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The present work studies the complex dynamics of an oscillating shock impinging on a

laminar/transitional supersonic boundary layer, with emphasis on the radiated post-shock waves

and a coherent wave structure induced in the turbulent boundary layer (TBL) downstream of the

separation bubble. Fully-resolved Direct Numerical Simulations (DNS) have been carried out at

Mach 5, with imposed shock-oscillation frequency matching that predicted by earlier Direct

Simulation Monte Carlo (DSMC) studies of the internal shock structure. Shock oscillations are

found to produce a field of post-shock waves efficiently transmitted through the reattachment

shock into the downstream TBL. The flow response consists of two-dimensional amplified

planar waves propagating downstream with sustained amplitude. Increasing shock-oscillation

amplitudes progressively enhance this phenomenon, while increasing frequencies, within

the DSMC-predicted range, are found to promote a greater disturbance amplification, with

amplitudes larger by 50 % compared to lower frequencies. This indicates a high susceptibility

of the wave transmission mechanism to the shock-oscillation frequencies. Conversely, the region

between separation and reattachment shock is found to be sensitive to frequencies different

from those of the shock oscillations. This previously unknown generation mechanism of a 2D

planar wave system within the TBL is altogether absent when the impinging shock is steady.
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𝐶 = ratio of Sutherland’s constant to reference temperature
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𝑐𝑝 , 𝑐𝑣 = specific heats at constant pressure and volume

𝐸 = total energy

𝑭 = flux vector

𝑓 = frequency

𝐿 = computational domain length in a given direction

𝑀 = Mach number

𝑁 = number of grid points in a given direction

𝑃𝑟 = Prandtl number

𝑝 = static pressure

𝑸 = vector of the conservative variables

𝑅𝑒 = Reynolds number

𝑇 = static temperature

𝑡 = time

𝑈 = magnitude of the velocity vector

𝑢, 𝑣, 𝑤 = velocity components

𝑥, 𝑦, 𝑧 = Cartesian coordinates in the streamwise, wall-normal and spanwise direction, respectively

𝛿 = boundary-layer displacement thickness

𝛾 = ratio of the specific heats

𝜆 = wavelength

𝜇 = dynamic viscosity

𝜌 = density

𝜏 = viscous stresses

Subscripts

𝑖, 𝑗 , 𝑘 = indices of grid-line directions in the streamwise, wall-normal and spanwise direction, respectively

𝑥, 𝑦, 𝑧 = directions in the Cartesian reference system

𝑤 = at the wall

∞ = freestream quantity

Superscripts

∗ = dimensional quantity
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I. Introduction
Transition to turbulence plays a crucial role on the heat-transfer rates on the surface of hypersonic vehicles, which

makes it necessary to understand the physical mechanism responsible for transition, in order to allow accurate prediction

of the transition location. The shock/boundary-layer-interaction (SBLI) phenomenon is among the most relevant

mechanism that produces a dramatic increase of the aerodynamic heating, in combination with highly unsteady flow, as

well as other important consequences terms of vehicle stability and control. The size of the separation bubble is highly

dependent on the shock intensity and on the boundary-layer state [1, 2]. The separation length was found to be linearly

dependent on the shock intensity in the experiments of Hakkinen et al. [3] and the numerical simulations of Katzer [4].

Lusher and Sandham [5] numerically studied the effects of flow confinement on a laminar SBLI, and found that both

duct aspect ratio and the expansion fan at the trailing edge of the shock generator highly affect the interaction. Babinsky

and Harvey [6] found that the separation in SBLI is highly dependent on the state of the upstream boundary layer. While

the flow characteristics of laminar SBLI have been studied extensively and are well established in the literature, the

case of SBLI in transitional and turbulent boundary layers have not been fully understood yet. A numerical study of

Sivasubramanian and Fasel [7] showed that disturbances in the upstream boundary layer are strongly amplified by the

laminar separation bubble, with transition to turbulence occurring at larger shock intensities. In the work of Sansica et

al. [8], the introduction of unstable oblique modes in a laminar SBLI led to transition to turbulence downstream of the

reattachement point. The DNS study of Dwivedi et al. [9] at Mach 5.92 in laminar flow found a strong disturbance

growth downstream of the reattachment point, in combination with unsteadiness and flow three-dimensionalisation

at sufficiently high intensities of the incident shock. The work of Sandham et al. [10] provided an assessment of the

characteristics of transitional shock/boundary-layer interactions at Mach 6. The authors found that the transition process,

at the considered flow conditions, develops from second (Mack) instabilities superimposed on streamwise streaks, and

that the Stanton number overshoots are larger for transitional interactions than the case of fully turbulent interaction.

Boundary-layer receptivity concerns the study of how the boundary layer internalizes the impinging disturbances from

the upstream flow, in the form of internal instability modes. In this context, the body leading edge is a highly-receptive

zone, due to the non-parallel effects and the related short-scale streamwise variations of the mean flow, which, in turn,

cause a wavelength-conversion process from the scale of the external forcing to that of the induced boundary-layer

disturbances [11]. At hypersonic Mach numbers, however, it is well known that the small differences in phase speed

between forcing waves and boundary-layer dominant modes lead to a direct excitation of these modes via a resonance

mechanism at the leading edge [12, 13], without the need of a wavelength-conversion mechanism. Several numerical

studies on the role of different types of freestream disturbances, particularly fast and slow acoustic waves, in the

above-mentioned resonance mechanism, have been carried out [14–22], which highlighted the complex wave interaction

features of the leading-edge receptivity, the synchronisation with the external forcing, downstream modulation and

evolution of different induced boundary-layer modes, whose type and relative significance in the transition process
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depend on the types and characteristics of the external impinging disturbances.

However, another receptive region of the flow is represented by the shock, whose susceptibility to external and

wall-reflected waves, as well as to inner molecular collisions, is a source of additional wave modes, which propagate

within the shock layer, i.e. the flow region between the shock and the solid surface, and impinge onto the boundary layer

modulating the whole receptivity process. In shock/boundary-layer interaction cases, the presence of an oscillating

shock can significantly affect the flow features in the interaction region and in the downstream boundary layer. This

might produce disturbances in key quantities, such as wall pressure, temperature, skin friction and surface heat flux,

which can compromise the vehicle structural integrity and adversely impact on the aerodynamics, flight dynamics and

propulsion performance. Most of the literature on the unsteadiness of shock/boundary-layer interactions has focused on

explaining the mechanism behind the low-frequency large-scale oscillations of the reflected shock which is associated

with frequencies of one or two order of magnitudes lower than the characteristic frequencies of the incoming turbulent

boundary layer [23]. Several experimental and numerical studies dedicated to the SBLI unsteadiness phenomenon

led to a differentiation between two main mechanisms, namely an ‘upstream’ mechanism which correlates the SBLI

unsteadiness to flow features or events in the upstream turbulent boundary layer (see e.g. [24, 25]), and a ‘downstream’

mechanism in which the source of unsteadiness is correlated to events occurring downstream of the reattachment shock.

The latter includes sources such as fluid entrainment due to the shear layer downstream of the reflected shock and

feedback into the separation bubble[26, 27], or acoustic feedback due to acoustic waves generated in the downstream

shear-layer and propagating upstream within the separation bubble [28, 29].

Both types of ‘upstream’ and ‘downstream’ mechanisms are associated with events within the boundary-layer and

shear-layer flows either upstream or downstream of the interaction region. However, not much attention has been

devoted to the oscillations of the shock due to different sources. Unsteadiness of the SBLI can, in fact, be induced by

other mechanisms, such as freestream waves (e.g. acoustic and vortical waves, or entropy spottiness) interacting with

and producing oscillations of the impinging shock, as well as structural vibrations and change of the flight conditions,

which can cause large-scale fluctuations of the impinging shock and the entire SBLI shock system. Recent literature

has focused on the fluid-structure interaction in SBLI cases with shocks impinging on flexible surfaces and the role

of the shock-generator motion [30–34]. The considered frequencies for the motion of the shock generator reflect a

low-frequency range, i.e. 𝑓 ≈ 10 − 100 Hz, corresponding to typical frequencies associated with changes of flow

conditions due to e.g. vehicle maneuvers, control surfaces and aeroelastic interaction [34]. For example, Miller et al.

[33] considered a frequency of 10 Hz for the oscillating incident shock in their computational fluid-thermal-structural

model, whereas Currao et al. [34] imposed pitch oscillations of the shock generator with a frequency of 42 Hz in

their combined experimental-numerical study. The order of these frequencies is, however, significantly different to

the order of the relevant frequency range associated with freestream disturbances, e.g. acoustic noise, vorticity and

entropy waves. The broadband noise environment of hypersonic wind tunnels is characterized by significant disturbance
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amplitudes within a frequency range on the order of several tens to hundreds of kilohertz, i.e. O(10 − 102) kHz [35].

In the combined experimental-numerical study of Wagner et al. [35], for example, which was one of the first studies

dedicated to the identification of the noise levels in the environment of different hypersonic ground-test facilities at

DLR, larger signal amplitudes were found for frequencies below 50 kHz in RWG and below 100 kHz in HLB for lower

unit Reynolds numbers, and for higher frequencies (above 100 kHz) at larger unit Reynolds numbers. These, in turn,

represent frequencies relevant to the boundary-layer receptivity and wave instabilities. The response of incident shock

waves in the higher frequency range typical of freestream disturbances, and the resulting effects on the SBLI dynamics,

has received limited attention in the existing literature.

Furthermore, recent studies have demonstrated that shock waves can exhibit self-induced oscillations through

internal mechanisms associated with thermal non-equilibrium and molecular interactions within the shock structure

[36–38]. This phenomenon is referred to here as ‘natural’ shock oscillations. In contrast, oscillations arising from

interactions with freestream disturbances can be generally classified as a form of ‘forced’ shock oscillations. Interestingly,

the frequencies associated with ‘natural’ shock oscillations fall within the range typical of environmental noise. In

their DSMC simulations, for instance, Sawant et al. [37] observed a linear increase in oscillation frequency from

approximately 12 kHz to 37 kHz as the Mach number increased from 3 to 10. In particular, the authors [36–38]

demonstrated the correlation between the formation of oscillations inside the shock layer and the shock bimodality. The

latter is a phenomenon correlated to molecular interactions and represented by a Mach-dependent bimodal shape of

the probability density function (PDF) of the energy of particles inside the shock, which has been found to have the

form of a non-central chi-squared (NCCS) distribution [37]. Within the shock, the PDF peaks at two different energy

values, corresponding to collisions between molecules upstream and downstream of the shock. These in turn will cause

waves that are transmitted from the shock into the downstream (post-shock) flow field. This phenomenon is inaccessible

to continuum description and the Navier-Stokes equations of motion. This type of additional forcing due to kinetic

fluctuations of the shock belongs to the category of “stochastic forcing”, emphasised by Fedorov and Tumin [39] as

responsible for the generation of unstable boundary-layer modes which undergo a significant amplification toward the

nonlinear region and can lead to transition to turbulence. This behaviour was observed in DSMC studies of Tumuklu

et al. [40] for the case of oblique shocks over a double cone. Sawant et al.’s [36–38] work has very recently been

extended by combining DSMC to data-driven methods, namely spectral proper orthogonal decomposition (SPOD) and

direct mode decomposition (DMD), to identify spatio-temporal coherent structures in DSMC unsteady flows [41]. In

particular, Karpuzcu et al. [41] have considered the unsteadiness of the shock layer downstream of oblique shocks over

compression-expansion ramp geometries.

Oscillations emitted by the shock within the DSMC-predicted frequency range [37] can, in turn, propagate through

the shock layer and interact with the boundary layer, potentially inducing additional flow instabilities. Whilst the classic

literature on hypersonic receptivity and transition has always focused on the role of either freestream disturbances or
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local perturbations on the surface, as well as leading-edge effects, the role of the shock as an active source of instability

modes has never been properly addressed. This, in turn, warrants careful attention, as the characteristics of the transition

mechanism as well as the transitional and turbulent boundary layer may depend on the nature of disturbances radiated

into the post-shock region by an oscillating shock. In the DNS of Cerminara and Sandham [42] for a flow over a swept

wedge, for example, a previously unseen transition mechanism has been found, which is associated with the generation

at the leading edge and downstream growth of a high-spanwise wavenumber mode, whose source has been found

correlated with a shock-wall wave reflection mechanism. This demonstrates that oscillations radiated from the shock can

induce early transition in hypersonic flow. Moreover, in the study of Klothakis et al. [43], induced shock oscillations in

DSMC simulations have been found synchronized with boundary layer disturbances analysed through linear stability

analysis (LST). More recently, the work of Cerminara, Levin and Theofilis [44] showed how shock oscillations at the

DSMC-predicted frequencies cause generation of post-shock waves in the shock layer and consequent formation of

additional boundary-layer modes, including high-frequency modes, in a range of Mach numbers. This is in line with the

work of Sawant et al. [36] for the linear three-dimensional instability of a shock wave / boundary layer interaction in a

Mach 7 flow over a double wedge, where a spanwise periodic instability mode was found within the internal structure of

the shock layer and the separation bubble.

In light of this, there is a need to explore the unsteadiness of oscillating shock/boundary-layer interaction flows in a

higher frequency range typical of e.g. freestream disturbances as well as self-induced (‘natural’) shock oscillations. For

this reason, the present study aims at the analysis, via DNS, of the receptivity of a transitional shock/boundary-layer

interaction to oscillations of the incident shock, specifically within the DSMC-predicted frequency range [37], which

is relevant, as described above, for both cases of ‘forced’ (e.g. environmental) and ‘natural’ (self-induced) shock

oscillations. The receptivity of the shock layer and the susceptibility of the downstream turbulent boundary layer to

the shock oscillations is analysed in detail, considering different frequencies and amplitudes of the incident shock

oscillations, which provides fundamental insights in the complex dynamics of the interaction between an oscillating

shock and a transitional boundary layer. It is important to mention that our simulations do not resolve the ‘natural’

(self-induced) shock oscillations, since the thermal non-equilibrium internal to the shock is a phenomenon inaccessible

the Navier-Stokes equations of motion. In contrast, our simulations are intended to mimic an oscillatory motion of the

shock generator at imposed frequencies (by means of an appropriate time-dependent boundary condition) similar to

those observed by Sawant et al.[37], with the aim to investigate the associated receptivity patterns of the transitional

shock/boundary-layer interaction phenomenon.
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II. Numerical method

A. Governing equations

We consider numerical solutions of the three-dimensional Navier-Stokes equations for compressible flows, written in

conservation form, under the assumption of perfect gas. The set of non-dimensional conservation equations in Cartesian

coordinates can be written as

𝜕Q
𝜕𝑡

+
𝜕 (F 𝑗 )
𝜕𝑥 𝑗

= 0 , (1)

In the equation above, Q is the vector of the conservative variables, while F 𝑗 is the vector of the fluxes in Cartesian

coordinates. The components of the vectors of the system in conservative form are

Q =



𝜌

𝜌𝑢

𝜌𝑣

𝜌𝑤

𝜌𝐸



, (2)

F 𝑗 =



𝜌𝑢 𝑗

𝜌𝑢𝑢 𝑗 + 𝛿1 𝑗 𝑝 − 1
𝑅𝑒

𝜏1 𝑗

𝜌𝑣𝑢 𝑗 + 𝛿2 𝑗 𝑝 − 1
𝑅𝑒

𝜏2 𝑗

𝜌𝑤𝑢 𝑗 + 𝛿3 𝑗 𝑝 − 1
𝑅𝑒

𝜏3 𝑗

𝜌

(
𝐸 + 𝑝

𝜌

)
𝑢 𝑗 −

1
𝑅𝑒

(
𝑢𝜏1 𝑗 + 𝑣𝜏2 𝑗 + 𝑤𝜏3 𝑗 +

𝜇

(𝛾 − 1)𝑃𝑟𝑀2
𝜕𝑇

𝜕𝑥 𝑗

)



. (3)

The terms 𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤 and 𝜌𝐸 are the conservative variables of the system of equations, where 𝜌 is the density,

𝑢, 𝑣 and 𝑤 are the velocity components respectively in the 𝑥, 𝑦 and 𝑧 directions, and 𝐸 is the total energy per unit

mass. In the flux vectors, the terms 𝑝, 𝑇 , 𝜏𝑖 𝑗 , and 𝜇 are respectively the pressure, the temperature, the components

of the viscous stress tensor, and the dynamic viscosity of the flow, whereas 𝛿𝑖 𝑗 is the Kronecker delta function. The

boundary-layer displacement thickness at the inflow boundary (𝛿∗) is chosen as the characteristic length to normalise the
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length scales, while the time scales are normalised with respect to the fluid dynamic characteristic time (𝛿∗/𝑈∗
∞), based

on the velocity of the undisturbed flow and on the characteristic length. The Reynolds number is defined with respect to

the boundary-layer displacement thickness at the inlet, as 𝑅𝑒 = (𝜌∗∞𝑈∗
∞𝛿

∗)/𝜇∗∞; the Prandtl number is set to 0.72 for air,

and 𝛾 is equal to 1.4, as we are considering a perfect gas model. The dynamic viscosity is, in turn, expressed in terms of

temperature by Sutherland’s law

𝜇 = 𝑇3/2 1 + 𝐶

𝑇 + 𝐶
, (4)

where the constant C represents the ratio between the Sutherland’s constant (set to 110.4 K) and the reference temperature

(𝑇∗
∞). The viscous stresses are defined in terms of the velocity derivatives, under the assumption of a Newtonian fluid, as

𝜏𝑖 𝑗 = 𝜇

[
𝜕𝑢𝑖

𝜕𝑥 𝑗

+
𝜕𝑢 𝑗

𝜕𝑥𝑖
− 2

3
𝛿𝑖 𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘

]
. (5)

We also need a relation linking the total energy to the temperature, which in non-dimensional form can be expressed as

𝐸 =
𝑇

𝛾(𝛾 − 1)𝑀2 + 1
2

(
𝑢2 + 𝑣2 + 𝑤2

)
. (6)

Finally, the system of equations is closed by the equation of state for a perfect gas

𝑝 =
1

𝛾𝑀2 𝜌𝑇 . (7)

The code used to carry out the numerical simulations is SBLI (Shock-Boundary-Layer-Interaction), developed over a

number of years at the University of Southampton, consisting of a 4𝑡ℎ-order central differencing scheme, as the base

scheme, in conjunction with a 2𝑛𝑑-order Harten-Yee TVD (Total-Variation-Diminishing) shock-capturing scheme [45],

as a filter step. The validation of the code can be found in De Tullio et al.[46].

III. Computational domain and simulation settings

A. Flow and boundary conditions

A rectangular-box computational domain for a flat plate is considered, with dimensionless size 𝐿𝑥 = 300, 𝐿𝑦 = 30,

and 𝐿𝑧 = 48, along the streamwise, wall-normal and spanwise directions, respectively. The inflow conditions of the

present study are based on previous studies [47, 48] for Mach 5 wind-tunnel flow conditions over a flat plate. The

characteristic length in our computational domain is represented by the boundary-layer displacement thickness of the

similarity solution at the inflow boundary, 𝛿∗ = 1 mm, which is based on a distance from the plate leading edge of about

127 mm and an estimated boundary-layer thickness of 𝛿∗99 ≈ 1.25 mm, from Van Driest’s empirical correlations [49, 50]

at the considered Mach number. Figure 1 represents the computational domain boundaries in a 𝑥𝑦-plane (dashed line of
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the rectangular box) and a simplified sketch of the shock-transitional-boundary-layer interaction. The boundary-layer

edge (denoted as BL in the sketch) is laminar near the inflow (left) boundary. The notations IS, SS and RS indicate the

incident shock, separation shock and reattachment shock, respectively. The series of converging lines connecting with

the separation shock indicate the weak compression waves generated by the concave curvature of the separation bubble

edge, which coalesce into the separation shock. Similarly, the corresponding converging lines along the concave portion

at the tail of the separation bubble indicate the compression waves coalescing into the reattachment shock. The series of

dashed lines just downstream of the point of maximum thickness of the separation bubble, represent the expansion

fan forming along the convex portion of the separation bubble edge. Immediately downstream of the reattachment

shock, the boundary layer reattaches to the wall (bottom boundary, 𝑦 = 0) and is depicted as a turbulent boundary

layer, since the SBLI promotes rapid transition. Simulations are carried out at the freestream Mach number M = 5,

temperature 𝑇∗
∞ = 76.6 K and Reynolds number Re = 12600, based on the boundary-layer displacement thickness at the

inlet, and for isothermal wall with wall temperature 𝑇∗
𝑤 = 290 K. The total pressure and temperature in the freestream

are, respectively, 𝑝∗0 = 864 kPa and 𝑇∗
0 = 460 K. The freestream and wall temperature conditions are the same as in

the studies of Cerminara et al. [47, 48]. Periodic conditions are imposed at the side boundaries (along the spanwise

direction). The flow is initialised with the similarity boundary-layer solution for a Mach 5 flow at the specified wall

temperature, whereas extrapolation, integral and zero-gradient outflow conditions are set at the inlet (left), top and outlet

(right) boundaries, respectively. The streamwise position 𝑥𝑠 in figure 1 indicates the location of the oblique incident

shock generator imposed on the top boundary.

Fig. 1 Sketch of the shock/boundary-layer interaction within the computational domain, and illustration of the
main shock wave system

Disturbance waves are imposed at the wall in the upstream laminar region to induce the transition process. These

represent the most unstable modes for the present boundary layer identified in a former LST study shown in the work

of Cerminara et al. [48]. In particular, in this work it was found that the most unstable modes are represented by

both 2D and 3D waves pertaining to the class of the first instability modes, with streamwise wavenumber 𝛼 = 0.2,

corresponding to a dimensionless streamwise wavelength of 31 and at the frequency 𝑓 = 12.5 kHz. The most unstable

3D first mode was found at the spanwise wavenumber 𝛽 = 0.78, corresponding to a dimensionless wavelength of 8
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in the spanwise direction. The domain size in the spanwise direction has been set as a multiple of this wavelength,

i.e. 𝐿𝑧 = 48, allowing the development of lower spanwise wavenumber modes within our computational domain. The

disturbance field imposed on the wall consists of the following wave function for the spanwise velocity component,

which has been observed in previous studies [51] to induce a rapid transition to turbulence process:

𝑤(𝑥, 𝑧, 𝑡) = 𝐴𝑤

3∑︁
𝑘=1

[
sin

(
2𝜋𝑘 (𝑧 − 𝑧0)

𝑙

)]
sin

(
2𝜋(𝑥 − 𝑥0)

𝜆

)
sin (𝜔𝑡) , (8)

with 𝑥0 = 10, 𝑧0 = 20, 𝐴𝑤 = 0.2, and 𝑙 = 8 and 𝜆 = 31 representing the characteristic lengths of the disturbances in

the spanwise and streamwise directions, respectively. In particular, a superposition of three oblique modes has been

considered, with wavelengths 𝑙, 2𝑙 and 3𝑙 in the spanwise direction. The corresponding spanwise wavenumbers are

within the wavenumber range of the 3D Mack’s first modes found from the former LST study [48]. The wave function

starts at 𝑧 = 20 and terminates at 𝑧 = 28 in the spanwise direction, whereas it spans the coordinate range 𝑥 = 10 − 41

along the streamwise axis. A dimensionless frequency of 0.26, in the form of a Strouhal number, i.e. 𝑓 𝛿∗/𝑈∗
∞, has

been used for the imposed disturbances, which corresponds to the above-mentioned dimensional frequency of the most

unstable modes of the laminar boundary layer, i.e. 𝑓 = 12.5 kHz [48].

At the top boundary a shock generator based on direct application of the Rankine-Hugoniot relations is imposed

at the position 𝑥𝑠 (see figure 1), corresponding to an oblique shock generated by a 8-deg half-wedge angle at Mach

5. Simulations are performed for both the cases of fixed shock and oscillating shock. In the fixed-shock case, the

shock generator is at the distance 𝑥𝑠, 𝑓 = 31 from the inlet boundary (where the subscript 𝑓 stands for fixed). In the

oscillating shock case, a time-periodic streamwise displacement of the shock generator is imposed at a given frequency.

In particular, simulations have been conducted at three different frequencies, namely 11.5, 23 and 46 kHz, within a

frequency range comparable to that predicted by Sawant et al. [37] for the shock bimodality at different Mach numbers.

In their DSMC simulations, Sawant et al. [37] have obtained monotonically increasing frequencies from about 12

kHz to 37 kHz, for corresponding monotonically increasing Mach numbers from 3 to 10. Their DSMC-predicted

frequency at Mach 5 is 𝑓 = 23 kHz [37]. Hence, we consider the latter as the reference frequency for our study, whereas

simulations at half (11.5 kHz) and double (46 kHz) the reference frequency will allow to identify the sensitivity of the

solution within the main above-mentioned DSMC-predicted frequency range [37]. It should be mentioned that Sawant

et al.’s [37] study considered normal shocks only. However, in the present study, which deals with oblique shocks in

a STBLI case, we have assumed that the shock angle does not provide a significant change of the shock oscillation

frequency outside of the considered frequency range (from 11.5 to 46 kHz). The present assumption is verified from the

very recent DSMC study of Karpuzcu et al. [41] for the shock-layer unsteadiness downstream of oblique shocks over

compression-expansion ramp geometries. In their study, Karpuzcu et al. [41] have obtained an oscillation frequency of

19.2 kHz for a Mach 6 flow at a ramp angle of a 42◦ and freestream velocity of 864 m/s. In our case, the freestream
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conditions correspond to a freestream velocity of 877.6 m/s, comparable to that in Karpuzcu et al.’s [41] work. On

the other hand, the oscillation frequency predicted by Sawant et al. [37] at Mach 6 is 25 kHz, i.e. very similar to the

value of 23 kHz at Mach 5, and relatively close to the value of 19.2 kHz predicted for the oblique shock case in [41].

Although the corresponding ramp angle (10◦) of the incident shock, for the present case, is significantly different to the

above ramp angle [41], Karpuzcu et al.’s [41] results have nonetheless proven that an oblique shock case at a generic

ramp angle produces oscillation frequencies of the same order and in the same frequency range as those observed for

normal shocks in [37]. Hence, whilst a systematic study of the effect of the shock angle, in a broad shock angle range

and for different Mach numbers, should be subject of future investigation aimed at obtaining a complete dataset of

configuration-specific oscillation frequencies, we will assume, for the purposes of the present work, a frequency of 23

kHz as a valid approximate representative frequency for our Mach 5 case.

The periodic (sinusoidal) function which simulates the streamwise displacement of the shock generator is given as

𝑥𝑠 (𝑡) = 𝑥𝑠, 𝑓 + 𝐴 sin
2𝜋𝑡
𝑇𝑝

, (9)

where 𝑥𝑠 (𝑡) is the streamwise position of the shock generator on the top boundary at each given instant of time, 𝑥𝑠, 𝑓

is the position of the fixed shock (i.e. 𝑥𝑠, 𝑓 = 31), 𝐴 is the assigned amplitude, 𝑡 is the dimensionless time and 𝑇𝑝

is the dimensionless period of the shock oscillations (which matches that of the DSMC study [37]). Three different

values of the amplitude 𝐴, namely 𝐴 = 1, 2, 3, are arbitrarily selected to investigate the associated response of the SBLI

dynamics to the impinging shock oscillation and its frequency. In addition, simulations have been carried out for two

other frequencies, namely half ( 𝑓 = 11.5 kHz) and double ( 𝑓 = 46 kHz) the reference frequency of the DSMC study of

Sawant et al. [37], with the aim to analyse the sensitivity of the solution to the shock-oscillation frequency.

B. Grid requirements for DNS resolution

The mesh size in the different directions is 𝑁𝑥 = 1874, 𝑁𝑦 = 201, 𝑁𝑧 = 360, and a grid stretching in the vertical

direction towards the wall has been applied in order to accurately resolve the boundary layer. The present grid provides

values of Δ𝑦+ = 0.38, Δ𝑥+ = 9.06, Δ𝑧+ = 7.54 at 𝑥 = 290 within the fully developed turbulent region, hence

guaranteeing DNS resolution in all the directions, according to the work of Coleman and Sandberg [52], being the

thresholds 1, 15 and 8 for Δ𝑦+, Δ𝑥+ and Δ𝑧+, respectively. To further assess the requirements for DNS accuracy, we

considered an additional criterion, i.e. that described in the work of Yang et al. [53] for capturing rare high-intensity

wall shear stress events. In particular, a grid resolution requirement dependent on the friction-based Reynolds number is

presented for both Δ𝑥+ and Δ𝑧+ in the work of Yang et al. [53], and our considered values of Δ𝑥+ and Δ𝑧+ are within

their indicated threshold values for resolving 99 % of the wall shear-stress events at a calculated friction Reynolds

number of 𝑅𝑒𝜏 = 283, based on the 𝛿99, within the downstream turbulent region.
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Furthermore, our calculated values of Δ𝑦+, Δ𝑥+, and Δ𝑧+ are in a reasonably good agreement with corresponding

values from different published DNS studies of compressible flows in a Mach number range 𝑀 = 2 − 3, reported in

the work of Wenzel et al. [54]. In our case, the Mach number downstream of the wall-reflected shock, from inviscid

oblique shock theory, is about 3.6, hence the Mach number range in [54] can be reasonably considered as relevant for

our study. In particular, values in the range of Δ𝑦+ = 2.3 - 3.7, Δ𝑥+ = 6.2 - 9.9, and Δ𝑧+ = 2 - 3.2 are documented for

the most conservative DNS of Wenzel et al. [54], within the friction Reynolds number range 𝑅𝑒𝜏 = 140 - 482. Whereas,

other DNS studies reported for comparison are associated with generally larger values, e.g. Δ𝑦+ = 0.48, Δ𝑥+ = 8 -

24.6, and Δ𝑧+ = 3 - 12.6 [54]. In the DNS study of Duan et al. [55], in which supersonic Mach numbers from 3 to

12 were considered, values of Δ𝑦+ = 0.25 - 0.3, Δ𝑥+ = 6.7 - 8.4, and Δ𝑧+ = 2.6 - 3.4 are reported, however at larger

friction Reynolds numbers, e.g. 𝑅𝑒𝜏 = 376.8 - 486.9. We can, hence, conclude that our calculated values Δ𝑦+ = 0.38,

Δ𝑥+ = 9.06, Δ𝑧+ = 7.54 are sufficiently within the range reported in the literature for similar DNS studies at moderate

supersonic Mach numbers and within the range of relevant friction Reynolds numbers. This, observing also that the

flow is laminar and transitional for most of our computational domain streamwise extent, with turbulent flow reached in

the downstream region, demonstrates that our grid fully satisfies the requirements for accurately resolving the flow

features of the considered shock-transitional boundary-layer interaction phenomenon.

C. Validation study and application of shock oscillations to an experimental case

In the present section, we show results for a validation study based on existing experimental data of a transitional

shock/boundary-layer interaction from the study of Currao et al [34]. The experiment consisted of a Mach 5.8 flow

at a unit Reynolds number of 7 × 106 m−1 in the free-piston compression-heated Ludwieg tube at the University of

Southern Queensland, over a flat plate with an impinging shock induced by a wedge-shaped shock generator with 10◦

flow deflection.

We model the experimental configuration through a flat-plate computational domain with mesh size and boundary

condition as those described in Section III, with exception of the top boundary, where, in addition to the shock generator

(described in Section III), we also apply a model for the concentrated expansion fan released at the trailing edge of the

wedge as in the real experiment. In particular, the flow through the trailing-edge expansion fan is approximated via the

Prandtl-Mayer flow solution for a 10◦ deviation angle.

Figure 2 shows the computational domain with instantaneous contours of the temperature and 𝑥-wise velocity in the

midspan (𝑧∗ = 24 mm) 𝑥𝑦-plane. The illustrations "S" and "E" within figure 2a indicate the locations of the incident

shock and concentrated expansion fan on the top boundary. The lengths are presented in dimensional units consistent

with the work of Currao et al [34]. It should be noted that the values along the horizontal axis represent the distance

from the plate leading edge. The figure clearly shows the separation bubble, the incident-separation-reattachment shock

wave system, the decrease of temperature and increase of velocity across the trailing-edge expansion fan, and a turbulent
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boundary layer generated downstream of the reattachment point (located at about 𝑥∗ ≈ 130 mm).

(a)

(b)

Fig. 2 Instantaneous temperature (a) and streamwise velocity (b) fields in the midspan (𝑧∗ = 24 mm) 𝑥𝑦-plane
(no shock oscillations)

Figure 3 shows contours of the instantaneous temperature and streamwise velocity fields inside the boundary layer.

An evident flow pattern consisting of streamwise streaks forms near the reattachment location (𝑥∗ ≈ 130 mm), which is

a feature observed also in the experimental results [34]. Consistent with the experimental observations, the reattachment

vortices are seen to propagate and break down downstream of about 𝑥∗ ≈ 140 mm into a fragmented structure indicating

the transition process.
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(a)

(b)

Fig. 3 Instantaneous temperature (a) and streamwise velocity (b) patterns within the boundary layer in the
𝑥𝑧-plane at 𝑦∗ = 0.8 mm (no shock oscillations)

Figure 4 shows the comparison between our DNS results and the experimental results of Currao et al [34] for

the mean wall-to-freestream pressure ratio and Stanton number profiles along the surface. Numerical results in the

hypothesis of laminar flow from Currao et al [34] are also included. It should be mentioned that in the reference work

[34] the experimental data appear to be affected by a large uncertainty range, particularly in the plateau zone between

the peak of both wall pressure and Stanton number profiles, and the start of their decay (due to the expansion fan

impinging on the boundary layer), hence approximately within 130 < 𝑥∗ < 160 mm. In our work, the experimental

data have been extracted from the upper region of the uncertainty range, following the curve described by the upper

edge of the experimental profile. This, in turn, is reasonably close, as shown in figure 4a, to both our numerical results

and the laminar results in the above-mentioned plateau region, as well as to the theoretical value of the pressure ratio

from the oblique shock relations for the present flow case, (𝑝/𝑝∞)𝑡ℎ ≈ 10. Our numerical results agree with both

the theoretical predictions as well as the laminar curve for the peak of the pressure ratio, and follow very well the

experimental profile both along the increasing branch and the decay branch. Results for the Stanton number in figure 4b

show a large difference between our numerical results and the numerical laminar results from the reference work [34],
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with the exception of the initial region upstream of the shock impingement location, where both curves match. This is

reasonable if we consider that flow undergoes transition to turbulence induced by the shock/boundary-layer interaction,

which has a dramatic effect on the heat flux. In the assumption of laminar flow, a larger separation bubble and a lower

peak of the surface heat flux are to be expected, which is what is shown indeed by the red curve in 4b. Our results,

in contrast, show that the Stanton number starts from its laminar value, as the boundary layer is still laminar in the

upstream region, then, as the flow undergoes transition across the reattachment, the profile detaches from the laminar

prediction and agrees better with the experimental data reaching higher values. Our numerical curve shows a larger

peak of the Stanton number compared to the experiments (similarly to what observed for the pressure ratio), but agrees

very well with the experimental curve in the following decreasing region.
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(a)

(b)

Fig. 4 Mean wall pressure (a) and Stanton number (b) profiles on the surface

Figure 5 shows a comparison of flow patterns for the surface heat-flux fluctuations between our DNS and the

experimental results. Figure 5a has been extracted from Currao et al’s work[34] and represents the fluctuation field of

the surface heat flux from the experimental observations. It should also be mentioned that the orange band seen in 5a

indicates the distance between the two consecutive peaks of the double-peak Stanton number profile as shown by the

experimental data (see figure 4). In this case, the distance from the leading edge is indicated along the vertical axis,

while the horizontal axis indicates the spanwise direction. The corresponding numerical results from our DNS are

plotted in Figure 5b. It is important to notice that the spanwise extent of our computational domain does not span the
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whole width of the probe in the real experiment. As can be seen, our DNS capture a very similar flow pattern observed

in the experiments, which consists of elongated streamwise streaks of heat-flux fluctuations developing downstream of

the reattachment location (𝑥∗ ≈ 130 mm). These are correlated with the reattachment vortices seen in figure 3, and

are seen to gradually break down into secondary streaks further downstream throughout the transition process. Both

amplitude and average spanwise wavelength (𝜆∗ ≈ 5 mm) of the heat-flux oscillation streaks are in a good agreement

between our numerical results and the experiments.

Fig. 5 Surface heat-flux fluctuation (kW/m2) patterns: reference experiment (a), present numerical results (b)

IV. Results
The present section is divided into four subsections. In IV.A results for the main Mach 5 flow field with no shock

oscillations (or a fixed shock only) are presented; IV.B show the response within the shock layer for the case with shock

oscillations at different frequencies; finally IV.C presents results for the response at the surface at different frequencies

and amplitudes.

A. Main flow characteristics with fixed impinging shock

We will be showing here results depicting the main flow features of the considered SBLI case with no oscillations

imposed on the shock.

Figure 6 shows a numerical Schlieren image in the midspan 𝑥𝑦-plane and inside the boundary layer (on a 𝑥𝑧-plane), at
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the height 𝑦 = 1 off the wall. The numerical Schlieren image has been obtained by plotting the magnitude of the density

gradient at each point within the 𝑥𝑦-plane at the midspan of the computational domain, as
√︃
(𝜕𝜌/𝜕𝑥)2 + (𝜕𝜌/𝜕𝑦)2.

The Schlieren plot in figure 6(a) shows details of the shock structure within the SBLI, as well as the boundary-layer

edge in the laminar upstream region, the edge of the separation bubble prior to the incident shock and the turbulent

boundary layer downstream of the reattachment shock, with reattachment point located at 𝑥 ≈ 126. Illustrations are

added to the figure to clearly indicate the incident shock (IS), the reattachment shock (RS), as well as the shock layer

downstream of the incident shock (SL1) and the shock layer downstream of the reattachment shock (SL2). This will be

particularly useful for the description of the flow details in the next section. The light gray line propagating upwards

downstream of the incident shock represents the separation shock (SS) formed upstream due to the separation bubble.

The separation shock is much weaker than the incident shock and the reattachment shock, hence when we will refer

to the shock layer downstream of the incident shock (SL1) we will not distinguish between the flow upstream and

downstream of the separation shock, i.e. we will consider SL1 the whole flow field enclosed between IS and RS. On the

other hand, the Schlieren image in figure 6(b) depicts details of the boundary-layer transition, rapidly enhanced by the

shock/boundary-layer interaction, and the turbulent flow features immediately downstream of the reattachment point up

to the end of the computational domain.

Figure 7 represents the time-averaged and spanwise-averaged profiles of the streamwise skin-friction coefficient and

the Stanton number. As can be seen, near the inlet the skin-friction coefficient matches with that of the laminar similarity

boundary-layer solution, then it decays assuming negative values indicating the start of the separation bubble, and

increases rapidly at the reattachment point (𝑥 ≈ 126) approaching the turbulent correlation [49, 50], which is indicative

of a rapid transition process in this region. This follows a gradual decrease further downstream with the growth of the

turbulent boundary-layer thickness. The computed separation bubble length is about 𝑙𝑏 ≈ 96. The Stanton number

shows a similar trend, but with a more pronounced decrease in the downstream region after having reached the peak

just downstream of the reattachment point. The profiles for the skin friction and Stanton number shown in figure 7 are

consistent with the expected trends for a case of transitional shock/boundary-layer interaction (similar trends can be

seen, e.g., in the work of Sandham et al. [10] for a Mach 6 flow).

Figure 8 shows the corresponding time-averaged and spanwise-averaged wall pressure profile. As can be seen, the

pressure increases through the separation bubble reaching the first plateau at about 𝑥 ≈ 75, and then increases again

by a much larger extent across the shock impingement/reattachment region. The wall-pressure to freestream-pressure

ratio reaches a value of 5.42 at the position 𝑥 = 200 downstream of the reattachment, which is sufficiently close to the

theoretical value of 5.44 from the oblique shock relations.
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(a)

(b)

Fig. 6 Instantaneous Schlieren view in a 𝑥𝑦-plane (a) and in a 𝑥𝑧-plane within the boundary layer (b)

Fig. 7 Profiles of time-averaged streamwise skin-friction coefficient and Stanton number on the surface
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Fig. 8 Time-averaged wall (𝑦 = 0) pressure

Figure 9 represents the field of pressure fluctuations in the midspan 𝑥𝑦-plane for the non-oscillatory case at the

reference Fast-Fourier transformed frequencies considered for the shock oscillations (i.e. 11.5 kHz, 23 kHz and 46 kHz).

As can be seen, an unsteadiness of the SBLI phenomenon is present without shock oscillations, which is mostly confined

within the separation bubble, the impingement location and the region immediately downstream of the reattachment

shock. All the three different frequencies show similar patterns, in general, although with some differences in terms of

intensity of specific features. There is evidence, especially at the lower frequencies (11.5 kHz and 23 kHz), of waves

radiated in the SL1 region downstream of the separation shock, which are correlated to the unsteadiness of the separation

bubble and the interaction region, as well as oscillations along the reattachment shock. The latter feature is more evident

at the lowest frequency (11.5 kHz), in which pronounced oscillations of the reattachment shock can be observed, which

also induce some wave fronts in region SL2 (i.e. downstream of the reattachment shock) . The response at 23 kHz, in

contrast, shows more pronounced unsteadiness within the separation bubble and downstream of the separation shock,

and an overall lower effect on the reattachment shock. At the highest frequency (46 kHz) pronounced unsteadiness

appears concentrated in the interaction region, whereas lower amplitude effects can be barely seen in the other flow

regions.
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(a)

(b)

(c)

Fig. 9 FFT pressure fluctuations (real part) in 𝑥𝑦-plane without shock oscillations. Response at 11.5 kHz (a), 23
kHz (b), 46 kHz (c)

B. Wave structure in the shock layer

We now analyse the patterns of the waves induced by the oscillatory shock in the shock layer downstream of the

incident shock and the reattachment shock. Results shown in this section refer to simulations performed at different

frequencies of the incident shock oscillations and at the highest amplitude, i.e. 𝐴 = 3.

Figure 10 shows results for the pressure fluctuations for the case of incident shock oscillating at the lowest frequency

(11.5 kHz), i.e. half of the reference DSMC-predicted frequency [37] of the natural shock oscillations for this Mach

number. Different frequencies have been extracted through a Fast Fourier Transform (FFT) applied to the flow field,

and, as can be seen, at the fundamental frequency of 11.5 kHz (figure 10a) the waves in the shock layer appear much

more amplified compared to the larger frequencies, as expected. Oscillations are evident along the incident shock as

well as along the reattachment shock, and a complex wave system, induced by the incident shock oscillations, appears

transmitted in the shock-layer region between the incident and the reattachment shock. In particular, downstream of

the separation shock, the wave fronts appear distorted (with amplified oscillations along the separation shock line)

and aligned almost horizontally. The latter is an effect of waves generated within the separation bubble (see region

𝑥 < 100), upstream of the impingement point, which are then transmitted across the incident shock and interact with the

vertical wave fronts generated downstream of the incident shock. Then, downstream of the reattachment shock (i.e. in

the second shock layer), a clearer wave structure of vertically-oriented wave fronts can be observed, which propagate

downstream with a similar amplitude to that of the waves induced by the incident shock oscillations. This demonstrates
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that the waves generated just downstream of the oscillating incident shock are effectively transmitted downstream of the

reattachment shock and propagate in the downstream region applying a forcing to the local boundary layer.

Figures 10b and 10c show that at higher frequencies, 23 kHz and 46 kHz, respectively, the disturbances in both

shock layers SL1 and SL2 seem much weaker, and almost no oscillations can be observed along and just downstream of

the incident shock. This suggests that the incident shock is able to radiate waves only at the fundamental frequency of

the shock oscillations, whilst the low-amplitude waves present in SL1 and SL2 are mostly associated with disturbances

originating within the separation bubble, in the shock impingement region, and along the reattachment shock. Indeed, in

contrast to the incident shock, the reattachment shock shows evident oscillations also at different frequencies, although

at a lower intensity compared to the fundamental frequency. This is due to unsteadiness of the separation bubble and the

shock impingement and reattachment region, which is present also in the absence of shock oscillations (depicted in 9a,

at the FFT frequency of 11.5 kHz). This unsteadiness is responsible for the low-amplitude waves transmitted in the SL1

region downstream of the separation shock, as well as for the oscillations of the reattachment shock, which, in turn,

generate low-amplitude waves in SL2.

Overall, from the analysis of the disturbance features in figure 10, it can be concluded that the shock-layer wave

structure at frequencies higher than the fundamental shock-oscillation frequency appears very similar to that for the

case without shock oscillations, and is mostly due to the inherent unsteadiness of the shock/boundary-layer-interaction

phenomenon. The wave structure at the shock-oscillation frequency is, in contrast, significantly more intense in

amplitude, and with an evident effect of vertically-oriented wave fronts released by the oscillating incident shock and

efficiently transmitted downstream of the reattachment shock and the downstream region.

Figure 11 shows the corresponding results for the case of oscillating shock at the frequency 23 kHz, i.e. equal to the

DSMC-predicted frequency in the work of Sawant et al. [37]. Similar results can be observed, in general, as those

discussed in figure 10. The wave patterns at the fundamental frequency (see figure 11b) reveal again an evident system

of vertically-oriented amplified wave fronts generated by the oscillations of the incident shock, which first interacts

with the waves downstream of the separation shock, and then gets transmitted across the reattachment shock into the

downstream region (SL2). Similarly to figure 10, the response at the lower non-fundamental frequency (see figure 11a)

resembles that for the case with no shock oscillations (in figure 9b). We notice, in this case, a high-frequency excitation

in figure 11c, with evidence of shorter-wavelength oscillations of the incident shock and radiated post-shock wave fronts,

which produce a similar mechanism as that observed in 11b at the fundamental frequency, however at a significantly

lower amplitude. This may suggest that the imposed amplitude of the impinging shock oscillations is high enough to

trigger nonlinear effects at the higher frequencies.
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(a)

(b)

(c)

Fig. 10 FFT pressure fluctuations (real part) in 𝑥𝑦-plane (fundamental frequency 𝑓 = 11.5 kHz). Response at
11.5 kHz (a), 23 kHz (b), 46 kHz (c)

(a)

(b)

(c)

Fig. 11 FFT pressure fluctuations (real part) in 𝑥𝑦-plane (fundamental frequency 𝑓 = 23 kHz). Response at
11.5 kHz (a), 23 kHz (b), 46 kHz (c)

Figure 12 shows the results for the shock oscillation frequency of 46 kHz. Again, it is possible to notice similar

patterns as those already discussed for the previous figures. The response at the fundamental frequency (figure 12c) shows
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wave fronts of consistently smaller wavelength compared to the previous cases at the lower fundamental frequencies.

It should also be noticed that vertically-oriented wave fronts, generated by the incident shock oscillations, appear to

dominate also the region downstream of the separation shock, in which there is no evidence of horizontally-oriented

waves. This suggests that the latter flow feature is associated with the low frequencies of the shock oscillations. In region

SL2, amplified waves propagate downstream of the reattachment shock forcing the local turbulent boundary layer. The

response at the frequency 11.5 kHz (see figure 12a) shows similar flow patterns as those observed in the previous case at

the same frequency (see figure 11a), with flow features resembling the case with no shock oscillations (see figure 9). The

latter, in turn, shows a weaker wave structure at 46 kHz (figure 9c), compared to the lower frequencies, mostly located in

the shock interaction region. The response at 23 kHz (see figure 12b) shows also a similar structure to that at 11.5 kHz,

with no evidence of nonlinear effects along the incident shock. However, some wave amplification is observed in both

regions SL1 and SL2, more precisely wave fronts downstream of the separation shock and immediately downstream of

the reattachment shock. These, in turn, are correlated to the pronounced unsteadiness within the separation bubble and

the impingement location, as shown in figure 12b. Similar features can be observed in general for the cases with no

shock oscillations (e.g. see figures 9a and 9b), however at lower amplitudes.

(a)

(b)

(c)

Fig. 12 FFT pressure fluctuations (real part) in 𝑥𝑦-plane (fundamental frequency 𝑓 = 46 kHz). Response at
11.5 kHz (a), 23 kHz (b), 46 kHz (c)

In order to evaluate the effect of the shock-oscillation amplitude on the solution, figures 13, 14 and 15 show the

Fast-Fourier-Transformed response at the frequencies 11.5 kHz, 23 kHz and 46 kHz, respectively, with the reference

𝑓 = 23 kHz as fundamental frequency, for different amplitudes of the shock oscillations (𝐴 = 1, 2, 3). Results show that,
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at each frequency the same overall wave structure is maintained for different amplitudes, with increasing values of the

pressure fluctuations for increasing shock-oscillation amplitudes (note that the color scale has been kept constant across

the different subplots in each figure). The wave structure in figure 13 appears very consistent with that shown in figure 9a

at the same frequency (11.5 kHz) without shock oscillations, which is indication of absent or negligible nonlinear effects

induced, at the lower frequencies, by the shock oscillations (at the fundamental frequency of 23 kHz). Figure 14 shows

the response at the fundamental frequency of the shock oscillations (23 kHz), with the above-described coherent wave

patterns induced in the downstream turbulent boundary layer, which are more pronounced at increasing amplitudes of

the shock oscillations. Finally, figure 15a shows evidence of a nonlinear higher-frequency (46 kHz) excitation associated

with the incident shock oscillations, which has a similar structure to the response at the fundamental frequency (23 kHz)

in figure 14, however with shorter wavelengths (consistent with the higher frequency) and at a lower overall amplitude.

Sign of small oscillations can be observed along the incident shock in figure 15a, which grow rapidly with the oscillation

amplitudes forming a clear pattern of post-shock wave fronts downstream of the incident shock at the highest amplitude

(15c).

(a)

(b)

(c)

Fig. 13 FFT pressure fluctuation response (real part) in 𝑥𝑦-plane at 11.5 kHz: 𝐴 = 1 (a), 𝐴 = 2 (b), and 𝐴 = 3 (c)
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(a)

(b)

(c)

Fig. 14 FFT pressure fluctuation response (real part) in 𝑥𝑦-plane at 23 kHz: 𝐴 = 1 (a), 𝐴 = 2 (b), and 𝐴 = 3 (c)

(a)

(b)

(c)

Fig. 15 FFT pressure fluctuation response (real part) in 𝑥𝑦-plane at 46 kHz: 𝐴 = 1 (a), 𝐴 = 2 (b), and 𝐴 = 3 (c)

C. Wall Response

We now move to the analysis of the pressure response on the surface. We will consider here, not only contour

plots revealing the main flow patterns on the surface, but also spanwise-averaged profiles of the pressure-fluctuation

26



distribution along the surface, which enable a more quantitative evaluation of the amplitude comparison at different

frequencies as well as for different disturbance modes (e.g. 2D and oblique wave modes).

Figure 16a shows contours of the Fast Fourier transformed wall pressure fluctuations at the frequency of 23 kHz (i.e.

the reference DSMC-predicted frequency at the present Mach number) for the case of no shock oscillations. This serves

as a reference for comparison of the surface flow patterns with the other cases with oscillating shock. The pressure

patterns shows turbulent boundary layer downstream of the reattachment point. Figure 16b shows the corresponding

spanwise-averaged streamwise distribution of the pressure-fluctuation amplitude taken at different FFT frequencies. As

can be seen, for the case of no shock oscillations, the wall-pressure response follows approximately the same trend

at all the frequencies. A high peak is reached immediately downstream of the reattachment point, then the pressure

fluctuations decrease towards a plateau in the downstream region.

Figure 17 shows the corresponding wall pressure fluctuation contours for the three oscillating-shock cases at the

respective fundamental frequencies, namely 11.5 kHz, 23 kHz, and 46 kHz. It can be clearly observed that oscillations

of the incident shock produce, at the fundamental frequency, a compact amplified 2D-wave structure which propagates

downstream of the reattachment shock within the local turbulent boundary layer. The 2D waves show a decreasing

wavelength from figure 17a to figure 17c, consistent with the increasing frequency of the shock oscillations. This wave

pattern is completely absent in the case without shock oscillations depicted in figure 16a, and, as such, represents an

effect of the incident shock oscillations on the downstream turbulent boundary layer, as well as the evidence of the

efficient wave transmission mechanism from region SL1 to SL2, as discussed in the previous section. The shown wall

response downstream of the reattachment point is indeed correlated to the local wave forcing within the shock layer SL2,

which modulates the turbulent boundary layer.
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(a)

(b)

Fig. 16 FFT wall-pressure fluctuations without shock oscillations: real part distribution patterns at 23 kHz (a),
and spanwise-averaged absolute value at different frequencies (b)
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(a)

(b)

(c)

Fig. 17 FFT wall-pressure fluctuations (real part) at different fundamental frequencies (𝐴 = 3): 11.5 kHz (a),
23 kHz (b), 46 kHz (c)

Figure 18 shows the effect of the shock-oscillation amplitude on the wall-pressure fluctuation patterns at the

fundamental frequency of 23 kHz. Each of the three different amplitudes (𝐴 = 1, 2, 3) shows evidence of the compact 2D

wave structure modulating the turbulent boundary layer, thus demonstrating that the same wave transmission mechanism

from region SL1 to region SL2 and in the downstream boundary layer originates for each of the considered amplitudes.

As expected, the wave fronts propagating in the turbulent boundary layer appears more pronounced as the amplitude is

increased.
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(a)

(b)

(c)

Fig. 18 FFT wall-pressure fluctuations (real part) at different amplitudes (fundamental frequency 23 kHz):
𝐴 = 1 (a), 𝐴 = 2 (b), 𝐴 = 3 (c)

Figure 19 shows 𝑥-wise profiles of the frequency-dependent spanwise-averaged wall-pressure fluctuation amplitude

for the three oscillating-shock cases at different fundamental frequencies. As can be seen, the effect of the frequencies

different from the fundamental frequency (either subharmonics or superharmonics) is marginal for all the cases, and

the related pressure-fluctuation profile is very similar to that for the case without shock oscillations (see figure 16b).

However, at the fundamental frequency of the shock oscillations, the fluctuation amplitude shows a significant increase,

both upstream (i.e. in the separation bubble) and downstream of the reattachment point, with a double-peak pattern. The

location of the peaks is frequency dependent, with the lowest frequency (figure 19a) showing the first peak approximately

at the reattachment point and the second higher-amplitude peak immediately downstream. At the larger frequencies

(figures 19b and 19c), however, both main peaks of the double-peak structure occur downstream of the reattachment

location, and the first one is also the highest one in amplitude. The maximum amplitude is also frequency dependent,

with the higher frequencies (23 kHz and 46 kHz) showing a very similar amplitude peak, larger by about 20% than that
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for the lowest frequency (11.5 kHz). Furthermore, we notice that the response to the higher frequencies presents a third

lower-amplitude peak located upstream of the reattachment point, which is more amplified at the highest frequency (46

kHz). Downstream of the reattachment point, the response at the fundamental frequency shows a significantly larger

amplitude compared to different frequencies, as well as compared to the case without shock oscillations, for a relatively

extended region (up to 𝑥 ≈ 200), before decreasing towards a plateau towards the end of the computational domain.

However, at the highest frequency, the amplitude is seen to maintain a pronouncedly larger value compared to the other

(non-fundamental) frequencies and the no-oscillation case throughout the whole domain extension in the downstream

region. At the position 𝑥 = 230, hence at a distance of approximately Δ𝑥 = 104 from the reattachment point, the

amplitude of the highest fundamental frequency is still about 50% larger than that at the different (non-fundamental)

frequencies and the no-oscillation case, whereas at the end of the computational domain (𝑥 = 300) it is about 30% larger.

We can conclude that shock oscillations promotes the emergence of a 2D-wave system propagating downstream with a

sustained amplitude, whose amplification is larger at higher frequencies and span larger streamwise lengths. This, in

turn, indicates that at frequencies equal to and larger than the DSMC-predicted frequency, the the wave transmission

and amplification mechanism in region SL2 is stronger than at lower frequencies.
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(a)

(b)

(c)

Fig. 19 Spanwise-averaged absolute value of the FFT wall-pressure fluctuations at different fundamental
frequencies (𝐴 = 3): 11.5 kHz (a), 23 kHz (b), 46 kHz (c)
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In figure 20 we show the shock-oscillation amplitude effect on different disturbance modes propagating within

the turbulent boundary layer. The figure shows spanwise-averaged real part of the FFT pressure fluctuations at the

fundamental frequency of 23 kHz, for different spanwise wavenumbers, at different shock-oscillation amplitudes. The

𝛽 = 1 and 𝛽 = 2 modes refer to oblique wave modes with spanwise wavelength equal to the whole domain width

and half the domain width in the spanwise direction, respectively. These are compared with the corresponding 2D

mode (𝛽 = 0) for the three cases at different oscillation amplitudes. As can be seen, for all the cases the most relevant

excited mode is a 2D wave mode both in the shock interaction region and in the downstream turbulent boundary layer.

Oblique modes are also present, but at a significantly lower amplitude compared to the 2D mode, particularly for larger

amplitudes of the shock oscillations. In the downstream turbulent flow region, the maximum amplitude of the 2D waves

at the highest considered amplitude of the shock oscillations (figure 20c) is observed to be approximately double that of

the corresponding waves at the lowest amplitude (figure 20a). This, in turn, results in a larger modulation effect on the

local turbulent boundary layer.
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(a)

(b)

(c)

Fig. 20 Spanwise-averaged FFT wall-pressure fluctuations at different amplitudes (fundamental frequency 23
kHz): 𝐴 = 1 (a), 𝐴 = 2 (b), 𝐴 = 3 (c)
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Finally, figure 21 shows the effect of different fundamental frequencies of the incident shock oscillations on the FFT-

response for the wall pressure fluctuations. Simulations have been performed also at the fundamental shock-oscillation

frequency of 92 kHz, which is shown here for comparison with the three reference frequencies so far considered. The

corresponding wave patterns at 92 kHz in the shock layer and on the wall are similar to those already observed at the

three discussed frequencies (11.5 kHz, 23 kHz, 46 kHz), and reveal again the already described compact 2D-wave

pattern propagating at a sustained amplitude within the turbulent boundary layer. Hence, these are not shown in the

present paper for brevity purposes. As can be seen in figure 21, the high frequency (92 kHz) shows a lower peak in the

interaction region, compared to the lower frequencies, however its profile in the downstream region follows closely the

profile of the 46 kHz frequency. This demonstrates that even the response at high frequencies near the order O(102) kHz

is characterized by waves induced by the shock oscillations and propagating with sustained amplitude in the downstream

turbulent boundary layer.

Fig. 21 Spanwise-averaged absolute value of the FFT wall-pressure fluctuations at different fundamental
frequencies (𝐴 = 3)

V. Conclusion
DNS simulations have been performed for an oscillating oblique shock impinging over a transitional boundary layer

in a Mach 5 flow over a flat plate, and a receptivity study has been conducted for the wave patterns in the shock layer and

on the wall. The reference imposed frequency of the shock oscillations matches that obtained in a former DSMC study

[37], at the considered Mach number, for the ‘natural’ oscillations induced by the inner-shock molecular nonequilibrium.

In the present work, oscillations of the incident shock have been imposed as a time-periodic boundary condition, with

the aim to mimic the effects of an oscillating shock in the same frequency range of the DSMC-predicted frequencies. A

35



sensitivity study based on both frequency and amplitude has been carried out, in which two additional frequencies, half

and double the reference DSMC-predicted frequency (23 kHz), along with three different amplitudes of the incident

shock oscillations, have been considered.

Results of the pressure fluctuations within the shock layer has shown that a compact wave structure made of

vertically-oriented wave fronts is generated downstream of the incident shock at the fundamental oscillation frequencies,

which, after interacting with a complex wave system downstream of the separation shock, is efficiently transmitted

through the reattachment shock and propagate downstream imposing an external forcing on the local turbulent boundary

layer. Weaker amplitudes are observed, in contrast, for the response at frequencies different to the fundamental frequency,

whose wave patterns appear, in general, more comparable with those without oscillations of the incident shock, however

showing some higher-frequency nonlinearities and some pronounced unsteadiness downstream of the separation shock.

Analysis of the response on the surface has shown that the downstream turbulent boundary layer is highly affected by

the post-shock wave system transmitted through the reattachment shock at the fundamental oscillation frequencies. In

particular, it is found that a compact system of 2D wave fronts induced by the shock oscillations is released downstream of

the reattachment shock. These amplified waves propagate up to long distances with a sustained amplitude downstream of

the reattachment shock, modulating the local turbulent boundary layer. This previously unknown generation mechanism

of the system of 2D planar waves within the turbulent boundary layer is altogether absent when no oscillations are

imposed on the impinging shock. Consistently, an analysis of the FFT wave modes has shown the 2D wave mode

as the most excited mode induced by the shock oscillations. Whereas, oblique 𝛽 = 1 and 𝛽 = 2 modes, although

present in the downstream turbulent boundary layer, have a significantly lower amplitude. Increasing amplitudes of

the shock oscillations are seen, as expected, to produce a higher amplification of the 2D waves transmitted within the

downstream turbulent boundary layer, with doubled disturbance amplitude in the downstream region, compared to the

lowest shock-oscillation amplitude case.

Increasing shock-oscillation frequencies within the DSMC-predicted frequency range (11.5 kHz - 46 kHz) are

seen to promote a higher amplification of the 2D waves, with larger amplitudes maintained up to longer distances

downstream of the reattachment shock, compared to lower frequencies. The frequency of 46 kHz of the incident shock

oscillations produces a wave system with amplitude larger by 50 % than the disturbances observed in the no-oscillation

case and for the subharmonic frequencies, near 3/4 of the computational domain length, and 30 % higher by the end

of the computational domain. An additional analysis at a larger frequency (92 kHz) has shown a similar disturbance

profile to that for the 46 kHz frequency in the downstream turbulent boundary layer, proving that the wave transmission

mechanism from the incident to the reattachment shock efficiently promotes wave structures with sustained amplitude

propagating within the turbulent boundary layer.

The present findings suggest that further investigation is necessary to shed light on the complex mechanism

correlating dynamics of oscillating incident shocks and the induced boundary-layer instabilities, potentially exploring
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different frequency ranges and amplitudes of the shock oscillations, which in turn can have important implications on

the aerodynamic and propulsive performance of hypersonic vehicles.
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