ng

(11)

qj =


q0, ∀j = 0

qgj − qdj , ∀j ∈ Ng

qcj − qdj , ∀j ∈ Nc

−qdj , ∀j ∈ N \ (Ng ∪Nc)

(12)

where N , Nd, Ng , and Nc indicate the total number of buses,
load buses, and buses with PV inverters and SST-enabled
MESS, respectively. Furthermore, loading at bus j is pdj /qdj ,
while PV inverters produce pgj /qgj , and SST-enabled MESS
gives pcj/qcj .



IV. TWO-CRITIC REINFORCEMENT LEARNING
FRAMEWORK

The TC-DRL learning framework has been presented in
Fig. 3. The system operates based on centralized training
and centralized execution, allowing a centralized agent to
engage with the environment and optimize its policy based
on feedback signals from two critic networks.

The Q-value function of the critic networks that deal with
the minimization of power losses, Qp(s, a), and for the mitiga-
tion of voltage violation Qv(s, a) can be modeled as follows:

Qπ
p (s, a) = Ea∼π

[ ∞∑
t=0

γtrp,t | s0 = s, a0 = a

]
(13)

Qπ
v (s, a) = Ea∼π

[ ∞∑
t=0

γtrv,t | s0 = s, a0 = a

]
(14)

For every model interaction, the neural networks Qϕp(s,a) and
Qϕv(s,a) are used for the evaluation of the critic network based
on the mean squared error function, expressed as follows:

LQp
(ϕp) =

1

|B|
∑

(s,a,rp)∈B

(
Qϕp

(s, a)− rp
)2

LQv
(ϕv) =

1

|B|
∑

(s,a,rv)∈B

(Qϕv
(s, a)− rv)

2
(15)

Moreover, the actor network πθ(s) has been trained to opti-
mize the loss function, given as,

Lπ(θ) =
1

|B|
∑
s∈B

[
Qϕp(s, πθ(s)) + cvQϕv (s, πθ(s))

]
(16)

In TC-DDPG, to enhance the deterministic policy, an inde-
pendent exploration noise is incorporated during the training
process.

a = clip(πθ(s) + ξ, a, ā), (17)

here ξ denotes exploration noise produced based on a Gaussian
process ξ ∼ N (0, σ). The function clipping ensures that
values stay within limits [a, ā] by compensating them to closest
boundary limits using the min(max(πθ(s) + ξ, a), ā).

The TC-SAC learning model can be attained by minor
modifications in the TC-DDPG learning architecture. The
deterministic policy is replaced with a stochastic policy pa-
rameterization.

πθ(·|s) = tanh(µθ(s) + σθ(s)⊙ ξ), ξ ∼ N (0, I) (18)

where µθ and σθ are the approximation parameters for mean
and standard deviation. In addition, the actor loss function
Lπ(θ) is substituted with the entropy regularization.

Lπ(θ) =
1

|B|
∑

s∈B,a∼πθ(·|s)

(
Qpϕ

(s, a) + cvQvϕ(s, a)
)

− α log πθ(·|s)
(19)

The learning rate α is updated based on the following equation.

α← α+ λα∇ϕL(α) (20)

Fig. 3. Two critic learning framework

Both learning frameworks, TC-DDPG and TC-SAC, bring
down the variance of the policy gradient by employing the
critic value function as a baseline.

V. SIMULATIONS AND RESULTS

To validate the competence of the proposed VVC scheme,
numerical simulations are performed on Baran and Wu’s
IEEE-69 bus distribution system based on the TC-DRL ap-
proach [26]. The system comprised 4 PV inverters with a
rating of 2 MVar reactive power and 1.5 MW active power,
integrated to buses 5, 22, 44, and 63 respectively, and 1
SST-enabled MESS of 2 MVar reactive and 1.6 MW active
power rating, connected to bus 13 of the system. The load
and generation profile were adjusted based on daily variations
by incorporating 96 data points from [27], while the charging
and discharging patterns of MESS were extracted and modified
from [28]. Moreover, an additional 20% uniformly distributed
noise was incorporated to account for uncertainties. The
boundary limit for voltage was considered in the range of 0.95
to 1.05 per unit. Matpower [29] was used to source network
data and later introduced into Pandapower [30]. The DRL
algorithms were executed using Python 3.9.18, with balanced
load flow analysis using Pandapower 3.0.0. Moreover, the sim-
ulation procedure for DRL algorithms was based on PyTorch
2.5.1. The total simulation time per training episode on average
comprises of 30 seconds based on specified hardware design
comprising 12th Gen Intel(R) Core(TM) i7-12700 2.10 GHz
processor with 32 GB RAM. The time primarily stems from
iterative interactions between the agent and the power flow
solver i.e. MATPOWER, during environment transitions as
shown in the figure 4. While current training times may not
be suitable for online or real-time retraining, it is important to
note that once the model is trained offline, the inference time
for deploying a trained agent is less than one second, making
it viable for real-time operation with control intervals ranging
from 5 to 15 minutes.

A. Discussion and result analysis

The training process was spread over 300 days, utilizing
parametric settings from [23]. To ensure consistency and



TABLE I
COMPARATIVE ANALYSIS OF DIFFERENT VVC APPROACHES AND

CONTROL STRATEGIES

Algorithm Reward Ploss /(MW) VVR/(p.u.)

69-bus 69-bus [23] 69-bus 69-bus [23] 69-bus 69-bus [23]

Deterministic policy
DDPG -3.727 -4.092 3.7269 4.006 8.639e-5 1.717e-3
TC-DDPG -2.855 -3.440 2.8554 3.385 7.089e-7 1.099e-3

Stochastic policy
SAC -3.067 -3.625 3.0671 3.548 1.791e-6 1.527e-3
TC-SAC -2.860 -3.455 2.8605 3.406 1.459e-5 9.751e-4

Fig. 4. Schematic representation of interaction between agent and ADN
environment

diminish randomness, all DRL approaches were tested on three
random seeds, and the average outputs were considered.

1) Deterministic policy learning: In the deterministic pol-
icy, two state-of-the-art learning frameworks, i.e. DDPG and
TC-DDPG, have been presented to model the VVC scheme.

2) Stochastic policy learning: Meanwhile, in the stochastic
policy framework, we use SAC and its two-critic derivative
TC-SAC that has been proposed. Fig. 5 shows the training
performance of TC-DRL learning schemes, illustrating the ag-
gregated reward, network losses, and VVR. Initially, TC-DRL
approach, i.e. TC-DDPG and TC-SAC, achieves improved
convergence rates as compared to the single-critic counterpart,
i.e. DDPG and SAC, as depicted from the learning trajectories
noted between days 20 and 50 in Fig. 5. Second, TC-DDPG
and TC-SAC attained higher rewards compared to DDPG and
SAC, as highlighted from the learning curve from days 250
to 300 in Fig. 5. As listed in Table I, the proposed VVC
approach incorporating PV-inverter and SST-enabled MESS
via TC-DRL outperforms the conventional VVC scheme [23].
The presented approach improved the performance of network
power loss considerably and voltage violation marginally. It
can be observed that VVR quickly converged to zero and
slightly remained around zero. Therefore, in the total reward
function, voltage violation constitutes a small proportion while
the dominance was mainly illustrated in minimizing network
power losses. The small variations may be due to conflicting
VVC objectives and numerical disturbances in neural network
training.

A comparative analysis has been carried out based on
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Fig. 5. IEEE-69 Bus System test results for DDPG, TC-DDPG, SAC and
TC-SAC: (a) Reward (b) Power loss (c) Voltage violation rate

key evaluation parameters including: (i) Power loss Ploss,
indicating total network power loss measured in megawatts
(MW); (ii) VVR, highlighting voltage deviations from pre-
scribed limits in per unit (p.u.); (iii) Reward, showcasing the
cumulative improvement in voltage regulation and network
loss minimization. The performance analysis based on the
IEEE-69 bus system illustrates that the two-critic scheme in
combination with the proposed VVC approach outperformed
the baseline approach [23] and their single-critic counterpart.
TC-DDPG (-2.855) received the highest reward surpassing
TC-SAC (-2.860), SAC (-3.067), and DDPG (-3.727), and
baseline VVC approach (-3.440) [23], showcasing improved
control efficiency and system stability. Moreover, TC-DDPG
leads to lowest power loss, i.e., 2.8554 MW, which is 23.338%
improved over DDPG and 15.645% less than the baseline
VVC approach [23]. Similarly, TC-SAC obtained 2.860 MW,
which is 6.736% better than SAC and 16.015% improved com-
pared to baseline scenario [23]. In Ploss reduction compared to
baseline VVC scheme, TC-SAC outperforms other due to its
entropy regulation but for the presented approach TC-DDPG
have more optimized results i.e. 2.8554 MW compared to TC-
SAC (2.8605 MW). Meanwhile, ability of SST-enabled MESS
to compensate for reactive power in coordination with smart
PV inverter leads to improved voltage regulation compared to



baseline approach [23], while TC-DDPG outperforms other
algorithms for the presented scheme.

VI. CONCLUSION

This study introduced a novel VVC strategy for ADNs
using smart PV inverters and SST-enabled MESS, driven by
TC-DRL control framework. Unlike traditional VVC control
strategies based on slow-responding devices like capacitor
bank, OLTCs, and SVCs. This research showcased the fast-
reacting nature of SST-enabled MESS capable of providing
bi-directional power flow along with reactive power compen-
sation addressing VVR and mitigation of power losses in real-
time dynamics. A comparative analysis with baseline VVC
control approach (i.e. based on PV inverter and SVCs) indicate
the superior performance of TC-SAC by attaining 16.015%
improvement over the baseline VVC approach. Meanwhile,
in the proposed approach TC-DDPG outperformed other by
accomplishment a reward of -2.855 compared to TC-SAC (-
2.860), SAC (-3.067), and DDPG (-3.727). In future, we plan
to enhance the VVC strategy by incorporating transient cost
analysis for unbalanced distribution networks. We intercepted
that proposed DRL algorithms will performed efficiently in
these cases by simplifying the learning process and distin-
guishing the impact of multiple control tasks.
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