

Project Boron – quantitative analyses for Boron by XRF

BELL, Anthony <<http://orcid.org/0000-0001-5038-5621>>

Available from Sheffield Hallam University Research Archive (SHURA) at:

<https://shura.shu.ac.uk/36611/>

This document is the Presentation

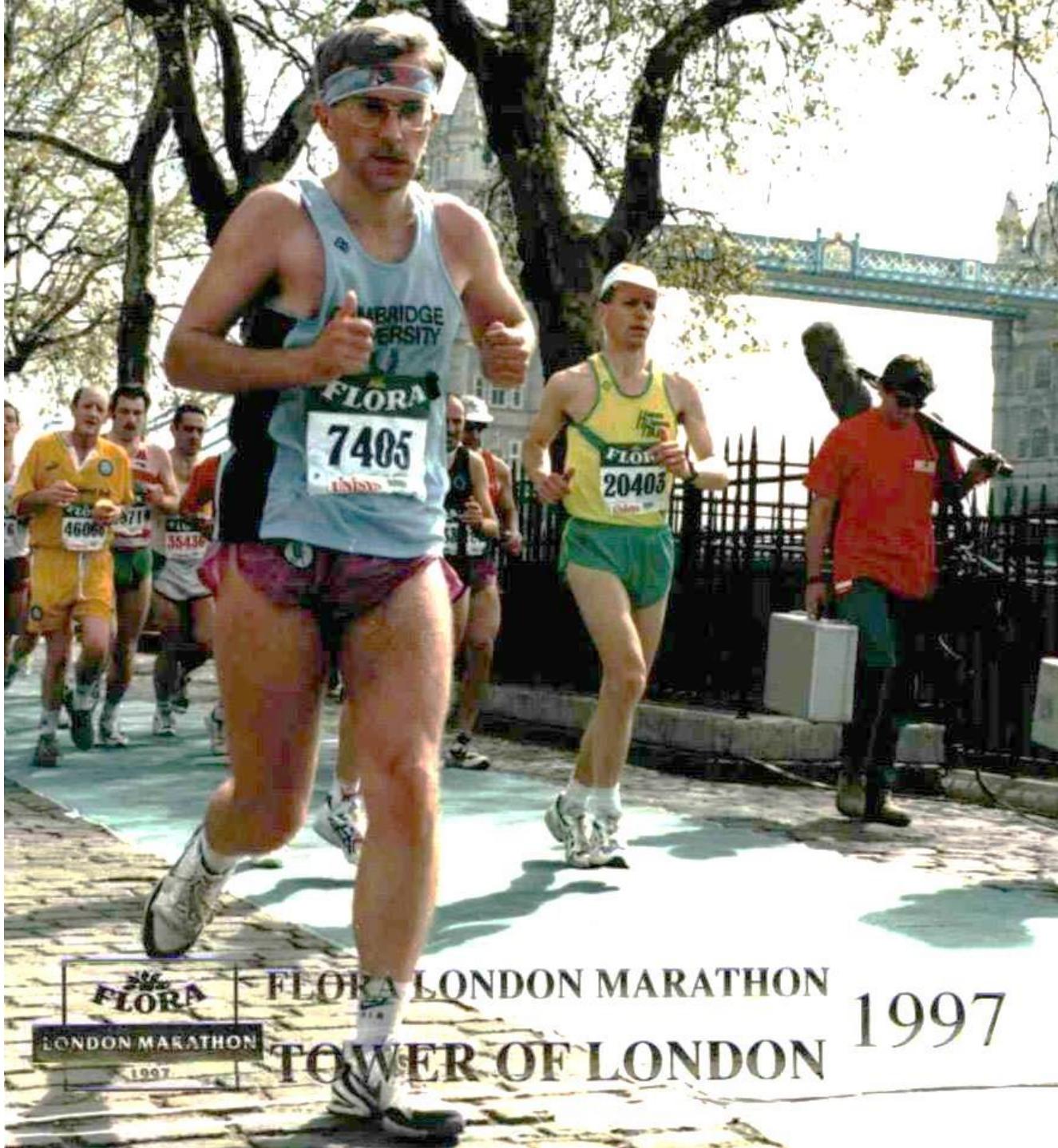
Citation:

BELL, Anthony (2025). Project Boron – quantitative analyses for Boron by XRF. In: Society of Glass Technology Conference, Cambridge, UK, 01-03 Sep 2025. Society of Glass Technology. (Unpublished) [Conference or Workshop Item]

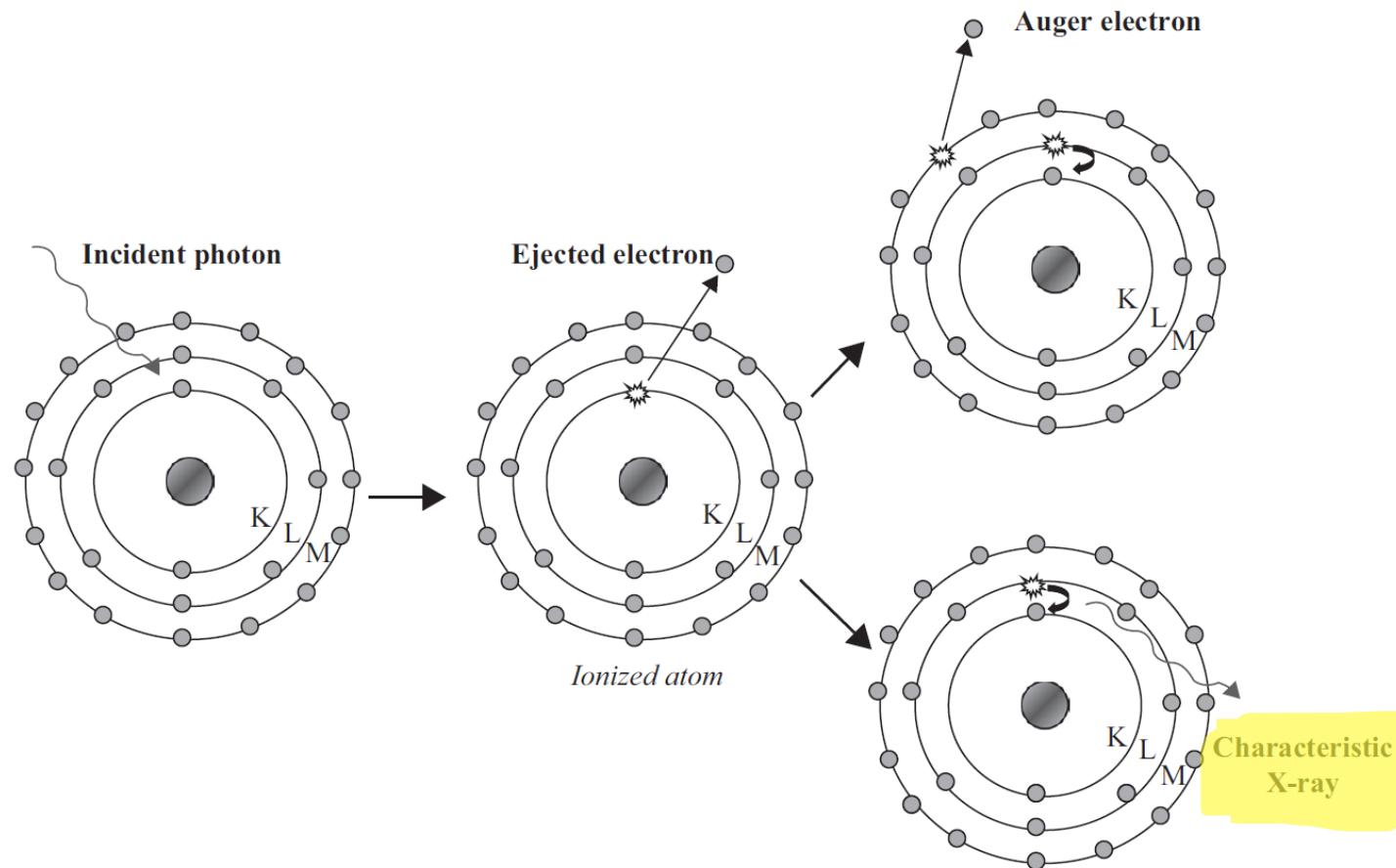
Copyright and re-use policy

See <http://shura.shu.ac.uk/information.html>

The “OXI” XRF standard analysis method on a new XRF spectrometer.


Dr. Tony Bell

ESG15 – NCM15 Cambridge 2024


**Sheffield
Hallam
University**

Materials and
Engineering
Research Institute

X-ray Fluorescence (XRF)

X-ray Fluorescence (XRF)

- X-ray photons emitted by fluorescence in XRF.

X-ray Fluorescence (XRF)

- X-ray photons emitted by fluorescence in XRF.
- Different elements have different electronic arrangements.

X-ray Fluorescence (XRF)

- X-ray photons emitted by fluorescence in XRF.
- Different elements have different electronic arrangements.
- Therefore, different elements will emit XRF photons of different energies.

X-ray Fluorescence (XRF)

- X-ray photons emitted by fluorescence in XRF.
- Different elements have different electronic arrangements.
- Therefore, different elements will emit XRF photons of different energies.
- Measurement of XRF photon energy used for materials characterisation.

X-ray Fluorescence (XRF)

- X-ray photons emitted by fluorescence in XRF.
- Different elements have different electronic arrangements.
- Therefore, different elements will emit XRF photons of different energies.
- Measurement of XRF photon energy used for materials characterisation.
- **XRF is very useful for analysing glass samples.**

X-ray Fluorescence (XRF)

- XRF is very useful for analysing glass samples.
- It is important that originators of samples sent for XRF analyses should be aware of the process.

X-ray Fluorescence (XRF)

- **XRF is very useful for analysing glass samples.**
- It is important that originators of samples sent for XRF analyses should be aware of the process.
- XRF is a very useful technique with strengths and limitations.

X-ray Fluorescence (XRF)

- **XRF is very useful for analysing glass samples.**
- It is important that originators of samples sent for XRF analyses should be aware of the process.
- XRF is a very useful technique with strengths and limitations.
- XRF is not a magic black box that produces results out of thin air!

MagiX PRO

MagiX PRO XRF spectrometer

- Wavelength dispersive spectrometer.

MagiX PRO XRF spectrometer

- Wavelength dispersive spectrometer.
- MagiX PRO scans over 10 different energy ranges.

MagiX PRO XRF spectrometer

- Wavelength dispersive spectrometer.
- MagiX PRO scans over 10 different energy ranges.
- Rh anode for X-ray tube, see Rh fluorescence lines from the tube.

MagiX PRO XRF spectrometer

- Wavelength dispersive spectrometer.
- MagiX PRO scans over 10 different energy ranges.
- Rh anode for X-ray tube, see Rh fluorescence lines from the tube.
- Element range F-Am.

MagiX PRO XRF spectrometer

- Wavelength dispersive spectrometer.
- MagiX PRO scans over 10 different energy ranges.
- Rh anode for X-ray tube, see Rh fluorescence lines from the tube.
- Element range F-Am.
- Used for analysis of glass (and other samples).

MagiX PRO XRF spectrometer

- Wavelength dispersive spectrometer.
- MagiX PRO scans over 10 different energy ranges.
- Rh anode for X-ray tube, see Rh fluorescence lines from the tube.
- Element range F-Am.
- Used for analysis of glass (and other samples).
- Glass samples made into **fused beads**.

Periodic Table of the Elements

MagiX PRO elements

1	H	Hydrogen	1.008
---	---	----------	-------

3	Li	Lithium	6.94
4	Be	Beryllium	9.012633

12	Na	Sodium	22.989769
13	Mg	Magnesium	24.305

19	K	Potassium	39.0983
20	Ca	Calcium	40.078

38	Rb	Rubidium	85.4678
39	Sr	Sodium	87.62

56	Cs	Cesium	132.90545196
57	Ba	Boron	137.327

87	Fr	Francium	223
88	Ra	Radium	226

Atomic Number → 1
 Name → Hydrogen
 Symbol → H
 Atomic Weight → 1.008

5	B	Boron	10.81
6	C	Carbon	12.011
7	N	Nitrogen	14.007
8	O	Oxygen	15.999
9	F	Fluorine	18.998403153
10	Ne	Neon	20.1797

37	La	Lanthanum	138.90547
58	Ce	Cerium	140.119
59	Pr	Praseodymium	141.90766
60	Nd	Ndium	144.242
61	Pm	Promethium	145
62	Sm	Samarium	150.38
63	Eu	Europium	151.9064
64	Gd	Gadolinium	158.24241
65	Tb	Terbium	158.92535
66	Dy	Dysprosium	160.93031
67	Ho	Holmium	167.269
68	Er	Erbium	168.93422
69	Tm	Thulium	173.042
70	Yb	Ytterbium	174.9505
71	Lu	Lutetium	174.9505

89	Ac	Actinium	227
90	Th	Thorium	232.0371
91	Pa	Protactinium	231.03588
92	U	Uranium	238.0289
93	Np	Neptunium	237
94	Pu	Plutonium	244.0443
95	Am	Americium	243
96	Cm	Curium	247
97	Bk	Berkelium	247
98	Cf	Californium	255
99	Es	Einsteinium	252
100	Fm	Fermium	257
101	Md	Mendelevium	258
102	No	Nobelium	259
103	Lr	Lawrencium	264

XRF before "OXI"

- XRF measurements for fused bead samples were done using the standardless IQ+ software package.

XRF before "OXI"

- XRF measurements for fused bead samples were done using the standardless **IQ+** software package.
- However, these **IQ+** results were only semi-quantitative.

XRF before "OXI"

- XRF measurements for fused bead samples were done using the standardless **IQ+** software package.
- However, these **IQ+** results were only semi-quantitative.
- More accurate results were needed.

Bring back
OXI

Simple Approach to the Analysis of Oxides, Silicates and Carbonates Using X-Ray Fluorescence Spectrometry

H. L. Giles*

Materials Research Institute, Sheffield Hallam University, Pond Street, Sheffield, S1 1WB, UK

P. W. Hurley†

Analytical Consultant, 'Endian', Gore Tree Road, Hemingford Grey, Huntingdon, Cambs., PE18 9BP, UK

H. W. M. Webster

Philips Analytical X-ray, York Street, Cambridge, CB1 2QU, UK

X-ray fluorescence spectrometry has always been considered to be a comparative method of analysis requiring chemically analysed samples or reference materials for calibration. The fusion technique, which is widely used as the method of sample preparation to eliminate particle size and mineralogical effects, allows the use of synthetic 'standards' as the means of calibration, but most laboratories use large numbers to establish the primary calibration line and calculate empirical interelement correction coefficients. In the 1970s, de Jongh proposed the use of theoretically based correction coefficients, and his concept of 'apparent concentration,' which is related linearly to the measured intensity, means that in principle only two samples are necessary to define the primary calibration line. This paper describes the use of this principle to calibrate a spectrometer for the 13 most commonly occurring oxides, plus six others, over wide composition ranges. Each calibration line requires one sample, which is made from a commercially available source of the element, a blank or zero sample, which is used for all calibration lines, and a set of theoretical α coefficients calculated using de Jongh's program. Sample preparation is by fusion in $\text{Li}_2\text{B}_4\text{O}_7$. The calibration was tested using reference materials and was found to be accurate for every element except sulphur.

INTRODUCTION

In x-ray fluorescence spectrometry, concentration is related to intensity by an algorithm of the type

$$C_i = D_i + E_i R_i (1 + \sum \alpha_{i,j} \cdot C_j) \quad (1)$$

where i is the analyte element, j is an interfering element (j can be i), C_i is the concentration of the analyte i , E_i and D_i are the slope and intercept, respectively, of the primary calibration line, R_i is the dead-time corrected net intensity for element i , $\alpha_{i,j}$ is the interelement correction factor for element j on element i (j can be i) and C_j is the concentration of the interfering element j (j can be i).

To solve this equation for C_i in a multi-element situation, the values of E_i , D_i and $\alpha_{i,j}$ must be known, and then iteration or matrix inversion can be used to solve the set of equations for C_i using measured values of R_i .

Several approaches can be used to obtain values for the constants D_i , E_i and $\alpha_{i,j}$.

1. The use of a 'close range' calibration, where the inter-element correction term $(1 + \sum \alpha_{i,j})$ is assumed to be constant and is incorporated in D_i and E_i . These

* Formerly of London & Scandinavian Metallurgical Co. Ltd., Fulerton Road, Rotherham, S. Yorks, S60 1DL, UK

† Formerly of Philips Analytical X-ray, York Street, Cambridge, CB1 2QU, UK.

latter being determined either graphically or by least squares fit from a small number of standards.

2. The use of many standards including binaries and pseudobinaries with graphical solution.
3. The use of fewer standards than in 2 above, and multilinear regression analysis.
4. The use of theoretically determined values of $\alpha_{i,j}$ by, for instance, the method of de Jongh¹ to obtain an apparent concentration, where:

$$C_{\text{apparent}(i)} = \frac{C_{\text{true}(i)}}{1 + \sum \alpha_{i,j} \cdot C_j} \quad (2)$$

followed by a simple graphical or algebraic solution for D_i and E_i from Eqn (3), which results from the combination of Eqns (1) and (2).

$$C_{\text{apparent}(i)} = D_i + E_i R_i \quad (3)$$

Provided that the values of $C_{\text{apparent}(i)}$ and R_i are precisely known, Eqn (2) may be solved using only two values of $C_{\text{apparent}(i)}$, e.g. a high concentration plus a zero. In this work, we applied this concept and tested its validity.

In a later paper² de Jongh proposed that by using loss/gain on ignition (L.O.I.) as the eliminated component in the theoretical coefficients calculation, then the samples need not be pre-ignited before fusion, and that the loss or gain on ignition is represented by the difference between 100% and the arithmetic sum of the

Received 11 October 1994

Accepted 10 February 1995

INTRODUCTION

In x-ray fluorescence spectrometry, concentration is related to intensity by an algorithm of the type

$$C_i = D_i + E_i R_i (1 + \sum \alpha_{i,j} \cdot C_j) \quad (1)$$

where i is the analyte element, j is an interfering element (j can be i), C_i is the concentration of the analyte i , E_i and D_i are the slope and intercept, respectively, of the primary calibration line, R_i is the dead-time corrected net intensity for element i , $\alpha_{i,j}$ is the interelement correction factor for element j on element i (j can be i) and C_j is the concentration of the interfering element j (j can be i).

To solve this equation for C_i in a multi-element situation, the values of E_i , D_i and $\alpha_{i,j}$ must be known, and then iteration or matrix inversion can be used to solve the set of equations for C_i using measured values of R_i .

Several approaches can be used to obtain values for the constants D_i , E_i and $\alpha_{i,j}$.

1. The use of a 'close range' calibration, where the inter-element correction term $(1 + \sum \alpha_{i,j})$ is assumed to be constant and is incorporated in D_i and E_i . These

* Formerly of London & Scandinavian Metallurgical Co. Ltd., Fulerton Road, Rotherham, S. Yorks, S60 1DL, UK

† Formerly of Philips Analytical X-ray, York Street, Cambridge, CB1 2QU, UK.

latter being determined either graphically or by least squares fit from a small number of standards.

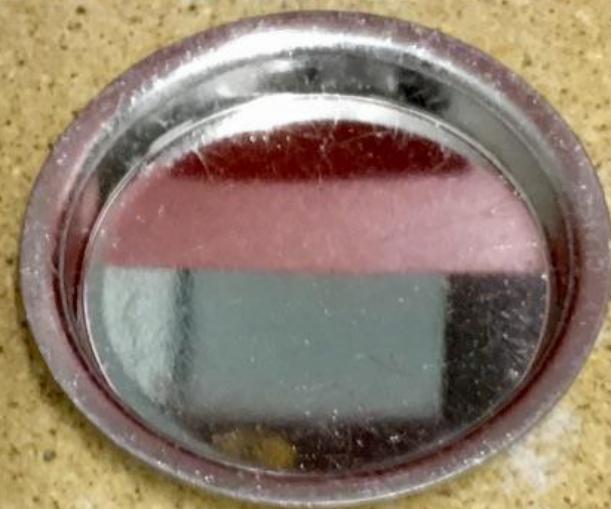
2. The use of many standards including binaries and pseudobinaries with graphical solution.
3. The use of fewer standards than in 2 above, and multilinear regression analysis.
4. The use of theoretically determined values of $\alpha_{i,j}$ by, for instance, the method of de Jongh¹ to obtain an apparent concentration, where:

$$C_{\text{apparent}(i)} = \frac{C_{\text{true}(i)}}{1 + \sum \alpha_{i,j} \cdot C_j} \quad (2)$$

followed by a simple graphical or algebraic solution for D_i and E_i from Eqn (3), which results from the combination of Eqns (1) and (2).

$$C_{\text{apparent}(i)} = D_i + E_i R_i \quad (3)$$

Provided that the values of $C_{\text{apparent}(i)}$ and R_i are precisely known, Eqn (2) may be solved using only two values of $C_{\text{apparent}(i)}$, e.g. a high concentration plus a zero. In this work, we applied this concept and tested its validity.


In a later paper² de Jongh proposed that by using loss/gain on ignition (L.O.I.) as the eliminated component in the theoretical coefficients calculation, then the samples need not be pre-ignited before fusion, and that the loss or gain on ignition is represented by the difference between 100% and the arithmetic sum of the

Received 11 October 1994

Accepted 10 February 1995

new OXI standards

- Standards made by mixing material of interest with 10g of $\text{Li}_2\text{B}_2\text{O}_7$ (doped with 0.5% LiI) flux in a 95%Pt:5%Au crucible.

new OXI standards

- Standards made by mixing material of interest with 10g of $\text{Li}_2\text{B}_2\text{O}_7$ (doped with 0.5% LiI) flux in a 95%Pt:5%Au crucible.
- Heat up to 1065°C in Claisse LeNeo fluxer.

CLAISSE
THE FIRST AND FINEST IN FUSION™

LE **neo**
FLUXER®

4 ALFIE

new OXI standards

- Standards made by mixing material of interest with 10g of $\text{Li}_2\text{B}_2\text{O}_7$ (doped with 0.5% LiI) flux in a 95%Pt:5%Au crucible.
- Heat up to 1065°C in Claisse LeNeo fluxer.
- Programmable automatic fluxer means the same temperature and heating time for each standard sample.

Fusion

1065°C

Disk - High refractory materials

00:21:45

Step number

Step type

Step duration

1/7

Heating

00:06:00

Setpoint

Rocking speed

Rocking angle

1065°C

0 RPM

0°

Select...

Time

Start

new OXI standards

- Standards made by mixing material of interest with 10g of $\text{Li}_2\text{B}_2\text{O}_7$ (doped with 0.5% LiI) flux in a 95%Pt:5%Au crucible.
- Heat up to 1065°C in Claisse LeNeo fluxer.
- Programmable automatic fluxer means the same temperature and heating time for each standard sample.
- Cool to form a fused bead.

new OXI standards

- Standards made by mixing material of interest with 10g of $\text{Li}_2\text{B}_2\text{O}_7$ (doped with 0.5% LiI) flux in a 95%Pt:5%Au crucible.
- Heat up to 1065°C in Claisse LeNeo fluxer.
- Programmable automatic fluxer means the same temperature and heating time for each standard sample.
- Cool to form a fused bead.
- All OXI standards consist of an oxide dissolved in a fused bead.

OXI standards

starting material	OXI oxide	starting material	OXI oxide
-------------------	-----------	-------------------	-----------

Na_2CO_3	Na_2O	Cr_2O_3	Cr_2O_3
--------------------------	-----------------------	-------------------------	-------------------------

MgO	MgO	MnO_2	Mn_3O_4
--------------	--------------	----------------	-------------------------

Al_2O_3	Al_2O_3	Fe_2O_3	Fe_2O_3
-------------------------	-------------------------	-------------------------	-------------------------

SiO_2	SiO_2	ZnO	ZnO
----------------	----------------	--------------	--------------

$\text{NH}_4\text{H}_2\text{PO}_4$	P_2O_5	$\text{Sr}(\text{NO}_3)_2$	SrO
------------------------------------	------------------------	----------------------------	--------------

Li_2SO_4	SO_3	Y_2O_3	Y_2O_3
--------------------------	---------------	------------------------	------------------------

K_2CO_3	K_2O	ZrO_2	ZrO_2
-------------------------	----------------------	----------------	----------------

CaCO_3	CaO	BaCO_3	BaO
-----------------	--------------	-----------------	--------------

TiO_2	TiO_2	HfO_2	HfO_2
----------------	----------------	----------------	----------------

V_2O_5	V_2O_5		
------------------------	------------------------	--	--

Periodic Table of the Elements

original OXI

1	H	Hydrogen 1.008
---	---	-------------------

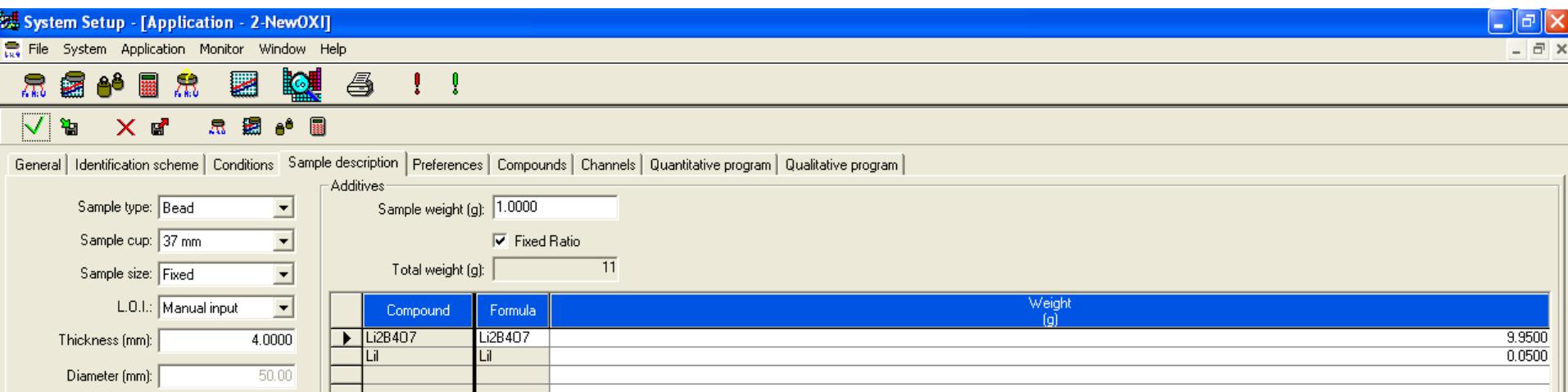
3	Li	Lithium 6.94
4	Be	Beryllium 9.012633

11	Na	Sodium 22.9897692
12	Mg	Magnesium 24.305

19	K	Potassium 39.0983		
20	Ca	Calcium 40.078		
21	Sc	Scandium 44.95908		
22	Ti	Titanium 47.867		
23	V	Titanium 50.9415		
24	Cr	Chromium 51.9961		
25	Mn	Manganese 54.938044		
26	Fe	Iron 55.845		
27	Co	Cobalt 58.933194		
28	Ni	Nickel 58.6934		
29	Cu	Copper 63.546		
30	Zn	Zinc 65.386		
31	Ga	Gallium 69.723		
32	Ge	Germanium 72.630		
33	As	Arsenic 74.921595		
34	Se	Selenium 78.913		
35	Br	Bromine 79.904		
36	Kr	Krypton 83.798		
37	Rb	Rubidium 85.4678		
38	Sr	Srtrontium 87.620		
39	Y	Yttrium 88.90584		
40	Zr	Zirconium 91.224		
41	Nb	Niobium 91.9037		
42	Mo	Molybdenum 95.95		
43	Tc	Technetium (98)		
44	Ru	Ruthenium 101.07		
45	Rh	Rhodium 102.90550		
46	Pd	Palladium 106.42		
47	Ag	Silver 107.8682		
48	Cd	Cadmium 112.414		
49	In	Indium 114.818		
50	Sn	Tin 118.710		
51	Sb	Antimony 121.760		
52	Te	Tellurium 126.90447		
53	I	Iodine 131.293		
54	Xe	Xenon 131.993		
55	Cs	Cesium 132.90545196		
56	Ba	Baerium 137.322		
		57 - 71 Lanthanoids		
		72	Hf	Hafnium 178.491
		73	Ta	Tantalum 180.94788
		74	W	Tungsten 183.84
		75	Re	Rhenium 186.207
		76	Os	Osmium 190.23
		77	Ir	Iridium 192.237
		78	Pt	Platinum 195.084
		79	Au	Gold 196.96569
		80	Hg	Mercury 200.592
		81	Tl	Thallium 204.38
		82	Pb	Lead 207.2
		83	Bi	Bismuth 208.986040
		84	Po	Polonium (209)
		85	At	Astatine (210)
		86	Rn	Radon (222)
87	Fr	Francium (223)		
88	Ra	Radium (226)		
		89 - 103 Actinoids		
		104	Rf	Rutherfordium (261)
		105	Db	Dubnium (266)
		106	Sg	Seaborgium (269)
		107	Bh	Bohrium (260)
		108	Hs	Hassium (269)
		109	Mt	Melitberium (270)
		110	Ds	Darmstadtium (281)
		111	Rg	Roemerium (282)
		112	Cn	Copernicium (285)
		113	Nh	Nihonium (286)
		114	Fl	Flerovium (289)
		115	Mc	Moscovium (288)
		116	Lv	Livermorium (293)
		117	Ts	Tennessee (294)
		118	Og	Oganesson (294)

57	La	Lanthanum 138.90547
58	Ce	Cerium 140.116
59	Pr	Praseodymium 140.90766
60	Nd	Neodymium 144.242
61	Pm	Promethium (145)
62	Sm	Samarium 150.36
63	Eu	Europium 151.964
64	Gd	Gadolinium 157.25
65	Tb	Terbium 158.92535
66	Dy	Dysprosium 162.500
67	Ho	Holmium 164.93033
68	Er	Erbium 167.259
69	Tm	Thulium 168.93422
70	Yb	Ytterbium 173.045
71	Lu	Lutetium 174.9668
89	Ac	Actinium (227)
90	Th	Thorium 232.0377
91	Pa	Protactinium 231.03588
92	U	Uranium 238.02891
93	Np	Neptunium (237)
94	Pu	Plutonium (244)
95	Am	Americium (243)
96	Cm	Curium (247)
97	Bk	Berkelium (247)
98	Cf	Californium (255)
99	Es	Einsteinium (252)
100	Fm	Fermium (257)
101	Md	Mendelevium (258)
102	No	Nobelium (259)
103	Lr	Lawrencium (264)

new OXI standards


- Clay standard sample
- CRM-309 sillimanite
- CRM-348 ball clay
- CRM-375 soda feldspar
- CRM-376 potash feldspar
- CRM-525 low iron float glass
- CRM-528 standard glass sand
- CRM-531 low iron sand

Creating a new OXI program

- Composition of flux needed.

Creating a new OXI program

- Composition of flux needed.

The screenshot shows the 'System Setup - Application - 2-NewOXI' window. The 'Additives' tab is selected. The 'General' tab is also visible. The 'Sample type' is set to 'Bead'. The 'Sample weight (g)' is 1.0000. The 'Total weight (g)' is 11. The 'Fixed Ratio' checkbox is checked. The 'Compound' table lists Li2B4O7 and LiI with their respective formulas and weights: Li2B4O7 (9.9500 g) and LiI (0.0500 g).

Compound	Formula	Weight (g)
Li ₂ B ₄ O ₇	Li ₂ B ₄ O ₇	9.9500
LiI	LiI	0.0500

$\text{Li}_2\text{B}_4\text{O}_7$ (with 0.5% LiI anti-cracking agent) flux.

Creating a new OXI program

- measure intensities for a particular XRF line for each element, use standard samples.

Creating a new OXI program

- measure intensities for a particular XRF line for each element, use standard samples.
- make sure it doesn't overlap another XRF line for an element of interest.

Creating a new OXI program

- measure intensities for a particular XRF line for each element, use standard samples.
- make sure it doesn't overlap another XRF line for an element of interest.
- also measure background points.

System Setup - [Application - 2-NewOXI]

File System Application Monitor Window Help

General Identification scheme Conditions Sample description Preferences Compounds Channels Quantitative program Qualitative program

Channelset: newoxi

	Channel	Type	Line	X-tal	Collimator	Detector	Tube filter	kV	mA	Angle (°2T)	Offset Bg1 (°2T)	Offset Bg2 (°2T)	Offset Bg3 (°2T)	Offset Bg4 (°2T)	PHD1 LL	PHD1 UL	PHD2 LL	PHD2 UL	PHD1 Fact	PHD2 Fact
►	Na	Gonio	KA	PX1	700 µm	Flow	None	32	125	27.0928	-3.2684	2.9542			26	78			1.0000	
	Mg	Gonio	KA	PX1	700 µm	Flow	None	32	125	22.4422	3.9106				26	76			1.0000	
	Al	Gonio	KA	PE 002	300 µm	Flow	None	32	125	144.8280	-1.3052				22	76			1.0000	
	Si	Gonio	KA	InSb 111-C	700 µm	Flow	None	32	125	144.6682	-1.4450				24	78			1.0000	
	P	Gonio	KA	Ge 111	300 µm	Flow	None	32	125	141.0490	-1.3414				25	78			1.0000	
	S	Gonio	KA	Ge 111	300 µm	Flow	None	32	125	110.7342	1.7024				27	78			1.0000	
	K	Gonio	KA	LiF 200	300 µm	Flow	None	32	125	136.7006	-3.6498				31	74			1.0000	
	Ca	Gonio	KA	LiF 200	300 µm	Flow	None	32	125	113.1190	2.3732				32	73			1.0000	
	Ti	Gonio	KA	LiF 200	300 µm	Flow	None	40	100	86.1978	-1.8826				26	71			1.0000	
	V	Gonio	KA	LiF 220	150 µm	Duplex	None	50	80	123.3628	-0.6106				31	69			1.0000	
	Cr	Gonio	KA	LiF 220	150 µm	Duplex	None	50	80	107.3150	-0.5144				33	64			1.0000	
	Mn	Gonio	KA	LiF 200	300 µm	Duplex	Al (200 µm)	60	66	62.9840	-1.0006				32	72			1.0000	
	Fe	Gonio	KA	LiF 200	300 µm	Duplex	Al (200 µm)	60	66	57.5210	1.3030				33	72			1.0000	
	Zn	Gonio	KA	LiF 200	300 µm	Scint.	Brass (100 µm)	60	66	41.7544	-0.7530	1.0880			15	78			1.0000	
	Sr	Gonio	LA	InSb 111-C	700 µm	Flow	None	32	125	133.3142	3.3486				24	78			1.0000	
	Y	Gonio	LA	PE 002	300 µm	Flow	None	32	125	94.9386	-2.2590				25	78			1.0000	
	Zr	Gonio	LA	Ge 111	300 µm	Flow	None	32	125	136.8372	2.5218				26	76			1.0000	
	Ag	Gonio	LB1	Ge 111	300 µm	Flow	Be (150 µm)	32	125	74.2174	-0.7594	0.7656			30	68			1.0000	
	Hf	Gonio	LB1	LiF 200	300 µm	Scint.	Brass (100 µm)	60	66	39.8612	1.3366				37	66			1.0000	
	Ba	Gonio	LB1	LiF 200	300 µm	Duplex	None	50	80	79.2694	1.3444				29	75			1.0000	
	Cl	Gonio	KA	Ge 111	300 µm	Flow	None	32	125	92.9076	1.6866				28	72			1.0000	

Creating a new OXI program

- measure intensities for a particular XRF line for each element, use standard samples.
- make sure it doesn't overlap another XRF line for an element of interest.
- also measure background points.
- insert composition of standards.

Creating a new OXI program

- measure intensities for a particular XRF line for each element, use standard samples.
- make sure it doesn't overlap another XRF line for an element of interest.
- also measure background points.
- insert composition of standards.
- not all standards dissolve in the flux to the same extent.

Creating a new OXI program

- measure intensities for a particular XRF line for each element, use standard samples.
- make sure it doesn't overlap another XRF line for an element of interest.
- also measure background points.
- insert composition of standards.
- not all standards dissolve in the flux to the same extent.
- some standards contain more than one element of interest.

System Setup - [Standards for application - 2-NewOXI]

Creating a new OXI program

- Run each standard sample, measure intensities for each element of interest and background points.

Creating a new OXI program

- Run each standard sample, measure intensities for each element of interest and background points.
- Also run a blank sample, just $\text{Li}_2\text{B}_4\text{O}_7$ (with 0.5% LiI anti-cracking agent) flux.

Creating a new OXI program

- Run each standard sample, measure intensities for each element of interest and background points.
- Also run a blank sample, just $\text{Li}_2\text{B}_4\text{O}_7$ (with 0.5% LiI anti-cracking agent) flux.
- plot calibration lines for each element.

Creating a new OXI program

- Run each standard sample, measure intensities for each element of interest and background points.
- Also run a blank sample, just $\text{Li}_2\text{B}_4\text{O}_7$ (with 0.5% LiI anti-cracking agent) flux.
- plot calibration lines for each element.
- best fit through the points determines calibration coefficients.

Creating a new OXI program

- Run each standard sample, measure intensities for each element of interest and background points.
- Also run a blank sample, just $\text{Li}_2\text{B}_4\text{O}_7$ (with 0.5% LiI anti-cracking agent) flux.
- plot calibration lines for each element.
- best fit through the points determines calibration coefficients.
- some elements have more points than others.

Creating a new OXI program

- Run each standard sample, measure intensities for each element of interest and background points.
- Also run a blank sample, just $\text{Li}_2\text{B}_4\text{O}_7$ (with 0.5% LiI anti-cracking agent) flux.
- plot calibration lines for each element.
- best fit through the points determines calibration coefficients.
- some elements have more points than others.
- some points can be deleted to improve fit.

INTRODUCTION

In x-ray fluorescence spectrometry, concentration is related to intensity by an algorithm of the type

$$C_i = D_i + E_i R_i (1 + \sum \alpha_{i,j} \cdot C_j) \quad (1)$$

where i is the analyte element, j is an interfering element (j can be i), C_i is the concentration of the analyte i , E_i and D_i are the slope and intercept, respectively, of the primary calibration line, R_i is the dead-time corrected net intensity for element i , $\alpha_{i,j}$ is the interelement correction factor for element j on element i (j can be i) and C_j is the concentration of the interfering element j (j can be i).

To solve this equation for C_i in a multi-element situation, the values of E_i , D_i and $\alpha_{i,j}$ must be known, and then iteration or matrix inversion can be used to solve the set of equations for C_i using measured values of R_i .

Several approaches can be used to obtain values for the constants D_i , E_i and $\alpha_{i,j}$.

1. The use of a 'close range' calibration, where the inter-element correction term $(1 + \sum \alpha_{i,j})$ is assumed to be constant and is incorporated in D_i and E_i . These

* Formerly of London & Scandinavian Metallurgical Co. Ltd., Fulerton Road, Rotherham, S. Yorks, S60 1DL, UK

† Formerly of Philips Analytical X-ray, York Street, Cambridge, CB1 2QU, UK.

latter being determined either graphically or by least squares fit from a small number of standards.

2. The use of many standards including binaries and pseudobinaries with graphical solution.
3. The use of fewer standards than in 2 above, and multilinear regression analysis.
4. The use of theoretically determined values of $\alpha_{i,j}$ by, for instance, the method of de Jongh¹ to obtain an apparent concentration, where:

$$C_{\text{apparent}(i)} = \frac{C_{\text{true}(i)}}{1 + \sum \alpha_{i,j} \cdot C_j} \quad (2)$$

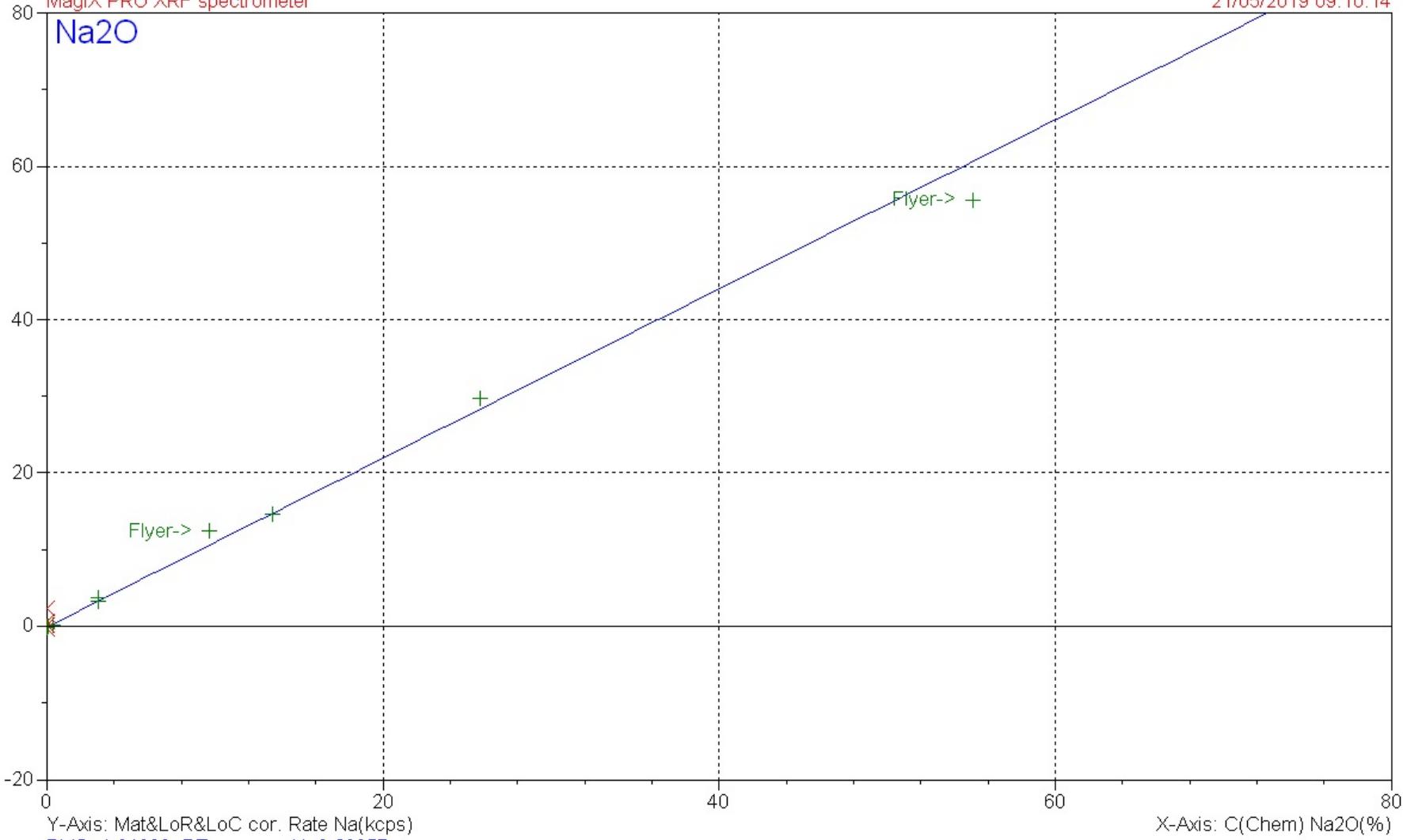
followed by a simple graphical or algebraic solution for D_i and E_i from Eqn (3), which results from the combination of Eqns (1) and (2).

$$C_{\text{apparent}(i)} = D_i + E_i R_i \quad (3)$$

Provided that the values of $C_{\text{apparent}(i)}$ and R_i are precisely known, Eqn (2) may be solved using only two values of $C_{\text{apparent}(i)}$, e.g. a high concentration plus a zero. In this work, we applied this concept and tested its validity.

In a later paper² de Jongh proposed that by using loss/gain on ignition (L.O.I.) as the eliminated component in the theoretical coefficients calculation, then the samples need not be pre-ignited before fusion, and that the loss or gain on ignition is represented by the difference between 100% and the arithmetic sum of the

Received 11 October 1994


Accepted 10 February 1995

Calibration results
 Show RMS, RE, K Show Exponent, Exp. const. Hide excl. standards
 Show D, E, F Show (0,0) lines

MagiX PRO XRF spectrometer

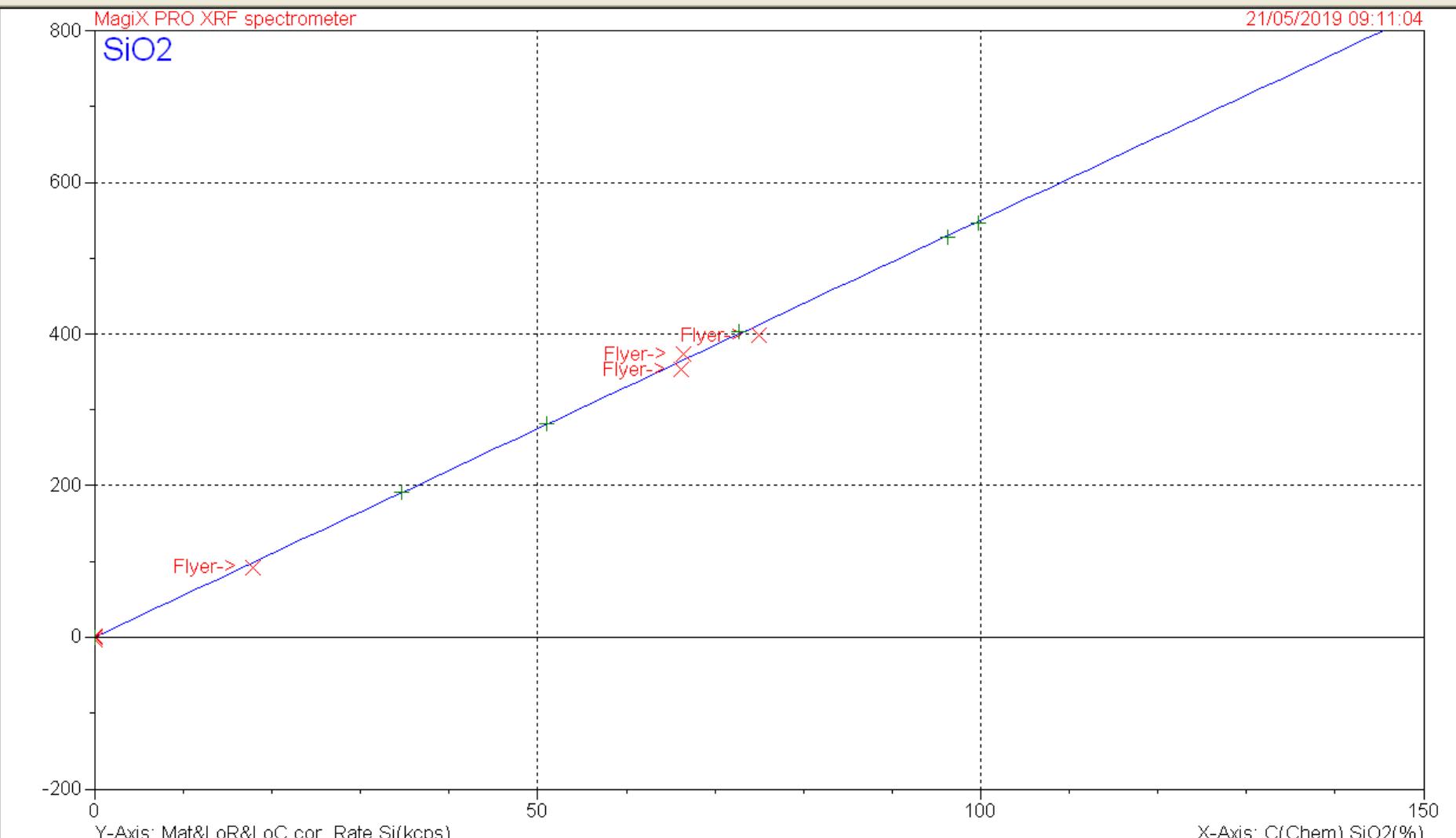
21/05/2019 09:10:14

Na₂O

Y-Axis: Mat&LoR&LoC cor. Rate Na(kcps)
RMS: 1.04880 RE: K: 0.26657
D: 0.06972 E: 0.90748 F: 0.00000

X-Axis: C(Chem) Na₂O(%)

Calibration results


Show RMS, RE, K

Show Exponent, Exp. const.

Hide excl. standards

Show D, E, F

Show (0,0) lines

INTRODUCTION

In x-ray fluorescence spectrometry, concentration is related to intensity by an algorithm of the type

$$C_i = D_i + E_i R_i (1 + \sum \alpha_{i,j} \cdot C_j) \quad (1)$$

where i is the analyte element, j is an interfering element (j can be i), C_i is the concentration of the analyte i , E_i and D_i are the slope and intercept, respectively, of the primary calibration line, R_i is the dead-time corrected net intensity for element i , $\alpha_{i,j}$ is the interelement correction factor for element j on element i (j can be i) and C_j is the concentration of the interfering element j (j can be i).

To solve this equation for C_i in a multi-element situation, the values of E_i , D_i and $\alpha_{i,j}$ must be known, and then iteration or matrix inversion can be used to solve the set of equations for C_i using measured values of R_i .

Several approaches can be used to obtain values for the constants D_i , E_i and $\alpha_{i,j}$.

1. The use of a 'close range' calibration, where the inter-element correction term $(1 + \sum \alpha_{i,j})$ is assumed to be constant and is incorporated in D_i and E_i . These

* Formerly of London & Scandinavian Metallurgical Co. Ltd., Fulerton Road, Rotherham, S. Yorks, S60 1DL, UK

† Formerly of Philips Analytical X-ray, York Street, Cambridge, CB1 2QU, UK.

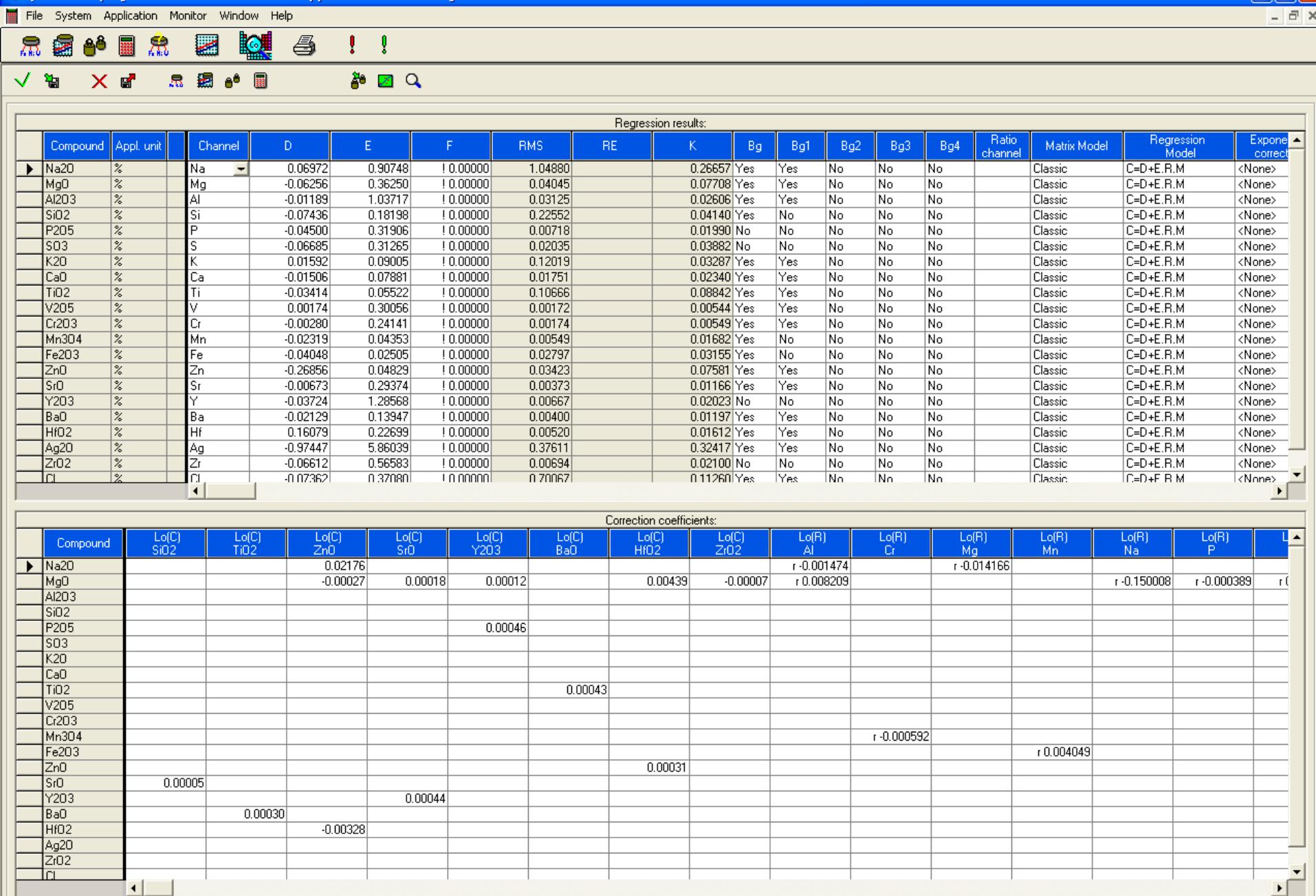
latter being determined either graphically or by least squares fit from a small number of standards.

2. The use of many standards including binaries and pseudobinaries with graphical solution.
3. The use of fewer standards than in 2 above, and multilinear regression analysis.
4. The use of theoretically determined values of $\alpha_{i,j}$ by, for instance, the method of de Jongh¹ to obtain an apparent concentration, where:

$$C_{\text{apparent}(i)} = \frac{C_{\text{true}(i)}}{1 + \sum \alpha_{i,j} \cdot C_j} \quad (2)$$

followed by a simple graphical or algebraic solution for D_i and E_i from Eqn (3), which results from the combination of Eqns (1) and (2).

$$C_{\text{apparent}(i)} = D_i + E_i R_i \quad (3)$$


Provided that the values of $C_{\text{apparent}(i)}$ and R_i are precisely known, Eqn (2) may be solved using only two values of $C_{\text{apparent}(i)}$, e.g. a high concentration plus a zero. In this work, we applied this concept and tested its validity.

In a later paper² de Jongh proposed that by using loss/gain on ignition (L.O.I.) as the eliminated component in the theoretical coefficients calculation, then the samples need not be pre-ignited before fusion, and that the loss or gain on ignition is represented by the difference between 100% and the arithmetic sum of the

Received 11 October 1994

Accepted 10 February 1995

System Setup - [Calibration coefficients for application - 2-NewOXI]

General | Identification scheme | Conditions | Sample description | Preferences | Compounds | Channels | Quantitative program | Qualitative program

Normalise

Normalise to (%):

Lock normali

Add
Compound.

Add Compound
from Periodic...

Remove
Compound

Edit
Compound...

 Open instrument monitor

General | Identification scheme | Conditions | Sample description | Preferences | Compounds | Channels | Quantitative program | Qualitative program

Minimum time (s):

Maximum time (s):

Background of channel:

Background method: Calc. factors

No.	Channel	Time (s)	CSE (%)	Factor
1	NaBg1	20		1.000
2				
3				
4				

Add Channel

New Channel

Remove
Channel

Sort High->Low

Set default
Background

Periodic Table of the Elements

glassOXI elements

1	H	Hydrogen 1.008
---	---	-------------------

3	Li	Lithium 6.94
4	Be	Beryllium 9.01833

12	Na	Sodium 22.98976928
13	Mg	Magnesium 24.305

19	K	Potassium 39.0983
20	Ca	Calcium 40.078

21	Sc	Scandium 44.95908
22	Ti	Titanium 47.867

23	V	Vanadium 50.9415
24	Cr	Chromium 51.9961

25	Mn	Manganese 54.938044
26	Fe	Iron 55.845

27	Co	Cobalt 58.933194
28	Ni	Nickel 58.6934

29	Cu	Copper 63.546
30	Zn	Zinc 65.386

31	Ga	Gallium 69.723
32	Ge	Germanium 72.630

33	As	Arsenic 74.921595
34	Se	Selenium 78.973

35	Br	Bromine 79.904
36	Kr	Krypton 83.798

Atomic Number → **H** ← Symbol
Name → Hydrogen ← Atomic Weight

5	B	Boron 10.81
6	C	Carbon 12.011
7	N	Nitrogen 14.007
8	O	Oxygen 15.999

9	F	Fluorine 18.998402193
10	Ne	Neon 20.1797

15	Al	Aluminum 26.9815386
16	Si	Silicon 28.073761998
17	P	Phosphorus 30.973761998

18	Cl	Chlorine 35.45
19	Ar	Argon 39.948

37	Rb	Rubidium 85.4678
38	Sr	Srberium 87.60

39	Y	Yttrium 88.90584
40	Zr	Zirconium 91.224

41	Nb	Niobium 92.90637
42	Mo	Molybdenum 95.95

43	Tc	Technetium (98)
44	Ru	Ruthenium 101.07

45	Rh	Rhodium 102.90550
46	Pd	Palladium 106.42

47	Ag	Silver 107.8682
48	Cd	Cadmium 112.414

49	In	Indium 113.418
50	Sn	Tin 118.710

51	Sb	Antimony 121.760
52	Te	TeIIium 127.780

53	I	Iodine 126.90447
54	Xe	Xenon 131.293

55	Cs	Cesium 132.90545196
56	Ba	Baerium 137.327

57	La	Lanthanum 138.90547
58	Ce	Cerium 140.196

59	Pr	Praseodymium 140.90766
60	Nd	Neodymium 144.242

61	Pm	Promethium (145)
62	Sm	Samarium 150.36

63	Eu	Europium 151.964
64	Gd	Gadolinium 157.25

65	Tb	Terbium 158.92535
66	Dy	Dysprosium 162.500

67	Ho	Holmium 164.93033
68	Er	Erbium 167.259

69	Tm	Thulium 168.93422
70	Yb	Ytterbium 173.045

71	Lu	Lutetium 174.9668
72	Hf	Hafnium 178.49

73	Ta	Tantalum 180.94788
74	W	Tungsten 183.84

75	Re	Rhenium 186.207
76	Os	Osmium 190.23

77	Ir	Iridium 192.237
78	Pt	Platinum 195.084

79	Au	Gold 196.965669
80	Hg	Mercury 204.38

81	Tl	Thallium 204.22
82	Pb	Pbrium 207.2

83	Bi	Bismuth 208.9804040
84	Po	Polonium (209)

85	At	Astatine (210)
86	Rn	Radon (222)

87	Fr	Francium (223)
88	Ra	Radium (226)

89	Rf	Rutherfordium (267)
90	Th	Thorium (232.0377)

91	Pa	Protactinium (231.03588)
92	U	Uranium (238.02891)

93	Np	Neptunium (237)
94	Pu	Plutonium (244)

95	Am	Americium (243)
96	Cm	Curium (247)

97	Bk	Berkelium (247)
98	Cf	Californium (255)

99	Es	Einsteinium (252)
100	Fm	Fermium (257)

101	Md	Mendelevium (258)
102	No	Nobelium (259)

103	Lr	Lawrencium (264)
104	Lu	Lutetium (264)

Status

ANSWER

Measurement

Type: Routine

Application: 1-GlassOXI

Sample

Quantitative

Sum (%): 100.0000

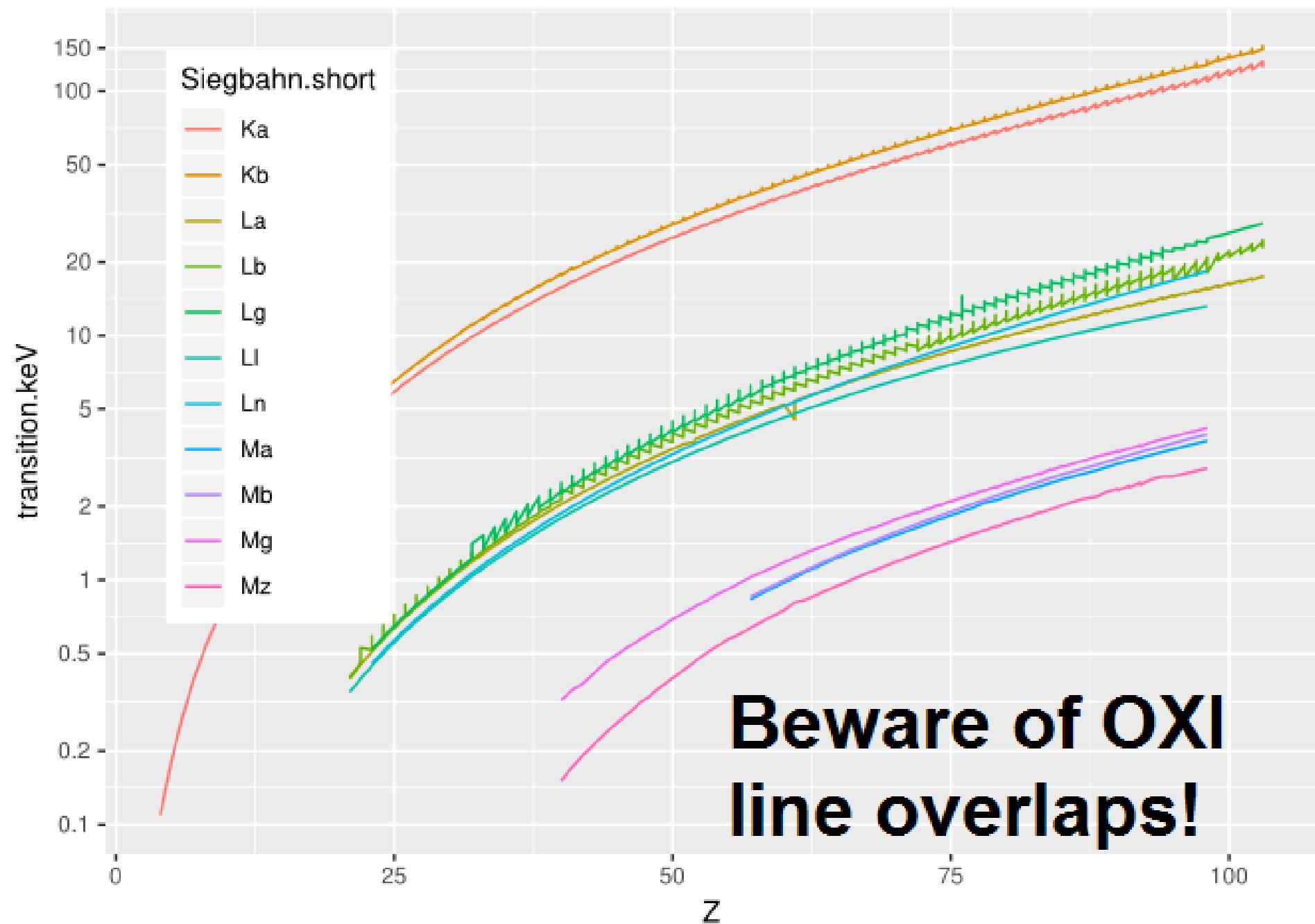
Norm.factor: 1.2505

Show count rate

ok

Manual input

CRM-529 anorthic feldspar


Oxide	Value (%)	BASRID (%)	diff
Na ₂ O	5.564	5.251	0.313
MgO	0.007	0.041	-0.034
Al ₂ O ₃	27.111	26.977	0.134
SiO ₂	56.543	57.661	-1.118
K ₂ O	0.459	0.371	0.088
CaO	10.000	9.370	0.630
Fe ₂ O ₃	0.316	0.329	-0.014

CRM-532 Swedish feldspar

Oxide	Value (%)	BASRID (%)	diff
Na ₂ O	4.283	4.244	0.039
MgO	0.153	0.172	-0.018
Al ₂ O ₃	13.453	13.944	-0.491
SiO ₂	77.722	77.700	0.021
K ₂ O	3.981	3.536	0.445
CaO	0.206	0.253	-0.046
Fe ₂ O ₃	0.201	0.152	0.050

Creating a new OXI program

- measure intensities for a particular XRF line for each element, use standard samples.
- make sure it doesn't overlap another XRF line for an element of interest.

MagiX PRO
died in 2021

Primus IV
arrived 2022

Primus IV XRF spectrometer

- Wavelength dispersive spectrometer.

Primus IV XRF spectrometer

- Wavelength dispersive spectrometer.
- Primus IV **B-Cm** scans over 16 different energy ranges.

Primus IV XRF spectrometer

- Wavelength dispersive spectrometer.
- Primus IV **B-Cm** scans over 16 different energy ranges.
- Primus IV **F-Cm** scans over 12 different energy ranges.

Primus IV XRF spectrometer

- Wavelength dispersive spectrometer.
- Primus IV **B-Cm** scans over 16 different energy ranges.
- Primus IV **F-Cm** scans over 12 different energy ranges.
- Rh anode for X-ray tube, see Rh fluorescence lines from the tube.

Periodic Table of the Elements

Primus IV elements

1	H	Hydrogen
2	He	Helium

3	Li	Lithium
4	Be	Beryllium

5	Na	Sodium
6	Mg	Magnesium

7	K	Potassium
8	Ca	Calcium

9	Sc	Scandium
10	Ti	Titanium

11	V	Vanadium
12	Cr	Chromium

13	Mn	Manganese
14	Fe	Iron

15	Co	Cobalt
16	Ni	Nickel

17	Cu	Copper
18	Zn	Zinc

19	Ga	Gallium
20	Ge	Germanium

21	As	Arsenic
22	Se	Selenium

23	Br	Bromine
24	Kr	Krypton

Atomic Number → **H** ← Symbol
Name → Hydrogen ← Atomic Weight

5	B	Boron
6	C	Carbon
7	N	Nitrogen
8	O	Oxygen
9	F	Fluorine

10	Ne	Neon
11	Al	Aluminum
12	Si	Silicon
13	P	Phosphorus
14	S	Sulfur

15	Cl	Chlorine
16	Ar	Argon
17	Ge	Germanium
18	As	Arsenic
19	Se	Selenium

20	Br	Bromine
21	Kr	Krypton
22	Ga	Gallium
23	Ge	Germanium
24	As	Arsenic

25	Se	Selenium
26	Br	Bromine
27	I	Iodine
28	Xe	Xenon
29	Kr	Krypton

30	Y	Yttrium
31	Zr	Zirconium
32	Nb	Niobium
33	Mo	Molybdenum
34	Tc	Techneium

35	Ru	Ruthenium
36	Pd	Palladium
37	Ag	Silver
38	Cd	Cadmium
39	In	Inium

40	Sn	tin
41	Sb	Antimony
42	Te	Tellurium
43	I	Iodine
44	Xe	Xenon

45	Cs	Cesium
46	Ba	Ba
47	Hf	Hafnium
48	Ta	Tantalum
49	W	Tungsten

50	Re	Rhenium
51	Os	Osmium
52	Ir	Iridium
53	Pt	Pt
54	Au	Au

55	Hg	Mercury
56	Tl	Thallium
57	Pb	Pb
58	Bi	Bismuth
59	Po	Po

60	La	Lanthanum
61	Ce	Cerium
62	Pr	Praseodymium
63	Nd	Neodymium
64	Pm	Promethium

65	Sm	Samarium
66	Eu	Europium
67	Gd	Gadolinium
68	Tb	Terbium
69	Dy	Dysprosium

70	Ho	Holmium
71	Er	Erbium
72	Tm	Thulium
73	Yb	Ytterbium
74	Lu	Lutetium

75	Ac	Actinium
76	Th	Thorium
77	Pa	Protactinium
78	U	Uranium
79	Np	Neptunium

80	Pu	Plutonium
81	Am	Americium
82	Cm	Curium
83	Bk	Berkelium
84	Cf	Californium

85	Es	Einsteinium
86	Fm	Fermium
87	Md	Mendelevium
88	No	Nobelium
89	Lr	Lawrencium

Periodic Table of the Elements

Primus IV elements - fused beads

1	H
	Hydrogen 1.008

3	Li
	Lithium 6.94

4	Be
	Beryllium 0.01283

5	Na
	Sodium 22.98977

6	Mg
	Magnesium 24.305

7	K
	Kalium 39.0983

8	Ca
	Calcium 40.078

Sc Scandium
44.95961

57 - 71
Lanthanoids

NewOXI program for Primus IV

- Use existing OXI standards from MagiX Pro and make new standards for other elements of interest.

NewOXI program for Primus IV

- Use existing OXI standards from MagiX Pro and make new standards for other elements of interest.
- Then as before, measure intensities for a particular XRF line for each element, use standard samples.

NewOXI program for Primus IV

- Use existing OXI standards from MagiX Pro and make new standards for other elements of interest.
- Then as before, measure intensities for a particular XRF line for each element, use standard samples.
- **NewOXI** standard calibration program.

New OXI standards

starting material	OXI oxide	starting material	OXI oxide
-------------------	-----------	-------------------	-----------

Na_2CO_3	Na_2O	Cr_2O_3	Cr_2O_3
--------------------------	-----------------------	-------------------------	-------------------------

MgO	MgO	MnO_2	Mn_3O_4
--------------	--------------	----------------	-------------------------

Al_2O_3	Al_2O_3	Fe_2O_3	Fe_2O_3
-------------------------	-------------------------	-------------------------	-------------------------

SiO_2	SiO_2	NiO	NiO
----------------	----------------	--------------	--------------

$\text{NH}_4\text{H}_2\text{PO}_4$	P_2O_5	ZnO	ZnO
------------------------------------	------------------------	--------------	--------------

Li_2SO_4	SO_3	Y_2O_3	Y_2O_3
--------------------------	---------------	------------------------	------------------------

K_2CO_3	K_2O	ZrO_2	ZrO_2
-------------------------	----------------------	----------------	----------------

CaCO_3	CaO	SrCO_3	SrO
-----------------	--------------	-----------------	--------------

TiO_2	TiO_2	BaCO_3	BaO
----------------	----------------	-----------------	--------------

V_2O_5	V_2O_5	PbO	PbO
------------------------	------------------------	--------------	--------------

Periodic Table of the Elements

New OXI elements

1	H	Hydrogen 1.008
---	---	-------------------

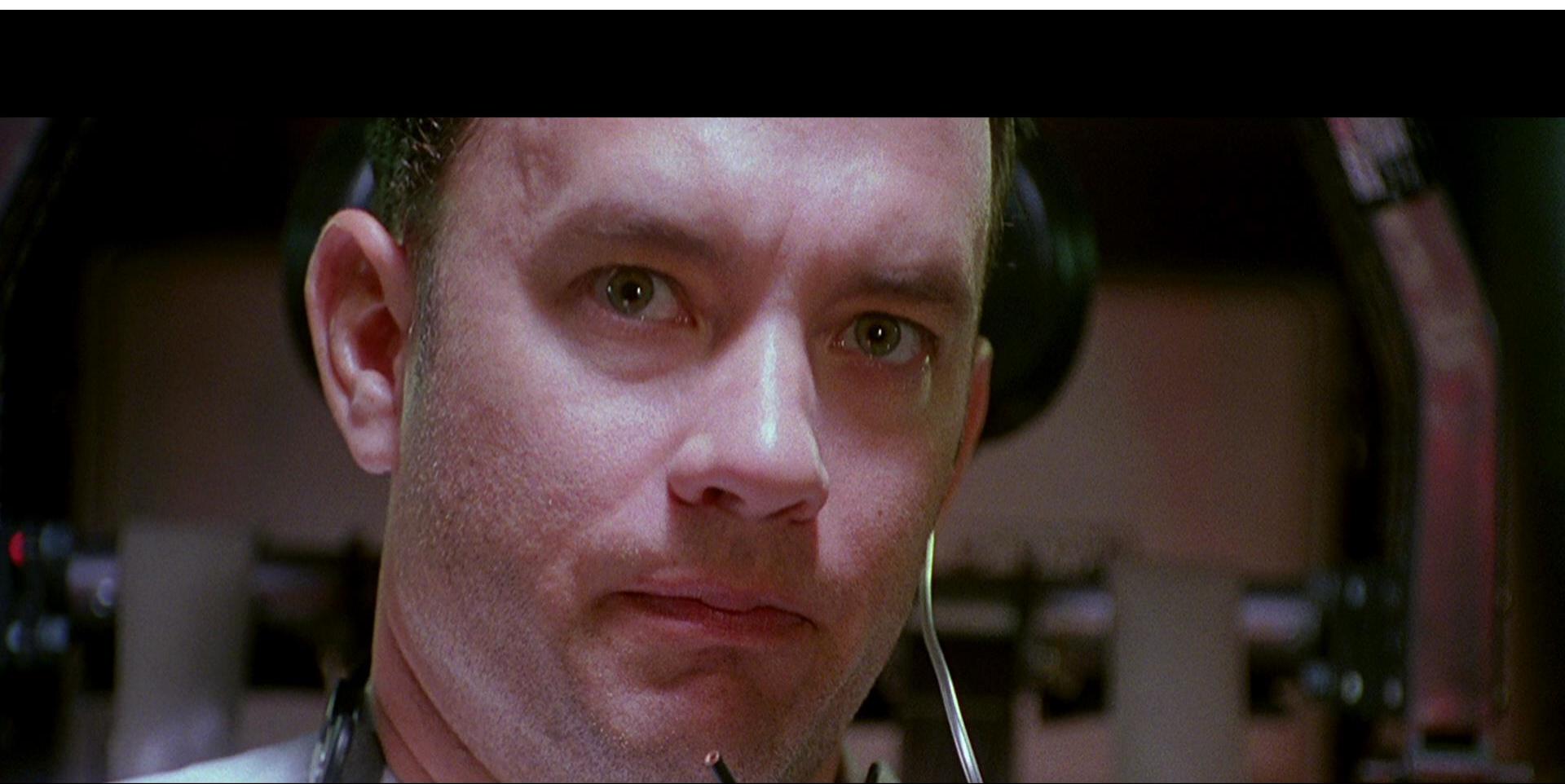
3	Li	Lithium 6.94
4	Be	Beryllium 9.01831

11	Na	Sodium 22.98976928
12	Mg	Magnesium 24.305

19	K	Potassium 39.0983
20	Ca	Calcium 40.078

37	Rb	Rubidium 85.4678
38	Sr	Srtrium 87.62

55	Cs	Cesium 130.90545196
56	Ba	Baerium 137.327


87	Fr	Francium (223)
88	Ra	Radium (226)

Atomic Number → 1 H
Name → Hydrogen 1.008
Symbol ← H
Atomic Weight ← 1.008

5	B	Boron 10.81
6	C	Carbon 12.011
7	N	Nitrogen 14.007
8	O	Oxygen 15.999
9	F	Fluorine 18.998402193
10	Ne	Neon 20.1797
11	Na	Sodium 22.98976928
12	Mg	Magnesium 24.305
13	Al	Aluminum 26.9815386
14	Si	Silicon 28.085
15	P	Phosphorus 30.973781998
16	S	Sulfur 32.06
17	Cl	Chlorine 35.45
18	Ar	Argon 39.948
19	K	Potassium 39.0983
20	Ca	Calcium 40.078
21	Sc	Scandium 44.95908
22	Ti	Titanium 47.867
23	V	Vanadium 50.9415
24	Cr	Chromium 51.9961
25	Mn	Manganese 54.938044
26	Fe	Iron 55.845
27	Co	Cobalt 58.933194
28	Ni	Nickel 58.6934
29	Cu	Copper 63.546
30	Zn	Zinc 65.38
31	Ga	Gallium 69.723
32	Ge	Germanium 72.630
33	As	Arsenic 74.921595
34	Se	Selenium 78.975
35	Br	Bromine 79.904
36	Kr	Krypton 83.798
37	Rb	Rubidium 85.4678
38	Sr	Srtrium 87.62
39	Y	Yttrium 88.90584
40	Zr	Zirconium 91.224
41	Nb	Niobium 92.90637
42	Mo	Molybdenum 95.95
43	Tc	Technetium (98)
44	Ru	Ruthenium 101.07
45	Rh	Rhodium 102.90550
46	Pd	Palladium 106.42
47	Ag	Silver 107.8682
48	Cd	Cadmium 112.414
49	In	Indium 114.818
50	Sn	Tin 118.710
51	Sb	Antimony 121.760
52	Te	Tellurium 126.90447
53	I	Iodine 131.293
54	Xe	Xenon 131.993
55	Cs	Cesium 130.90545196
56	Ba	Baerium 137.327
57 - 71		Lanthanoids
72	Hf	Hafnium 178.49
73	Ta	Tantalum 180.94788
74	W	Tungsten 183.84
75	Re	Rhenium 190.207
76	Os	Osmium 190.23
77	Ir	Iridium 192.237
78	Pt	Platinum 195.084
79	Au	Gold 196.965669
80	Hg	Mercury 200.592
81	Tl	Thallium 204.38
82	Pb	Lead 202.2
83	Bi	Bismuth 208.986040
84	Po	Polonium (209)
85	At	Astatine (210)
86	Rn	Radon (222)
87	Fr	Francium (223)
88	Ra	Radium (226)
89 - 103		Actinoids
104	Rf	Rutherfordium (267)
105	Db	Dubnium (266)
106	Sg	Seaborgium (269)
107	Bh	Bohrium (260)
108	Hs	Hassium (269)
109	Mt	Melitberium (270)
110	Ds	Darmstadtium (281)
111	Rg	Roemerium (282)
112	Cn	Copernicium (285)
113	Nh	Nihonium (286)
114	Fl	Flerovium (289)
115	Mc	Moscovium (288)
116	Lv	Livermorium (293)
117	Ts	Tennessee (294)
118	Og	Oganesson (294)

57	La	Lanthanum 138.90547
58	Ce	Cerium 140.116
59	Pr	Praseodymium 140.90766
60	Nd	Neodymium 144.242
61	Pm	Promethium (145)
62	Sm	Samarium 150.36
63	Eu	Europium 151.964
64	Gd	Gadolinium 157.25
65	Tb	Terbium 158.92535
66	Dy	Dysprosium 162.500
67	Ho	Holmium 164.93033
68	Er	Erbium 167.259
69	Tm	Thulium 168.93422
70	Yb	Ytterbium 173.045
71	Lu	Lutetium 174.9668
89	Ac	Actinium (227)
90	Th	Thorium 232.0377
91	Pa	Protactinium 231.03588
92	U	Uranium 238.02891
93	Np	Neptunium (237)
94	Pu	Plutonium (244)
95	Am	Americium (243)
96	Cm	Curium (247)
97	Bk	Berkelium (247)
98	Cf	Californium (255)
99	Es	Einsteinium (252)
100	Fm	Fermium (257)
101	Md	Mendelevium (258)
102	No	Nobelium (259)
103	Lr	Lawrencium (264)

NewOXI we have a problem

NewOXI we have a problem

- The NewOXI program was made using some of the older standards (made 4 years earlier).

NewOXI we have a problem

- The NewOXI program was made using some of the older standards (made 4 years earlier).
- This did not always give accurate results, especially for samples containing light elements.

NewOXI we have a problem

- The NewOXI program was made using some of the older standards (made 4 years earlier).
- This did not always give accurate results, especially for samples containing light elements.
- The problem was particularly bad for Na_2O and MgO .

Assessment of the Accuracy of the Determination of Low Levels of Sodium in Fused Beads[†]

H. L. Giles¹ and P. W. Hurley^{2*}

¹ Materials Research Institute, Sheffield Hallam University, Pond Street, Sheffield S1 1WB, UK

² Philips Analytical X-Ray, 7602 EA Almelo, The Netherlands

In an earlier study, the accuracy of the determination of Na₂O below about 0.5% (m/m) in samples prepared as fused beads was found to be poor with an RMS of 0.14 and a *k* factor of 0.11. Three possible sources of this inaccuracy were studied, and an improvement to an RMS of about 0.025 and a *k* factor of 0.025 was achieved by a combination of more careful determination of spectral overlap correction coefficients, allowance for crystal fluorescence in the setting of the pulse height selector and, most important, the preparation of new 'clean' beads. A comparison of the performance of a W-Si synthetic multilayer (PX1) and TiAP for the determination of Na₂O in fused beads has emerged from this study. © 1997 by John Wiley & Sons Ltd.

X-Ray Spectrom. 26, 97–104 (1997) No. of Figures: 7 No. of Tables: 3 No. of References: 5

INTRODUCTION

The assessment of test methods was proposed originally by Johnson¹ using the *k* factor method, and more recently by Hughes and Hurley,² and is substantiated in ISO 5725.³ It has been shown that the standard deviation of a population of analytical results is related to the square root of the concentration by the following expression:

$$s = k(C + c)^{0.5}$$

where: *s* is the standard deviation, *k* is a constant, *C* is the concentration and *c* is a weighting factor, often given a value of 0.1.^{1,2}

The constant *k* can be considered as a quality factor, which has been found to have values between 0.01 and 0.10 for round-robin studies in the steel industry using International (ISO) or British (BS) Standard methods of analysis.² For oxide analysis the values of *k* are generally between 0.02 and 0.07.²

In an earlier study,⁴ the accuracy of the proposed method for the analysis of oxides, silicates and carbon-

(3) contaminated beads (fingerprints 'bloom' on the surface).

In order to simplify this study, a sub-set of 15 of the original 43 RMs was made (Table 1). The points marked with squares in Fig. 1 were chosen for this study. As can be seen, two groups of samples were chosen: one group around 0.15% Na₂O and the other around 0.35% Na₂O. Two feldspars, BCS 376 (2.83% Na₂O) and BCS 375 (10.40% Na₂O) and BCS 393 at 0% were also included to help to fix the least-squares fit line.

EXPERIMENTAL AND RESULTS

The original 43 RMs had been in use for 2 years or more and, although they had been stored in sealed polythene bags, many of them had become 'bloomed' on the surface. It has recently been reported⁵ that this bloom consists of NaCl, keratin and phospholipids

Table 1. Reference materials used

Assessment of the Accuracy of the Determination of Low Levels of Sodium in Fused Beads[†]

H. L. Giles¹ and P. W. Hurley^{2*}

¹ Materials Research Institute, Sheffield Hallam University, Pond Street, Sheffield S1 1WB, UK

² Philips Analytical X-Ray, 7602 EA Almelo, The Netherlands

In an earlier study, the accuracy of the determination of Na₂O below about 0.5% (m/m) in samples prepared as fused beads was found to be poor with an RMS of 0.14 and a *k* factor of 0.11. Three possible sources of this inaccuracy were studied, and an improvement to an RMS of about 0.025 and a *k* factor of 0.025 was achieved by a combination of more careful determination of spectral overlap correction coefficients, allowance for crystal fluorescence in the setting of the pulse height selector and, most important, the preparation of new 'clean' beads. A comparison of the performance of a W–Si synthetic multilayer (PX1) and TiAP for the determination of Na₂O in fused beads has emerged from this study. © 1997 by John Wiley & Sons Ltd.

X-Ray Spectrom. 26, 97–104 (1997) No. of Figures: 7 No. of Tables: 3 No. of References: 5

INTRODUCTION

The assessment of test methods was proposed originally by Johnson¹ using the *k* factor method, and more recently by Hughes and Hurley,² and is substantiated in ISO 5725.³ It has been shown that the standard deviation of a population of analytical results is related to the square root of the concentration by the following expression:

$$s = k(C + c)^{0.5}$$

where: *s* is the standard deviation, *k* is a constant, *C* is the concentration and *c* is a weighting factor, often given a value of 0.1.^{1,2}

The constant *k* can be considered as a quality factor, which has been found to have values between 0.01 and 0.10 for round-robin studies in the steel industry using International (ISO) or British (BS) Standard methods of analysis.² For oxide analysis the values of *k* are generally between 0.02 and 0.07.²

In an earlier study,⁴ the accuracy of the proposed method for the analysis of oxides, silicates and carbon-

(3) contaminated beads (fingerprints 'bloom' on the surface).

In order to simplify this study, a sub-set of 15 of the original 43 RMs was made (Table 1). The points marked with squares in Fig. 1 were chosen for this study. As can be seen, two groups of samples were chosen: one group around 0.15% Na₂O and the other around 0.35% Na₂O. Two feldspars, BCS 376 (2.83% Na₂O) and BCS 375 (10.40% Na₂O) and BCS 393 at 0% were also included to help to fix the least-squares fit line.

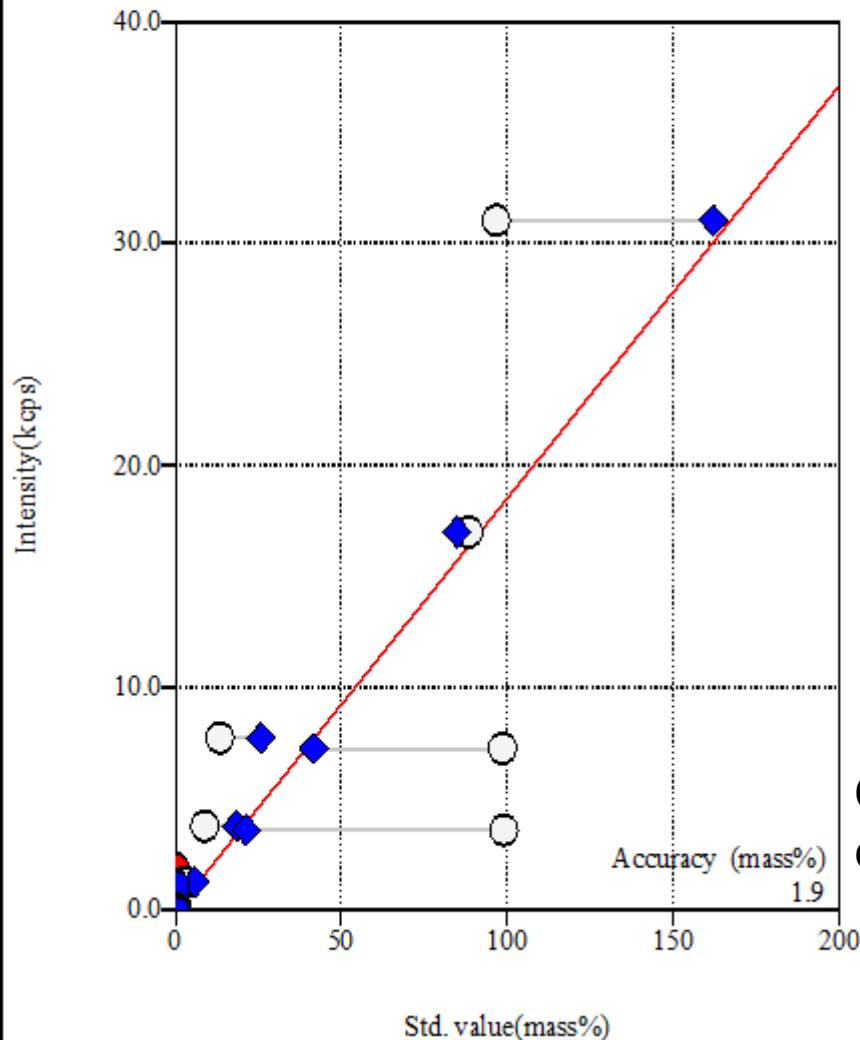
EXPERIMENTAL AND RESULTS

The original 43 RMs had been in use for 2 years or more and, although they had been stored in sealed polythene bags, many of them had become 'bloomed' on the surface. It has recently been reported⁵ that this bloom consists of NaCl, keratin and phospholipids

Table 1. Reference materials used

NewOXI solution

- As the old Na_2O and MgO standards gave problems then make new standards.

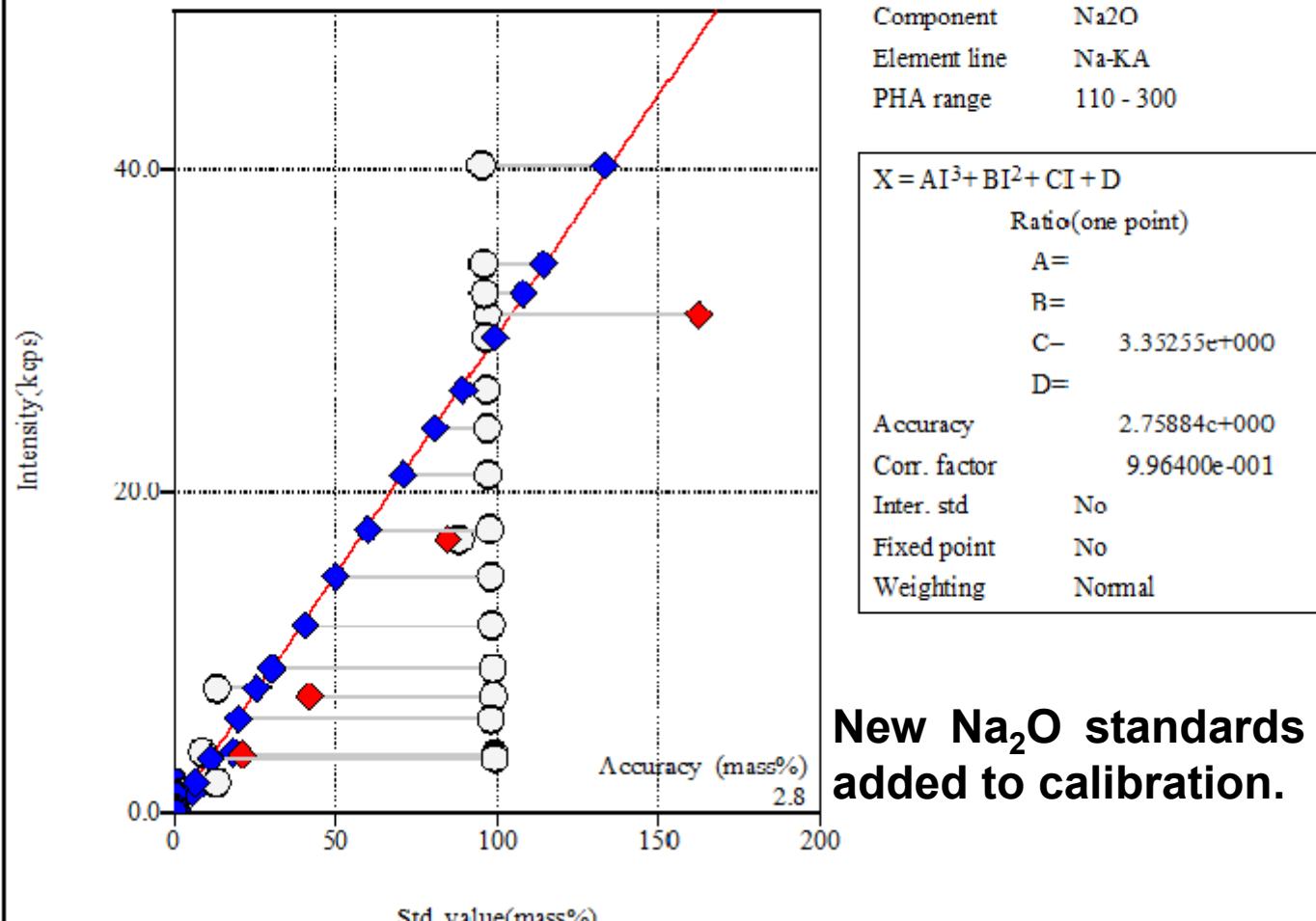

NewOXI solution

- As the old Na_2O and MgO standards gave problems then make new standards.
- Comparison of calibration curves with and without new standards shows the problems.

Empirical Calibration

Application

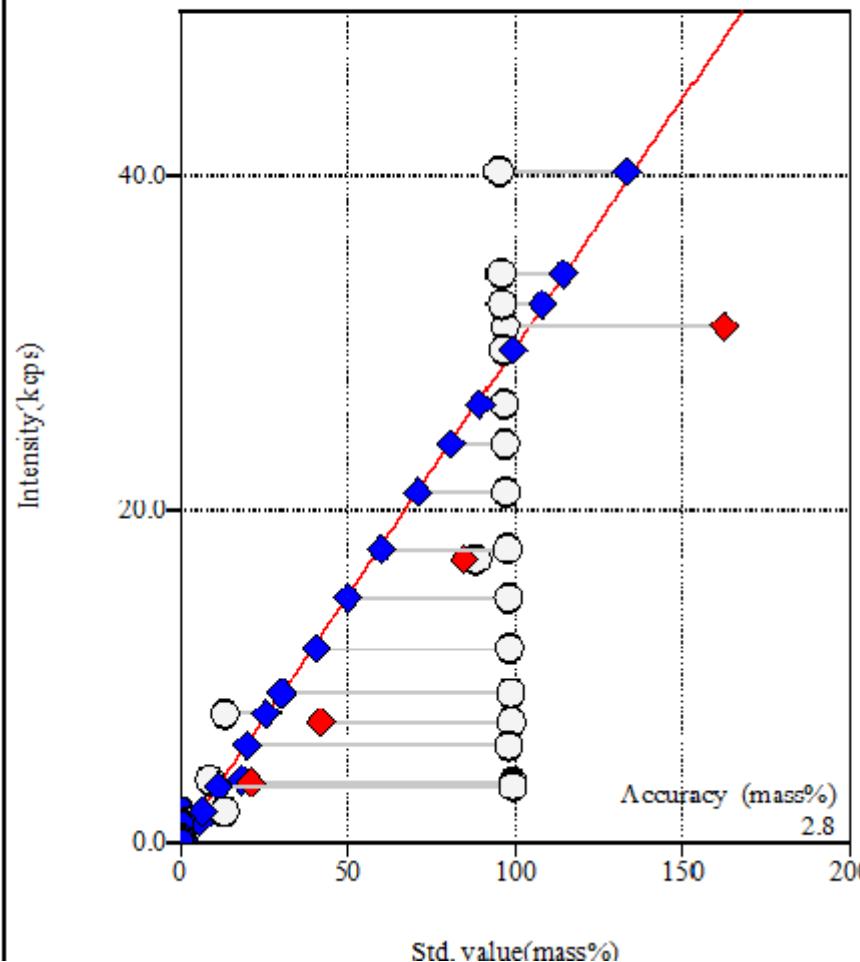
NEW OXI



Old Na_2O standards calibration.

Empirical Calibration

Application


NEW OXI APR 2024

Empirical Calibration

Application

NEW OXI APR 2024

Component Na₂O
Element line Na-KA
PHA range 110 - 300

$X = AI^3 + BI^2 + CI + D$
Ratio (one point)
A =
B =
C = 3.35255e+000
D =
Accuracy 2.75884e+000
Corr. factor 9.96400e-001
Inter. std No
Fixed point No
Weighting Normal

New Na₂O standards added to calibration.

Exclude old Na₂O standards.

	Sample 1		Sample 2	
	New OXI	New OXI	New OXI	New OXI
	2023	2024	2023	2024
Na_2O	12.093	11.98(3)	12.220	11.814(8)
MgO	1.491	1.661(3)	1.496	1.67(1)
Al_2O_3	1.695	1.609(1)	1.661	1.596(3)
SiO_2	71.497	71.74(3)	71.530	72.14(1)
K_2O	0.651	0.964(3)	0.702	0.967(3)
CaO	10.904	11.022(8)	11.480	10.828(9)
Fe_2O_3	0.571	0.608(2)	0.558	0.560(1)

	Sample 3		Sample 4	
	New OXI	New OXI	New OXI	New OXI
	2023	2024	2023	2024
Na_2O	11.995	11.84(2)	12.177	11.82(2)
MgO	1.473	1.65(2)	1.499	1.67(1)
Al_2O_3	2.221	2.076(7)	1.663	1.600(4)
SiO_2	71.183	71.53(2)	71.581	72.13(1)
K_2O	0.691	0.959(2)	0.705	0.969(3)
CaO	11.343	10.754(9)	11.453	10.816(5)
Fe_2O_3	0.651	0.648(2)	0.571	0.573(2)

Analyzed Result (Single)			
Analysis type : Quant analysis		Sample name : CRM-529	
Analysis code : NEW OXI APR 2024		Meas. position : Center	
Analysis date : 2024- 6-18 11:30			
No.	Result	Unit	Judge
1 Na ₂ O	4.728	mass%	
2 MgO	0.034	mass%	
3 Al ₂ O ₃	23.262	mass%	
4 SiO ₂	49.015	mass%	
5 P ₂ O ₅	0.041	mass%	
6 SO ₃	0.118	mass%	
7 K ₂ O	0.507	mass%	
8 CaO	8.067	mass%	
9 TiO ₂	0.123	mass%	
10 V ₂ O ₅	-0.006	mass%	
11 Cr ₂ O ₃	0.000	mass%	
12 MnO	0.003	mass%	
13 Fe ₂ O ₃	0.243	mass%	
14 NiO	0.000	mass%	
15 ZnO	-0.001	mass%	
16 Y ₂ O ₃	-0.000	mass%	
17 ZrO ₂	-0.082	mass%	
18 SrO	0.258	mass%	
19 BaO	0.098	mass%	
20 PbO	0.006	mass%	
21 Ig	13.495	mass%	
22 Li ₂ B ₄ O ₇	9.022		
23 Sample	1.000	g	
24 Bead	10.024	g	

CRM-529 anorthic feldspar

Oxide	Value (%)	BASRID (%)	diff
Na ₂ O	5.471	5.251	0.220
MgO	0.039	0.041	-0.002
Al ₂ O ₃	26.919	26.977	-0.058
SiO ₂	56.721	57.661	-0.940
K ₂ O	0.591	0.371	0.220
CaO	9.317	9.370	-0.053
Fe ₂ O ₃	0.282	0.329	-0.047

Analyzed Result (Single)			
Analysis type : Quant analysis		Sample name : CRM-532	
Analysis code : NEW OXI APR 2024		Meas. position : Center	
Analysis date : 2024- 6-18 11:43			
No.	Result	Unit	Judge
1 Na ₂ O	3.879	mass%	
2 MgO	0.169	mass%	
3 Al ₂ O ₃	12.240	mass%	
4 SiO ₂	70.423	mass%	
5 P ₂ O ₅	0.013	mass%	
6 SO ₃	-0.002	mass%	
7 K ₂ O	4.899	mass%	
8 CaO	0.187	mass%	
9 TiO ₂	0.069	mass%	
10 V ₂ O ₅	-0.008	mass%	
11 Cr ₂ O ₃	0.005	mass%	
12 MnO	-0.002	mass%	
13 Fe ₂ O ₃	0.174	mass%	
14 NiO	-0.000	mass%	
15 ZnO	-0.003	mass%	
16 Y ₂ O ₃	0.014	mass%	
17 ZrO ₂	-0.001	mass%	
18 SrO	0.016	mass%	
19 BaO	0.004	mass%	
20 PbO	0.012	mass%	
21 Ig	7.897	mass%	
22 Li ₂ B ₄ O ₇	18.823		
23 Sample	0.505	g	
24 Bead	10.014	g	

CRM-532 Swedish feldspar

Oxide	Value (%)	BASRID (%)	diff
Na ₂ O	4.212	4.244	-0.032
MgO	0.184	0.172	0.012
Al ₂ O ₃	13.292	13.944	-0.652
SiO ₂	76.474	77.700	-1.226
K ₂ O	5.320	3.536	1.784
CaO	0.203	0.253	-0.050
Fe ₂ O ₃	0.189	0.152	0.037

Conclusions

- NewOXI has been successfully transferred from the old MagiX PRO to the new Primus IV XRF spectrometer. Some of the original MagiX PRO standards were used to set up this program.

Conclusions

- NewOXI has been successfully transferred from the old MagiX PRO to the new Primus IV XRF spectrometer. Some of the original MagiX PRO standards were used to set up this program.
- However, there was a problem with measurements for light elements, particularly Na_2O and MgO .

Conclusions

- NewOXI has been successfully transferred from the old MagiX PRO to the new Primus IV XRF spectrometer. Some of the original MagiX PRO standards were used to set up this program.
- However, there was a problem with measurements for light elements, particularly Na_2O and MgO .
- This problem was solved by making fresh Na_2O and MgO standards. Standard samples do not last for ever!

Future work

- This program can be extended by making standards for new elements of interest, provided that a suitable XRF transition can be found that doesn't overlap with any transitions for existing elements of interest.

Future work

- This program can be extended by making standards for new elements of interest, provided that a suitable XRF transition can be found that doesn't overlap with any transitions for existing elements of interest.
- OXI is currently set up for fused bead samples containing lithium borate glass.

Future work

- This program can be extended by making standards for new elements of interest, provided that a suitable XRF transition can be found that doesn't overlap with any transitions for existing elements of interest.
- OXI is currently set up for fused bead samples containing lithium borate glass.
- However, the Primus IV can detect boron. It could be possible to have a BoronOXI program if suitable standards could be made for borate glasses (NOT FUSED BEADS).

Thanks to.....

- **Paul Bingham – SHU**

Thanks to.....

- **Paul Bingham – SHU**
- **Ebele Ahizi – SHU**
- **Luke Cooper – SHU**
- **Jack Cornwall – SHU**
- **Casey Walsh – SHU**
- **Amy Young – SHU**
- **Erhan Kilinc – SHU**
- **James Eales – SHU**
- **Hannah Blystra – SHU**
- **Elliott Wakelin – SHU**

Thanks to.....

- **Steve Davies - PANalytical**
- **Andrew Scothern – PANalytical**

Thanks to.....

- **Steve Davies - PANalytical**
- **Andrew Scothern – PANalytical**
- **John Austin – SciMed**

thank you for listening
Anthony.Bell@shu.ac.uk