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ARTICLE INFO ABSTRACT

Handling Editor: P. Vincenzini The structural evolution and electrical behaviour of (1—-x) NaNbO3-xCaTiO3 (NN-CT) ceramics were investigated

in this study. X-ray diffraction and full-pattern Rietveld refinement confirm that CT incorporation disrupts the

Keywords: long-range antipolar orthorhombic Pbcm phase. The dielectric permittivity peak shifts to lower temperatures as

Lead-free ) the CT concentration increases. The highest permittivity of 2365 was obtained for x = 0.15 at room temperature.

EEETJ((); ferroelectric Synchrotron X-ray scattering coupled with pair distribution function (PDF) analysis reveals the existence of a
al 3

short-range ordered polar orthorhombic P2;ma (Q) phase with a correlation length of approximately 5 nm. A
slim ferroelectric polarisation-electric field (P-E) loop, consistent with short-range ordered behaviour, was ob-
tained in the NN-0.15CT, yielding an enhanced recoverable energy density by over 300 % at 150 kV cm™!
compared to pure NN. These findings establish the role of CT doping in modifying structural and dielectric
properties, contributing to the understanding of crystal symmetry evolution and its impact on the dielectric
response of this promising, environmentally friendly lead-free perovskite oxide for high-performance dielectric

High permittivity

applications.

1. Introduction

Sodium niobate (NaNbOs, NN) is a perovskite oxide that undergoes
multiple phase transitions, a versatile system for functional applications
such as dielectric capacitors, piezoelectrics, and antiferroelectric energy
storage devices [1-4]. Among the key goals for a sustainable environ-
ment, the demand for lead-free, high-performance dielectric materials
has been modified due to the increasing need for efficient energy storage
technologies [5]. NN has gained attention for its high intrinsic break-
down strength [6] (high band gap~3.4 eV) [7,8], low dielectric loss [9,
10], and complex polar ordering, compared to other studied ceramics
like Nag 5Big sTiO3, Ko.sNag sNbOs, BaTiOs, making it a strong alterna-
tive to lead-based ferroelectrics for capacitor applications. Additionally,
NN-based ceramics exhibit a broad range of polar and antipolar phases
as the B-site contains a highly polarisable d° ion, which is often linked to
octahedral distortions [11,12] with nearly equivalent free energies [1,
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13,14], which can be modified through doping and processing to
enhance their dielectric and energy density performance [15]. These
structural instabilities can effectively disrupt long-range polar order to
facilitate a short-range relaxor behaviour [16,17].

At room temperature (RT), NN generally exists in an antiferroelectric
(AFE) P-phase (Pbcm), \/2a X \/ 2a x 4a [8,9]. Upon heating, NN un-
dergoes a series of tilt transitions. For example, at 360 °C, the P phase
transforms into the R-phase (orthorhombic, Pnma), \/2a X 6a X \/2a,
followed by the S-phase (orthorhombic, Pnmm) at 480 °C. It then further
transitions into higher-temperature paraelectric phases (T1 (Ortho-
rhombic, Ccmm), T2 (Tetragonal, F4/mmb), and U (cubic, Pm 3 m) above
520 °C [10,12]. While these transitions are well-observed in NN, the key
structural transformation in NN occurs under an application of an
external electric field, where the AFE-P phase is irreversibly transformed
into the FE Q-phase (P21ma, 2a x \/2a X \/2a) [12]. The Q phase is
particularly significant as it represents a field-induced FE state, where
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polarisation switching becomes possible, yet structural features such as
antipolar displacements and octahedral tilt patterns characteristic of the
AFE P-phase are partially retained [18]. Phase stability and associated
dielectric behaviour are highly dependent on the ceramic composition,
grain size, processing conditions, and applied field [19].

To quantify the energy density performance of a dielectric ceramic,
the discharge energy density (Wye) is calculated using Wi, =

f;’r’"‘“ E dP, where Pp,,y is the maximum polarisation under the applied

field, P, is the remnant polarisation, and E is the electric field, respec-
tively [20]. Many studies have focused on the structural modification
and phase transition behaviour of NN-based ceramics, such as
NN-SrTiO3 (NN-ST), where the relaxor phase was obtained for optimi-
sation of the Wi, of ceramic capacitors. For example, relaxor ferro-
electric ceramics based on NN-0.10ST and NN-0.15ST have been
reported in the literature, with a permittivity value of ~1000 and a Wi
of 1.5 J em™2 at 140 kV ecm ™' [21-23]. However, incorporating CaTiO3
(CT) into NN has received less attention in the literature, but is expected
to have a pronounced impact due to the even smaller ionic radii of Ca
(1.34 A) compared to Sr (1.44 1°\) [24]. Although CT processes low
dielectric loss (~0.0005 at 1 kHz) and a wide bandgap (~3.4 eV) [25],
its low permittivity of ~170 restricts CT from being a promising
candidate for high-voltage, high-discharge energy/power capacitors.
Both NN and CT have the same orthorhombic framework (e.g., Pbcm for
NN and Pbnm for CT) with a complex octahedra tilting structure (e.g.,
a'a’ch). Incorporating CT into NN, therefore, allows for inducing more
structural disorder compared to NN-ST, which is ideal for creating a
short-range relaxor [26,27].

In this work, we synthesised a series of ceramic compositions based
on (1-x) NN-xCT (x = 0.00-0.20). The substitution of Ca®* for Na* and
Ti** for Nb®>' introduces local distortions due to size mismatch and
charge imbalance, modifying the crystal lattice through strain and
defect formation [10]. This aims to suppress long-range ferroelectric
order and facilitate the formation of polar nanoregions (PNRs), which
are characteristic of relaxor materials [28,29]. The study is focused on
understanding the phase transition behaviour from a long-range ferro-
electric to a short-range relaxor ferroelectric phase and the role of polar
nanoregions contributing to dielectric behaviour. This work also dem-
onstrates fundamental insights into the development of new lead-free
dielectrics for high-voltage, high-discharge-energy-density capacitors.

2. Materials and methods

The (1—x) NN—xCT ceramics (x = 0.00-0.20) were prepared using a
conventional solid-state reaction method. Analytical-grade NayCOs
(>99.9 %, Sigma Aldrich, USA), NbyOs (99.9 %, Sigma Aldrich, China),
CaCO3 (>99.0 %, Sigma Aldrich, Germany), and TiO, (>99.9 %, Sigma
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Aldrich, Japan) powders were dried to remove moisture, weighed in
stoichiometric ratios, and ball-milled in propan-2-ol for 24 h. The dried
powders were calcined at 900 °C for 5 h, followed by 2nd ball-milling to
get homogenous powders, then mixed with 1 wt% PVA binder, and
pressing into 10 mm-diameter ceramic pellets under 150-180 MPa.
After the binder removal stage at 550 °C for 2 h, the ceramic pellets were
sintered at 1330-1400 °C for 2 h with a heating rate of 3 °C per minute,
resulting in dense ceramics with relative densities above 93 %.

Sintered pellets for electrical measurements were electrode with
silver paste and fired at 500 °C for 30 min. Temperature-dependent
dielectric properties were recorded in the temperature range from 25
to 550 °C, at frequencies of 1, 10, and 100 kHz using an LCR meter (HP
4284A Precision LCR Meter, Agilent Technologies, USA). Polarisation-
electric field (P-E) loops were measured on 0.1-0.2 mm thick pellets
with 1 mm? gold electrode area using a TF Analyser 2000 (aixACCT,
Germany) at 1Hz under silicone oil. X-ray diffraction (XRD) was per-
formed on crushed sintered ceramics using Cu Ka radiation (A = 1.5406
A) with a PANalytical X’Pert PRO diffractometer to analyse phase evo-
lution and lattice distortions. Ceramic samples for microstructural
analysis were prepared by grinding, polishing, and thermal etching at
70 % of the sintering temperature for 10 min. The scanning electron
microscopy (SEM) imaging was conducted using FE-SEM (Quanta 250,
JEOL, Japan). Transmission electron microscopy (TEM) samples were
prepared using a focused ion beam (FIB, FEI Quanta 3D, The
Netherlands) and analysed using TEM (FEI Tecnai G2-20, The
Netherlands). Bulk ceramic specimens for the synchrotron X-ray scat-
tering experiment were crushed into fine powders, thermally annealed
at 600 °C for 4 h, and passed through a fine sieve. The sieve powders
were then loaded into 1 mm diameter borosilicate capillaries with a
packing fraction of greater than 80 % and sealed. Synchrotron X-ray
total scattering data were collected at beamline I115-1, Diamond Light
Source, with a wavelength () of 0.161669 A. During measurement, the
samples were continuously spun to ensure uniform exposure, with data
collected using a PerkinElmer XRD 4343CT detector. The obtained X-ray
total scattering data were converted into X-ray pair distribution function
(XPDF) data using GudrunX and a Q-range of 0.5-25 A~ followed by
’box-car’ analysis at ranges of 2-12 A, 2-22 A, 2-32 ;\, 2-42 A and 2-52
A using PDFgui to evaluate local structural distortions over various r-
ranges from 2 to 52 A.

3. Results

The XRD patterns of (1-x)NN—xCT ceramics are shown in Fig. 1a.
Single-phase perovskite structure was obtained without any secondary
phases, indicating that Ca%* and Ti** are incorporated successfully into
the NN lattice [30]. With increasing the CT content, the doublet {200} p.
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Fig. 1. (a) XRD patterns (b) enlarged view for {200} reflection (c) Dielectric permittivity (e;) and loss (tand) as a function of temperature at 100 kHz for (1-x)

NN-xCT ceramics.
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(pc refers to pseudocubic) peak merged into a single peak whilst shifting
to higher 20 (Fig. 1b), suggesting a change in crystal symmetries,
accompanied by a reduction in unit cell volume due to the substitution
of Ca** (1.34 A, CN = 12) for Na't (1.39 A, CN = 12) at the A-site and
Ti** (0.61 A, CN = 6) for Nb°" (0.64 A, CN = 6) at the B-site [24].
Full-pattern Rietveld refinement, Fig. S1, for x = 0.15 (Supplementary
data), was performed in TOPAS using a few structures and space groups,
including orthorhombic Pbcm, Pbnm, and P2;ma, Rhombohedral R3m,
and Cubic Pm 3 m. The best-refined structure obtained for x = 0.00 is
orthorhombic Pbcm. Superlattice reflections (between 20 = 36°-41°)
remain for all compositions, such as {102}p. and {240}, Fig. S2
(Supplementary data). The best-refined structure of x = 0.15 is obtained
using P2;ma. Moreover, SEM morphology, Fig. S3 (Supplementary
data), of (1—-x)NN—xCT ceramics reveals a dense microstructure (>93
%) with uniform grain morphology and no observable secondary phases,
further reinforcing the phase purity observed in XRD. A gradual
decrease in average grain size is observed with increasing CT content,
reducing from ~6.8 + 0.2 pm at x = 0.00 to ~4.9 + 0.3 pm at x = 0.20.
The average grain size for x = 0.15 is found to be approximately 5.2 +
0.3 pm.

The temperature-dependent dielectric properties for all compositions
of the (1-x) NN—xCT ceramics are presented in Fig. 1c and Fig. S4
(Supplementary data). With increasing CT concentration to x = 0.05 and
0.10, the dielectric peak shifts progressively to lower temperatures,
subject to pseudo-cubic structure formation, which is the associated P to
R AFE phase transition, from approximately 360 °C down to 190 °C with
slightly increased permittivity at RT. For x = 0.15 and 0.20, no sharp
dielectric peak is observed above RT, with a permittivity of 2365 ob-
tained at x = 0.15, the highest among all NN-based compositions re-
ported here. High permittivity quasi-linear dielectric has been recently
reported by Wang and Reaney as one of the most promising strategies for
realising giant discharge energy density [31]. The dielectric loss at RT is
found to be decreased from 0.014 (tan & = 1.4 %) for x = 0.00 to 0.002
(tan 8 = 0.2 %) for x = 0.15, which is significantly below the values
typically reported for other NN-based ceramics (tan 8§ < 1 %) in the
literature [22,32,33]. This is very important for a high-voltage ceramic
capacitor with low self-heating during charging-discharging cyclic
operation. Compared with the widely studied NBT-based systems, which
commonly exhibit higher dielectric losses at RT (tan § > 1 %), NN-CT
demonstrates a markedly superior low-loss performance [2,34,35].

The local structural behaviour of NN-0.15CT ceramics was investi-
gated using TEM and XPDF (Fig. 2). The dark field image (Fig. 2a) ob-
tained from the <101> zone axis shows ferroelastic domain walls,
similar to the NN-ST based ceramics [31]. The selected area electron
diffraction (SAED) patterns along <101> showed a doubling of periodic
superlattice reflections s<hkl>, confirming the presence of the Q phase

Ceramics International 51 (2025) 59862-59867

at the nanoscale. Different from NN-ST, both CT and NN have the same
tilt structure of aa’c™ therefore, the Q phase is favourable to be stabi-
lised, along with the formation of ferroelastic walls since the dielectric
peak is below RT, Fig. 1c [36,37]. This short-range Q phase was then
further studied using XPDF, Fig. 2b, and Fig. S5 (Supplementary data).
The XPDF patterns of (1-x) NN-xCT ceramics (x = 0.05-0.20) were
refined using “box-car” refinement to investigate local structural dis-
tortions and polar correlation. Multiple structural models, including
orthorhombic Pbcm, Pnma, and P2;ma, were used to refine, with the best
fits obtained using the P2;ma space group across all r-ranges. At very
short length scales (r < 6 10\), the structural fitting shows deviations from
the P2;ma model, similar to a previous report of NN in a neutron scat-
tering study, suggesting a chemical disorder behaviour [38,39]. The
local structure was fitted well with orthorhombic P2;ma, indicating a
polar correlation length of approximately 5 nm.

The local crystallographic information (2-52 A), obtained from the
‘box-car’ XPDF analysis, was presented in Fig. 3. The general trend
across all compositions is a decrease in lattice parameter a but an in-
crease in lattice parameter b/c, indicating enhancement of the local
structural distortion. These distortions are found to decrease with
increasing box range. The lattice parameters obtained at the largest box
range of 2-52 A are closer to the crystallographic information obtained
from Rietveld refinement, Table S1 (Supplementary data). This strong
local distorted structure reveals the existence of short-range ortho-
rhombic symmetries of 10-50 A within a pseudo-orthorhombic matrix,
which could be responsible for the high permittivity value at RT.

The unipolar P-E loop and calculated energy density performance of
the relaxor phase NN-0.15CT are shown in Fig. 4a. The slim P-E loop
gives a Wyec of 0.7 J cm ™~ with efficiency (n) of 82 % at an electric field
of 150 kV cm ™}, significantly enhanced from undoped NN (0.05 J cm >
at the same field, Fig. S6 (Supplementary data), attributed mainly to the
short-range ferroelectric (relaxor-like) state [40,41]. Both P and Wi,
values at 150 kV cm ™! obtained in the NN-0.15CT are found to be higher
than other NN-based counterparts, such as 0.88NN-0.12Bi(Sng sNi 5)O3
(Wiee ~ 0.56 J cm’3) [42], mainly due to the high permittivity value.
Another important energy density performance index, the polarisation
max and increments (dP/dE), were also evaluated in this study, as
shown in Fig. 4b [43-45]. The dP/dE was found to decrease gradually
from approximately 0.086 to 0.065 as the electric field increased, indi-
cating a relaxor unsaturation state and a deviation from ideal
quasi-linear dielectrics. This behaviour arises from short-range polar
correlations and local structural distortions which collectively limit the
linear polarisation response. Further compositional modification is still
required in future work to further reduce polar coupling (down to
cell-to-cell only) by inducing more complex chemical and tilting disor-
ders in the ceramics.

% 101>

<101>

G (A?)

o x=0.15
——P2,ma
—— difference

r(A)

Fig. 2. (a) TEM dark-field images and SAED patterns of x = 0.15, confirming Q-phase formation with 1/2 (hkl) superlattice reflections (b) Room-temperature XPDF

data fitted using the P2;ma model, confirming short-range structural distortions.
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Fig. 4. (a) Unipolar P-E loops of x = 0.15 (b) Polarisation max and dP/dE ratio vs. electric field as derived from (a).

4. Conclusion

The structural evolution and electrical properties of (1—x) NN-xCT
ceramics were investigated in this study. The changes in the macro-
scopic structure from long-range to short-range orthorhombic were
revealed under XRD as increasing CT concentration. Short-range polar Q
phase was further examined under TEM and XPDF in the 0.85NN-
0.15CT ceramics. The phase transition temperature obtained from
dielectric curves is found to shift toward lower temperatures with
enhanced permittivity. The highest permittivity of 2365 at RT was ob-
tained with x = 0.15, probably due to the highly distorted polar phase at
the local scale. A slim P-E loop was obtained for x = 0.15, along with a
reduction in the dP/dE value, indicating an unsaturated relaxor-like
behaviour. These findings provide key insights into inducing a short-

range state for optimisation of discharge energy density in the NN-CT
ceramic solid solution.
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