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A B S T R A C T

The structural evolution and electrical behaviour of (1− x) NaNbO3-xCaTiO3 (NN-CT) ceramics were investigated 
in this study. X-ray diffraction and full-pattern Rietveld refinement confirm that CT incorporation disrupts the 
long-range antipolar orthorhombic Pbcm phase. The dielectric permittivity peak shifts to lower temperatures as 
the CT concentration increases. The highest permittivity of 2365 was obtained for x = 0.15 at room temperature. 
Synchrotron X-ray scattering coupled with pair distribution function (PDF) analysis reveals the existence of a 
short-range ordered polar orthorhombic P21ma (Q) phase with a correlation length of approximately 5 nm. A 
slim ferroelectric polarisation-electric field (P-E) loop, consistent with short-range ordered behaviour, was ob
tained in the NN-0.15CT, yielding an enhanced recoverable energy density by over 300 % at 150 kV cm− 1 

compared to pure NN. These findings establish the role of CT doping in modifying structural and dielectric 
properties, contributing to the understanding of crystal symmetry evolution and its impact on the dielectric 
response of this promising, environmentally friendly lead-free perovskite oxide for high-performance dielectric 
applications.

1. Introduction

Sodium niobate (NaNbO3, NN) is a perovskite oxide that undergoes 
multiple phase transitions, a versatile system for functional applications 
such as dielectric capacitors, piezoelectrics, and antiferroelectric energy 
storage devices [1–4]. Among the key goals for a sustainable environ
ment, the demand for lead-free, high-performance dielectric materials 
has been modified due to the increasing need for efficient energy storage 
technologies [5]. NN has gained attention for its high intrinsic break
down strength [6] (high band gap~3.4 eV) [7,8], low dielectric loss [9,
10], and complex polar ordering, compared to other studied ceramics 
like Na0.5Bi0.5TiO3, K0.5Na0.5NbO3, BaTiO3, making it a strong alterna
tive to lead-based ferroelectrics for capacitor applications. Additionally, 
NN-based ceramics exhibit a broad range of polar and antipolar phases 
as the B-site contains a highly polarisable d0 ion, which is often linked to 
octahedral distortions [11,12] with nearly equivalent free energies [1,

13,14], which can be modified through doping and processing to 
enhance their dielectric and energy density performance [15]. These 
structural instabilities can effectively disrupt long-range polar order to 
facilitate a short-range relaxor behaviour [16,17].

At room temperature (RT), NN generally exists in an antiferroelectric 
(AFE) P-phase (Pbcm), √2a x √2a x 4a [8,9]. Upon heating, NN un
dergoes a series of tilt transitions. For example, at 360 ◦C, the P phase 
transforms into the R-phase (orthorhombic, Pnma), √2a x 6a x √2a, 
followed by the S-phase (orthorhombic, Pnmm) at 480 ◦C. It then further 
transitions into higher-temperature paraelectric phases (T1 (Ortho
rhombic, Ccmm), T2 (Tetragonal, F4/mmb), and U (cubic, Pm 3 m) above 
520 ◦C [10,12]. While these transitions are well-observed in NN, the key 
structural transformation in NN occurs under an application of an 
external electric field, where the AFE-P phase is irreversibly transformed 
into the FE Q-phase (P21ma, 2a x √2a x √2a) [12]. The Q phase is 
particularly significant as it represents a field-induced FE state, where 
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polarisation switching becomes possible, yet structural features such as 
antipolar displacements and octahedral tilt patterns characteristic of the 
AFE P-phase are partially retained [18]. Phase stability and associated 
dielectric behaviour are highly dependent on the ceramic composition, 
grain size, processing conditions, and applied field [19].

To quantify the energy density performance of a dielectric ceramic, 
the discharge energy density (Wrec) is calculated using Wrec =
∫ Pmax

Pr
E dP, where Pmax is the maximum polarisation under the applied 

field, Pr is the remnant polarisation, and E is the electric field, respec
tively [20]. Many studies have focused on the structural modification 
and phase transition behaviour of NN-based ceramics, such as 
NN-SrTiO3 (NN-ST), where the relaxor phase was obtained for optimi
sation of the Wrec of ceramic capacitors. For example, relaxor ferro
electric ceramics based on NN-0.10ST and NN-0.15ST have been 
reported in the literature, with a permittivity value of ~1000 and a Wrec 
of 1.5 J cm− 3 at 140 kV cm− 1 [21–23]. However, incorporating CaTiO3 
(CT) into NN has received less attention in the literature, but is expected 
to have a pronounced impact due to the even smaller ionic radii of Ca 
(1.34 Å) compared to Sr (1.44 Å) [24]. Although CT processes low 
dielectric loss (~0.0005 at 1 kHz) and a wide bandgap (~3.4 eV) [25], 
its low permittivity of ~170 restricts CT from being a promising 
candidate for high-voltage, high-discharge energy/power capacitors. 
Both NN and CT have the same orthorhombic framework (e.g., Pbcm for 
NN and Pbnm for CT) with a complex octahedra tilting structure (e.g., 
a-a-c+). Incorporating CT into NN, therefore, allows for inducing more 
structural disorder compared to NN-ST, which is ideal for creating a 
short-range relaxor [26,27].

In this work, we synthesised a series of ceramic compositions based 
on (1-x) NN-xCT (x = 0.00–0.20). The substitution of Ca2+ for Na+ and 
Ti4+ for Nb5+ introduces local distortions due to size mismatch and 
charge imbalance, modifying the crystal lattice through strain and 
defect formation [10]. This aims to suppress long-range ferroelectric 
order and facilitate the formation of polar nanoregions (PNRs), which 
are characteristic of relaxor materials [28,29]. The study is focused on 
understanding the phase transition behaviour from a long-range ferro
electric to a short-range relaxor ferroelectric phase and the role of polar 
nanoregions contributing to dielectric behaviour. This work also dem
onstrates fundamental insights into the development of new lead-free 
dielectrics for high-voltage, high-discharge-energy-density capacitors.

2. Materials and methods

The (1− x) NN–xCT ceramics (x = 0.00–0.20) were prepared using a 
conventional solid-state reaction method. Analytical-grade Na2CO3 
(≥99.9 %, Sigma Aldrich, USA), Nb2O5 (99.9 %, Sigma Aldrich, China), 
CaCO3 (≥99.0 %, Sigma Aldrich, Germany), and TiO2 (≥99.9 %, Sigma 

Aldrich, Japan) powders were dried to remove moisture, weighed in 
stoichiometric ratios, and ball-milled in propan-2-ol for 24 h. The dried 
powders were calcined at 900 ◦C for 5 h, followed by 2nd ball-milling to 
get homogenous powders, then mixed with 1 wt% PVA binder, and 
pressing into 10 mm-diameter ceramic pellets under 150–180 MPa. 
After the binder removal stage at 550 ◦C for 2 h, the ceramic pellets were 
sintered at 1330–1400 ◦C for 2 h with a heating rate of 3 ◦C per minute, 
resulting in dense ceramics with relative densities above 93 %.

Sintered pellets for electrical measurements were electrode with 
silver paste and fired at 500 ◦C for 30 min. Temperature-dependent 
dielectric properties were recorded in the temperature range from 25 
to 550 ◦C, at frequencies of 1, 10, and 100 kHz using an LCR meter (HP 
4284A Precision LCR Meter, Agilent Technologies, USA). Polarisation- 
electric field (P-E) loops were measured on 0.1–0.2 mm thick pellets 
with 1 mm2 gold electrode area using a TF Analyser 2000 (aixACCT, 
Germany) at 1Hz under silicone oil. X-ray diffraction (XRD) was per
formed on crushed sintered ceramics using Cu Kα radiation (λ = 1.5406 
Å) with a PANalytical X’Pert PRO diffractometer to analyse phase evo
lution and lattice distortions. Ceramic samples for microstructural 
analysis were prepared by grinding, polishing, and thermal etching at 
70 % of the sintering temperature for 10 min. The scanning electron 
microscopy (SEM) imaging was conducted using FE-SEM (Quanta 250, 
JEOL, Japan). Transmission electron microscopy (TEM) samples were 
prepared using a focused ion beam (FIB, FEI Quanta 3D, The 
Netherlands) and analysed using TEM (FEI Tecnai G2-20, The 
Netherlands). Bulk ceramic specimens for the synchrotron X-ray scat
tering experiment were crushed into fine powders, thermally annealed 
at 600 ◦C for 4 h, and passed through a fine sieve. The sieve powders 
were then loaded into 1 mm diameter borosilicate capillaries with a 
packing fraction of greater than 80 % and sealed. Synchrotron X-ray 
total scattering data were collected at beamline I15-1, Diamond Light 
Source, with a wavelength (λ) of 0.161669 Å. During measurement, the 
samples were continuously spun to ensure uniform exposure, with data 
collected using a PerkinElmer XRD 4343CT detector. The obtained X-ray 
total scattering data were converted into X-ray pair distribution function 
(XPDF) data using GudrunX and a Q-range of 0.5–25 Å− 1, followed by 
’box-car’ analysis at ranges of 2–12 Å, 2–22 Å, 2–32 Å, 2–42 Å and 2–52 
Å using PDFgui to evaluate local structural distortions over various r- 
ranges from 2 to 52 Å.

3. Results

The XRD patterns of (1− x)NN− xCT ceramics are shown in Fig. 1a. 
Single-phase perovskite structure was obtained without any secondary 
phases, indicating that Ca2+ and Ti4+ are incorporated successfully into 
the NN lattice [30]. With increasing the CT content, the doublet {200}pc 

Fig. 1. (a) XRD patterns (b) enlarged view for {200}pc reflection (c) Dielectric permittivity (εr) and loss (tanδ) as a function of temperature at 100 kHz for (1-x) 
NN–xCT ceramics.
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(pc refers to pseudocubic) peak merged into a single peak whilst shifting 
to higher 2θ (Fig. 1b), suggesting a change in crystal symmetries, 
accompanied by a reduction in unit cell volume due to the substitution 
of Ca2+ (1.34 Å, CN = 12) for Na+ (1.39 Å, CN = 12) at the A-site and 
Ti4+ (0.61 Å, CN = 6) for Nb5+ (0.64 Å, CN = 6) at the B-site [24]. 
Full-pattern Rietveld refinement, Fig. S1, for x = 0.15 (Supplementary 
data), was performed in TOPAS using a few structures and space groups, 
including orthorhombic Pbcm, Pbnm, and P21ma, Rhombohedral R3m, 
and Cubic Pm 3 m. The best-refined structure obtained for x = 0.00 is 
orthorhombic Pbcm. Superlattice reflections (between 2θ = 36◦–41◦) 
remain for all compositions, such as {102}pc and {240}pc, Fig. S2
(Supplementary data). The best-refined structure of x = 0.15 is obtained 
using P21ma. Moreover, SEM morphology, Fig. S3 (Supplementary 
data), of (1− x)NN− xCT ceramics reveals a dense microstructure (>93 
%) with uniform grain morphology and no observable secondary phases, 
further reinforcing the phase purity observed in XRD. A gradual 
decrease in average grain size is observed with increasing CT content, 
reducing from ~6.8 ± 0.2 μm at x = 0.00 to ~4.9 ± 0.3 μm at x = 0.20. 
The average grain size for x = 0.15 is found to be approximately 5.2 ±
0.3 μm.

The temperature-dependent dielectric properties for all compositions 
of the (1− x) NN–xCT ceramics are presented in Fig. 1c and Fig. S4
(Supplementary data). With increasing CT concentration to x = 0.05 and 
0.10, the dielectric peak shifts progressively to lower temperatures, 
subject to pseudo-cubic structure formation, which is the associated P to 
R AFE phase transition, from approximately 360 ◦C down to 190 ◦C with 
slightly increased permittivity at RT. For x = 0.15 and 0.20, no sharp 
dielectric peak is observed above RT, with a permittivity of 2365 ob
tained at x = 0.15, the highest among all NN-based compositions re
ported here. High permittivity quasi-linear dielectric has been recently 
reported by Wang and Reaney as one of the most promising strategies for 
realising giant discharge energy density [31]. The dielectric loss at RT is 
found to be decreased from 0.014 (tan δ = 1.4 %) for x = 0.00 to 0.002 
(tan δ = 0.2 %) for x = 0.15, which is significantly below the values 
typically reported for other NN-based ceramics (tan δ < 1 %) in the 
literature [22,32,33]. This is very important for a high-voltage ceramic 
capacitor with low self-heating during charging-discharging cyclic 
operation. Compared with the widely studied NBT-based systems, which 
commonly exhibit higher dielectric losses at RT (tan δ > 1 %), NN-CT 
demonstrates a markedly superior low-loss performance [2,34,35].

The local structural behaviour of NN-0.15CT ceramics was investi
gated using TEM and XPDF (Fig. 2). The dark field image (Fig. 2a) ob
tained from the <101> zone axis shows ferroelastic domain walls, 
similar to the NN-ST based ceramics [31]. The selected area electron 
diffraction (SAED) patterns along <101> showed a doubling of periodic 
superlattice reflections ½<hkl>, confirming the presence of the Q phase 

at the nanoscale. Different from NN-ST, both CT and NN have the same 
tilt structure of a-a-c+; therefore, the Q phase is favourable to be stabi
lised, along with the formation of ferroelastic walls since the dielectric 
peak is below RT, Fig. 1c [36,37]. This short-range Q phase was then 
further studied using XPDF, Fig. 2b, and Fig. S5 (Supplementary data). 
The XPDF patterns of (1-x) NN–xCT ceramics (x = 0.05–0.20) were 
refined using “box-car” refinement to investigate local structural dis
tortions and polar correlation. Multiple structural models, including 
orthorhombic Pbcm, Pnma, and P21ma, were used to refine, with the best 
fits obtained using the P21ma space group across all r-ranges. At very 
short length scales (r < 6 Å), the structural fitting shows deviations from 
the P21ma model, similar to a previous report of NN in a neutron scat
tering study, suggesting a chemical disorder behaviour [38,39]. The 
local structure was fitted well with orthorhombic P21ma, indicating a 
polar correlation length of approximately 5 nm.

The local crystallographic information (2–52 Å), obtained from the 
‘box-car’ XPDF analysis, was presented in Fig. 3. The general trend 
across all compositions is a decrease in lattice parameter a but an in
crease in lattice parameter b/c, indicating enhancement of the local 
structural distortion. These distortions are found to decrease with 
increasing box range. The lattice parameters obtained at the largest box 
range of 2–52 Å are closer to the crystallographic information obtained 
from Rietveld refinement, Table S1 (Supplementary data). This strong 
local distorted structure reveals the existence of short-range ortho
rhombic symmetries of 10–50 Å within a pseudo-orthorhombic matrix, 
which could be responsible for the high permittivity value at RT.

The unipolar P–E loop and calculated energy density performance of 
the relaxor phase NN-0.15CT are shown in Fig. 4a. The slim P-E loop 
gives a Wrec of 0.7 J cm− 3 with efficiency (η) of 82 % at an electric field 
of 150 kV cm− 1, significantly enhanced from undoped NN (0.05 J cm− 3 

at the same field, Fig. S6 (Supplementary data), attributed mainly to the 
short-range ferroelectric (relaxor-like) state [40,41]. Both P and Wrec 
values at 150 kV cm− 1 obtained in the NN-0.15CT are found to be higher 
than other NN-based counterparts, such as 0.88NN-0.12Bi(Sn0.5Ni0.5)O3 
(Wrec ≈ 0.56 J cm− 3) [42], mainly due to the high permittivity value. 
Another important energy density performance index, the polarisation 
max and increments (dP/dE), were also evaluated in this study, as 
shown in Fig. 4b [43–45]. The dP/dE was found to decrease gradually 
from approximately 0.086 to 0.065 as the electric field increased, indi
cating a relaxor unsaturation state and a deviation from ideal 
quasi-linear dielectrics. This behaviour arises from short-range polar 
correlations and local structural distortions which collectively limit the 
linear polarisation response. Further compositional modification is still 
required in future work to further reduce polar coupling (down to 
cell-to-cell only) by inducing more complex chemical and tilting disor
ders in the ceramics.

Fig. 2. (a) TEM dark-field images and SAED patterns of x = 0.15, confirming Q-phase formation with 1/2 〈hkl〉 superlattice reflections (b) Room-temperature XPDF 
data fitted using the P21ma model, confirming short-range structural distortions.
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4. Conclusion

The structural evolution and electrical properties of (1− x) NN–xCT 
ceramics were investigated in this study. The changes in the macro
scopic structure from long-range to short-range orthorhombic were 
revealed under XRD as increasing CT concentration. Short-range polar Q 
phase was further examined under TEM and XPDF in the 0.85NN- 
0.15CT ceramics. The phase transition temperature obtained from 
dielectric curves is found to shift toward lower temperatures with 
enhanced permittivity. The highest permittivity of 2365 at RT was ob
tained with x = 0.15, probably due to the highly distorted polar phase at 
the local scale. A slim P-E loop was obtained for x = 0.15, along with a 
reduction in the dP/dE value, indicating an unsaturated relaxor-like 
behaviour. These findings provide key insights into inducing a short- 

range state for optimisation of discharge energy density in the NN-CT 
ceramic solid solution.
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Fig. 3. Comparison of calculated lattice distortion within the planes of (1-x) NN–x CT ceramics for (a) 0.05, (b) 0.10, (c) x = 0.15, and (d) 0.20, as determined by 
analysis at different length scales of XPDF data.

Fig. 4. (a) Unipolar P-E loops of x = 0.15 (b) Polarisation max and dP/dE ratio vs. electric field as derived from (a).
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