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Abstract

The global demand for high-quality rice necessitates advancements in milling technolo-
gies and quality assessment techniques that are rapid, accurate, and scalable. Traditional
methods of rice evaluation are time-consuming and subjective, and are increasingly being
replaced by artificial intelligence driven solutions that offer non-destructive, real-time
monitoring capabilities. This review presents a comprehensive synthesis of current Al
applications including machine vision, deep learning, spectroscopy, thermal imaging, and
hyperspectral imaging for the assessment and classification of rice quality across various
stages of processing. Major emphasis is put on the recent advances in convolutional neural
networks (CNNSs), YOLO architectures, and Mask R-CNN models, and their integration
into industrial rice milling systems is discussed. Additionally, the review highlights next
steps, notably designing lean Al architectures suitable for edge computing, hybrid imag-
ing systems, and the creation of open-access datasets. Across recent rice-focused studies,
classification accuracies for grading and varietal identification are typically >90% using
machine vision and CNNs, while NIR-ANN models for physicochemical properties
(e.g., moisture/protein proxies) commonly report strong fits (R? a2 0.9-0.99). End-to-end
detectors/segmenters (e.g., YOLO/YO-LACTS) achieve high precision suitable for near
real-time inspection. These results indicate that Al-based approaches can substantially
outperform conventional evaluation in both accuracy and throughput.

Keywords: rice milling; deep learning; You Only Look Once (YOLO); computer vision;
quality assessment

1. Introduction

Agriculture, contributing 6.4% to the global GDP, plays a crucial role as the main
provider of food and economic output worldwide. In numerous countries, it serves
as a major revenue source, while millions of individuals depend on it for energy and
employment [1]. The UN FAO estimates that, to feed the 2050 population, food produc-
tion must rise by roughly seventy percent [2]. Despite sufficient global food produc-
tion to feed the entire population, 500 million people remain malnourished, and over
821 million face hunger. To meet future population demands, yearly cereal production
must rise by 3 billion tonnes, and meat production must increase by more than 200% by
2050 [3]. To meet future demands, both crop sizes and farm structures must expand,
alongside the adoption of advanced agricultural technologies. While this is feasible, it
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remains unclear whether such growth can be achieved in a sustainable and inclusive
manner. Additionally, dietary habits have shifted significantly in recent decades, with a
notable increase in the consumption of processed foods. Despite evolving trends, certain
staple foods remain consistently present in consumers” diets. A prominent example rice
(Oryza sativa L.) is consumed by most populations, providing the chief staple for about
50% of people worldwide [4].

1.1. Aim and Scope of the Study

The main objective of this review is to systematically synthesize and evaluate artificial
intelligence (AI) technologies applied in rice quality assessment and milling. The study
aims to highlight both existing research trends and gaps between laboratory prototypes
and industrial deployment. Specifically, it focuses on three research questions:

(i) Which Al-based sensing and analytical technologies have been used to assess rice-
grain quality and morphology?

(i) How do these technologies compare in terms of performance, data requirements, and
practicality for real-time applications?

(iii) What are the limitations, challenges, and future research directions in implementing
Al-based quality assessment at industrial scale?

The scope of this review encompasses machine vision, spectroscopy, hyperspectral
imaging, thermal imaging, and Al-based data modelling techniques, emphasizing their
roles in predicting rice characteristics such as shape, colour, chalkiness, hardness, and
milling yield. By consolidating findings across these domains, the review establishes a com-
parative framework to evaluate both traditional and Al-enhanced approaches, outlining
their relative advantages, limitations, and industrial readiness.

Agricultural production, industrialization, and consumption of rice constitute a vital
global economic activity, with nearly half of the world’s population consuming it daily [5].
About half of the global population, notably in Latin America, Asia, and some African
countries , relies on rice as its primary energy supply [6]. The widespread popularity of
rice can be largely attributed to its low cost, fast, and simple preparation, as it complements
a variety of cooking methods [7].

Rice is a key energy source rich in nutritional components, including fibre, minerals,
proteins, vitamins, and antioxidants. Figure 1 illustrates the rice plant, harvested grain,
and the subsequent stages of rice processing, including unpolished (brown) and polished
(white) rice. It has been a primary food consumed by over half of the global popula-
tion. Shahbandeh et al. [8] reports that Asian populations are the leading consumers of
this food product, with China at the leading forefront, consuming the highest of about
154.9 million metric tons (MMT), closely followed by India at 103.5 MMT, Vietnam at
73.3 MMT, Bangladesh at 36.7 MMT, and Indonesia at 35.6 MMT per harvest year. Recent
years have seen a rise in demand in Asia and developing countries, for milled rice charac-
terized by high-quality traits as defined by consumers [9-11]. Thus, enhancing the quality
traits of rice is essential to ensure high consumer acceptance. Rice (Oryza sativa L.) is a
major commercial grain globally, and its economic value is closely linked to the propor-
tion of well processed rice. In the rice milling industries, the quality of required for rice
production are influenced by several factors, with visual characteristics being particularly
crucial, as they significantly impact consumer choices and preferences. Quality assessment
of rice basically includes factors such as the physical properties, aroma, and taste. These
factors are traditionally evaluated after the milling process. However, for consumers, rice
quality are primarily assessed based on its appearance [9,10]. Consequently, appearance
characteristics, such as grain length and breadth, significantly influence the commercial
value of rice. Manual inspection of grain physical parameters in milling industries are
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labour-intensive process. Conventional rice quality analysis relies on expert human oper-
ators who visually inspect and the evaluate rice samples at defined intervals. However,
this method is susceptible to errors caused by human fatigue and occasional lapses in
judgment. Given the inaccuracies associated with manual inspections of rice quality, there
is a need for accurate, precise and less labour intensive methods for real-time rice milling
analysis. Al computer vision model utilize image processing techniques to meet this need,
as Al techniques provide the added advantage of being non-destructive. Furthermore, for
real-time implementation, these methods (Al approaches) can be utilized during milling
processes by installing cameras along the rice production line. Today, AI model has proven
to be a sophisticated and reliable tool for addressing complex practical challenges across
various fields [12,13]. In a broad context, artificial intelligence (Al) is defined as the ca-
pability of computers and other machines to emulate intelligent behaviours exhibited by
humans and nature in order to address practical problems. Typically, Al relies on two core
concepts: learning and reasoning, which are utilized for modelling and optimization [14].
Learning automates model construction, while reasoning draws logical conclusions from
rigorously documented evidence [15]. Al technologies facilitate advanced process control
by improving real-time monitoring, boosting operational efficiency, and implementing
self-correcting systems within production environments in food processes and quality
control [16]. In the case of rice quality assessment, Al can be effectively applied to carry
out a range of functions such as assessing food quality, implementing control strategies,
classifying food products, and generating predictive insights [17]. Recent Al developments
enable data-driven modeling and process optimization for rice quality, e.g., detecting
pathogens, selecting grains, and controlling milling [17,18]. Recent deep learning methods
have been applied to classify, monitor, and detect defects throughout rice production and
milling [18-20]. The impressive capabilities of deep learning methods hold significant po-
tential for enhancing the feature extraction in the rice milling process [21-23]. AI comprises
several branches such as ANNSs, fuzzy-logic systems, metaheuristic optimization methods,
and combined (hybrid) approaches.

& —— Germ

Rice bran ° Albumen

[’ White rice

& Rice husks

Rice plant (A) Brown rice structure (B)
unpolished rice (C) White rice (D)

Figure 1. Represents (A) rice plant (B) brown rice structure (C) unpolished rice and (D) polished
white rice.
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The motivation for this review is the growing need for accurate, rapid, and non-
invasive rice quality assessment systems in both breeding programs and commercial rice
milling. With increasing consumer demand for premium rice traits such as uniformity, low
chalkiness, and varietal authenticity, traditional methods fall short due to their subjective
nature and labour intensity. Artificial intelligence offers a promising solution, yet adoption
remains fragmented.

1.2. Major Contribution

This review distinguishes itself from previous literature by offering a structured,
comparative analysis of traditional and Al-driven techniques for rice quality assessment,
with a focus on real-world implementation. Unlike earlier reviews that either broadly cover
Al in agriculture or narrowly examine specific imaging methods, this study synthesizes
diverse Al tools such as deep learning models like YOLOv8, CNNs, and other model
systems specifically for rice milling and quality classification. The review also highlights a
critical gap for Al applications into commercial rice milling operations. To address this, we
emphasize Al methods with proven accuracy in experimental settings but limited industry
uptake and propose potential solutions for industrial integration and validation. Unlike
prior reviews that discuss rice quality technologies at a high level [16] or survey broader
agri-Al trends [24], this review maps rice-specific sensing modalities (RGB vision, NIR, HSI)
directly to target traits (morphology, chalkiness, composition) and aligns them with Al
model families (traditional ML vs. deep learning). We further connect laboratory metrics to
deployment considerations (latency, robustness, edge feasibility) and provide a structured,
reproducible basis for comparison across rice-focused studies [25-28].

2. Materials and Methods
2.1. Systematic Review Statement

This systematic review was conducted following the PRISMA 2020 guidelines to ensure
methodological transparency and reproducibility. The review protocol was developed in
advance, defining the objectives, inclusion and exclusion criteria, and search strategy as
shown in Appendix A. Although the protocol was not registered in a public database, all
search, screening, and selection procedures were defined and systematically documented
to ensure transparency and replicability. The PRISMA procedure is shown in (Figure 2).
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Figure 2. PRISMA flow diagram of procedure used in this review.
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The review adopts a structured approach to synthesizing literature on artificial intelli-
gence in rice quality assessment. This comprehensive review focused on rice processing,
milling, analysis, quality, machine vision, deep learning, hyperspectral imaging, milling
optimization, and Al in agriculture (Figure 3). Publications between 2000 and 2025 were
considered to capture both foundational and cutting-edge developments. Studies were
included if they focused on Al or computer-vision-based methods for rice morphology,
classification, or milling process optimization.

The selected literature was categorized according to sensing modality (e.g., visual
imaging, spectroscopy, hyperspectral, thermal) and analytical approach (machine learning,
deep learning, hybrid models). Each study was analyzed based on its dataset characteristics,
model architecture, evaluation metrics (e.g., accuracy, precision, recall, mAP), and suitability
for real-time or industrial scale application. The synthesized insights were then compared
to traditional rice quality assessment methods to identify performance improvements,
limitations, and opportunities for technology transfer to industrial environments.

Rice Alinrice Future

Characteristics

assessment irection

Rice
Classification

Quality
assessment | characteristics

Figure 3. Review protocol of contents used.

2.2. Agronomic Importance and Processing

Rice, classified within the Oryza genus, consists of 24 species, with Oryza sativa rice
from Asia and Oryza glaberrima rice from Africa being the two primary species of significant
agricultural importance for human consumption [29]. The remaining 22 wild species of the
Oryza genus are naturally distributed across tropical and subtropical regions worldwide,
including large areas of Africa, Southeast Asia, Australasia, as well as Central and South
America [30]. Oryza sativa, the more widely cultivated of the two domesticated species, is
divided into three major varieties: Indica, Japonica, and Javanica, all of which are extensively
grown. The Indica subspecies produces elongated, slender grains commonly grown across
tropical and subtropical regions of Asia and the Americas. Owing to its high amylose and
low amylopectin concentrations, it tends to cook into a firm, non-sticky texture [31,32],
with a more translucent appearance [33]. Conversely, Japonica rice is characterized by
short to medium, round grains cultivated primarily in temperate zones, including Japan
and northern China. Its higher amylopectin content results in a softer, stickier texture,
contributing to the grains” adhesive properties and the final product’s opacity [34]. Finally,
Javanica represents a medium-grain type predominantly grown across the Philippines and
the highland regions of Indonesia and Madagascar [35].

Rice is currently cultivated, processed and milled in over 100 countries (Figure 1),
yielding approximately 500 million tons of paddy rice each year, across an estimated
165 million hectares of farmland [36]. On a global scale, irrigated lowland rice covers
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about 93 million hectares and contributes roughly 75% of total rice output [37]. Rainfed
lowland systems in regions such as South Asia, parts of Southeast Asia, and much of
Africa provide around 20% of global rice production, while upland rice, also grown under
rainfed conditions, accounts for approximately 4% [38]. Given that three-quarters of rice
cultivation depends on irrigation, the crop utilizes about 30% of the world’s irrigation
water, together with 14% of fertilizer use and nearly 10% of pesticide consumption [39].
Moreover, rice production acts as an important source of methane and nitrous oxide
emissions in the global agricultural sector [40]. Approximately 90% of the world’s rice is
produced across key Asian countries, including Indonesia, Bangladesh, Vietham, Myanmar,
Thailand, the Philippines, Japan, Pakistan, Cambodia, South Korea, Nepal, and Sri Lanka.
In the African context, rice represents the fastest-growing staple food crop in terms of
both demand and output. Africa’s contribution to global cereal production has gradually
expanded, from around 9% in 1961 to about 15% in 2007. However, domestic production
currently satisfies only 54% of the continent’s rice consumption [5,41,42]. The dehusking
followed by milling eliminates the external layers of the paddy, including the husk and bran,
resulting in edible rice grains. Typically, husking equipment is divided into three principal
classes: stone-type dehullers, rubber roll huskers, and impeller-driven models [43]. Stone
dehullers remain prevalent in Asia, where brown rice is directly milled using abrasive
or friction mills. Research indicates that the type of liner used has a significant impact
on the husking efficiency [44]. Abrasive and friction-type milling systems are utilized
for bran removal. It has been noted that abrasive mills are prone to over-milling. In
huller-type mill, dehusking and milling are conducted in a single operation, leading to
increased grain damage. Employing a dehusker prior to milling enhances both milling
efficiency and head rice yields. Another crucial step in rice processing is parboiling.
During the parboiling process, the husk undergoes splitting and detachment from the
grain, facilitating easy dehusking [45]. The degree of milling (DOM) refers to the extent
to which the bran layer is removed from rice kernels during the milling process. Factors
influencing DOM include grain hardness, geometric attributes such as size and shape, the
depth of surface ridges, the thickness of the bran layer, and the operational efficiency of
the milling system [46]. Rice with greater hardness necessitates higher energy input to
attain an equivalent degree of milling (DOM) compared to softer rice varieties [47]. Energy
consumption during milling is influenced by grain thickness, hardness, shape, variety, and
the degree of milling (DOM) [23,47]. Reduced surface hardness increases the likelihood
of damage during milling, resulting in reduced yield and diminished product quality.
of milled rice, particularly for long grains. The extent of mass loss and kernel fracture
depends on parameters such as the rice cultivar, grain morphology, and aleurone layer
thickness [48].

2.3. Structure and Chemical Composition

An in-depth knowledge of grain morphological features is fundamental to the assess-
ment of rice’s physical and chemical attributes [49]. The caryopsis structure comprises
the pericarp, endosperm, and embryo (or germ), which are enclosed by a tough, siliceous
hull (Figure 2). This outer covering is derived from two specialized bracts, the lemma and
palea [50]. The rice husk serves as a protective barrier for the caryopsis (grain), contribut-
ing to its resistance against insect infestation during storage and offering protection from
primary pests. When stored at regulated humidity levels, rice grains remain viable for
extended periods. The pericarp and aleurone layers exhibit the greatest accumulation of
nutrients, including proteins, fats, fiber, minerals, and vitamins. Conversely, the endosperm
is dominated by starch and protein, while the germ portion holds the most lipids [50-52].
Carbohydrates account for approximately 75-80% of the grain’s composition, with starch
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comprising around 90% of these carbohydrates as the main component. This is accom-
panied by fibers and free sugars, including fructose, raffinose, and glucose [53,54]. The
endosperm primarily contains starch and protein, while the bran fraction is abundant in
dietary fiber, and the germ portion consists largely of lipids with trace quantities of other
carbohydrates [55]. The protein content of rice varies according to processing methods
and environmental factors such as cultivation practices, nitrogen fertilizer application,
solar exposure, and temperature during grain filling [56]. The dominant protein fractions
in rice are prolamins and glutelins. Similar to other cereal grains, lysine is the limiting
amino acid, whereas cysteine and methionine occur in relatively higher amounts. Rice
lipids mainly consist of triglycerides, phospholipids, and free fatty acids, with a substantial
proportion located in the germ, which accounts for roughly one-third of the total lipid
pool [57]. Brown rice, due to its higher lipid concentration, is more susceptible to lipid
oxidation than polished white rice, where the lipid level is reduced by the removal of
surface layers during polishing. Regarding fatty acid composition, approximately 95% of
rice lipids are made up of palmitic acid (16:0), oleic acid (18:1), and linoleic acid (18:2).
These fatty acids are nutritionally essential for numerous physiological functions, as they
cannot be synthesized endogenously and therefore must be supplied through the diet [58].

2.4. Biotic and Abiotic Factors Affecting Grain Quality

The relationship between grain and its storage environment constitutes an ecosystem,
where product quality is influenced by both living organisms and non-living environmen-
tal conditions [56]. After harvest, rice is typically stored for varying durations prior to
consumption. During this period, notable changes occur in its physical, chemical, and
physiological attributes, ultimately altering its nutritional quality and sensory proper-
ties [59,60]. Such modifications manifested in factors like pasting characteristics, color,
flavor, and biochemical composition are collectively termed "rice aging" [61]. The inter-
action among grain structure, surrounding air, and storage parameters result in shifts in
moisture content, kernel temperature, and intergranular relative humidity. Together, these
conditions shape the storage atmosphere in which the equilibrium moisture content of
rice grains may fluctuate [62]. Moisture equilibrium, or hygroscopic balance, occurs when
the grain’s water content reaches a steady state corresponding to the relative humidity of
the surrounding air at a specific temperature. The equilibrium moisture content (EMC) is
established when the water vapor pressure within the grain becomes balanced with the
vapor pressure of the external atmosphere [63]. An increase in air temperature reduces the
rate at which moisture is released from the grain, suggesting enhanced resistance to the
movement of heat and water vapor from the kernel core to its outer surface [64]. Variations
in equilibrium moisture content (EMC) throughout storage may result in grain degradation
and quantitative losses due to the interplay of physical, chemical, and biological mech-
anisms. Elevated temperature and moisture within the grain bulk enhance respiratory
metabolism, and the rate of these processes is largely governed by the prevailing storage
environment [60]. Increased respiration during storage reduces grain viability and alters
its physicochemical quality. Heat and moisture exchanges occurring between the grain
bulk and intergranular atmosphere promote quality deterioration and lead to elevated CO,
concentrations [59]. Storage induced structural modifications, including enhanced ligni-
fication and cell wall reinforcement, impede starch gelatinization [65]. These alterations
collectively degrade the nutritional composition, cooking characteristics, and palatability
of rice [66]. Moreover, variations in internal grain properties and environmental conditions
affect physiological traits such as respiration rate and germinative capacity [67]. Of all the
grain properties affected by storage parameters, germination potential exhibits the greatest
susceptibility [68].
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2.5. Quality Assessment of Rice Grain Techniques

Food quality and nutritional integrity play a central role in shaping consumer
perception and market acceptance, and internal characteristics [69]. Key external at-
tributes of importance include size, shape, color, shading, flavor, texture, gloss, firmness,
and odor (Figure 4), along with the absence of visible defects, such as noticeable bruis-
ing [70]. The market offers a wide variety of rice types, primarily tailored to meet
consumer preferences and specific cooking applications. Rice quality variations stem
from a combination of genetic, environmental, and processing-related factors, such as
cultivar type, cultivation method, postharvest treatment, milling procedure, storage con-
dition, and preparation method [71]. Aroma and textural qualities are critical attributes
determining rice quality that can impact the market value of rice and serve as primary
factors driving consumer preferences [72]. Maleki et al. [73] demonstrated that among
regular rice consumers, preferences for rice cooked with varying rice-to-water propor-
tions were shaped by individual inclinations toward either a fluffy or sticky texture.
Given the fluctuating market valuation of rice production, ongoing monitoring of its
quality assessment, authenticity verification, and contamination detection is essential
[20]. Rice quality evaluation can be conducted based on physical grain characteristics,
milling efficiency, chemical composition, and cooking behavior [74]. The physical prop-
erties of rice grains comprise external aspects (e.g., dimensions, geometric shape, surface
smoothness, and color) and internal factors such as mass, kernel hardness, bulk volume,
and flow dynamics. These parameters are critical throughout the entire process, from
harvesting and encompassing the entire post-harvest value chain for quality end-use [75].
In addition to morphological characteristics, the chemical composition of rice encom-
passing protein, moisture, and amylose contents together with functional attributes like
gelatinization properties, plays a crucial role in determining overall grain quality [76].
The marketability and consumer acceptance of paddy, according to commercial stan-
dards, are largely influenced by milling performance, including brown rice yield, total
milled rice recovery, and the proportion of unbroken kernels [77,78]. Grain shape in
rice is quantified through dimensional attributes including length, breadth, and their
proportional relationship (length-to-width ratio), parameters commonly applied in the
classification and identification of commercial cultivars [78]. Chalkiness, characterized
by an opaque white appearance in the endosperm, lowers head rice quality and reduces
the head rice yield during milling. Moreover, rice cultivars with comparable grain ap-
pearances can display diverse cooking behaviors due to variations in their compositional
constituents, especially amylose content, which impacts viscosity profile [79]. Rice vari-
eties that have similar grain appearances may demonstrate distinct cooking behaviors
due to variations in their chemical composition, primarily the amylose content, which
influences viscosity profiles [80]. The establishment of efficient and rapid techniques for
rice quality control holds significant promise for their deployment in screening varieties
and in the milling industry.
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Figure 4. Schematic representation of milling of whole rice grain.

2.6. Traditional Assessment Methods in Rice Milling
Milling Quality

Operational faults and the adoption of non-standard processing techniques can induce
fissures in rice grains during milling. This, in turn, elevates the proportion of broken rice
and diminishes the overall product grade [81]. The study of rice’s physical properties is
crucial for designing suitable processing machinery and establishing standardized proce-
dures. This knowledge helps to minimize losses that occur during the milling process [82].
Milling yield refers to proportion of total milled rice and head rice obtained following the
milling of a defined quantity of rough rice [83]. The milling process begins with cleaning
raw paddy to remove impurities such as leaves, straw, and other foreign materials [84].

This step is followed by dehulling, which separates the outer husk from the grain, and
a secondary cleaning to clear away any residual hulls from the brown rice. Subsequently,
the brown rice undergoes polishing, after which broken kernels are separated from the
whole grains. Milling yield is then evaluated through established equations that quantify
milling performance from the initial rough rice [74].

wt of brown rice

Brown rice count (%) = Wt of rough rice x 100% @

Hulls (%) — —Eofhulls 000, @)
wt of rough rice

f total milled ri
Total milled rice (%) = Wt;t E)Oftjogh ii:ce x 100% 3)

Head rice count (%) = Wt‘;)i (t)(;tlicjxﬂi(iiczme x 100% 4)

Degree of milling (%) = Wt‘;)f :)(;tliénv;ﬂi?czme x 100% (5)

Typically, rough rice contains 20-22% hulls, with literature reporting variations ranging
from 18-26%. Bran and embryos add an additional 8-10%. Out of every 100 g of paddy,
about 70 g of polished rice and 20 g of fragments are generally obtained, giving an overall
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head rice yield of roughly 50%. However, earlier studies have indicated that the recovery
rate of head rice typically ranges from 25% to 65%, depending on varietal and processing
factors [50,75].

2.7. Physical Properties Assessed

In certain countries, consumers link sensory quality to the dimensions of rice kernels,
emphasizing the significance of this trait across the entire rice industry. Various sectors
within these industries utilize measurements of dimensional attributes (length and width)
of rice kernels to evaluate rough, brown, and milling percentage to assess this attribute [75].
Tables 1 and 2 outline the criteria for kernel length, length-to-width ratio, and grain weight
used by IRRI breeders as key selection parameters in the development of new rice culti-
vars [85]. Grain boldness is sometimes described as an additional characteristic for rice
cultivars. However, these criteria are neither intended nor capable of capturing all possible
size and shape variations found globally. Other rice-trading countries apply different
standards when defining kernel dimensions [86].

Table 1. Size classification used by the International Rice Research Institute [85].

Grain Type Length (mm) Scale
Very long >7.50 1
Long 6.61 to 7.50 3
Medium 5.51 to 6.60 5
Short <5.50 7

Table 2. Shape classification used by the International Rice Research Institute [85].

Grain Type Length (mm) Scale
Slender >3.0 1
Medium 21t03.0 5
Bold <2.0 9

Food companies typically consider the dimensional traits of milled rice grains in
their procurement standards, as milled rice represents the principal commercial product
for producing value-added rice goods. The dimensions can be determined manually by
aligning 10-20 filled kernels in a straight line and measuring them with calipers or a ruler.
To expedite this process, various forms of image analysis are also employed. Beyond basic
dimensional parameters, additional kernel traits such as surface area-to-weight ratio can
be evaluated. This metric captures a broader range of morphological variation than basic
dimensional measures and has been linked to differential water absorption and cooking
characteristics [87].

The categorization of rice grains based on their physical traits including length, width,
and chalkiness plays a crucial role in determining the cooking quality of milled rice, as
presented in Figure 5. The calculated S value, which reflects grain shape, allows for the
systematic classification of rice into separate size categories: superfine, fine, medium, and
coarse. Genetic loci associated with grain length and width have been discovered, and
several of the corresponding genes have already been cloned [88,89]. Various genotyping
methods utilizing molecular markers have been applied to identify these mutations within
breeding populations. For example, the DRR-GL marker system offers a rapid and efficient
approach for detecting the functional variation in the GS3 gene [90]. A more detailed
characterization of rice kernel morphology, beyond simple length and width measurements,
is required to enhance the scope of the genetic regulation of grain shape. Yin et al. [91]
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categorized grain shape traits into several dimensional parameters, including grain length,
grain width, length-to-width ratio, grain area, and roundness. In comparison to earlier
studies, these authors identified six previously unreported markers linked to the measured
parameters of kernel dimension. Although progress has been made in understanding the
genetic regulation of kernel morphology, comprehensive identification of genetic markers
linked to all kernel traits remains incomplete for use in rice breeding programs.

Parents F, plant; F, seed
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High gain-elongation group Low gain-elongation group
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Figure 5. Variations in length and width of raw and cooked rice cultivars [92].

Grain Color

Rice appearance is a vital attribute influencing consumer preference and breeding
strategies for new varieties. Traits like grain color are important not only for market
appeal but also in the engineering of processing equipment such as separators, dryers,
and storage systems. Chalkiness, identified by white opaque patches on the kernel, may
range from small localized spots to full-kernel coverage (Figure 6). The occurrence of this
characteristic has been documented in all major grains [93]. The rice industry generally
favors kernels with high translucency and minimal chalkiness, with the primary exceptions
being waxy rice, known for its complete opacity, and Arborio rice, which typically contains
a chalky core. Chalkiness in rice kernels impacts key physical characteristics and functional
performance of the grain [94]. The expression of chalkiness in rice kernels is influenced by
genetic makeup and environmental conditions, prompting breeders to eliminate this trait
through successive selection cycles [95]. Methods for assessing chalkiness vary. Quantify of
the percentage of kernels with any chalk presence, others report those exceeding a defined
chalk threshold, while additional approaches classify kernels based on chalk location such
as ventral side, white core, and dorsal streak [96].

Chalk content is most commonly assessed through subjective visual evaluation of
kernels positioned on a light box; however, some breeding and research programs now
employ digital imaging techniques for a more objective quantification of chalk levels [97].
In addition to low chalk content, consumers generally prefer rice kernels with a high degree
of whiteness. Kernels exhibiting any colour deviation from white are typically regarded
as lower quality. This includes rice with inherent greyness or discoloration caused by
factors such as stink bug damage or kernel smut [98]. For a given cultivar, extended milling
duration leads to increased kernel whiteness due to greater bran removal. In general, as
the degree of milling increases, kernels across all cultivars exhibit enhanced whiteness.
However, certain hybrid varieties achieve higher whiteness and reduced yellowness at
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lower milling degrees compared to compared with numerous standard U.S. long-grain
cultivars cultivated under similar conditions [99]. Rice kernel whiteness may be evaluated
quantitatively using devices like the Satake Milling Meter or Kett Whiteness Meter. In
addition, the coloration of head rice can be determined through colorimetric methods or
digital imaging systems, as discussed in the next section [100].

-
\

Translucent grain Cha;lky grain

Figure 6. The illustration shows the structural differences between translucent and chalky rice grains.
T1 and T2 refer to the upper and lower sections of the translucent grain, while C1 and C2 mark the
corresponding regions of the chalky grain. Among these, T1, T2, and C1 are transparent, whereas C2
is opaque [93].

2.8. Non-Destructive Techniques for Rice Quality Assessment
2.8.1. Machine Vision

Machine vision, a non-invasive, accurate, and time-efficient technique [101], has
shown strong efficacy in assessing the quality of crops and food products [102]. A standard
machine vision system consists of four key components: an illumination source, an image
sensor, a lens, and a computer equipped with a frame grabber or digitizer for image
acquisition and processing [103]. Most systems operate within the visible light spectrum
(380780 nm), allowing for seed identification and grading based on external attributes like
size, shape, color, and texture [104]. Machine vision is increasingly applied in food quality
assessment, offering an affordable, hygienic, and consistent method [105]. Applications in
shape classification, defect detection, and quality assessment are common, with geometric
methods often focusing on rice morphology parameters like compactness, length, and
axis ratios. Razavi et al. [106] used micrometer data and image processing to study the
geometric properties of three Iranian rice varieties, finding that length, width, height, and
projected area decreased with layer removal, while sphericity increased. Additionally,
Singathala et al. [107] developed a quality evaluation technique for milled rice, utilizing
filtering, segmentation, and edge detection to extract shape features, followed by length and
breadth analysis to assess rice quality. Vu et al. [108] method for inspecting rice varieties
based on geometric and morphological characteristics was proposed. An image containing
48 rice kernels was first segmented, and the individual seeds were normalized prior to
extracting their features. The extracted features were then classified using the Adaboost
algorithm, which showed superior performance compared to DT and RF classifiers as
shown in Figures 7 and 8.
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Figure 7. The rice seed’s biological structure, annotated with reference points, was used to guide
normalization, which was performed according to seed orientation and the specified reference
markers [109].
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Figure 8. (a) Rice seed biological structure highlighting reference points. (b) Normalization rules
applied based on seed orientation and reference points [108].
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2.8.2. Spectroscopy

Spectroscopy analyzes and measures spectra generated when matter absorbs, reflects,
or emits electromagnetic radiation. Various techniques such as near-infrared, mid-infrared,
fluorescence, Fourier-transform infrared, and Raman spectroscopy, have been effectively
applied as fast and sensitive methods for assessing the quality and authenticity of cultivated
crop seeds [110]. Near- and mid-infrared spectroscopy utilize molecular overtones and
combination vibrations to characterize chemical structures, while Fourier transform infrared
captures infrared spectra, offering more comprehensive chemical information on samples
than NIR [111]. Raman spectroscopy also supports agrifood analysis by identifying sample
components such as lipids, proteins, and carbohydrates, even in small amounts [112].
NIR spectroscopy has been explored for rice quality analysis, with specific relevance to
the analysis of moisture and protein composition detection. Ref. [113] reported a NIR
scanning 33 wavelengths (825-1075 nm), achieving effective automatic predictions of
protein and moisture content, with a prediction accuracy for protein content of R? = 0.70,
SEP = 0.24% in brown rice, and R? = 0.76, SEP = 0.22% in milled rice. Ref. [114] applied NIR
spectroscopy to differentiate Basmati rice from lower-value varieties using discriminant
analysis on NIR transmittance spectra (850-1050 nm), which successfully identified all
Basmati samples; however, the model exhibited a cross-validation error ranging from 8%
to 20% due to limited sample diversity, suggesting a need for broader validation. Further
studies have demonstrated the effectiveness of NIR spectroscopy in discriminating Basmati
rice from lower-grade varieties [114]. Using NIR transmittance mode (850-1050 nm),
23 single grains from 116 samples were analyzed, with the calibration model developed
from spectra of 62 bulk samples. Discriminant analysis outperformed PCA, successfully
distinguishing all Basmati samples included in the study. Thermal imaging captures
and converts an object’s thermal signature into visual format for contactless analysis and
feature identification (Figure 8). This method enables high-resolution, two-dimensional
surface temperature mapping, with data applicable in various ways [115]. In the agro-food
industry, thermal imaging has become popular due to its minimally intrusive, contact-
free, and high-throughput measurement capabilities suited to online applications [116].
Thermal imaging devices are designed for ease of use, provide accurate and repeatable
temperature readings, and do not rely on additional illumination, distinguishing them
from other imaging techniques [117]. Applications include assessing seed quality, detecting
diseases, evaluating the degree of water deficiency in crops, monitoring soil moisture, and
determining agri-food maturity [118]. Thermal imaging’s use for bruise detection in apples
was first explored by [119], who monitored temperature changes in bruised apples through
natural convection. Similarly, Jamil et al. [120] applied thermal imaging, with 0.05 °C
thermal sensitivity in the mid-infrared range, to differentiate paddy husks by heating and
cooling treatments on samples with varying husk content (20, 40, 60, and 100%) (Figure 9).
Differences in heat transfer between seeds and husks produced notable surface temperature
variations, with a 25-s cooling cycle yielding a high classification accuracy of 98.07% for
husk identification.
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Figure 9. Schematic representation of a food inspection system integrating thermal imaging [121].

2.8.3. Thermal Images of Paddy Seeds

Immature paddy seeds, which lead to low milling recovery, high breakage rates,
inferior grain quality, and greater susceptibility to diseases in storage, are considered
foreign materials and should be fully removed from batches. Ref. [122] applied thermal
imaging to identify paddy seeds with varying foreign substance levels, maturity stages,
and moisture content. Thermal videos were captured after heating and cooling the samples,
and selected frames were analysed. Seed samples were segmented in thermal frames, and
the average pixel values representing surface temperature were calculated as the sample’s
thermal index. The study found a strong linear relationship (12 = 0.896) between thermal
index values and paddy maturity stage is shown in Figure 10.

0% 40% 60% 100% Husk  100% Paddy
- '

Gl 2.

(b)

Figure 10. Thermal images of paddy seeds with varying husk quantities are shown in (a), alongside
binary images obtained through simple thresholding to highlight husk areas as white pixels in (b).
Paddy husks are depicted as darker regions in thermal images, owing to their reduced thermal
conductivity and lower temperature relative to the rice seeds. Adapted from [120]
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2.8.4. Hyperspectral Imaging

Hyperspectral imaging (HSI) has gained recognition as an advanced tool for assessing
food quality attributes and verification of product authenticity by capturing both spec-
tral and spatial data from samples [123]. A typical hyperspectral imaging (HSI) system
generally comprises a light source, a CCD camera, a spectrograph, a conveyor belt, and
a computer equipped with control software [124]. A schematic illustration of such an
HSI system is presented in Figure 11. The light source is a crucial component of an HSI
system, supplying illumination for the entire imaging setup. Halogen lamps, frequently
used for this purpose, offer a stable and continuous spectrum spanning the visible to
near-infrared (NIR) range [125]. Spectrographs commonly operate within the visible-near-
infrared (Vis—NIR, 400-1000 nm), near-infrared (NIR, 900-1700 nm), and short-wave in-
frared (SWIR, 1000-2500 nm) ranges, while ultraviolet (UV, 220-400 nm) and mid-wave
infrared (MWIR, 3500-5000 nm) systems are less frequently used in food and agricultural
applications [123,124]. The spectrograph advanced optical design ensures high-quality,
distortion-free imaging. Positioned in front of the CCD camera, the spectrograph enables
spatial scanning to capture both image and spectral data of samples. The computer con-
trols data collection, processing, and analysis, while also storing hyperspectral images for
specific applications.

A key advantage of HSI is that it is non-destructive, allowing high-value products
such as glutinous rice to remain intact. The technique can handle large throughputs quickly,
delivering real-time or near real time quality information that supports rapid decisions
to maintain standards and limit waste. Owing to its fine spectral detail, HSI reveals qual-
ity cues that conventional methods may overlook, improving accuracy in assessment,
sorting, and classification [126]. Studies by Lin et al. [127] and Weng et al. [128] have
shown HSI's effectiveness in distinguishing rice varieties using advanced deep learning
(Figure 12). Likewise, Sun et al. [129] demonstrated HSI's capability in identifying various
barley seed varieties, showcasing its versatility in agricultural monitoring. Deng et al. [130]
used HSI (400-1000 nm range) to classify rice seeds from six short-grain varieties, achiev-
ing a 91.95% accuracy with a semi-supervised K-means clustering algorithm. Similarly,
Wang et al. [131] used hyperspectral images (400-1000 nm) to assess paddy rice chalkiness
and shape for cultivar discrimination with PCA and BPNN models, reaching accuracies
of 89.2% and 89.9%, respectively. Li et al. [132] employed HSI to detect industrial wax
in rice, obtaining 80% detection accuracy with PLS and 93.3% with LDA. In a follow-up
study, the group applied the successive projections algorithm (SPA) to determine the op-
timal set of wavelengths for analysis, improving LDA classification accuracy to 96%. In
HSI applications, reflectance spectroscopy is often derived from images to model analyte
relationships, with additional image-based color, morphology, and texture information
enhancing analysis performance [133]. Since texture extraction from greyscale hyperspec-
tral images lacks specificity, monochromatic images at selected wavelengths offer richer
textural information [12]. For rice, integrating morphological parameters and textural
features from these specific wavelengths with reflectance spectroscopy aids in accurate
variety classification.
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Figure 11. Setup of hyperspectral imaging (HSI) [134].
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Figure 12. A flow diagram illustrating the extraction of spectral, grain morphology and surface texture
features of rice. These characteristics were gathered and integrated to identify rice varieties [128].

2.8.5. Artificial Intelligence

Artificial Intelligence (AI) reflects contemporary advances in computation, drawing on
biologically inspired paradigms including artificial neural networks (ANN), convolutional
neural networks (CNN), fuzzy logic (FL), metaheuristic search, and hybrid approaches,
which are attracting growing global attention [135]. Al systems exhibit human like capabil-
ities learning, reasoning, communicating, perceiving, and making decisions and deliver
strong results in computer-integrated engineering. Notably, Al enhances monitoring and
production process efficiency, as well as enabling automatic corrections in manufactur-
ing [136]. In rice quality assessment, Al can effectively optimize quality parameters to
achieve desirable characteristics that traditional methods may not deliver [16]. Intelligent
data driven techniques, including machine learning and deep learning are utilized for
classification, monitoring, and defect detection related to rice quality characteristics [137].
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The impressive capabilities of machine and deep learning present significant potential for
enhancing rice quality monitoring and assessment [138].

2.8.6. Machine Learning

Digital agriculture and food tech advances have accelerated the uptake of machine
learning for tasks such as rice quality assessment. ML enables fast, consistent evaluation
workflows that reduce human error and decision bias [139]. These models deliver rapid,
accurate, and dependable outputs, and recent studies summarize their uses, advantages,
and limitations in rice quality evaluation [138]. Observations indicate that trends in ma-
chine learning tend to prioritize classification tasks over regression tasks, likely due to
the traditional reliance on multivariate data analysis among food scientists for predicting
chemometric data in rice quality research. Machine learning represents a growing tech-
nology that is essential for modelling complex non-linear data associated with food and
agriculture, which can be difficult to analyse using conventional modelling techniques [140].
Machine learning is commonly grouped into supervised and unsupervised paradigms,
reflecting the data available and the learning goal. In supervised settings, models are
trained on examples that pair inputs with target labels, allowing the learner to map inputs
to desired outputs and then generalize to new cases [141]. Within supervised learning,
tasks are typically divided into classification and regression according to the prediction
target. Classification seeks to infer categorical labels from input features [142]. Common
classifiers include support vector machines (SVM), artificial neural networks (ANN), Naive
Bayes, and k-nearest neighbors (kNN) [143]. In regression, the goal is to predict a continu-
ous outcome by modeling relationships between predictors and the response. Common
families include linear/non-linear regression, generalized linear models, decision trees,
artificial neural networks (ANN), Gaussian process regression (GPR), support vector ma-
chines (SVM), and ensemble methods [143,144]. Artificial neural networks (ANNSs) can be
tailored to many tasks pattern recognition, feature extraction, classification, prediction, and
process modeling by learning complex, non-linear relationships in data [145]. Conceptually
inspired by biological neurons, an ANN is organized in layers of interconnected nodes.
A standard architecture includes an input layer (holding the predictor variables), one or
more hidden layers, and an output layer (producing the target variables). Model capacity
and generalization are governed by design choices such as the number of neurons per
layer and the depth (count of hidden layers); with appropriate configuration and training,
ANNs provide robust approximations for challenging non-linear problems [146]. Model
configuration can be tuned either by trial and error or via algorithmic optimization. In an
ANN, nodes are interconnected through learnable weights (see Figure 13). For each hidden
layer, a neuron aggregates its inputs (weighted sum or similar net operation), applies a
chosen activation function, and passes the resulting value forward to subsequent neurons;
during training, the connection weights are updated to improve the network’s predictive
objective [147].
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Figure 13. Schematic architecture of ANN.

Unsupervised learning seeks the structure of the data itself, discovering patterns and
associations without labeled outputs [148]. It is especially useful for clustering and dimen-
sionality reduction, where the aim is to group similar samples or compress features while
retaining salient information. Common techniques used to uncover latent organization
include k-means clustering, Gaussian mixture models (GMMs), and hierarchical clustering
tree methods [149]. Semi-supervised learning leverages a mix of labeled and unlabeled
samples during training to infer the target outputs, reducing the need for extensive an-
notation [141]. Such approaches along with unsupervised methods are especially useful
when labeled data are scarce because collecting and curating annotations is costly and
time-consuming [141]. However, unlike fully supervised settings, evaluating validity is
more challenging: predictions often lack ground truth labels for direct comparison, which
complicates rigorous assessment [150].

2.8.7. Deep Learning

Deep learning is a state-of-the-art branch of machine learning that trains deep neural
networks architectures with multiple hidden layers so the model can capture increasingly
abstract, complex representations [151]. In agriculture, one of the most widely used
deep models is the convolutional neural network (CNN), a supervised framework well
suited to classification, recognition, and segmentation in computer-vision pipelines [152].
Compared with traditional ML, deep learning can model complex patterns and handle
very large datasets, which suits big-data scenarios. It also learns features automatically
from raw inputs, reducing manual feature engineering and the expert effort it typically
requires [153]. Evidence from rice-specific studies suggests deep learning is preferable
for high-dimensional image/spectral inputs and end-to-end defect or segmentation tasks
delivering state-of-the-art accuracy and real-time feasibility [25,26,28]. Traditional ML
(e.g., PLSR/SVM/ANN with engineered features) remains advantageous when datasets
are smaller, model interpretability is prioritized, or compute is constrained; NIR-ANN
pipelines in particular provide strong predictive performance for composition traits with
lower deployment cost [16,27]. Table 3. Shows recent application of machine and deep
learning application in rice quality assessment.
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and disease detection.

Table 3. Summary of AI/ML-based models applied to rice quality assessment, grading, classification,

Prediction Model Technique Obijective Main Outcomes Reference
AlexNet architecture Computer vision Rice grading classification Accuracy 98 {f’ sensitivity 97%, [154]
specificity 96%
N . P . - ANN 99%, DNN 99%,
DNN, CNN, ANN Visible imaging Classification of rice varieties CNN 100% accuracy [155]
PCA, PLS, ANN, LS-SVM, BPNN Multispectral imaging Classify rice cultivars and detect BPNN reached 92% accuracy [19]
adulteration
. . P 55.93% (Fajr), 84% (Tarom), 82%
MLP neural network CCD cameras Rice grading classification (Shiroodi); binary 86-95% [156]
SVM: 90.61% (groupl), 82% (group2),
LR, LDA, k-NN, SVM Machine vision Rice seed classification 83% combined; InceptionResNetV2: [157]
95%
I e Colour-shape-texture model 95.2%,
BPNN Digital camera Classifying paddy seeds proposed method 97% [158]
. . . Classification 98%; aroma prediction
ANN E-nose, NIR Rice quality traits R = 0.95-0.98 [71]
. . - . . - MLR R? =0.27-0.96; ANN R* = 0.98
ANN, MLR Biochemical composition  Rice quality prediction (train), 0.88 (val), 0.90 overall [20]
MLR NIRS Grgm weight, amylose, brown rice R = 0.67-0.85 [159]
weight
PLSR, LS-SVM, ICA IR Rice quality prediction R? =0.89-0.98 [160]
Tﬁzls\INeztGoogLeNet, RF, LR, SVM, Hyperspectral Variety identification Accuracy 86% [161]
PLSDA, SIMCA, RE, KNN, SVM, PCA  Hyperspectral Variety identification Accuracy 80-100% [162]
- . . . . e EfficientNet 99.67%;
ResNet, VGG, EfficientNet, MobileNet ~ Imaging Rice grain classification MobileNet fastest (25565) [163]
SVM Imaging Chalkiness Indica 98.5%, Japonica 97.6% [164]
PCANet Hyperspectral imaging Rice classification Train 98%, predict 98.57% [128]
BP-ANN IR Rice grades R? = 95.45% [165]
SVM, LR, RF, LeNet, GoogLeNet, NIR Variety identification ResNet best: 86% [161,165]
ResNet
ANN, SVM, BN Computer vision Milled rice grain classification ANN 98%, SVM 98%, DT 97%, BN 96% [166]
ANFIS, SVM, KNN Imaging Grading of Basmati rice Accuracy > 98% (broken/whole) [167]
SVM + GA, KNN Geometric properties Grain quality analysis ﬁj\?ﬁas?", /92 to—+93%; SVM best; [168]
0/ .« 1 0,
YOLOvV?7 Video Rice seed counting m?P 99 A.)’ 'tracklng 100% accuracy, [161]
83% precision
MSIA, CNN Hyperspectral Rice quality Accuracy, precision, recall, F1 = 99% [169]
CNN Imaging Early disease detection Accuracy 97.70% [170]
YOLOV5, RCNN, RetinaNet, SSD, ED imagin Yield traits YOLOV5: Precision 98.94%, Recall [171]
Cascade RCNN ging 97.91% (filled); 90.96,/94.94% (unfilled)
ggﬁi%li@ﬁPA-KNN’ PCA-LS-SVM, Raman spectroscopy Classification SPA-LS-SVM: 94% [172]
Correlation analysis VIS-NIR Chalkiness index R?=0.89 [173]
. . L. . Broken 99%, chalkiness 96.3%,
SVM NIR imaging Colored rice inspection damaged 93% [174]
-~ .. . e L. Accuracy 98%, sensitivity 97%,
AlexNet NI-myRIO vision Variety classification specificity 96.4% [154]
CNN models Imaging Damage classification EfficientNet-BO up to 100% accuracy [175]
Fuzzy logic Computer vision Whitening performance Accuracy 89.2% [166]
. . Accuracy +6.13% (broken),
Mask R-CNN Imaging Impurity and broken rate 19.19% (impurities) [159]
CNN E-nose hyperspectral Rice quality difference Accuracy 98.07% [176]
Logistic regression Computer vision Sorting broken/chalky grains Correlation R? > 0.94 [177]
ResNet34, ResNet50 Imaging Classification and quality ResNet50 > 99.85% (six varieties) [178]
YOLOX Imaging Rice disease identification mAP 95.58% [179]
YOLOv5s-CBAM-DMLHea Imaging Weedy rice identification MAP@0.5 = 98.9%; inference 4 ms; [180]

28% fewer computations
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2.8.8. CNN

Convolutional neural networks (CNNs) are among the most widely used architectures
in deep learning. Their major strength is the ability to learn task-relevant features directly
from data, greatly reducing the need for manual feature design [181]. Inspired by the
organization of the visual cortex, CNNs stack convolution, nonlinearity, and pooling opera-
tions to form progressively more abstract representations. Their effectiveness is commonly
attributed to sparse (local) connectivity, parameter sharing through convolutional kernels,
and the emergence of stable, comparable representations that generalize across image
locations [182]. Reliable detection and classification of rice quality are essential to protect
market value. As a result, current work continues to improve techniques for recognizing
damage, disease, and grain attributes. Quality checks occur pre-harvest, during processing,
and post-processing. This review centers on recent CNN applications in this area, where
rice quality control encompasses evaluation of internal/external defects, chalkiness levels,
and key physical traits. Figure 14 provides an overview of recent studies utilizing CNNs
for rice quality evaluation.
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Figure 14. Typical network architecture of a sequential CNN [183].

2.8.9. Instance Segmentation

Instance segmentation is a computer-vision task that combines object detection with
semantic segmentation, producing both the identity and an exact pixel mask for each
object in a scene [184]. In agricultural settings, this capability enables fine grained mea-
surement of plant and crop morphology, supporting analyses of growth status, disease
symptoms, and yield potential [185]. This capability also serves as a foundation for various
research and development areas, including robotic thinning of immature fruit [186]. Tradi-
tional instance segmentation methods for agricultural images largely relied on manually
engineered features and traditional image analysis methods, such as the Watershed Trans-
form [187], Graph-based Segmentation [188], Active Contours [189], level set, and Region
Growing [190]. However, these approaches often require extensive manual setup and ad-
justments, which can be time-consuming and less reliable. Prior studies have demonstrated
the efficacy of these methods across diverse applications, including the segmentation of ap-
ple blossoms [191], localization and segmentation of strawberry fruit, counting cranberries,
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and segmenting guava fruits [192]. Deep learning detectors are commonly grouped into
one-stage and two-stage families. In a two-stage pipeline exemplified by Mask R-CNN,
the first stage uses a Region Proposal Network (RPN) to produce candidate regions of
interest; the second stage classifies these proposals and refines their boxes masks to yield
precise localization and labels [193]. This cascaded design prioritizes accuracy by devoting
a separate step to proposal refinement and verification. Mask R-CNN is a deep learning
framework that performs object detection and instance segmentation in a single model,
delivering accurate localization together with a per-object mask. Building on Faster R-CNN,
it adds a parallel mask-prediction head alongside the classification and bounding-box
regression branches, enabling precise delineation of individual objects in complex scenes.
Owing to this design, Mask R-CNN has become a strong baseline for high-accuracy image
analysis across diverse applications [194]. The Mask R-CNN pipeline comprises three core
parts: a feature-extraction backbone, a Region Proposal Network (RPN), and parallel heads
for classification/bounding-box regression and mask generation (see Figure 15). The back-
bone typically a convolutional network encodes the input image into shared feature maps
used by all subsequent modules. Leveraging these maps, the RPN scores anchors and
outputs candidate regions of interest (Rols) that are likely to contain objects. Each Rol is
then routed to two branches: one refines the class label and bounding box, while the other
predicts a high-resolution instance mask for the detected object. The bounding box and
classification head assigns a category to each proposed region and refines its bounding-box
coordinates, whereas the mask head outputs a binary pixel mask for the corresponding
object instance within that region. Deploying Mask R-CNN and related deep-learning
models in agricultural settings faces practical hurdles. Performance depends heavily on the
quality and diversity of training data, yet field imagery is highly variable including lighting,
weather, background clutter, and crop growth stage all shift over time and space—making
generalization difficult and potentially degrading accuracy [195,196]. Mask R-CNN also
carries substantial compute demands for both training and inference [185], which can limit
real-time deployment on farms where high-end hardware is uncommon. Despite these
constraints, many recent agricultural studies have successfully applied Mask R-CNN-based
instance segmentation to diverse tasks, including crop identification [197], disease recogni-
tion [198], weed discrimination [199], and tree segmentation/detection [200].
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Figure 15. Conceptual illustration of the architecture of Fast R-CNN.
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2.8.10. You Only Look Once (YOLO)

Among deep-learning tools used in agriculture, two architectures dominate atten-
tion: You Only Look Once (YOLO) and Mask R-CNN. Both have proven effective for
instance level analysis, driving progress in crop detection, pest disease monitoring,
weed identification, and the segmentation of canopy elements such as branches and
fruit [196]. These workflows are central to precision automated agriculture and benefit
substantially from modern deep learning. The YOLO family uses a one-stage pipeline
that performs object detection and, in many variants, classification and instance seman-
tic segmentation in a single pass, enabling high throughput. Mask R-CNN, in contrast,
follows a two-stage design and typically delivers stronger segmentation accuracy [201].
Owing to its speed and computational economy, YOLO is well suited to real-time field
operations, including robotic pruning and thinning [202], as well as other targeted in-
terventions in crop management [203]. The YOLO family for detection (and, in many
variants, instance segmentation) has progressed quickly, with newer releases boosting
both accuracy and throughput. YOLOv8 extends design ideas from earlier versions (e.g.,
YOLOvV3/YOLOv5) while refining the backbone, head, and training strategy to improve
performance. Unlike two-stage frameworks, YOLOVS follows a single-pass approach: it
predicts bounding boxes and class scores directly, omitting a separate region-proposal
step and thereby streamlining inference for real-time use. YOLOVS introduces a ma-
jor innovation by adopting an anchor-free, center-point detection mechanism, offering
improved performance and simplicity compared to the anchor-based frameworks of
YOLOVS5 through YOLOvV?. In addition, YOLOvVS utilizes Pseudo Supervision (PS), a
method involving the training of several differently configured models on a common
dataset to enhance generalization and robustness. This approach generates a broader
spectrum of predictive outputs, contributing to enhanced precision and resilience of the
model final results [196]. YOLOVS is released in multiple sizes to balance speed and
accuracy for different deployment needs. YOLOvS-Tiny prioritizes throughput and fits
resource-constrained, real-time devices, at the cost of some accuracy. YOLOv8-Small
offers a practical trade-off, delivering faster inference with more detailed detection than
Tiny. The YOLOvS8-Standard variant provides balanced, general-purpose performance
across many scenarios. For maximum precision, YOLOvS8-Large emphasizes higher
accuracy, suitable for applications where fine detail and detection quality are critical.
Recent improvements to YOLOvVS have broadened its use across agriculture, enabling it
to cope with diverse field conditions. With stronger low-level feature processing, the
model supports early detection of subtle pest and disease cues, which is essential for
crop protection [204]. Enhanced YOLOVS variants have been applied to greenhouse
vegetable disease recognition, enabling earlier intervention and management [205]. In
parallel, researchers have embedded attention modules into YOLOvVS8 to boost detec-
tion robustness; for example, Ref. [206] reports improved tomato detection in visually
cluttered field conditions. While YOLOvS8 has demonstrated excellent object detection
performance, its application in rice milling remains underexplored beyond academic
prototypes. There is limited discussion on how these models handle noise, occlusion, or
non-standard lighting in industrial settings.
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2.8.11. Other Learning Methods

Diverse machine learning methods have been applied to support non-destructive qual-
ity analysis in agricultural produce. They include logistic regression [207], naive Bayes [208],
nearest neighbour [209], stochastic gradient decent [210], gradient tree boosting [211],
Adaptive neuro-fuzzy inference system [167,212], genetic algorithm [168], metaheuristic
optimization [213] Zareiforoush, Minaei, Alizadeh, & Banakar, etc. fuzzy logic [214], While
different learning algorithms may deliver satisfactory performance for a specific task, it is al-
ways preferable to select the most effective one. Selection of a suitable algorithm commonly
involves balancing factors like memory usage, predictive performance on validation data,
training speed, and transparency of the model’s internal mechanisms, typically assessed
via iterative experimentation.

3. Implementation and Limitations of Current Al Techniques in Rice
Quality Assessment

Rice analysis using Al systems has progressed beyond proof-of-concept. CNN-based
appearance inspection and automatic grading systems have been prototyped for online
use. Instance-segmentation/detection models tailored to polished-rice defects and mor-
phology (e.g., Yolo) support automated broken-rate and impurity quantification, while
hybrid instance-segmentation+OBB frameworks enable precise morphology estimation
under motion and occlusion for feedback to milling control. These exemplars demonstrate
feasibility for integrating AI modules into modern milling lines. Despite their demon-
strated potential, current artificial intelligence (Al) approaches, particularly CNNs and
other deep learning models face significant limitations when applied to rice quality assess-
ment. One of the primary challenges is the heavy reliance on large, annotated datasets
for model training. However, such datasets are often scarce, especially for the diverse
range of rice cultivars, grain qualities, and processing conditions encountered globally.
This lack of representative data hinders the ability of models to generalize across different
geographical regions and milling practices. Furthermore, many Al models are developed
and validated in highly controlled laboratory environments with stable lighting, uniform
sample presentation, and limited background noise. When these models are deployed in
real-world industrial settings; where conditions are far more variable, they often experi-
ence substantial performance degradation due to factors such as grain occlusion, motion
blur, inconsistent lighting, dust interference, and hardware variability. Another significant
constraint is the absence of standardized benchmark datasets and evaluation protocols in
the field of Al-driven rice quality assessment. This lack of common validation frameworks
makes it difficult to perform objective comparisons between different models and hinders
reproducibility across studies. Additionally, current Al architectures such as Mask R-CNN
and YOLOWS, although offering high classification and segmentation accuracy, typically
require substantial computational resources, including high-end GPUs and large memory
capacities. This poses a barrier to their adoption in small-scale or rural rice milling opera-
tions, where infrastructure may be limited and cost-effectiveness is a key concern. Without
the development of lighter, resource-efficient models or edge-Al solutions, the practical
scalability of these technologies remains constrained.

4. Conclusions

The present work reviewed rice grain quality assessment methods and strategies
focusing on different quantifiable parameters, and how recent non-invasive techniques and
computational techniques enhance predictive assessment of grain quality. Additionally, the
application of non-invasive techniques and several artificial intelligence technologies in
the efficient assessment of milled rice was introduced. The result shows that the emerging
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technology can detect changes in various indexes in the quality assessment process of rice
grain milling without damaging the structure of the sample. The results show that the
advantages of recent technology and artificial intelligence approaches can be used to detect
and control the precision of milling process of rice online, control the colour and shape
changes rice grain, and improve the overall organoleptic quality of milled rice for consumer
preferences. This review further offers a holistic synthesis of multidisciplinary Al tech-
niques, helping researchers and industry practitioners identify optimal algorithms, sensing
platforms, and validation protocols for rice quality assessment. It highlights the efficiency,
non-destructive nature, and automation potential of Al approaches. Rapid progress in ap-
plying Al to engineering is improving system efficiency. In rice processing, AI methods are
well suited to the complex dynamics of milling. Because rice quality assessment depends
on many interacting factors and varies over time, it is hard to model and optimize with
conventional tools. Across competing approaches, Al typically delivers higher accuracy
and performance for modeling and optimization of rice quality. This review covers the use
of leading Al methods to model and optimize key rice quality attributes such as geometric
traits, sensory properties, surface chalkiness, and degree of milling (DM). The evidence
indicates that Al can deliver more accurate and consistent assessments while reducing
cost, time, and false decisions relative to conventional approaches. Overall, Al is poised
to play a central role in modeling, optimization, control, and monitoring of rice quality
across the processing chain. In addition, we outline future research directions, including
richer benchmark datasets, robust validation under variable line conditions, lightweight
edge-deployable models, and explainable workflows to support industrial adoption.

5. Future Works

Future work should include explainable AI (XAI) so users can see why rice grad-
ing models make each decision, building trust in the industry. We also need real-world
case studies, especially in developing countries, to show these tools work at scale. Pri-
orities are as follows: Create open, standardized datasets with clear labels. Use strong
external /variety-wise validation to build lightweight, edge-ready models for online use.
Systems should connect to IOT device for closed-loop control, remote monitoring, report
uncertainty for safer decisions, and provide simple operator interfaces. Finally, run techno-
economic and sustainability studies to prove ROI energy impacts, and maintenance needs
across different mill environments.

Author Contributions: B.I.: Writing—review & editing, Writing—original draft, Methodology, Inves-
tigation, Data curation, Conceptualization. A.B.: Writing—review & editing. Y.S.: Writing—review &
editing. A.S.: Writing—review & editing. H.Z.: Writing—review & editing, Writing—original draft,
Supervision, Project administration, Methodology, Conceptualization. All authors have read and
agreed to the published version of the manuscript.

Funding: Open Access funding provided by Sheffield Hallam University. This research received no
external funding.

Data Availability Statement: The data generated during the current study are available from the
corresponding author upon reasonable request.

Acknowledgments: The authors gratefully acknowledge support from the Advanced Food Innova-
tion Centre (AFIC) and Sheffield Hallam University.

Conflicts of Interest: The authors declare no conflicts of interest.



Processes 2025, 13, 3731 26 of 34

Appendix A. PRISMA Checklist

v
ey PRISMA 2020 Checklist

PRISMA

4™ Checkistitem

Title ‘ 1 | Identify the report as a systematic review. Page 1
ABSTRACT
Abstract ‘ > | See the PRISMA 2020 for Abstracts checklist. Page 27
INTRODUCTION
Rationale ‘ 3 | Describe the rationale for the review in the context of existing knowledge: Page 3
Objectives [ 4 [ Provide an explicit statement of the objective(s) or question(s) the review addresses. Section 1.1
METHODS
Eligibility criteria 5 | Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. Section 2.1
Information 6 | Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted fo identify studies. Specify the | Page 29
sources date when each source was last searched or consulted.
Search sirategy 7 | Present the full search for all registers and websites, including any filters and limits used. Page 29
Selection process 8 | Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record | Page 4

and each report refrieved, whether they worked independently, and if applicable, details of automation tools used in the process.
Data collection 9 | Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked Figure 2
process independently, any processes for obiaining or confirming data from study investigators, and if applicable, details of automation tools used in the

process
Data items 10a | List and define all outcomes for which data were sought Specify whether all results that were compatible with each outcome domain in each See Table 3

study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which resuits fo collect.

10b | List and deﬁne all other variables for which data were sought (e.g. ij and L , funding sources). Describe any See Table 3

ons made about any missing or unclear information.
Study risk of bias 11 | Specify the methods used to assess risk ofblas m me included studies, including details of the tool(s) used, how many reviewers assessed each | See Table 3
nt

study and whether they worked nelads of at tools used in the process.
Effect measures 12 | Specify for each outcome the effect measure(s) (e,g risk ratio, mean difference) used in the synthesis or presentation of results See Table 3
Synthesis 13a | Describe the processes used to decide which studies were eligible for each synthesis (e g. tabulating the study intervention characteristics and Figure 2
methods comparing against the planned groups for each synthesis (item #5)).
13b | Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data Overleaf
Conversions.
13c | Describe any methods used to tabulate or visually display results of individual studies and syntheses Overleaf
13d | Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the See Table 3
model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.
13e | Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression). Not
applicable
13f | Describe any sensitivity analyses conducted to assess robustness of the synthesized resuits. See Table 3
Reporting bias 14 | Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases). Page 5
assessment
Certainty 15 | Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. Page 5
- PRISMA 2020 Checklist
PRISMA
Location
Fecionand Checklist item where item
o is reported
assessment
RESULTS
Study selection 16a | Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in | See figure 1
the review, ideally using a flow diagram.
16b | Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded See figure 1
Study 17 | Cite each included study and present its characteristics. See figure 1
characteristics
Risk of bias in 18 | Present assessments of risk of bias for each included study. See Table 3
studies
Results of 18 | For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimates and its precision | See Table 3
individual studies (e.g. confidence/credible interval), ideally using structured tables or plots.
Results of 20a | For each sy  briefly the characteristics and risk of bias among contributing studies. See Table 3
i 20b | Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. See Table 3
confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.
20c | Present results of all investigations of possible causes of heterogeneity among study results See Table 3
20d | Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results. See Table 3
Reporting biases 21 | Present of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed. See figure 1
Certainty of 22 | Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed. See Table 3
evidence
DISCUSSION
Discussion 23a | Provide a general interpretation of the resulis in the context of other evidence. See Table 3
23b | Discuss any limitatic of the evidence included in the review Section 3
23c | Discuss any limitations of the review processes used. Section 3
23d | Discuss implications of the results for practice, policy, and future research. Section 4
OTHER INFORMATION
Registration and 24a | Provide registration information for the review, including register name and registration number, or state that the review was not registered. Not
protocol registered
24b | Indicate where the review protocol can be accessed, or state that a protocol was not prepared. Figure 2
24c | Describe and explain any amendments to information provided at registration or in the protocol. Same
Support 25 | Describe sources of financial or non-financial support for the review, and the role of the funders or SPonsors in the review. Non
‘Compeling 26 | Declare any competing interests of review authors. Non
interests
Avallability of 27 | Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included Manuscript
data, code and studies; data used for all analyses; analytic code; any other materials used in the review.
other materials

References

1.  Dorling, D. World population prospects at the UN: Our numbers are not our problem? In The Struggle for Social Sustainability;
Policy Press: Bristol, UK, 2021; pp. 129-154.

2. Pomeroy, J.; Jose, D.; Tyler, A.; Bloxham, P,; Culling, J. The Future of Food: Can We Meet the Needs of 9bn People?; Free to View
Report; HSBC Global Research: London, UK, 2023.

3. van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger
for the period 2010-2050. Nat. Food 2021, 2, 494-501. [CrossRef] [PubMed]


http://doi.org/10.1038/s43016-021-00322-9
http://www.ncbi.nlm.nih.gov/pubmed/37117684

Processes 2025, 13, 3731 27 of 34

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

Asma, J.; Subrahmanyam, D.; Krishnaveni, D. The global lifeline: A staple crop sustaining two thirds of the world’s population.
Agric. Arch. 2023, 2, 15-18. [CrossRef]

Abdo, A.L; Tian, M.; Shi, Z.; Sun, D.; Abdel-Fattah, M.K.; Zhang, J.; Wei, H.; Abdeen, M.A. Carbon footprint of global rice
production and consumption. . Clean. Prod. 2024, 474, 143560. [CrossRef]

Zafar, S.; Jianlong, X. Recent advances to enhance nutritional quality of rice. Rice Sci. 2023, 30, 523-536. [CrossRef]

Das, M.; Dash, U.; Mahanand, S.S.; Nayak, P.K.; Kesavan, R.K. Black rice: A comprehensive review on its bioactive compounds,
potential health benefits and food applications. Food Chem. Adv. 2023, 3, 100462. [CrossRef]

Shahbandeh, M. Total Global Rice Consumption 2008/09-2024/25. Statista. Available online: https://www.statista.com/
statistics /255977 / total-global-rice-consumption/ (accessed on 10 November 2025).

Bairagi, S.; Demont, M.; Custodio, M.C.; Ynion, J. What drives consumer demand for rice fragrance? Evidence from South and
Southeast Asia. Br. Food . 2020, 122, 3473-3498. [CrossRef]

Mané, I.; Bassama, J.; Ndong, M.; Mestres, C.; Diedhiou, PM.; Fliedel, G. Deciphering urban consumer requirements for rice
quality gives insights for driving the future acceptability of local rice in Africa: Case study in the city of Saint-Louis in senegal.
Food Sci. Nutr. 2021, 9, 1614-1624. [CrossRef]

Wahyudi, A.; Kuwornu, J.K.M.; Gunawan, E; Datta, A.; Nguyen, L.T. Factors influencing the frequency of consumers’ purchases
of locally-produced rice in Indonesia: A Poisson regression analysis. Agriculture 2019, 9, 117. [CrossRef]

Li, D.; Shen, M,; Li, D.; Yu, X. Green apple recognition method based on the combination of texture and shape features. In Pro-
ceedings of the IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 6-9 August 2017.
Mao, S.; Wang, B.; Tang, Y.; Qian, F. Opportunities and Challenges of Artificial Intelligence for Green Manufacturing in the
Process Industry. Engineering 2019, 5, 995-1002. [CrossRef]

Mavani, N.R.; Ali, ].M.; Othman, S.; Hussain, M. A.; Hashim, H.; Rahman, N.A. Application of Artificial Intelligence in Food
Industry—A Guideline. Food Eng. Rev. 2022, 14, 134-175. [CrossRef] [PubMed]

Jafari-Marandi, R.; Khanzadeh, M.; Tian, W.; Smith, B.; Bian, L. From in-situ monitoring toward high-throughput process control:
Cost-driven decision-making framework for laser-based additive manufacturing. J. Manuf. Syst. 2019, 51, 29-41. [CrossRef]
Aznan, A.; Viejo, C.G; Pang, A ; Fuentes, S. Review of technology advances to assess rice quality traits and consumer perception.
Food Res. Int. 2023, 172, 113105. [CrossRef] [PubMed]

Thapa, A.; Nishad, S.; Biswas, D.; Roy, S. A comprehensive review on artificial intelligence assisted technologies in food industry.
Food Biosci. 2023, 56, 103231. [CrossRef]

Addanki, M; Patra, P; Kandra, P. Recent advances and applications of artificial intelligence and related technologies in the food
industry. Appl. Food Res. 2022, 2, 100126. [CrossRef]

Liu, W.; Xu, X,; Liu, C.; Zheng, L. Nondestructive Detection of Authenticity of Thai Jasmine Rice Using Multispectral Imaging.
J. Food Qual. 2021, 2021, 6642220. [CrossRef]

Sampaio, P.S.; Almeida, A.S.; Brites, CM. Use of artificial neural network model for rice quality prediction based on grain
physical parameters. Foods 2021, 10, 3016. [CrossRef]

Kim, S.Y.; Lee, H. Effects of quality characteristics on milled rice produced under different milling conditions. J. Korean Soc. Appl.
Biol. Chem. 2012, 55, 643-649. [CrossRef]

Qiu, X,; Pang, Y.; Yuan, Z.; Xing, D.; Xu, J.; Dingkuhn, M.; Li, Z.; Ye, G. Genome-wide association study of grain appearance and
milling quality in a worldwide collection of Indica rice germplasm. PLoS ONE 2015, 10, e0145577. [CrossRef]

Yadav, B.K,; Jindal, V.K. Changes in head rice yield and whiteness during milling of rough rice (Oryza sativa L.). ]. Food Eng. 2008,
86, 113-121. [CrossRef]

Espinel, R.; Herrera-Franco, G.; Rivadeneira Garcia, J.L.; Escandén-Panchana, P. Artificial intelligence in agricultural mapping:
A review. Agriculture 2024, 14, 1071. [CrossRef]

He, Y,; Fan, B.; Sun, L.; Fan, X.,; Zhang, J.; Li, Y,; Suo, X. Rapid appearance quality of rice based on machine vision and
convolutional neural network research on automatic detection system. Front. Plant Sci. 2023, 14, 1190591. [CrossRef]

Zhou, J.; Zeng, S.; Chen, Y.; Kang, Z; Li, H.; Sheng, Z. A method of polished rice image segmentation based on YO-LACTS for
quality detection. Agriculture 2023, 13, 182. [CrossRef]

Son, S.; Kim, D.; Choi, M.C,; Lee, J.; Kim, B.; Choi, C.M.; Kim, S. Weight interpretation of artificial neural network model for
analysis of rice (Oryza sativa L.) with near-infrared spectroscopy. Food Chem. X 2022, 15, 100430. [CrossRef] [PubMed]

Ilo, B.; Rippon, D.; Singh, Y.; Shenfield, A.; Zhang, H. Real-Time Rice Milling Morphology Detection Using Hybrid Framework of
YOLOVS Instance Segmentation and Oriented Bounding Boxes. Electronics 2025, 14, 3691. [CrossRef]

Atwell, B.J.; Wang, H.; Scafaro, A.P. Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa?
Plant Sci. 2014, 215, 48-58. [CrossRef]

Vaughan, D.A.; Morishima, H.; Kadowaki, K. Diversity in the Oryza genus. Curr. Opin. Plant Biol. 2003, 6, 139-146. [CrossRef]
Wei, X.; Huang, X. Origin, taxonomy, and phylogenetics of rice. In Rice: Chemistry and Technology; Elsevier: Amsterdam,
The Netherlands, 2018; pp. 1-29.


http://dx.doi.org/10.51470/AGRI.2023.2.3.15
http://dx.doi.org/10.1016/j.jclepro.2024.143560
http://dx.doi.org/10.1016/j.rsci.2023.05.004
http://dx.doi.org/10.1016/j.focha.2023.100462
https://www.statista.com/statistics/255977/total-global-rice-consumption/
https://www.statista.com/statistics/255977/total-global-rice-consumption/
http://dx.doi.org/10.1108/BFJ-01-2019-0025
http://dx.doi.org/10.1002/fsn3.2136
http://dx.doi.org/10.3390/agriculture9060117
http://dx.doi.org/10.1016/j.eng.2019.08.013
http://dx.doi.org/10.1007/s12393-021-09290-z
http://www.ncbi.nlm.nih.gov/pubmed/40477643
http://dx.doi.org/10.1016/j.jmsy.2019.02.005
http://dx.doi.org/10.1016/j.foodres.2023.113105
http://www.ncbi.nlm.nih.gov/pubmed/37689840
http://dx.doi.org/10.1016/j.fbio.2023.103231
http://dx.doi.org/10.1016/j.afres.2022.100126
http://dx.doi.org/10.1155/2021/6642220
http://dx.doi.org/10.3390/foods10123016
http://dx.doi.org/10.1007/s13765-012-2082-9
http://dx.doi.org/10.1371/journal.pone.0145577
http://dx.doi.org/10.1016/j.jfoodeng.2007.09.025
http://dx.doi.org/10.3390/agriculture14071071
http://dx.doi.org/10.3389/fpls.2023.1190591
http://dx.doi.org/10.3390/agriculture13010182
http://dx.doi.org/10.1016/j.fochx.2022.100430
http://www.ncbi.nlm.nih.gov/pubmed/36211751
http://dx.doi.org/10.3390/electronics14183691
http://dx.doi.org/10.1016/j.plantsci.2013.10.007
http://dx.doi.org/10.1016/S1369-5266(03)00009-8

Processes 2025, 13, 3731 28 of 34

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.

43.

44.

45.

46.
47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Zhu, D.; Zheng, X.; Yu, J.; Chen, M,; Li, M,; Shao, Y. Effects of Starch Molecular Structure and Physicochemical Properties on
Eating Quality of Indica Rice with Similar Apparent Amylose and Protein Contents. Foods 2023, 12, 3535. [CrossRef] [PubMed]
Kowsalya, P,; Sharanyakanth, P.S.; Mahendran, R. Traditional rice varieties: A comprehensive review on its nutritional, medicinal,
therapeutic and health benefit potential. ]. Food Compos. Anal. 2022, 114, 104742. [CrossRef]

Zhang, W.; Liu, Y.; Luo, X.; Zeng, X. Pasting, cooking, and digestible properties of Japonica rice with different amylose contents.
Int. J. Food Prop. 2022, 25, 936-947. [CrossRef]

Sliwinska-Bartel, M.; Burns, D.T;; Elliott, C. Rice fraud a global problem: A review of analytical tools to detect species, country of
origin and adulterations. Trends Food Sci. Technol. 2021, 116, 36—46. [CrossRef]

Van Nguyen, N.; Ferrero, A. Meeting the challenges of global rice production. Paddy Water Environ. 2006, 4, 1-9. [CrossRef]
Singh, PK.; Venkatesan, K.; Swarnam, T.P. Rice genetic resources in tropical islands. In Biodiversity and Climate Change Adaptation
in Tropical Islands; Elsevier: Amsterdam, The Netherlands, 2018; pp. 355-384.

Mwakyusa, L.; Dixit, S.; Herzog, M.; Heredia, M.C.; Madege, R.R;; Kilasi, N.L. Flood-tolerant rice for enhanced production and
livelihood of smallholder farmers of Africa. Front. Sustain. Food Syst. 2023, 7, 1244460. [CrossRef]

Yuan, S.; Linquist, B.A.; Wilson, L.T.; Cassman, K.G.; Stuart, A.M.; Pede, V.; Miro, B.; Saito, K.; Agustiani, N.; Aristya, V.E.
Sustainable intensification for a larger global rice bowl. Nat. Commun. 2021, 12, 7163. [CrossRef]

Pittelkow, C.M.; Adviento-Borbe, M.A; Hill, ].E; Six, J.; van Kessel, C.; Linquist, B.A. Yield-Scaled Global Warming Potential of
Annual Nitrous Oxide and Methane Emissions from Continuously Flooded Rice in Response to Nitrogen Input. Agric. Ecosyst.
Environ. 2013, 177, 10-20. [CrossRef]

Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An overview of global rice production, supply, trade, and
consumption. Ann. N.Y. Acad. Sci. 2014, 1324, 7-14. [CrossRef]

Shen, N.; Tan, J.; Wang, W.; Xue, W.; Wang, Y.; Huang, L.; Yan, G.; Song, Y.; Li, L. Long-term changes of methane emissions
from rice cultivation during 2000-2060 in China: Trends, driving factors, predictions and policy implications. Environ. Int. 2024,
191, 108958. [CrossRef]

Eyarkai Nambi, V.; Manickavasagan, A.; Shahir, S. Rice milling technology to produce brown rice. In Brown Rice; Springer
International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 3-21.

Carcea, M.; Turfani, V.; Narducci, V.; Melloni, S.; Galli, V.; Tullio, V. Stone milling versus roller milling in soft wheat: Influence on
products composition. Foods 2019, 9, 3. [CrossRef]

Roy, P; Orikasa, T.; Okadome, H.; Nakamura, N.; Shiina, T. Processing conditions, rice properties, health and environment. Int. J.
Environ. Res. Public Health 2011, 8, 1957-1976. [CrossRef]

Xiao, Y.; Jia, F.; Meng, X.; Han, Y. Breakpoint Planning Method for Rice Multibreak Milling. Foods 2023, 12, 1864. [CrossRef]
Liu, K; Cao, X.; Bai, Q.; Wen, H.; Gu, Z. Relationships between physical properties of brown rice and degree of milling and loss
of selenium. . Food Eng. 2009, 94, 69-74. [CrossRef]

Muchlisyiyah, J.; Shamsudin, R.; Kadir Basha, R.; Shukri, R.; How, S.; Niranjan, K.; Onwude, D. Parboiled rice processing method,
rice quality, health benefits, environment, and future perspectives: A review. Agriculture 2023, 13, 1390. [CrossRef]

Chen, F; Lu, Y;; Pan, L.; Fan, X,; Li, Q.; Huang, L.; Zhao, D.; Zhang, C.; Liu, Q. The underlying physicochemical properties
and starch structures of indica rice grains with translucent endosperms under low-moisture conditions. Foods 2022, 11, 1378.
[CrossRef]

Mohidem, N.A.; Hashim, N.; Shamsudin, R.; Man, H.C. Rice for food security: Revisiting its production, diversity, rice milling
process and nutrient content. Agriculture 2022, 12, 741. [CrossRef]

Cornejo-Ramirez, Y.I.; Martinez-Cruz, O.; Del Toro-Sanchez, C.L.; Wong-Corral, EJ.; Borboa-Flores, J.; Cinco-Moroyoqui, EJ.
Caracteristicas estructurales de almidones y sus propiedades funcionales. CYTA J. Food 2018, 16, 1003-1017. [CrossRef]

Zhang, H.; Jang, S.G.; Lar, S.M.; Lee, A.R; Cao, FY,; Seo, J.; Kwon, S.W. Genome-wide identification and genetic variations of the
starch synthase gene family in rice. Plants 2021, 10, 1154. [CrossRef]

Siregar, S.; Nurhikmat, A.; Amdani, R.Z.; Hatmi, R.U.; Kobarsih, M.; Kusumaningrum, A.; Karim, M.A.; Dameswari, A.H.;
Siswanto, N.; Siswoprayogi, S. Estimation of proximate composition in rice using ATR-FTIR spectroscopy and Chemometrics.
ACS Omegn 2024, 9, 32760-32768. [CrossRef]

Vici, G.; Perinelli, D.R.; Camilletti, D.; Carotenuto, F.; Belli, L.; Polzonetti, V. Nutritional properties of rice varieties commonly
consumed in Italy and applicability in gluten free diet. Foods 2021, 10, 1375. [CrossRef]

Manzoor, A.; Pandey, VK,; Dar, A.H.; Fayaz, U.; Dash, KK.; Shams, R.; Ahmad, S.; Bashir, I.; Fayaz, J.; Singh, P. Rice bran:
Nutritional, phytochemical, and pharmacological profile and its contribution to human health promotion. Food Chem. Adv. 2023,
2,100296. [CrossRef]

Miiller, A.; Nunes, M.T.; Maldaner, V.; Coradi, P.C.; de Moraes, R.S.; Martens, S.; Leal, A.F.; Pereira, V.F.; Marin, C.K. Rice drying,
storage and processing: Effects of post-harvest operations on grain quality. Rice Sci. 2022, 29, 16-30. [CrossRef]

Jayaprakash, G.; Bains, A.; Chawla, P,; Fogarasi, M.; Fogarasi, S. A Narrative Review on Rice Proteins: Current Scenario and Food
Industrial Application. Polymers 2022, 14, 3003. [CrossRef]


http://dx.doi.org/10.3390/foods12193535
http://www.ncbi.nlm.nih.gov/pubmed/37835188
http://dx.doi.org/10.1016/j.jfca.2022.104742
http://dx.doi.org/10.1080/10942912.2022.2069806
http://dx.doi.org/10.1016/j.tifs.2021.06.042
http://dx.doi.org/10.1007/s10333-005-0031-5
http://dx.doi.org/10.3389/fsufs.2023.1244460
http://dx.doi.org/10.1038/s41467-021-27424-z
http://dx.doi.org/10.1016/j.agee.2013.05.011
http://dx.doi.org/10.1111/nyas.12540
http://dx.doi.org/10.1016/j.envint.2024.108958
http://dx.doi.org/10.3390/foods9010003
http://dx.doi.org/10.3390/ijerph8061957
http://dx.doi.org/10.3390/foods12091864
http://dx.doi.org/10.1016/j.jfoodeng.2009.03.001
http://dx.doi.org/10.3390/agriculture13071390
http://dx.doi.org/10.3390/foods11101378
http://dx.doi.org/10.3390/agriculture12060741
http://dx.doi.org/10.1080/19476337.2018.1518343
http://dx.doi.org/10.3390/plants10061154
http://dx.doi.org/10.1021/acsomega.4c02816
http://dx.doi.org/10.3390/foods10061375
http://dx.doi.org/10.1016/j.focha.2023.100296
http://dx.doi.org/10.1016/j.rsci.2021.12.002
http://dx.doi.org/10.3390/polym14153003

Processes 2025, 13, 3731 29 of 34

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.
80.

81.

82.

Samaranayake, M.D.W.; Abeysekera, W.K.S.M.; Hewajulige, I.G.N.; Somasiri, H.P.P.S.; Mahanama, K.R.R.; Senanayake, D.M.].B.;
Premakumara, G.A.S. Fatty acid profiles of selected traditional and new improved rice varieties of Sri Lanka. J. Food Compos.
Anal. 2022, 112, 104686. [CrossRef]

Kim, D.S.; Kim, Q.W,; Kim, H.; Kim, H.J. Changes in the chemical, physical, and sensory properties of rice according to its
germination rate. Food Chem. 2022, 388, 133060. [CrossRef]

Maftoon Azad, N.; Alizadeh, A.; Kazemiyan Jahromi, A.; Ehsan Torkamani, A.; Baghaei, S.; Mirazimi Abarghuei, F. Effects
of Thermodynamic Properties of Rice and Ambient Conditions on Moisture Migration during Storage at Naturally Ventilated
Warehouses. Arab. |. Chem. 2023, 16, 104761. [CrossRef]

Peng, B.; He, L.; Tan, J.; Zheng, L.; Zhang, ].; Qiao, Q.; Wang, Y.; Gao, Y.; Tian, X.; Liu, Z. Effects of Rice Aging on Its Main Nutrients
and Quality Characters; Canadian Center of Science and Education: Toronto, ON, Canada, 2019.

Rodrigues, D.M.; Coradi, P.C.; Teodoro, L.P.R.; Teodoro, PE.; dos S. Moraes, R.; Leal, M.M. Monitoring and predicting corn grain
quality on the transport and post-harvest operations in storage units using sensors and machine learning models. Sci. Rep. 2024,
14, 6232. [CrossRef]

de Moraes, R.S.; Coradi, P.C.; Nunes, M.T.; Leal, M.M.; Miiller, E.I.; Teodoro, P.E.; Flores, EM.M. Thick layer drying and storage
of rice grain cultivars in silo-dryer-aerator: Quality evaluation at low drying temperature. Heliyon 2023, 9, €17962. [CrossRef]
[PubMed]

Chen, P,; Chen, N.; Zhu, W.; Wang, D.; Jiang, M.; Qu, C.; Li, Y,; Zou, Z. A Heat and Mass Transfer Model of Peanut Convective
Drying Based on a Two-Component Structure. Foods 2023, 12, 1823. [CrossRef]

Ilias, I.A.; Wagiran, A.; Azizan, K.A ; Ismail, I.; Samad, A.F.A. Irreversibility of the cell wall modification acts as a limiting factor
in desiccation tolerance of Oryza sativa ssp. Indica cv MR303. Plant Stress 2024, 12, 100463. [CrossRef]

Wang, H.; Xiao, N.; Ding, J.; Zhang, Y.; Liu, X.; Zhang, H. Effect of germination temperature on hierarchical structures of starch
from brown rice and their relation to pasting properties. Int. J. Biol. Macromol. 2020, 147, 965-972. [CrossRef] [PubMed]

do Nascimento, L.A.; Abhilasha, A.; Singh, J.; Elias, M.C.; Colussi, R. Rice Germination and Its Impact on Technological and
Nutritional Properties: A Review. Rice Sci. 2022, 29, 201-215. [CrossRef]

Beaulieu, J.C.; Boue, S.M.; Goufo, P. Health-promoting germinated rice and value-added foods: A comprehensive and systematic
review of germination effects on brown rice. Crit. Rev. Food Sci. Nutr. 2023, 63, 11570-11603. [CrossRef]

Plasek, B.; Lakner, Z.; Temesi, A. Factors That Influence the Perceived Healthiness of Food—Review. Nutrients 2020, 12, 1881.
[CrossRef] [PubMed]

Rai, S.; Wai, P.P; Koirala, P.; Bromage, S.; Nirmal, N.P.; Pandiselvam, R.; Nor-Khaizura, M.A.R.; Mehta, N.K. Food product quality,
environmental and personal characteristics affecting consumer perception toward food. Front. Sustain. Food Syst. 2023, 7, 1222760.
[CrossRef]

Aznan, A.; Gonzalez Viejo, C.; Pang, A.; Fuentes, S. Rapid assessment of rice quality traits using low-cost digital technologies.
Foods 2022, 11, 1181. [CrossRef]

Dixon, W.R.; Morales-Contreras, B.E.; Kongchum, M.; Xu, Z.; Harrell, D.; Moskowitz, H.R.; Wicker, L. Aroma, Quality, and
Consumer Mindsets for Shelf-Stable Rice Thermally Processed by Reciprocal Agitation. Foods 2020, 9, 1559. [CrossRef]

Maleki, C.; Oliver, P; Lewin, S.; Liem, G.; Keast, R. Preference Mapping of Different Water-to-Rice Ratios in Cooked Aromatic
White Jasmine Rice. J. Food Sci. 2020, 85, 1576-1585. [CrossRef]

Sultana, S.; Faruque, M.; Islam, M.R. Rice grain quality parameters and determination tools: A review on the current developments
and future prospects. Int. |. Food Prop. 2022, 25, 1063-1078. [CrossRef]

Qadir, N.; Wani, I.A. Physical properties of four rice cultivars grown in Indian temperate region. Appl. Food Res. 2023, 3, 100280.
[CrossRef]

Zhu, Y,; Xie, E; Ren, J.; Jiang, F.; Zhao, N.; Du, S.k. Structural analysis, nutritional evaluation, and flavor characterization of
parched rice made from proso millet. Food Chem. X 2023, 19, 100784. [CrossRef]

Yi, Z.; Zhuohua, Z.; Likui, F,; Yunjun, Z.; Geng, Z. Impact of milling on the sensory quality and flavor profile of an aromatic rice
variety produced in Chonggqing. J. Cereal Sci. 2024, 116, 103844. [CrossRef]

Ali, F; Jighly, A.; Joukhadar, R.; Niazi, N.K.; Al-Misned, F. Current status and future prospects of head rice yield. Agriculture
2023, 13, 705. [CrossRef]

Prom-U-Thai, C.; Rerkasem, B. Rice quality improvement: A review. Agron. Sustain. Dev. 2020, 40, 64. [CrossRef]

Hebishy, E.; Buchanan, D.; Rice, J.; Oyeyinka, S.A. Variation in amylose content in three rice variants predominantly influences
the properties of sushi rice. J. Food Meas. Charact. 2024, 18, 4545-4557. [CrossRef]

Liu, X; Shi, Z.; Zhang, Y.; Li, H.; Pei, H.; Yang, H. Characteristics of Damage to Brown Rice Kernels under Single and Continuous
Mechanical Compression Conditions. Foods 2024, 13, 1069. [CrossRef]

Venkatesan, S.; Udhaya Nandhini, D.; Senthilraja, K.; Prabha, B.; Jidhu Vaishnavi, S.; Eevera, T.; Somasundaram, E.; Balakrishnan,
N.; Raveendran, M.; Geethalakshmi, V. Traditional cultivars influence on physical and engineering properties of rice from the
cauvery deltaic region of Tamil Nadu. Appl. Sci. 2023, 13, 5705. [CrossRef]


http://dx.doi.org/10.1016/j.jfca.2022.104686
http://dx.doi.org/10.1016/j.foodchem.2022.133060
http://dx.doi.org/10.1016/j.arabjc.2023.104761
http://dx.doi.org/10.1038/s41598-024-56879-5
http://dx.doi.org/10.1016/j.heliyon.2023.e17962
http://www.ncbi.nlm.nih.gov/pubmed/37483753
http://dx.doi.org/10.3390/foods12091823
http://dx.doi.org/10.1016/j.stress.2024.100463
http://dx.doi.org/10.1016/j.ijbiomac.2019.10.063
http://www.ncbi.nlm.nih.gov/pubmed/31715228
http://dx.doi.org/10.1016/j.rsci.2022.01.009
http://dx.doi.org/10.1080/10408398.2022.2094887
http://dx.doi.org/10.3390/nu12061881
http://www.ncbi.nlm.nih.gov/pubmed/32599717
http://dx.doi.org/10.3389/fsufs.2023.1222760
http://dx.doi.org/10.3390/foods11091181
http://dx.doi.org/10.3390/foods9111559
http://dx.doi.org/10.1111/1750-3841.15120
http://dx.doi.org/10.1080/10942912.2022.2071295
http://dx.doi.org/10.1016/j.afres.2023.100280
http://dx.doi.org/10.1016/j.fochx.2023.100784
http://dx.doi.org/10.1016/j.jcs.2024.103844
http://dx.doi.org/10.3390/agriculture13030705
http://dx.doi.org/10.1007/s13593-020-00633-4
http://dx.doi.org/10.1007/s11694-024-02513-x
http://dx.doi.org/10.3390/foods13071069
http://dx.doi.org/10.3390/app13095705

Processes 2025, 13, 3731 30 of 34

83.
84.

85.
86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.
101.

102.

103.

104.

105.

106.

107.

108.

Singh, N.; Singh, H.; Kaur, K.; Singh Bakshi, M. Relationship between the degree of milling, ash distribution pattern and
conductivity in brown rice. Food Chem. 2000, 69, 147-151. [CrossRef]

Dhankhar, P; Hissar, T. Rice Milling. losr . Eng. 2014, 4, 34—42. [CrossRef]

Cruz, N.D.; Khush, G. Rice grain quality evaluation procedures. Aromat. Rices 2000, 3, 15-28.

Calingacion, M.; Laborte, A.; Nelson, A.; Resurreccion, A.; Concepcion, J.C.; Daygon, V.D.; Mumm, R.; Reinke, R.; Dipti, S.;
Bassinello, P.Z. Diversity of global rice markets and the science required for consumer-targeted rice breeding. PLoS ONE 2014,
9, €85106. [CrossRef] [PubMed]

Thissa Marasingha, M.M.M.; Samarakoon, E.R.J.; Senarathne, B.M.K.; Samarasinghe, H.G.A.S. Comparative Assessment of Grain
Quality Characteristics and Cooking Parameters of White Rice (Oryza sativa Indica and Oryza sativa Japonica) Varieties Cultivated
in Sri Lanka. Eng. Proc. 2024, 67, 58.

Ren, D.; Ding, C.; Qian, Q. Molecular bases of rice grain size and quality for optimized productivity. Sci. Bull. 2023, 68, 314-350.
[CrossRef]

Sharma, A.; Jaiswal, H.K. Heterosis for yield and grain quality parameters in basmati rice (Oryza sativa L.). Electron. ]. Plant Breed.
2020, 11, 1106-1115. [CrossRef]

Tam, B.P; Tu, PT.B.; Pha, N.T. Identification of medium-grain rice based on GS3, a gene linked to rice grain size. Indones. ].
Biotechnol. 2024, 29, 82-90. [CrossRef]

Yin, C,; Li, H.; Li, S.; Xu, L.; Zhao, Z.; Wang, ]. Genetic dissection on rice grain shape by the two-dimensional image analysis in
one japonica X indica population consisting of recombinant inbred lines. Theor. Appl. Genet. 2015, 128, 1969-1986. [CrossRef]
Arikit, S.; Wanchana, S.; Khanthong, S.; Saensuk, C.; Thianthavon, T.; Vanavichit, A.; Toojinda, T. QTL-seq identifies cooked
grain elongation QTLs near soluble starch synthase and starch branching enzymes in rice (Oryza sativa L.). Sci. Rep. 2019, 9, 8328.
[CrossRef]

Lin, Z.; Zheng, D.; Zhang, X.; Wang, Z.; Lei, ].; Liu, Z,; Li, G.; Wang, S.; Ding, Y. Chalky part differs in chemical composition
from translucent part of japonica rice grains as revealed by a notched-belly mutant with white-belly. J. Sci. Food Agric. 2016,
96, 3937-3943. [CrossRef]

Singh, N.; Sodhi, N.S.; Kaur, M.; Saxena, S.K. Physico-chemical, morphological, thermal, cooking and textural properties of
chalky and translucent rice kernels. Food Chem. 2003, 82, 433-439. [CrossRef]

Chen, L,; Li, X.; Zheng, M.; Hu, R.; Dong, J.; Zhou, L.; Liu, W,; Liu, D.; Yang, W. Genes controlling grain chalkiness in rice. Crop J.
2024, 12,979-991. [CrossRef]

Kumar, A.; Thomas, J.; Gill, N.; Dwiningsih, Y.; Ruiz, C.; Famoso, A.; Pereira, A. Molecular mapping and characterization of QTLs
for grain quality traits in a RIL population of US rice under high nighttime temperature stress. Sci. Rep. 2023, 13, 4880. [CrossRef]
Aznan, A.; Gonzalez Viejo, C.; Pang, A.; Fuentes, S. Computer vision and machine learning analysis of commercial rice grains:
A potential digital approach for consumer perception studies. Sensors 2021, 21, 6354. [CrossRef]

Cuevas, R.P; Pede, V.O.; McKinley, ].; Velarde, O.; Demont, M. Rice grain quality and consumer preferences: A case study of
two rural towns in the Philippines. PLoS ONE 2016, 11, e0150345. [CrossRef]

Paul, H.; Nath, B.C.; Golam, M.; Bhuiyan, K. Effect of Degree of Milling on Rice Grain Quality. J. Agric. Eng. 2019, 42, 69-76.
Bergman, C.J. Rice end-use quality analysis. In Rice; Elsevier: Amsterdam, The Netherlands, 2019; pp. 273-337.

Sun, H.; Xue, ].; Song, Y.; Wang, P.; Wen, Y.; Zhang, T. Detection of fruit tree diseases in natural environments: A novel approach
based on stereo camera and deep learning. Eng. Appl. Artif. Intell. 2024, 137, 109148. [CrossRef]

Lv, X.; Zhang, X.; Gao, H.; He, T.; Lv, Z.; Zhangzhong, L. When Crops Meet Machine Vision: A Review and Development
Framework for a Low-Cost Nondestructive Online Monitoring Technology in Agricultural Production. Agric. Commun. 2024,
2,100029. [CrossRef]

El-Mesery, H.S.; Mao, H.; Abomohra, A.E.F. Applications of non-destructive technologies for agricultural and food products
quality inspection. Sensors 2019, 19, 846. [CrossRef]

Olorunfemi, B.O.; Nwulu, N.I.; Adebo, O.A.; Kavadias, K.A. Advancements in machine visions for fruit sorting and grading:
A bibliometric analysis, systematic review, and future research directions. J. Agric. Food Res. 2024, 16, 101154. [CrossRef]
Narendra, V.G.; Hareesh, K.S. Prospects of computer vision automated grading and sorting systems in agricultural and food
products for quality evaluation. Int. J. Comput. Appl. 2010, 1, 1-12. [CrossRef]

Razavi, S.M.A; Farahmandfar, R. Effect of hulling and milling on the physical properties of rice grains. Int. Agrophysics 2008,
22,353-359.

Singathala, H.; Malla, J.; Lekkala, P. Quality Analysis and Classification of Rice Grains using Image Processing Techniques.
Int. Res. ]. Eng. Technol. 2023, 10, 311-315.

Vu, H.; Duong, V.N.; Nguyen, T.T. Inspecting rice seed species purity on a large dataset using geometrical and morphological
features. In Proceedings of the ACM International Conference Proceeding Series, Danang City, Vietnam, 6-7 December 2018;
pp. 321-328.


http://dx.doi.org/10.1016/S0308-8146(99)00237-X
http://dx.doi.org/10.9790/3021-04543442
http://dx.doi.org/10.1371/journal.pone.0085106
http://www.ncbi.nlm.nih.gov/pubmed/24454799
http://dx.doi.org/10.1016/j.scib.2023.01.026
http://dx.doi.org/10.37992/2020.1104.179
http://dx.doi.org/10.22146/ijbiotech.89421
http://dx.doi.org/10.1007/s00122-015-2560-7
http://dx.doi.org/10.1038/s41598-019-44856-2
http://dx.doi.org/10.1002/jsfa.7793
http://dx.doi.org/10.1016/S0308-8146(03)00007-4
http://dx.doi.org/10.1016/j.cj.2024.06.005
http://dx.doi.org/10.1038/s41598-023-31399-w
http://dx.doi.org/10.3390/s21196354
http://dx.doi.org/10.1371/journal.pone.0150345
http://dx.doi.org/10.1016/j.engappai.2024.109148
http://dx.doi.org/10.1016/j.agrcom.2024.100029
http://dx.doi.org/10.3390/s19040846
http://dx.doi.org/10.1016/j.jafr.2024.101154
http://dx.doi.org/10.5120/111-226

Processes 2025, 13, 3731 31 of 34

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.
121.

122.
123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

Jeong, E.; Abdellaoui, N.; Lim, J.; Seo, J.A. The presence of a significant endophytic fungus in mycobiome of rice seed
compartments. Sci. Rep. 2024, 14, 23367. [CrossRef]

Zareef, M.; Arslan, M.; Hassan, M.M.; Ahmad, W.; Ali, S.; Li, H.; Ouyang, Q.; Wu, X.; Hashim, M.M.; Chen, Q. Recent advances in
assessing qualitative and quantitative aspects of cereals using nondestructive techniques: A review. Trends Food Sci. Technol. 2021,
116, 815-828. [CrossRef]

Hussain, N.; Sun, D.W,; Pu, H. Classical and emerging non-destructive technologies for safety and quality evaluation of cereals:
A review of recent applications. Trends Food Sci. Technol. 2019, 91, 598-608. [CrossRef]

Xu, Y;; Zhong, P; Jiang, A.; Shen, X.; Li, X.; Xu, Z.; Shen, Y.; Sun, Y.; Lei, H. Raman spectroscopy coupled with chemometrics for
food authentication: A review. TrAC Trends Anal. Chem. 2020, 131, 116017. [CrossRef]

Kawamura, S.; Natsuga, M.; Takekura, K.; Itoh, K. Development of an automatic rice-quality inspection system. Comput. Electron.
Agric. 2003, 40, 115-126. [CrossRef]

Osborne, B.; Mertens, B.; Thompson, M.; Fearn, T. The authentication of Basmati rice using near infrared spectroscopy. J. Near
Infrared Spectrosc. 1993, 1, 77-83. [CrossRef]

Kumar, D.; Jevin Christy, D.; Sakthibalan, S.; Srivind, J.; Kesavan, K.; Eevera, T.; Thilagar, S.H. Thermal imaging of paddy seeds
for quality assessment. J. Trop. Agric. 2024, 62, 111-121.

Gowen, A.A,; Tiwari, B.K.; Cullen, PJ.; McDonnell, K.; O’'Donnell, C.P. Applications of thermal imaging in food quality and
safety assessment. Trends Food Sci. Technol. 2010, 21, 190-200. [CrossRef]

ElMasry, G.; ElGamal, R.; Mandour, N.; Gou, P,; Al-Rejaie, S.; Belin, E.; Rousseau, D. Emerging thermal imaging techniques for
seed quality evaluation: Principles and applications. Food Res. Int. 2020, 131, 109025. [CrossRef]

Lutz, E.; Coradi, P.C. Applications of New Technologies for Monitoring and Predicting Grains Quality Stored: Sensors, Internet
of Things, and Artificial Intelligence. Measurement 2022, 188, 110609. [CrossRef]

Danno, A.; Miyazato, M.; Ishiguro, E. Quality evaluation of agricultural products by infrared imaging method. Mem. Fac. Agric.
Kagoshima Univ. 1980, 16, 157-164.

Jamil, N.; Bejo, S.K. Husk Detection Using Thermal Imaging Technology. Agric. Agric. Sci. Procedia 2014, 2, 128-135. [CrossRef]
Ginesu, G.; Giusto, D.D.; Margner, V.; Meinlschmidt, P. Detection of foreign bodies in food by thermal image processing. IEEE
Trans. Ind. Electron. 2004, 51, 480-490. [CrossRef]

Bejo-Khairunniza, S.; Azman, N.; Jamil, N. Paddy grading using thermal imaging technology. Int. Food Res. ]. 2016, 23, 5245.
Aviara, N.A; Liberty, ].T.; Olatunbosun, O.S.; Shoyombo, H.A.; Oyeniyi, S.K. Potential application of hyperspectral imaging in
food grain quality inspection, evaluation and control during bulk storage. J. Agric. Food Res. 2022, 8, 100288. [CrossRef]

An, D.; Zhang, L.; Liu, Z,; Liu, J.; Wei, Y. Advances in infrared spectroscopy and hyperspectral imaging combined with artificial
intelligence for the detection of cereals quality. Crit. Rev. Food Sci. Nutr. 2023, 63, 9766-9796. [CrossRef]

Saha, D.; Manickavasagan, A. Machine learning techniques for analysis of hyperspectral images to determine quality of food
products: A review. Curr. Res. Food Sci. 2021, 4, 28—44. [CrossRef]

Liu, Y,; Pu, H.; Sun, D.W. Hyperspectral Imaging Technique for Evaluating Food Quality and Safety during Various Processes:
A Review of Recent Applications. Trends Food Sci. Technol. 2017, 69, 25-35. [CrossRef]

Lin, H.; Wang, Z.; Ahmad, W.; Man, Z.; Duan, Y. Identification of rice storage time based on colorimetric sensor array combined
hyperspectral imaging technology. J. Stored Prod. Res. 2020, 85, 101523. [CrossRef]

Weng, S.; Tang, P.; Yuan, H.; Guo, B.; Yu, S.; Huang, L.; Xu, C. Hyperspectral imaging for accurate determination of rice variety
using a deep learning network with multi-feature fusion. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 234, 118237.
[CrossRef]

Sun, H.; Zhang, L.; Li, H.; Rao, Z.; Ji, H. Nondestructive identification of barley seeds varieties using hyperspectral data from
two sides of barley seeds. |. Food Process Eng. 2021, 44, €13769. [CrossRef]

Deng, X.; Zhu, Q.; Huang, M. Semi-supervised classification of rice seed based on hyperspectral imaging technology. In
Proceedings of the ASABE Annual International Meeting, Quebec, QC, Canada, 13-16 July 2014; American Society of Agricultural
and Biological Engineers: St. Joseph, MI, USA, 2014.

Wang, L.; Liu, D.; Pu, H.; Sun, D.W.; Gao, W,; Xiong, Z. Use of hyperspectral imaging to discriminate the variety and quality of
rice. Food Anal. Methods 2015, 8, 515-523. [CrossRef]

Li, B.; Zhao, M.; Zhou, Y,; Hou, B.; Zhang, D. Detection of Waxed Rice Using Visible-Near Infrared Hyperspectral Imaging. J. Food
Nutr. Res. 2016, 4, 267-275.

Zhao, C.; Lee, W.S.; He, D. Immature green citrus detection based on colour feature and sum of absolute transformed difference
(SATD) using colour images in the citrus grove. Comput. Electron. Agric. 2016, 124, 243-253. [CrossRef]

Femenias, A.; Gatius, F.; Ramos, A ].; Teixido-Orries, I.; Marin, S. Hyperspectral imaging for the classification of individual cereal
kernels according to fungal and mycotoxins contamination: A review. Food Res. Int. 2022, 155, 111102. [CrossRef]

Ullrich, K.; von Elling, M.; Gutzeit, K.; Dix, M.; Weigold, M.; Aurich, J.C.; Wertheim, R.; Jawabhir, 1.S.; Ghadbeigi, H. Al-based
optimisation of total machining performance: A review. CIRP ]. Manuf. Sci. Technol. 2024, 50, 40-54. [CrossRef]


http://dx.doi.org/10.1038/s41598-024-73550-1
http://dx.doi.org/10.1016/j.tifs.2021.08.012
http://dx.doi.org/10.1016/j.tifs.2019.07.018
http://dx.doi.org/10.1016/j.trac.2020.116017
http://dx.doi.org/10.1016/S0168-1699(03)00015-2
http://dx.doi.org/10.1255/jnirs.8
http://dx.doi.org/10.1016/j.tifs.2009.12.002
http://dx.doi.org/10.1016/j.foodres.2020.109025
http://dx.doi.org/10.1016/j.measurement.2021.110609
http://dx.doi.org/10.1016/j.aaspro.2014.11.019
http://dx.doi.org/10.1109/TIE.2004.825286
http://dx.doi.org/10.1016/j.jafr.2022.100288
http://dx.doi.org/10.1080/10408398.2022.2066062
http://dx.doi.org/10.1016/j.crfs.2021.01.002
http://dx.doi.org/10.1016/j.tifs.2017.08.013
http://dx.doi.org/10.1016/j.jspr.2019.101523
http://dx.doi.org/10.1016/j.saa.2020.118237
http://dx.doi.org/10.1111/jfpe.13769
http://dx.doi.org/10.1007/s12161-014-9916-5
http://dx.doi.org/10.1016/j.compag.2016.04.009
http://dx.doi.org/10.1016/j.foodres.2022.111102
http://dx.doi.org/10.1016/j.cirpj.2024.01.012

Processes 2025, 13, 3731 32 of 34

136.

137.

138.

139.

140.

141.
142.

143.

144.

145.
146.

147.
148.

149.

150.

151.
152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

Xu, Y; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y,; Dong, E; Qiu, C.W. Artificial intelligence: A powerful
paradigm for scientific research. Innovation 2021, 2, 100179. [CrossRef]

Zhu, L.; Spachos, P.; Pensini, E.; Plataniotis, K.N. Deep learning and machine vision for food processing: A survey. Curr. Res.
Food Sci. 2021, 4, 233-249. [CrossRef]

Naik, N.K.; Subbarao, M.V; Sethy, PK.; Behera, S.K.; Panigrahi, G.R. Machine learning with analysis-of-variance-based method
for identifying rice varieties. J. Agric. Food Res. 2024, 18, 101397. [CrossRef]

Mana, A.A.; Allouhi, A.; Hamrani, A.; Rahman, S.; el Jamaoui, I.; Jayachandran, K. Sustainable Al-based production agriculture:
Exploring Al applications and implications in agricultural practices. Smart Agric. Technol. 2024, 7, 100416. [CrossRef]

Meshram, V.; Patil, K.; Meshram, V.; Hanchate, D.; Ramkteke, S.D. Machine learning in agriculture domain: A state-of-art survey.
Artif. Intell. Life Sci. 2021, 1, 100010. [CrossRef]

Mahesh, B. Machine Learning Algorithms—A Review. Int. . Sci. Res. 2020, 9, 381-386. [CrossRef]

Sarker, .LH. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160.
[CrossRef]

Bansal, M.; Goyal, A.; Choudhary, A. A comparative analysis of K-nearest neighbor, genetic, support vector machine, decision
tree, and long short term memory algorithms in machine learning. Decis. Anal. J. 2022, 3, 100071. [CrossRef]

Dhaliwal, D.S.; Williams, M.M. Sweet corn yield prediction using machine learning models and field-level data. Precis. Agric.
2024, 25, 51-64. [CrossRef]

Taherdoost, H. Deep Learning and Neural Networks: Decision-Making Implications. Symmetry 2023, 15, 1723. [CrossRef]
Taye, M.M. Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future
Directions. Computers 2023, 12, 91. [CrossRef]

Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85-117. [CrossRef]

Sitokonstantinou, V.; Koukos, A.; Drivas, T.; Kontoes, C.; Papoutsis, I.; Karathanassi, V. A scalable machine learning pipeline for
paddy rice classification using multi-temporal sentinel data. Remote Sens. 2021, 13, 1769. [CrossRef]

Wang, J.; Jiang, J. Unsupervised deep clustering via adaptive GMM modeling and optimization. Neurocomputing 2021, 433, 199-211.
[CrossRef]

Gambella, C.; Ghaddar, B.; Naoum-Sawaya, J. Optimization problems for machine learning: A survey. Eur. J. Oper. Res. 2021,
290, 807-828. [CrossRef]

Archana, R.; Jeevaraj, P.E. Deep learning models for digital image processing: A review. Artif. Intell. Rev. 2024, 57, 11. [CrossRef]
Attri, I.; Awasthi, L.K.; Sharma, T.P,; Rathee, P. A review of deep learning techniques used in agriculture. Ecol. Inform. 2023,
77,102217.

Tien, PW.; Wei, S.; Darkwa, J.; Wood, C.; Calautit, ].K. Machine Learning and Deep Learning Methods for Enhancing Building
Energy Efficiency and Indoor Environmental Quality — A Review. Energy Al 2022, 10, 100198. [CrossRef]

Jeyaraj, PR.; Asokan, S.P.; Samuel Nadar, E.R. Computer-Assisted Real-Time Rice Variety Learning Using Deep Learning Network.
Rice Sci. 2022, 29, 489-498.

Koklu, M; Cinar, I; Taspinar, Y.S. Classification of rice varieties with deep learning methods. Comput. Electron. Agric. 2021,
187,106285. [CrossRef]

Fayyazi, S.; Abbaspour-Fard, M.H.; Rohani, A.; Monadjemi, S.A.; Sadrnia, H. Identification and classification of three Iranian rice
varieties in mixed bulks using image processing and MLP neural network. Int. J. Food Eng. 2017, 13. [CrossRef]
Kiratiratanapruk, K.; Temniranrat, P.; Sinthupinyo, W.; Prempree, P.; Chaitavon, K.; Porntheeraphat, S.; Prasertsak, A. Develop-
ment of paddy rice seed classification process using machine learning techniques for automatic grading machine. J. Sens. 2020,
2020, 7041310. [CrossRef]

Chaugule, A.A.; Mali, S.N. Identification of paddy varieties based on novel seed angle features. Comput. Electron. Agric. 2016,
123,415-422. [CrossRef]

Wu, ].G.; Shi, C.H. Prediction of grain weight, brown rice weight and amylose content in single rice grains using near-infrared
reflectance spectroscopy. Field Crops Res. 2004, 87, 13-21. [CrossRef]

Shao, Y.; Cen, Y.; He, Y.; Liu, F. Infrared spectroscopy and chemometrics for the starch and protein prediction in irradiated rice.
Food Chem. 2011, 126, 1856-1861. [CrossRef]

Jin, B.; Zhang, C,; Jia, L.; Tang, Q.; Gao, L.; Zhao, G.; Qi, H. Identification of Rice Seed Varieties Based on Near-Infrared
Hyperspectral Imaging Technology Combined with Deep Learning. ACS Omega 2022, 7, 4735-4749. [CrossRef]

Kong, W.; Zhang, C.; Liu, F; Nie, P.; He, Y. Rice seed cultivar identification using near-infrared hyperspectral imaging and
multivariate data analysis. Sensors 2013, 13, 8916-8927. [CrossRef]

Farahnakian, F,; Sheikh, ].; Farahnakian, F.; Heikkonen, J. A comparative study of state-of-the-art deep learning architectures for
rice grain classification. J. Agric. Food Res. 2024, 15, 100890. [CrossRef]

Sun, C.; Liu, T,; Ji, C,; Jiang, M,; Tian, T.; Guo, D.; Wang, L.; Chen, Y.; Liang, X. Evaluation and analysis the chalkiness of connected
rice kernels based on image processing technology and support vector machine. J. Cereal Sci. 2014, 60, 426-432. [CrossRef]


http://dx.doi.org/10.1016/j.xinn.2021.100179
http://dx.doi.org/10.1016/j.crfs.2021.03.009
http://dx.doi.org/10.1016/j.jafr.2024.101397
http://dx.doi.org/10.1016/j.atech.2024.100416
http://dx.doi.org/10.1016/j.ailsci.2021.100010
http://dx.doi.org/10.21275/ART20203995
http://dx.doi.org/10.1007/s42979-021-00592-x
http://dx.doi.org/10.1016/j.dajour.2022.100071
http://dx.doi.org/10.1007/s11119-023-10057-1
http://dx.doi.org/10.3390/sym15091723
http://dx.doi.org/10.3390/computers12050091
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.3390/rs13091769
http://dx.doi.org/10.1016/j.neucom.2020.12.082
http://dx.doi.org/10.1016/j.ejor.2020.08.045
http://dx.doi.org/10.1007/s10462-023-10631-z
http://dx.doi.org/10.1016/j.egyai.2022.100198
http://dx.doi.org/10.1016/j.compag.2021.106285
http://dx.doi.org/10.1515/ijfe-2016-0121
http://dx.doi.org/10.1155/2020/7041310
http://dx.doi.org/10.1016/j.compag.2016.03.012
http://dx.doi.org/10.1016/j.fcr.2003.09.005
http://dx.doi.org/10.1016/j.foodchem.2010.11.166
http://dx.doi.org/10.1021/acsomega.1c04102
http://dx.doi.org/10.3390/s130708916
http://dx.doi.org/10.1016/j.jafr.2023.100890
http://dx.doi.org/10.1016/j.jcs.2014.04.009

Processes 2025, 13, 3731 33 of 34

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.
182.

183.

184.

185.

186.

187.

188.

189.

190.

Chen, K.; Huang, M. Prediction of milled rice grades using Fourier transform near-infrared spectroscopy and artificial neural
networks. J. Cereal Sci. 2010, 52, 221-226. [CrossRef]

Zareiforoush, H.; Minaei, S.; Alizadeh, M.R.; Banakar, A. Qualitative classification of milled rice grains using computer vision
and metaheuristic techniques. J. Food Sci. Technol. 2016, 53, 118-131. [CrossRef]

Mandal, D. Adaptive neuro-fuzzy inference system based grading of basmati rice grains using image processing technique. Rom.
J. Inf. Sci. Technol. 2019, 22, 19. [CrossRef]

Ramdhani, Y.; Alamsyah, D.P. Enhancing Sustainable Rice Grain Quality Analysis with Efficient SVM Optimization Using
Genetic Algorithm. E3S Web Conf. 2023, 426, 01035. [CrossRef]

Kang, S.; Zhang, Q.; Wei, H.; Shi, Y. An efficient multiscale integrated attention method combined with hyperspectral system to
identify the quality of rice with different storage periods and humidity. Comput. Electron. Agric. 2023, 213, 108259. [CrossRef]
Debnath, O.; Saha, H.N. An IoT-based intelligent farming using CNN for early disease detection in rice paddy. Microprocess.
Microsyst. 2022, 94, 104631. [CrossRef]

Sun, M.; Huang, S.; Lu, Z.; Wang, M.; Zhang, S.; Yang, K.; Tang, B.; Yang, W.; Huang, C. A novel method for intelligent analysis of
rice yield traits based on LED transmission imaging and cloud computing. Measurement 2023, 217, 113017. [CrossRef]

Tian, F; Tan, F; Li, H. An rapid nondestructive testing method for distinguishing rice producing areas based on Raman
spectroscopy and support vector machine. Vib. Spectrosc. 2020, 107, 103017. [CrossRef]

Saha, K.K.; Al Riza, D.F,; Ogawa, Y.; Suzuki, T.; Sugimoto, T.; Kondo, N. Assessment of chalkiness index of Sake rice using
transmission imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 275, 121149. [CrossRef]

Chen, S.; Xiong, J.; Guo, W.; Bu, R.; Zheng, Z.; Chen, Y,; Yang, Z.; Lin, R. Colored rice quality inspection system using machine
vision. J. Cereal Sci. 2019, 88, 87-95. [CrossRef]

Moses, K.; Miglani, A.; Kankar, PK. Deep CNN-based damage classification of milled rice grains using a high-magnification
image dataset. Comput. Electron. Agric. 2022, 195, 106811.

Shi, Y.; Yuan, H.; Xiong, C.; Zhang, Q; Jia, S.; Liu, ].; Men, H. Improving performance: A collaborative strategy for the multi-data
fusion of electronic nose and hyperspectral to track the quality difference of rice. Sens. Actuators B Chem. 2021, 333, 129546.
[CrossRef]

Fan, E; Chen, H.; Gao, Y.; Mou, T. Quantitative detection and sorting of broken kernels and chalky grains in milled rice using
computer vision algorithms. J. Food Eng. 2024, 383, 112225. [CrossRef]

Razavi, M.; Mavaddati, S.; Koohi, H. ResNet deep models and transfer learning technique for classification and quality detection
of rice cultivars. Expert Syst. Appl. 2024, 247, 123276. [CrossRef]

Pan, J.; Wang, T.; Wu, Q. RiceNet: A Two Stage Machine Learning Method for Rice Disease Identification. Biosyst. Eng. 2023,
225, 25-40. [CrossRef]

Yuan, C; Liu, T,; Gao, F; Zhang, R.; Seng, X. YOLOv5s-CBAM-DMLHead: A lightweight identification algorithm for weedy rice
(Oryza sativa {. spontanea) based on improved YOLOVS. Crop Prot. 2023, 172, 106342. [CrossRef]

Krichen, M. Convolutional neural networks: A survey. Computers 2023, 12, 151. [CrossRef]

Naranjo-Torres, J.; Mora, M.; Hernandez-Garcia, R.; Barrientos, R.J.; Fredes, C.; Valenzuela, A. A review of convolutional neural
network applied to fruit image processing. Appl. Sci. 2020, 10, 3443. [CrossRef]

Ang, KM.; El-Kenawy, E.S.M.; Abdelhamid, A.A_; Ibrahim, A.; Alharbi, A.H.; Khafaga, D.S.; Tiang, S.S.; Lim, W.H. Optimal design
of convolutional neural network architectures using teaching—learning-based optimization for image classification. Symmetry
2022, 14, 2323. [CrossRef]

Hafiz, AM.; Bhat, GM. A Survey on Instance Segmentation: State of the Art. Intf. J. Multimed. Inf. Retr. 2020, 9, 171-189.
[CrossRef]

Zhang, Q.; Liu, Y,; Gong, C.; Chen, Y.; Yu, H. Applications of deep learning for dense scenes analysis in agriculture: A review.
Sensors 2020, 20, 1520. [CrossRef]

Champ, J.; Mora-Fallas, A.; Goéau, H.; Mata-Montero, E.; Bonnet, P; Joly, A. Instance segmentation for the fine detection of crop
and weed plants by precision agricultural robots. Appl. Plant Sci. 2020, 8, e11373. [CrossRef] [PubMed]

Niu, C; Li, H.; Niu, Y.; Zhou, Z; Bu, Y.; Zheng, W. Segmentation of cotton leaves based on improved watershed algorithm.
In Proceedings of the 9th IFIP WG 5.14 International Conference, CCTA 2015, Beijing, China, 27-30 September 2015; Springer:
Berlin/Heidelberg, Germany, 2015; pp. 425-436.

Pham, V.H.; Lee, B.R. An Image Segmentation Approach for Fruit Defect Detection Using K-Means Clustering and Graph-Based
Algorithm. Vietnam J. Comput. Sci. 2015, 2, 25-33. [CrossRef]

Clement, J.; Novas, N.; Gazquez, ].A.; Manzano-Agugliaro, F. An active contour computer algorithm for the classification of
cucumbers. Comput. Electron. Agric. 2013, 92, 75-81. [CrossRef]

Ma, J.; Du, K; Zhang, L.; Zheng, E,; Chu, J.; Sun, Z. A Segmentation Method for Greenhouse Vegetable Foliar Disease Spots
Images Using Color Information and Region Growing. Comput. Electron. Agric. 2017, 142, 110-117. [CrossRef]


http://dx.doi.org/10.1016/j.jcs.2010.05.010
http://dx.doi.org/10.1007/s13197-015-1947-4
http://dx.doi.org/10.3390/asi1020019
http://dx.doi.org/10.1051/e3sconf/202342601035
http://dx.doi.org/10.1016/j.compag.2023.108259
http://dx.doi.org/10.1016/j.micpro.2022.104631
http://dx.doi.org/10.1016/j.measurement.2023.113017
http://dx.doi.org/10.1016/j.vibspec.2019.103017
http://dx.doi.org/10.1016/j.saa.2022.121149
http://dx.doi.org/10.1016/j.jcs.2019.05.010
http://dx.doi.org/10.1016/j.snb.2021.129546
http://dx.doi.org/10.1016/j.jfoodeng.2024.112225
http://dx.doi.org/10.1016/j.eswa.2024.123276
http://dx.doi.org/10.1016/j.biosystemseng.2022.11.007
http://dx.doi.org/10.1016/j.cropro.2023.106342
http://dx.doi.org/10.3390/computers12080151
http://dx.doi.org/10.3390/app10103443
http://dx.doi.org/10.3390/sym14112323
http://dx.doi.org/10.1007/s13735-020-00195-x
http://dx.doi.org/10.3390/s20051520
http://dx.doi.org/10.1002/aps3.11373
http://www.ncbi.nlm.nih.gov/pubmed/32765972
http://dx.doi.org/10.1007/s40595-014-0028-3
http://dx.doi.org/10.1016/j.compag.2013.01.006
http://dx.doi.org/10.1016/j.compag.2017.08.023

Processes 2025, 13, 3731 34 of 34

191.

192.

193.

194.
195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.
214.

Tian, Y.; Yang, G.; Wang, Z.; Li, E.; Liang, Z. Instance segmentation of apple flowers using the improved Mask R-CNN model.
Biosyst. Eng. 2020, 193, 264-278. [CrossRef]

Lin, G.; Tang, Y.; Zou, X.; Wang, C. Three-dimensional reconstruction of guava fruits and branches using instance segmentation
and geometry analysis. Comput. Electron. Agric. 2021, 184, 106107. [CrossRef]

Carranza-Garcia, M.; Torres-Mateo, J.; Lara-Benitez, P.; Garcia-Gutiérrez, J. On the performance of one-stage and two-stage object
detectors in autonomous vehicles using camera data. Remote Sens. 2020, 13, 89. [CrossRef]

Hassan, E.; El-Rashidy, N.; Talaa, EM. Review: Mask R-CNN Models. Nile J. Commun. Comput. Sci. 2022, 3, 17-27. [CrossRef]
Hoogenboom, G. Contribution of agrometeorology to the simulation of crop production and its applications. Agric. For. Meteorol.
2000, 103, 137-157. [CrossRef]

Sapkota, R.; Ahmed, D.; Karkee, M. Comparing YOLOv8 and Mask R-CNN for instance segmentation in complex orchard
environments. Artif. Intell. Agric. 2024, 13, 84-99. [CrossRef]

Wang, S.; Sun, G.; Zheng, B.; Du, Y. A crop image segmentation and extraction algorithm based on Mask RCNN. Entropy 2021,
23,1160. [CrossRef]

Afzaal, U.; Bhattarai, B.; Pandeya, Y.R; Lee, . An instance segmentation model for strawberry diseases based on mask R-CNN.
Sensors 2021, 21, 6565. [CrossRef]

Osorio, K.; Puerto, A.; Pedraza, C.; Jamaica, D.; Rodriguez, L. A Deep Learning Approach for Weed Detection in Lettuce Crops
Using Multispectral Images. AgriEngineering 2020, 2, 471-488. [CrossRef]

Safonova, A.; Guirado, E.; Maglinets, Y.; Alcaraz-Segura, D.; Tabik, S. Olive tree biovolume from UAV multi-resolution image
segmentation with Mask R-CNN. Sensors 2021, 21, 1617. [CrossRef] [PubMed]

Soviany, P,; Ionescu, R.T. Optimizing the Trade-off between Single-Stage and Two-Stage Object Detectors Using Image Difficulty
Prediction. arXiv 2018, arXiv:1803.08707.

Hussain, M.; He, L.; Schupp, J.; Lyons, D.; Heinemann, P. Green fruit segmentation and orientation estimation for robotic green
fruit thinning of apples. Comput. Electron. Agric. 2023, 207, 107734. [CrossRef]

Seol, J.; Kim, J.; Son, H.I. Field evaluations of a deep learning-based intelligent spraying robot with flow control for pear orchards.
Precis. Agric. 2022, 23, 712-732. [CrossRef]

Zhang, L.; Ding, G; Li, C; Li, D. DCF-YOLOvVS8: An Improved Algorithm for Aggregating Low-Level Features to Detect
Agricultural Pests and Diseases. Agronomy 2023, 13, 2012. [CrossRef]

Wang, X.; Liu, J. Vegetable disease detection using an improved YOLOVS algorithm in the greenhouse plant environment. Sci. Rep.
2024, 14, 4261. [CrossRef] [PubMed]

Yang, G.; Wang, J.; Nie, Z.; Yang, H.; Yu, S. A Lightweight YOLOvS8 Tomato Detection Algorithm Combining Feature Enhancement
and Attention. Agronomy 2023, 13, 1824. [CrossRef]

Jahangirlou, M.R.; Morel, J.; Akbari, G.A.; Alahdadi, I.; Soufizadeh, S.; Parsons, D. Combined use of APSIM and logistic regression
models to predict the quality characteristics of maize grain. Eur. |. Agron. 2023, 142, 126629. [CrossRef]

Yang, Z.; Ren, J.; Zhang, Z.; Sun, Y.; Zhang, C.; Wang, M.; Wang, L. A New Three-Way Incremental Naive Bayes Classifier.
Electronics 2023, 12, 1730. [CrossRef]

Bhargava, A.; Bansal, A. Fruits and vegetables quality evaluation using computer vision: A review. J. King Saud-Univ.-Comput.
Inf. Sci. 2021, 33, 243-257. [CrossRef]

Chuquimarca, L.E.; Vintimilla, B.X.; Velastin, S.A. A review of external quality inspection for fruit grading using CNN models.
Artif. Intell. Agric. 2024, 14, 1-20. [CrossRef]

Mahamat, A.A.; Boukar, M.M.; Leklou, N.; Celino, A.; Obianyo, LI; Bih, N.L.; Stanislas, T.T.; Savastanos, H. Decision Tree
Regression vs. Gradient Boosting Regressor Models for the Prediction of Hygroscopic Properties of Borassus Fruit Fiber. Appl. Sci.
2024, 14, 7540. [CrossRef]

Esmaili, M.; Aliniaeifard, S.; Mashal, M.; Vakilian, K.A.; Ghorbanzadeh, P.; Azadegan, B.; Seif, M.; Didaran, F. Assessment of
adaptive neuro-fuzzy inference system (ANFIS) to predict production and water productivity of lettuce in response to different
light intensities and CO, concentrations. Agric. Water Manag. 2021, 258, 107201. [CrossRef]

Tomar, V.; Bansal, M.; Singh, P. Metaheuristic Algorithms for Optimization: A Brief Review. Eng. Proc. 2023, 59, 238.

Singh, A.; Raj, K.; Meghwar, T.; Roy, A.M. Efficient Paddy Grain Quality Assessment Approach Utilizing Affordable Sensors. Al
2024, 5, 686-703. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1016/j.biosystemseng.2020.03.008
http://dx.doi.org/10.1016/j.compag.2021.106107
http://dx.doi.org/10.3390/rs13010089
http://dx.doi.org/10.21608/njccs.2022.280047
http://dx.doi.org/10.1016/S0168-1923(00)00108-8
http://dx.doi.org/10.1016/j.aiia.2024.07.001
http://dx.doi.org/10.3390/e23091160
http://dx.doi.org/10.3390/s21196565
http://dx.doi.org/10.3390/agriengineering2030032
http://dx.doi.org/10.3390/s21051617
http://www.ncbi.nlm.nih.gov/pubmed/33668984
http://dx.doi.org/10.1016/j.compag.2023.107734
http://dx.doi.org/10.1007/s11119-021-09856-1
http://dx.doi.org/10.3390/agronomy13082012
http://dx.doi.org/10.1038/s41598-024-54540-9
http://www.ncbi.nlm.nih.gov/pubmed/38383751
http://dx.doi.org/10.3390/agronomy13071824
http://dx.doi.org/10.1016/j.eja.2022.126629
http://dx.doi.org/10.3390/electronics12071730
http://dx.doi.org/10.1016/j.jksuci.2018.06.002
http://dx.doi.org/10.1016/j.aiia.2024.10.002
http://dx.doi.org/10.3390/app14177540
http://dx.doi.org/10.1016/j.agwat.2021.107201
http://dx.doi.org/10.3390/ai5020036

	Introduction
	Aim and Scope of the Study
	Major Contribution

	Materials and Methods
	Systematic Review Statement
	Agronomic Importance and Processing
	Structure and Chemical Composition
	Biotic and Abiotic Factors Affecting Grain Quality
	Quality Assessment of Rice Grain Techniques
	Traditional Assessment Methods in Rice Milling
	Physical Properties Assessed
	Non-Destructive Techniques for Rice Quality Assessment
	Machine Vision
	Spectroscopy
	Thermal Images of Paddy Seeds
	Hyperspectral Imaging
	Artificial Intelligence
	Machine Learning
	Deep Learning
	CNN
	Instance Segmentation
	You Only Look Once (YOLO)
	Other Learning Methods


	Implementation and Limitations of Current AI Techniques in Rice Quality Assessment
	Conclusions
	Future Works
	Appendix A
	References

