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Abstract
Emotion recognition is a key enabler of effective human-robot interaction (HRI),

allowing robots to respond appropriately to users’ emotional states. However,

many current approaches rely on a single modality or multimodal fusion techniques

which are computationally intensive and unsuitable for widely available, resource-

constrained robotic platforms. This presents a significant barrier to deploying

emotionally aware robots in real-world settings such as healthcare, education, and

assistive technology.

This thesis addresses this challenge by evaluating two independent, low-resource

emotion recognition approaches: facial emotion recognition and text-based sentiment

analysis. The goal is to assess their individual effectiveness, feasibility, and potential

to support emotionally intelligent behaviour without relying on full multimodal

integration.

A literature review contextualises the work within existing research on visual,

auditory, and gesture-based emotion recognition. Experimental evaluations explore

the accuracy and efficiency of both modalities in constrained environments using a

robotic platform.

Results demonstrate that both facial and text-based emotion recognition methods

can operate effectively in isolation, offering practical solutions for real-time deploy-

ment on low-power systems. These findings suggest that strategic use of unimodal

methods can enhance robot emotional responsiveness while avoiding the complexity

of multimodal systems. The thesis concludes by identifying future research direc-

tions, including real-world testing, improved on-device processing, and lightweight

integration strategies.

Keywords: Facial Emotion Recognition, Sentiment Analysis, Social Robot, Multi-

modal Emotion Recognition.
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Chapter 1

Introduction

Emotion recognition plays a critical role in Human-Robot Interaction (HRI) by

enabling robots to better understand and respond to human emotional states. This

capacity is essential for creating more natural, empathetic, and socially appropriate

interactions, as emotional cues are fundamental to human communication [20]. When

robots can recognise emotions, they can adjust their tone, behaviour, or responses

to match the user’s affective state [17], thereby improving user experience and

engagement particularly in sensitive domains such as healthcare and education.

In healthcare, robots capable of recognising patient emotions can offer better

support and improve outcomes for groups such as individuals with autism, mental

health challenges, or elderly populations [28]. Emotional awareness allows for per-

sonalised, adaptive interaction, and can help robots respond more appropriately to

shifts in mood or stress levels [31].

However, existing emotion recognition systems often rely on a single input

modality, such as facial expressions or speech. These approaches are inherently

limited: facial-based systems fail when faces are obscured or out of frame, while

audio-based systems can be disrupted by noise or speech variation. These limitations

present challenges to real-world deployment, especially in unstructured environments.

To address these limitations, researchers have explored multimodal emotion

recognition, which combines data from multiple sources, typically facial expressions,

vocal intonation, and gestures, to achieve greater accuracy and robustness. While

1



Chapter 1. Introduction

true multimodal fusion, where data streams are tightly integrated at the algorithmic

level, has shown promise in lab settings, it also introduces high computational

complexity and integration challenges that limit its use on resource-constrained

robotic platforms.

This thesis is motivated by the need to enhance emotion-aware interactions on

widely available, resource-limited robots, which often lack the computational power

or hardware needed for complex multimodal fusion.

The aim of this work is to evaluate and implement individual unimodal emotion

recognition channels, specifically facial emotion recognition and sentiment-based

emotion recognition, and to assess their effectiveness and feasibility in real-world

HRI contexts. Rather than developing a fused multimodal system, this thesis focuses

on understanding the strengths, weaknesses, and trade-offs of each modality when

applied independently on low-power, real-time robotic systems. To achieve this, the

research objectives are as follows: review current literature on facial, audio, gesture-

based, and multimodal emotion recognition methods, implement and evaluate facial

emotion recognition methods suitable for low-resource environments, explore the

use of text-based sentiment analysis using existing cloud-based tools, and assess the

performance and suitability of each method on a resource-limited robot platform,

considering constraints such as computational load and response time.

The literature review chapter presents a comprehensive survey of emotion recogni-

tion methods across various modalities, including facial expressions, gestures, speech,

and multimodal systems. This chapter highlights the strengths, limitations, and

applicability of each approach within the context of human-robot interaction, with

special attention given to systems designed for resource-constrained environments.

It also considers the role of more invasive techniques, such as EEG, addressing their

practical implications.

Materials and Methods outlines the technical setup used throughout this study.

It describes the robotic platform, datasets, and the implementation of emotion

recognition systems across both facial and audio modalities. The chapter also details

the selection and configuration of software libraries and tools, emphasising their

suitability for low-power robotic platforms and real-time processing constraints.

2



Chapter 1. Introduction

Next the results chapter combines the evaluation of both facial and sentiment

analysis systems. It presents a comparative analysis of various face detection and

classification algorithms, as well as response times for the sentiment analysis. The

performance of each system is assessed in terms of accuracy, computational efficiency,

and suitability for deployment in resource-limited environments. This chapter also

includes reflections on the challenges encountered during implementation and testing.

Chapter 5, Discussion, interprets the results presented in the previous chapter,

analysing their significance in relation to the research objectives. It explores the

trade-offs between accuracy and efficiency, the practical challenges of integrating

emotion recognition into real-world robotic systems, and the implications of using

unimodal rather than multimodal approaches.

The conclusion summarises the key findings of the thesis and reflects on how the

research meets its stated aims and objectives. It evaluates the effectiveness of the

unimodal systems developed, and identifies areas for improvement, including model

performance, hardware integration, and user validation. The chapter concludes

by proposing directions for future research, such as lightweight multimodal fusion

strategies and extended testing in real-world HRI scenarios.

3



Chapter 2

Literature

2.1 Psychological Foundations of Emotion in HRI

2.1.1 Essential Emotions for Human-Robot Interaction

Emotions are fundamental to natural social communication, and social robots are

increasingly designed with emotional intelligence so that they can “infer and interpret

human emotions” during interaction. A widely adopted framework is Ekman’s model

of six basic emotions - happiness, surprise, fear, disgust, sadness, and anger - which

are thought to have universal facial signals [91]. Later on Ekman’s model of emotions

was expanded at include a seventh basic emotion, contempt [66], though most omit

this. Empirical HRI systems typically choose a subset of basic emotions that are most

relevant and reliably detectable. For example, Alonso-Martín et al. [5] deliberately

limited their NAO-based system to neutral, happiness, sadness, and surprise, noting

that these four cover the key dialog cases and are easier to recognise by camera and

microphone.

It is essential for HRI systems to detect and respond appropriately to happiness.

Smiling or laughter from a user typically means things are going well, and robots that

recognise happiness can respond by building rapport. In practice, happy expressions

are readily recognised by current systems: for instance, a NAO robot using a CNN

achieved approximately 91% accuracy on happy faces [37].

4



2.1 Psychological Foundations of Emotion in HRI

Sadness usually signals that something is wrong. Robots that recognise sadness

can respond empathetically (e.g. speaking softly or offering help). Many HRI

experiments explicitly use sadness as a target emotion [106]. Detection systems also

handle sadness well, for example, the same NAO running a CNN as above, recognised

sad faces with approximately 90% accuracy [37]. Sadness is a core negative state for

social robots to sense; it is included in nearly every emotion set, and responding to

it (e.g. consolation) supports natural interaction.

Anger detection is critical for managing conflict or danger. An angry expression

can indicate frustration, disagreement, or risk. Anger is a high-arousal signal of

dissatisfaction [106]. Practically, if a robot detects that a person is angry, it can take

steps to defuse the situation (apologise or give space). Recognition of anger tends to

be good (85% accuracy in one study [87]). Since anger often requires adjustment of

robot behavior, it’s widely treated as an essential emotion in HRI [106].

HRI systems also consider fear and surprise important, but usually to avoid.

Inducing fear or startling people is known to harm trust. In HRI safety research,

for instance, Sisbot et al. [103] emphasise that a socially acceptable robot must

never trigger human fear, surprise or discomfort. Thus, some HRI systems include

fear/surprise detection mainly to monitor safety (e.g. pausing if a user appears

startled), though it is sometimes harder to detect (about 65% accuracy in the NAO

study [37]).

Disgust is the least-studied of the six in social robotics, but it is included for

completeness. In human social signaling, disgust usually means “this is aversive”

(e.g. a bad smell or morally repugnant content). Few HRI applications explicitly

focus on disgust, but it is part of standard emotion sets [106]. When detected, a

robot might interpret disgust similarly to anger/avoidance (e.g. stop a disagreeable

action). Recognition of disgust tends to be lower (it was grouped with sadness and

fear at approximately 65% accuracy [37]). Thus, while disgust is acknowledged as a

basic human emotion, most HRI systems prioritise the others; it is included mainly

to round out the universal facial expression categories.

A “neutral” state is normally treated as another category. Most human interaction

is emotionally neutral, thus systems include it as a catch-all [5].

5
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Finally, contempt is rarely a focus in HRI systems. Most HRI emotion-recognition

work uses Ekman’s orignial basic categories (anger, disgust, fear, happiness, sadness,

surprise, and a neutral catagory) and often omits contempt. Some commercial APIs

(e.g. Microsoft’s Face API) do output contempt, but empirical HRI studies find

almost no contemptful expressions in practice [26]. In short, contempt is technically

included in some classifiers, but it’s not commonly reported or reliably detected in

real HRI data.

Overall, recent HRI research converges on Ekman’s six basic emotions as the “core”

set that robots should recognise, most commonly ommiting the seventh emotion,

contempt. Happiness and surprise are seen as especially beneficial for positive user

experience, whereas anger, sadness, and fear are included so robots can handle conflict

or distress appropriately [26]. Disgust is rarely targeted. Overall, the “essential

emotions” for effective HRI turn out to be those that (a) humans naturally express

strongly in social settings and (b) robots can reliably sense the core Ekman emotions

plus a neutral baseline.

2.1.2 Appraisal Theory

Appraisal theory accounts for the elicitation of emotion by linking it to an individual’s

cognitive evaluation of events, particularly in terms of goal relevance, perceived

control, certainty, and agency. Thus it explains why identical events may evoke

divergent emotional responses across individuals [73]. This theoretical perspective

has informed several computational approaches to emotion modeling. For instance,

knowledge-based systems such as EmotiNet represent prototypical event-action

sequences and their associated affective outcomes based on predefined appraisal rules

[13]. In the domain of emotion analysis, appraisals have been used as intermediate

representations to support more interpretable and robust classification. Troiano et

al. [109] introduced a corpus comprising event descriptions annotated with both

emotion labels and appraisal dimensions, demonstrating that appraisal features can

be automatically inferred from text with near-human reliability. Critically, they

showed that incorporating appraisal representations alongside emotion categories

6



2.1 Psychological Foundations of Emotion in HRI

enhanced classification accuracy, suggesting that appraisal-based reasoning provides

a complementary pathway for modeling affective meaning, particularly in cases

involving implicit cues, such as goal obstruction leading to anger or fear.

Within affective HRI, appraisal-informed models enable artificial agents to infer

users’ emotional states by assessing interaction context, such as whether the agent’s

actions support or hinder user goals. Some implementations explicitly encode

appraisal variables (e.g., task success, goal congruence, user feedback) alongside

perceptual cues. Demutti et al. [29], for example, proposed a cloud-based HRI

framework wherein user-reported appraisals (e.g., satisfaction with conversational

topics and task outcomes) were integrated with facial and gaze data. A Random

Forest classifier trained on both appraisal and sensory features outperformed models

relying solely on perceptual input when classifying affective valence.

In broader HRI contexts, appraisal theory has been leveraged to imbue robots

with more human-like emotion reasoning capabilities. For example, Tang et al.

[108] describe an architecture wherein robots continuously evaluate the valence,

relevance, and goal impact of human behaviors in real time. Drawing on models

such as the Ortony, Clore, and Collins (OCC) framework, the robot applies appraisal

rules to determine whether events are congruent with user goals and generates

contextually appropriate affective responses. In experimental scenarios, appraisal-

enabled robots demonstrated improved social responsiveness; for instance, one robot

correctly interpreted a student’s disappointment, despite incongruent verbal cues, and

provided empathetic feedback, whereas a non-appraisal baseline failed to recognise

the underlying emotion and responded inappropriately.

2.1.3 Valence-Arousal model

Alongside cognitive appraisal, many emotion-aware systems use dimensional models

of affect, which map emotions onto continuous scales. The most common framework

is the valence-arousal (VA) space (often called Russells circumplex model [95]). In

this model, valence corresponds to pleasantness (positive vs. negative affect), while

arousal corresponds to activation or intensity (calm vs. excited). Every emotional
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state can be placed as a point in this 2D space: for example,“joy” is high-valence,

high-arousal, while “sadness” is low-valence, low-arousal. These two dimensions

capture the core affective quality of most emotions [65].

Figure 2.1: A Graphical representation of Russell’s Circumplex Model of Affect [95].

Dimensional labeling is popular in HRI because it provides a common language

across modalities and datasets. For instance, researchers often annotate facial

expression or physiological data with valence-arousal values so that different sensors

can be merged or compared. In fact, Spezialetti et al. [105] note that “several

dimensional annotated datasets share a common valence-arousal (VA) representation,

which allows comparing and merging data from different datasets”. As a result, VA

labels are often provided as a good practice in emotion datasets. By covering a broad

range of VA values, such datasets enable training models that predict continuous

affect.
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In affective computing systems (vision, speech, multimodal recognition), VA

is also apparent. Modern facial emotion recognition benchmarks (like the ABAW

challenge) include frame-by-frame valence/arousal estimation as official tasks. Multi-

task deep models extract features from faces (e.g. with EfficientNet) and output

both discrete expression labels and continuous VA scores [96]. These continuous

predictions allow systems to gauge nuanced changes in affect (e.g. gradual smiles)

rather than hard categories. Similarly, speech-based emotion models often regress

valence and arousal from audio features.

2.2 Facial Emotion Recognition

Facial emotion recognition is a crucial aspect of affective computing [84] that involves

analysing facial expressions to identify human emotions. This skill is essential for

successful interactions between people and is particularly important in the realm of

HRI. For robots to respond to human emotions promptly, facial emotion recognition

is key. When aware of human emotions, robots can interact more naturally with

humans by quickly and accurately recognising emotions. More natural interaction

capability will favour acceptance and use of robots in peoples lives.

2.2.1 Datasets

Pierre Luc Carrier and Aaron Courville [38] introduced the Facial Expression Recogni-

tion 2013 (FER-2013) dataset as part of a larger project aimed at advancing emotion

recognition research. Created using the Google image search API, it collected images

matching 184 emotion-related keywords like ‘blissful’ and ‘enraged.’ The dataset

includes nearly 36,000 images, processed using OpenCV for face detection and man-

ually curated for accuracy. These images were resized to 48×48 pixels, converted to

grayscale, and categorised into seven broad emotion classes: Anger, Disgust, Fear,

Happiness, Sadness, Surprise, and Neutral. It serves as a crucial resource for training

and evaluating emotion recognition models, being the most used data set for review

of articles.
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AffectNet [75] is a large-scale facial expression dataset introduced to address

the need for more diverse and comprehensive data in facial emotion recognition. It

contains over one million images of faces collected using emotion-related keywords

translated into multiple languages on three different search engines (Google, Bing

and Yahoo). These images were manually annotated into eight different emotion

categories: neutral, happy, sad, surprise, fear, disgust, anger, and contempt, along

with additional labels for valence and arousal. AffectNet stands out due to its

extensive size, diversity in ethnicity, age, and conditions such as pose and light-

ing variations, making it a valuable resource for training and evaluating emotion

recognition systems.

JAFFE [6] and CK+ are both smaller, highly curated datasets. JAFFE contains

213 images of posed facial expressions from 10 Japanese female models, labelled with

six basic emotions plus neutral. It is often used for cross-cultural studies of emotion

recognition. CK+, meanwhile, includes 593 video sequences from 123 subjects, with

each sequence showing a transition from a neutral face to a peak expression. CK+

is notable for including both emotion and action unit labels, providing fine-grained

information about facial muscle movements, making it a strong choice for both

emotion and FACS-based studies. KDEF [61], a separate dataset of 4,900 images

from 70 individuals, focuses on a broader demographic range and is often used for

validation in emotion recognition systems.

2.2.2 Algorithms

Convolutional Neural Networks (CNNs) have emerged as the dominant approach

in the realm of vision-based emotion recognition for robotic systems. Researchers

typically adopt a two-phase methodology, first using CNNs for the extraction of

features, followed by the implementation of classification techniques. One study

introduces a multistep technique that aims to improve facial recognition accuracy.

It begins with the application of a histogram equation to enhance image contrast,

which is then succeeded by a bilateral filter to reduce noise while maintaining edge

integrity. Then, the Viola-Jones (Haar-Cascade) face detection algorithm in OpenCV
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is utilised to pinpoint the facial area within the input image. The proposed technique

further refines the extraction of features through an innovative variant of local binary

pattern (LBP), which takes advantage of a convolution filter and a Kirsch operator

to capture features that withstand variations in illumination, scaling, and rotation

[69].

Figure 2.2: A summary of the algorithmic choices used in the reviewed studies.

Figure 2.2 summarises the underlying network types used in all reviewed studies,

showing the prevalence of CNN-based methods and the relative frequency of other

algorithmic choices.

Facial expression analysis remains one of the most practical non-invasive modal-

ities for emotion recognition in HRI. However, most systems rely on outdated or

limited face detection methods like using Haar-Cascade for initial face detection and

cropping the image to isolate the face before implementing more advanced CNNs [8]

or SVMs [40] [92], show promise for working in resource-limited environments. One

study used a Haar cascade to quickly locate faces, followed by a CNN to extract

features, and finally a long-short-term memory network [57] to perform classification.

Other studies have used a convolutional autoencoder and support vector regressors

[4] or recurring neural networks [16] to incorporate temporal features into emotion

recognition and establish correlations between facial expression transformations and

the six basic emotions.
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In a study by Kusuma et al. [54], VGG16 was effectively used for emotion

recognition on the FER dataset. Their model achieved an overall accuracy of

69.4% after careful optimisations through specific configurations, such as using

an imbalanced dataset (they did not use data augmentation to rectify the heavy

imbalances within the dataset), Global Average Pooling (GAP), non-frozen layers,

and the Stochastic Gradient Descent (SGD) optimiser. This model has potential for

real-time applications in HRI.

ResNet50 was used to a high degree of accuracy on FER-2013 by Pramerdorfer et

al. [85], achieving 72.4% accuracy with 5.3 million trainable parameters. No special

modifications were made to the network, except removing the initial convolution and

pooling layer and narrowing the architecture by using 256 feature maps in the final

residual group, thereby reducing the parameter count. While the model remains

relatively large by embedded deployment standards, its high reported accuracy

makes it a strong candidate for emotion recognition in HRI. However, its real-world

feasibility depends on whether its inference speed and computational demands can

be tolerated on resource-constrained robotic platforms.

Shenoy et al. [99] presents the design of an adaptive learning system for real-

time emotion recognition in humanoid robots. The system continuously updates

individualised models based on user interactions, improving performance over time.

It employs an ensemble of ResNet50 and Inception v3 networks, leveraging transfer

learning to enhance emotion recognition from facial expressions. They performed a

two-stage user study featuring 75 participants using the results for stage one to per-

sonalise the experience in stage two. The robot’s adaptive actions used the recognised

emotions to engage users in social interactions and to elicit emotional responses, such

as trust, empathy, and engagement. Results showed a 12% improvement in emotion

recognition accuracy and an 8.28% increase in the success rate of emotion elicitation

between stages, showcasing the system’s ability to adapt and foster meaningful social

interactions.

I-MobileNetV2, an enhanced version of MobileNetV2 proposed by Zhu et al.

[122], aimed to improve facial emotion recognition tasks by addressing issues such

as large parameter quantities, loss of feature information and low accuracy rates.
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Key modifications include the retention of depthwise separated convolution for

computational efficiency, a reverse fusion mechanism to preserve negative features, the

use of the SELU activation function to avoid gradient vanishing, and the integration

of the SE-Net channel attention mechanism to improve feature recognition. These

enhancements resulted in recognition accuracies of 68.62% on FER2013 and 95.96%

on CK+, with an 83.8% reduction in parameter count.

Despite these improvements, the accuracy gains over the base MobileNetV2 are

modest, with only a 0.72% increase on FER2013 and 6.14% on CK+. However,

the reduction in parameters should significantly improve inference speeds over the

MobileNetV2 base model. However, MobileNetV2 alone shows good performance on

FER2013, achieving 67.9% accuracy with 2.2 million parameters, making it a strong

candidate for real-time applications in HRI.

Data augmentations have been employed in various approaches to enhance facial

emotion recognition, often in conjunction with conventional CNNs. Several studies

have demonstrated that augmenting training data can improve model performance

by addressing challenges such as class imbalances and overfitting [97] [94]. A partic-

ularly successful technique involved Generative Adversarial Networks (GANs) for

data augmentation, as demonstrated by Song and Kwon (2019). Their study also

emphasised the importance of including the lower half of the face during training to

improve the accuracy in detecting emotions through facial recognition.

2.2.3 Applications

The exploration of applications is also apparent, ranging from studies investigating

and improving the effectiveness of emotion recognition in older adults [63] to those

focusing on unconstrained environments [113] and those with the goal of creating

a robot capable of helping speech therapy through the ability to articulate words

similar to that of human speech [34], through the development of facial expression

recognition and lip syncing capabilities, the RASA robot aims to engage children

and enhance their learning outcomes.
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The Nao robot is a popular choice in research exploring facial emotion recognition.

Many studies have focused solely on robot cameras for recognition, with classification

being handled by a separate laptop due to Nao’s processing limitations [93]. Notably,

[68] revealed Nao’s constrained processing capacity, with live inference on the robot’s

cameras only achieving 0.25 frames per second (FPS). However, this limitation was

significantly addressed by integrating the Neural Compute Stick 2 (NCS 2), a neural

network preprocessor developed by Intel. Another solution involved reprogramming

the NaoQI software of the Nao robot to be lighter to allocate more processing power

to emotion recognition [59].

One study focused on developing a system capable of operating efficiently on lim-

ited computational power, specifically for use on the Ohmni robot. The Lightweight

EMotion recognitiON (LEMON) model [30] used a residual learning-based technique

that combined Dilated Convolutional layers with Standard 2D Convolutional layers.

While the model did not achieve the highest accuracy, its strong performance in

resource-constrained environments highlights its potential applicability in robotics.

Chih-Lyang [45] presented a study featuring an Omni-Directional Service Robot

(ODSR) that uses a Faster-CNN to detect humans within its field of view. Once

a person is identified, the robot assesses whether the individual is oriented toward

the camera before applying a Haar Cascade to detect and crop the person’s face.

The cropped face is then analysed to deduce the individual’s emotion using a

Sinogram Super-Resolution and Denoising Convolutional Neural Network (SRCN).

The identified emotion is used to select and play music that corresponds to the

detected emotion. Additionally, a second SRCN is employed for speech recognition,

enabling the robot to respond and act upon verbal commands, such as ‘follow.’

Facial muscle movements known as Action Units (AUs) are an integral part of the

Facial Action Coding System (FACS). AUs serve as building blocks for describing

facial expressions and play a critical role in the recognition of facial emotions. By

breaking down expressions into discrete components, AUs are used to analyse and

categorise them. Each AU corresponds to specific facial muscle movements and

their combinations represent a diverse array of facial expressions. The primary

goal is to deconstruct facial expressions into fundamental units, which enhances our
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comprehension and recognition of emotions [70]. Chinonso Paschal Udeh [110] aimed

to create a system that provides more access to incorporating AUs into research

using a multitask approach along with multiview co-regularisation frameworks as the

baseline, the study achieves an average CNN recognition accuracy of 80% in seven

emotion categories for reclassifying datasets based on seven main AU categorisations

and expressions.

2.3 Audio-based Emotion Recognition

The field of affective computing includes emotion recognition through audio, which

involves analysing vocal cues and patterns to discern human emotions. In situations

where visual cues are not available, such as when individuals are out of a robot’s

line of sight, audio-based emotion recognition becomes crucial. In HRI, accurately

detecting emotions through audio signals is extremely important. Audio-based

emotion recognition technologies complement facial emotion recognition and allow

robots to understand the subtle emotional states of individuals through speech,

intonation, and other auditory features.

2.3.1 Common Methods

A variety of signal processing techniques have been developed to extract meaningful

features from speech for emotion recognition. These methods aim to capture spectral,

prosodic, and temporal characteristics that correlate with emotional expression. This

section outlines some of the most commonly used approaches.

The Mel-Frequency Cepstral Coefficients (MFCCs) [3] are among the most widely

used features in audio emotion recognition. They represent the short-term power

spectrum of a signal, computed by applying a discrete cosine transform to the

logarithm of the Mel-scaled power spectrum. The Mel scale spaces frequency bands

non-linearly to approximate the human auditory system’s sensitivity to pitch and

tone.
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By capturing perceptually relevant spectral information, MFCCs emphasise

frequency regions where emotional prosody, such as pitch, timbre, and intensity,

varies most. This makes them highly effective for distinguishing vocal expressions of

emotion.

Gammatone Frequency Cepstral Coefficients (GFCCs) [100] are an alternative to

MFCCs that employ a gammatone filterbank, which more closely models the frequency

selectivity of the human cochlea. This biologically inspired design enhances sensitivity

to perceptual cues relevant to speech, potentially improving robustness to noise and

capturing finer-grained auditory information. Despite these theoretical advantages,

GFCCs remain less widely adopted than MFCCs in emotion recognition tasks, with

their use more common in robust speech recognition and noisy environments.

Linear Predictive Coding (LPC) [81] models each speech sample as a weighted

sum of previous samples, assuming that recent history can predict the present. The

resulting coefficients effectively capture the spectral envelope of the signal, offering a

compact representation of vocal tract resonances over time.

Linear Predictive Cepstral Coefficients (LPCCs) [56] are obtained by applying

cepstral analysis to the LPC model, resulting in a feature representation that, like

MFCCs, captures the spectral envelope in a decorrelated form. LPCCs encode both

spectral shape and temporal structure, making them useful in speech and emotion

recognition tasks, though they are generally more sensitive to noise compared to

MFCCs.

2.3.2 Datasets

The IEMOCAP database [18] is the leading resource for audio-based emotion recog-

nition research. With approximately 12 hours of meticulously annotated audiovisual

data, it covers a wide range of modalities including video recordings, speech samples,

and motion capture of facial expressions. In addition, the database includes detailed

text transcriptions, making it a versatile platform for various emotion recognition

projects. Research can use IEMOCAP for nuanced investigations of emotional

expression, including facial emotion analysis and text-based sentiment classification.
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The SAVEE (Surrey Audio-Visual Expressed Emotion) database [42] stands out

as another crucial resource. It offers a varied selection of acted speech samples

that depict emotional states such as happiness, sadness, anger, fear, disgust, and

neutrality, delivered by four male post-graduate students. The text material consists

of 15 TIMIT (Texas Instruments/Massachusetts Institute of Technology) sentences

per emotion: 3 common, 2 emotion-specific, and 10 generic sentences that were

different for each emotion and phonetically balanced.

The RAVDESS (Ryerson Audio-Visual Database of Emotional Speech and Song)

dataset [58] is a multimodal dataset that includes both speech and song recordings,

designed to support research in emotion recognition. It contains recordings from 24

professional actors (12 male, 12 female) who vocalise emotions such as calm, happy,

sad, angry, fearful, surprised, and disgusted. Each emotion is expressed at two levels

of intensity, and the dataset provides both audio-only and audio-visual recordings,

making it suitable for studies that involve both auditory and visual cues for emotion

recognition.

2.3.3 Algorithms

Methods such as MFCC are often used to extract features that are then classified

into emotions using algorithms such as SVM [50], CNN, or DNN [98] [86]. When

using GTCC feature extraction, KNN is a common choice as a classifier, while LSTM

is preferred when the dataset is large enough for better results [121].

An emerging trend in audio-based emotion recognition involves the transformation

of audio signals into visual representations [11], spectrograms, followed by the

application of machine learning techniques such as CNNs [46] or Deep Belief Networks

(DBNs) [72]. This approach has gained considerable traction within the research

community, with various studies adopting unique methodologies. For example,

researchers have investigated the use of CNNs in conjunction with K-means clustering

to identify spectrogram frames containing crucial information [41]. Furthermore,

a study has expanded on this approach by integrating a bidirectional long-short-
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term memory (BiLSTM) network to analyse discriminative features extracted from

spectrograms, allowing the inference of speaker emotional states [76].

Figure 2.3: A chart showing the frequency of methods used to detect/extract emotional
features from audio.

Notably, the use of tools such as openSMILE toolkit by audEERING is observed

in several studies. OpenSMILE is a feature extractor that can be configured to extract

specific features from audio and music signals for signal processing and machine

learning, emphasising features enabling emotion recognition from speech. The

paper by [7] decided to test several of the extractable features for their application

in emotion recognition, they tested: Intensity, Loudness, 12 MFCC, Pitch (f0),

Probability of Voicing, F0 Envelope, 8 LSF and Zero-Crossing Rate. Once collected,

they select the best features with a ‘BestFirst’ approach. These features were then

classified, testing 3 different classification methods: multilayer perceptron neural

networks, Rules Classifier oneR, and Tree Classifier J48. Their results showed that

the multilayer Perceptron neural network had the best performance. A couple of

other methods utilising this feature extraction method employed different networks

for their classification, one choosing a Two-Layer Fuzzy Random Forest ensemble

classifier [24], and another a SVM [10].

Attention-based speech emotion recognition models have garnered significant

attention in recent years due to their ability to capture relevant features from

audio data effectively, thus improving the precision of emotion classification tasks
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[83]. By dynamically weighting different segments of the input speech signal [120]

based on their importance in expressing emotional content, these models offer a

promising approach to discern subtle nuances in speech patterns associated with

various emotional states [78]. Using mechanisms inspired by human attentional

processes, such as self-attention and multi-head attention [89], these models excel in

identifying salient acoustic cues indicative of specific emotions, thus paving the way

for more nuanced and contextually rich emotion recognition systems.

2.3.4 Applications

In a study on speech emotion recognition in speaker-independent systems, specifically

for the Mung robot [52], two key strategies were proposed to improve accuracy and

reliability. The first strategy involves separating emotion recognition from consonants

and obstruents to reduce text dependency and enhance adaptability. The second

strategy introduces a rejection algorithm based on a confidence measure to ensure

more reliable outcomes. Comparative analysis with conventional methods showed

significant improvements, with recognition rates increasing from 6.9% to 27.6% across

various emotional features through the separation algorithm and 73% to 92% with

the confidence-based rejection mechanism for MFCCs [51].

In a paper by Carolis, B.D. [19], they use the Nao robot combined with a module

that they developed called the VOCE 2.0. A module designed to classify speech

used to send requests by features extracted according to dimensional models, valence,

and arousal. They encountered low performance; however, they attribute this to the

training data, the ∈ motion dataset, and their target audience of elderly individuals,

which have a different range of characteristics.

Research has highlighted the indispensable role of data augmentation techniques

in strengthening speech-emotion recognition systems. Lakomkin et al. [55] carried

out a study to evaluate the impact of data augmentation by testing two models, one

with data augmentation and the other without. Their analysis, especially when using

the iCub robot as a test bed, demonstrated a significant drop in overall resilience

and effectiveness for the model that did not incorporate data augmentation. These
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results serve as a compelling reminder of the critical importance of utilising data

augmentation strategies to improve the performance of speech-emotion recognition

systems.

2.4 Gesture-based Emotion Recognition

Gesture-based emotion recognition focuses on interpreting emotional states from

non-verbal body cues such as posture, movement, and hand gestures. These cues

play a critical role in affective communication, particularly in scenarios where facial

expressions or speech are unavailable or unreliable, such as when a person is wearing

a mask, facing away, or in silence.

This section reviews both the algorithmic approaches used to extract and classify

emotional information from gestures, as well as practical applications in interactive

robotic settings.

2.4.1 Datasets

The Body Emotion Expression (BEE) dataset [33] captures six emotions, anger,

fear, happiness, neutral, sadness, and surprise, from 19 participants with diverse

cultural backgrounds. Using two Nao robots, one equipped with a depth sensor,

body motions were recorded from frontal and side views. Participants performed

both neutral and emotionally driven actions inspired by brief scenarios. The dataset

includes 570 sequences, with 3D skeleton data extracted from 11 key body joints.

The H80kPartial dataset [64] is a subset of the larger H80k (Humans 80k) dataset,

specifically designed for emotion recognition through human pose analysis. This

dataset focuses on capturing human body postures and gestures that are indicative

of emotional states. It contains annotated data that emphasise partial body poses,

such as the upper body, arms, and facial orientation, to help identify emotional

expressions without requiring full-body information.
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2.4.2 Algorithms

The analysis of human gestures to understand emotional states is a crucial aspect

of affective human-human interaction. Body movements, hand gestures, and facial

expressions are among the non-verbal cues that provide valuable emotional informa-

tion. In situations where verbal or facial cues are limited, such as when someone is

wearing a face mask, gesture-based emotion recognition is essential, leading to more

intuitive and empathetic interactions between humans and machines.

Marinoiu et al. [64] explore the complexities of recognising emotions through

gestures, focusing on adapting state-of-the-art RGB 3D human pose reconstruction

methods that blend feedforward and feedback components. Their study compares

several baselines for recognising actions and emotions using 2D and 3D representations

of both children and therapists. The results suggest that with proper adaptation,

current RGB-based 2D and 3D reconstruction methods can rival industrial-grade

RGB-D Kinect systems. They employed methods like DMHS (Deep Multitask

Architecture for Integrated 2D and 3D Human Sensing) and a custom variant,

DMHSPV, to extract features and introduced a new dataset, H80kPartial. While

CNNs outperformed RNNs in emotion recognition, their findings highlight the ongoing

efforts to enhance gesture-based emotion recognition.

Wang et al. [112] have introduced an innovative method for touch gesture and

emotion recognition called Multi-Task Touch Gesture and Emotion Recognition

(MUSCAT). This approach involves using a fabric embedded with touch sensors that

mimic human skin, allowing accurate touch gesture recognition. The results of the

TouchGET and CoST datasets demonstrate that the MUSCAT method significantly

reduces computation costs while improving classification accuracy. Furthermore,

the incorporation of Multi-Task Learning (MTL) further enhances classification

performance, validating the effectiveness of the proposed MUSCAT method and

MTL framework in touch gesture and emotion recognition.

Lyu and Sun [62] faced a unique challenge in the field of dance emotion recognition

for robots, which presents numerous difficulties because video-based emotion detection

is vulnerable to various external factors. To overcome these obstacles, the authors
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created a strong multi-feature fusion framework that combines global and local

features using an LSTM mechanism. The study used three distinct data sets: RML,

SAVEE, and a self-constructed dance video database. The experimental process

involved training and testing on these datasets, which produced promising results

that demonstrated the effectiveness of their proposed feature extraction algorithm.

Notably, their approach surpassed single-feature methods, showing the viability of

emotion recognition from dance.

The integration of multimodal sensory information presents a critical challenge

in the development of advanced human-machine affective systems. A research

article titled ‘Deep Emotion Recognition through Upper Body Movements and Facial

Expression’ by Aqdus et al. [9] delves into this challenge, focusing on spatial-temporal

techniques for emotion analysis across visual modalities.

The study explores the fusion of two primary modalities: facial expressions and

upper-body movements. The researchers aimed to develop a robust architecture

capable of identifying emotions in real-time human-machine interaction systems.

Their findings highlight the superiority of the bimodal approach over those of

monomodal ones, regardless of the fusion method applied. In particular, the study

achieved the best recognition rates for anger, happiness, and neutral emotions, while

the worst recognition rate was observed for sadness, often misclassified as surprise.

Evaluation metrics consistently demonstrated significant improvements in accuracy,

moving from 77.7% and 76.8% for the recognition of emotion from facial and upper

body movements, respectively, to 85.7% and 86.6% after the fusion of both modalities.

While effective in experimental settings, these methods often require a fixed

camera and precise calibration, making them difficult to scale or adapt to a robot

intended to move around.

2.4.3 Applications

Marinoiu et al. [64] present a gesture-based emotion recognition approach with strong

implications for robot-assisted therapy, particularly in recognizing emotions expressed

by children and therapists. Their system enables non-invasive emotional monitoring

22



2.5 Multi-modal Emotion Recognition

in developmental contexts such as autism therapy. The researchers employ the Zeno

robot, a humanoid platform specifically designed to support children with autism.

By recognizing emotions through gestures and body movements, Zeno enhances

its interactive capabilities, making it a promising tool for empathetic and adaptive

therapeutic interventions.

Elfaramawy et al. [33] apply their gesture-based emotion recognition framework

in a HRI setting involving two Nao humanoid robots. One Nao is equipped with

an Asus Xtion depth sensor, positioned to capture depth-map video sequences from

multiple angles, while the second robot facilitates interaction from a side perspective.

This setup enables the collection of frontal, side, and rear views of participants as

they express emotions through full-body movement. To elicit spontaneous emotional

behavior, participants were prompted with realistic roleplay scenarios (e.g., for fear,

imagining a break-in and requesting the robot to call for help). This experimental

design yielded a rich, multi-view dataset of emotional body expressions.

2.5 Multi-modal Emotion Recognition

Multi-modal emotion recognition systems combine various data sources, such as visual,

auditory, and gesture signals, to enhance the accuracy and robustness of emotion

detection. By integrating multiple modalities, these systems can capture a more

comprehensive understanding of human emotions, aiming to improve performance

in real-world applications. This section reviews the datasets and algorithms used

in multi-modal emotion recognition, highlighting their significance in advancing the

field.

2.5.1 Datasets

The FABO (FAcial and BOdily Expression) dataset [39] plays a significant role in

multimodal emotion recognition, as it captures both facial expressions and body

postures across a range of emotions. With recordings from 23 subjects displaying ten

different emotional states, the dataset emphasises the importance of bodily cues in
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recognising emotions. This makes FABO particularly valuable for research focused

on pose-based emotion recognition, where body language and movement are key to

identifying emotions. The combination of facial and bodily data allows for a more

comprehensive analysis of how emotions are expressed physically, supporting the

development of robust, multimodal recognition systems.

2.5.2 Algorithms

Multimodal emotion recognition systems aim to improve the accuracy and reliability

of emotion detection by incorporating multiple types of input data, such as visual,

auditory, physiological, or textual information. By drawing from diverse sources, these

systems can capture a more comprehensive understanding of human emotions. Some

approaches integrate these modalities into a unified output, combining the strengths

of each to enhance overall performance. Others treat each modality independently,

using one to validate or back up the other in cases of ambiguity or failure. The fusion

of modalities allows for more robust emotion recognition, particularly in complex,

real-world settings where single modalities may fall short.

Studies such as [104] have investigated classification techniques for combining

various modalities, artificial neural networks (ANN) with k-nearest neighbours (k-

NN). Decision trees were also employed by [1] having a simple CNN for facial

detection and a log-Mel spectrum for feature extraction from speech.

Kansizoglou et al. [49] used two CNNs, one for audio recognition and one for facial

expression recognition, together with a DNN to fuse them; a long- and short-term

memory (LSTM) layer and a Reinforcement Learning (RL) agent are trained in

cascade, stopping feature extraction for final prediction. Additionally, using a Haar

cascade for initial face cropping, they employ MobileNetV2 for image classification

and a VGG architecture for audio, both retrained on emotion recognition datasets.

The results indicate improved accuracy through fusion, albeit with some emotion

confusion, tested on RML and BAUM-1 datasets.

In the pursuit of advancing multimodal emotion recognition within the realm

of HRI, Yu and Tapus [117] present a study titled ‘Interactive Robot Learning for
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Multimodal Emotion Recognition.’ Their research employs a sophisticated experi-

mental setup featuring a Kinect and an Optris thermal camera to capture human gait

information and thermal facial images for emotion recognition. This study developed

a multimodal emotion recognition model grounded in gait and thermal facial data,

using a random forest (RF) model and modified confusion matrices of two individual

models. A comparative analysis between individual RF models and the hybrid

decision-level model demonstrates the effectiveness of their integration method in

classifying emotions during HRI. Moreover, the extensive experimentation involving

online testing before and after Interactive Robot Learning (IRL) substantiates that

interactive robot learning is a valuable technique, yielding a significant increase of

more than 10% in the accuracy of multimodal emotion recognition with gait and

thermal data. Yu and Tapus [118] even attempted to further improve upon their

innovative thermal imaging plus human gait information for emotion recognition by

implementing WaveNet to get more benefits from spatial and temporal information.

Chen et al. [23] have introduced a groundbreaking approach to multimodal emo-

tion recognition in HRI called Coupled Multimodal Emotional Feature Analysis

(CMEFA). This method utilises a Broad-Deep Fusion Network (BDFN) to extract

emotional features from facial expressions and gestures. By applying Canonical Cor-

relation Analysis (CCA) to capture the correlation between these features, CMEFA

offers a more comprehensive understanding of emotional cues. A coupling network

recognises emotions based on the extracted bi-modal features. Remarkably, simu-

lation experiments conducted on the FABO database demonstrate the superiority

of CMEFA over existing methods, outperforming the SVM Recursive Feature Elim-

ination (SVMRFE) method by achieving a recognition rate of 1.15% higher and

exceeding other approaches by significant margins.

In addition, the researchers conducted preliminary application experiments on

an emotional social robot system, where the robot successfully recognised emotions

based on the facial expressions and body gestures of the volunteers. This showcases

the practical applicability of CMEFA in real-world scenarios.

Several studies have emerged focusing on sentiment analysis, addressing this gap

in research. For example, Augello et al. [12] presented ‘Multimodal Mood Recognition

25



2.5 Multi-modal Emotion Recognition

for Assistive Scenarios’ showcasing the effectiveness of their approach in detecting

emotions from textual data. Additionally, Heredia et al. [43] proposed the ‘Adaptive

Multimodal Emotion Detection Architecture for Social Robots,’ incorporating natural

language processing (NLP) transformers and an emotion ontology to enhance emotion

detection capabilities in social robots. Sentiment analysis shows promise in working

in a resource constrained environment, this can also be offloaded to a cloud service,

allowing for more complex models to be used without the need for high computational

power on the robot itself.

Temporal features have emerged as a significant benefit for multimodal emotion

recognition systems. Research efforts such as those by Hung et al. [44] have focused

on leveraging temporal feature learning to improve emotion recognition accuracy,

highlighting the effectiveness of using multiple models to capture temporal dynamics

in emotional expressions.

2.5.3 Applications

While multimodal emotion recognition has advanced rapidly in theory, its deployment

on robotic platforms remains sparse. Practical constraints, such as real-time process-

ing, hardware limitations, and environmental variability, have limited its adoption.

However, emerging applications show promise in enriching robot perception and

interaction.

In one of the few real-world implementations of multimodal emotion recognition

on a robotic platform, Yu and Tapus [117] employed the Pepper robot in a controlled

laboratory setting. Their system combined thermal facial imaging, captured via an

Optris thermal camera, with gait analysis using a Kinect sensor, allowing the robot

to infer emotional states from both body movement and facial temperature cues.

The experimental procedure involved 8 participants, each completing 24 sessions

across three phases: initial online testing, an intermediate interactive robot learning

(IRL) phase, and post-IRL testing. A total of 192 sessions were conducted over the

course of one month. Environmental variables such as lighting and temperature were

tightly controlled to ensure data consistency.
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Another real-world deployment of multimodal emotion recognition in robotics was

demonstrated in a preliminary application experiment involving an emotional social

robot system. The setup utilized a Kinect sensor to capture full-body and facial data

under natural indoor lighting conditions, enabling emotion inference based on both

posture and facial expressions. Eight postgraduate participants (balanced by gender)

were recruited to express the seven basic emotions, with peak emotional states used

for training. During testing, an emotion was considered correctly recognized if the

system identified the apex state accurately. The experiment achieved an average

recognition accuracy of 75.85%. While misclassifications were largely attributed to

environmental factors and limitations in the face and body detection algorithms,

the results highlight the feasibility and promise of deploying multimodal emotion

recognition in affective HRI scenarios [23].

2.6 Table Of Robots

The following table provides a consolidated overview of robotic platforms used

in emotion recognition and HRI research. For each robot, the table includes its

name, a representative image, and references to studies detailing its application or

implementation. References are annotated according to the modalities employed

in each study. This compilation illustrates the diversity of robots explored in the

literature, highlighting their distinct capabilities and roles in enabling emotionally

aware and socially responsive interactions with humans.

27



2.6 Table Of Robots

Table 2.1: Table of all Robots in Literature

Robot Name Facial Audio Gesture

Pepper [117] [118] [117] [118]

Nao [36] [47] [59] [68] [92] [93] [94]
[99] [113] [114]

[19] [114]

Mung [51]

Omnidirectional Service Robot [45] [45]

Pioneer P3-DX robot, LARa
robot

[67] [67]

RASA [34]

Ohmni [30]
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Table 2.2: Table of all Robots in Literature Cont.

Robot Name Facial Audio Gesture

iCub [55]

ROBIN [10]

ESRS (Emotional Service Robot
System)

[21] [22] [25]

Harley [57]

Robot eye [8]

Zeno [64]
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2.7 Critical Review of Invasive Technology for

Emotion Recognition

Emotion recognition technologies have made significant advances in recent years,

with various invasive and less invasive techniques being developed to better capture

emotional states. These technologies can be broadly categorised into electro-based

systems, physiological sensors, and non-contact methods. Although each approach

has its strengths, they also present notable limitations, particularly in terms of user

comfort and practicality for real-world application. This review critically evaluates

key technologies for emotion recognition, outlining their mechanisms, benefits, and

drawbacks.

2.7.1 Electro-Based Technologies

Electro-based methods such as EEG (Electroencephalography), EMG (Electromyog-

raphy), EOG (Electrooculography) and ECG (Electrocardiography) are commonly

used in emotion recognition due to their ability to capture direct biosignals from the

brain and body. EEG, for example, measures brain electrical activity and is used to

classify emotional states based on asymmetries in the prefrontal cortex. High arousal

emotions (e.g., joy, anger) are associated with greater activity of the left frontal

cortex, whereas low arousal emotions (e.g., fear, sadness) show increased activity of

the right frontal [74]. However, EEG signals vary significantly between individuals,

making the development of universal models challenging [82]. Furthermore, EEG

setups require sensors attached to the scalp, which limits practicality in nonlaboratory

settings due to discomfort and susceptibility to movement artefacts, particularly

head movements [107].

EMG, on the other hand, measures muscle activity and is used to detect emotional

expressions through facial or bodily muscle movements. For example, negative

emotions correlate with high activity in the corrugator supercilii (frowning muscles),

while positive emotions exhibit reduced activity in this region [74]. Although it is

an effective tool for detecting nuanced emotional expressions, EMG requires that
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sensors be placed directly on the skin, which can be intrusive and uncomfortable,

especially in dynamic everyday situations.

The electrocardiogram (ECG) is another key method, used to measure the

electrical activity of the heart, enabling the detection of emotional reactions by

analysing the variability of heart rate (HRV). Similar problems arise with EOG,

which tracks eye movement and pupil dilation, but again requires physical contact

with sensors around the eyes [32].

Overall, these electro-based systems excel in providing high-quality, detailed

emotion-related data, yet their invasive nature and reliance on stationary or controlled

environments impede their adoption in daily life. In terms of precision, multimodal

recognition systems, such as those that combine EEG and facial expression recognition

through convolutional neural networks (CNNs), have been shown to perform better.

For example, integrating EEG signals and facial data through plurality voting

classifiers and the Monte Carlo method achieved an impressive accuracy of 83.33%

[107].

2.7.2 Physiological Sensors

Recent developments in physiological sensors aim to reduce invasiveness while still

collecting valuable emotion-related data. Devices such as the Microsoft Band 2 and

smartphones use less invasive sensors to monitor heart rate, skin temperature, and

galvanic skin response (GSR) through optical heart rate monitors, accelerometers,

and UV sensors. These sensors are more practical for daily use, as they are worn

externally and do not require direct contact with the skin in multiple locations [116].

For example, GSR measures skin conductivity and can indicate emotional arousal,

with increased conductance correlated with emotional intensity. Skin temperature

sensors also provide information on emotional states, as temperature tends to increase

during negative emotions such as anger and decrease during positive emotions such

as calm [77]. Furthermore, heart rate and breathing rate can be monitored non-

invasively, with quicker, deeper breaths often associated with negative emotions and

slower breaths with positive emotions [116].
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Although these less invasive devices offer improved user comfort, they are limited

in their ability to capture precise emotional nuances, often requiring advanced signal

processing and analysis algorithms to compensate for lower signal-to-noise ratios.

For example, remote photoplethysmography (rPPG) enables heart rate monitoring

without direct skin contact by analysing light reflected from the skin. Although it

increases user comfort, the reduced accuracy due to environmental factors such as

lighting conditions and motion noise presents a challenge [32].

Similarly, a Doppler radar-based system, used to track chest movements to extract

heart rate and breathing patterns, offers non-contact emotion recognition. However,

this technology is more suitable for controlled environments, as everyday movements

can distort signals [15].

2.7.3 Challenges of Invasive Emotion Recognition

The most significant challenge with invasive emotion recognition technologies is the

discomfort and practicality issues associated with attaching sensors to the skin or

body. The use of contact-based systems, such as EEG, ECG, EOG, and EMG,

creates limitations for their use in real-world applications where people need to move

around, introducing noise. These technologies excel in laboratory environments

where user movements can be controlled and minimised.

In addition to comfort, generalisability remains a concern. EEG signals, for

example, are subject-dependent, meaning that models developed for one person may

not be easily transferable to others. This limits the scalability of EEG-based systems

for broader applications, particularly in healthcare or consumer devices.

Invasive emotion recognition technologies, while highly effective in controlled

environments, face significant barriers to widespread adoption in real-world scenarios.

Electro-based methods like EEG and ECG provide detailed biosignals for emotion

classification, but their need for skin contact and susceptibility to movement interfer-

ence limits their practicality. Less invasive approaches, such as physiological sensors

and non-contact methods such as rPPG and Doppler radar, offer greater user comfort
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but often sacrifice signal quality, requiring more advanced processing techniques to

maintain accuracy.

2.8 Discussion

While current multimodal emotion recognition systems exhibit promising capabilities,

several gaps remain that could enhance their performance and applicability in real-

world scenarios. One notable gap is the reliance on Haar Cascade for facial detection

across various papers. Although Haar Cascade has been a staple in face detection due

to its simplicity and efficiency, it may not offer the highest recognition rates compared

to more advanced techniques. Models such as YOLO (You Only Look Once) [90], or

HOG+Linear SVM [102] could provide superior accuracy and robustness in detecting

faces in diverse conditions. By exploring these alternative models, it is plausible that

the subsequent emotion recognition processes will also improve, ultimately leading

to more effective HRIs.

Furthermore, the integration of cloud-based tools presents a significant oppor-

tunity to enhance multimodal emotion recognition systems. Current approaches

utilising sentiment analysis do not fully leverage the potential of cloud computing,

which can significantly offload processing tasks from local systems. By moving

computationally intensive operations to the cloud, valuable resources can be freed

up for other essential tasks, such as real-time interaction and response generation.

Such an architecture could enhance the scalability and flexibility of emotion recogni-

tion systems, enabling them to adapt more readily to varied user interactions and

environmental contexts.

By addressing these gaps, this research intends to develop a more sophisticated

emotion recognition system capable of accurately interpreting human emotions in

a wider range of scenarios. The continued exploration of advanced face detection

techniques and the adoption of cloud-based solutions could lead to significant ad-

vancements in the reliability and effectiveness of multimodal emotion recognition,

ultimately enhancing the capabilities of robotic systems in understanding and re-

sponding to human emotional states.
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Chapter 3

Materials & Methods

3.1 Overview

In this section, an overview of the system architecture for the emotion recognition

system developed for a resource-limited robotic platform is presented. The architec-

tural diagram (see 3.1) illustrates how data flows from sensor acquisition through

processing to decision-making, enabling the robot to determine human emotional

states in real time. The system is composed of two primary modules: the image-based

emotion recognition module and the speech-based emotion recognition module, each

designed to operate independently while allowing the system to select the most

appropriate modality based on contextual demands.

The image-based module begins with the acquisition of visual input via a camera.

This input is processed through a face detection component where three methods—

Haar Cascades, Dlib HOG+SVM, and YOLOv4—are implemented and compared

to determine the most effective approach for isolating faces under varying condi-

tions. Once faces are detected, the resulting regions of interest are forwarded to

an emotion classification sub-module. Here, several convolutional neural network

(CNN) architectures, including VGG16, ResNet50, and MobileNetV2, are evaluated

for their ability to classify the emotional expressions accurately. The CNN models

are trained using transfer learning on a dataset of labelled facial images representing

seven basic emotions: happiness, sadness, anger, surprise, fear, disgust and contempt.
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The trained models are then deployed on the robot to process real-time video streams

and classify the emotions of human subjects.

Concurrently, the speech-based module captures auditory input through an

onboard microphone. This audio stream is first transcribed into text by the

speech_recognition Python library. The transcribed text is then analysed for

emotional content using sentiment analysis provided by IBM Watson Cloud Services.

By processing these two streams separately, the system can dynamically choose

between visual and auditory modalities, ensuring that the most reliable source of

emotion data is used based on the situational context.

Figure 3.1: Architecture diagram showing the integration of facial and sentiment analysis
components

The development process was iterative, beginning with the independent design

and validation of each module using established datasets for face detection and

visual emotion classification. Following individual validation, the modules were
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integrated into a unified framework capable of processing real-time data from the

robot’s sensors. Rigorous testing was conducted using annotated datasets designed

to simulate real-world conditions to assess the system’s accuracy, processing speed,

and overall resource utilisation.

Overall, the architectural design emphasises modularity and flexibility, allowing

for individual components to be updated or replaced without impacting the entire

system. This design not only streamlines development and testing but also positions

the system for future enhancements and adaptations as the requirements of human-

robot interaction evolve.

3.2 Materials

3.2.1 Robot Platform

The TurtleBot 4 is a sophisticated and versatile robotic platform designed for research,

education, and experimentation in the fields of robotics and artificial intelligence

(AI). It is an evolution of the TurtleBot series, integrating advanced hardware and

software components to provide enhanced functionality and performance.

Hardware Components

The Turtlebot4 is equipped with an iRobot® Create3 mobile base, based on the

Roomba®, a robot vacuum cleaner. At the front of the robot is a multizone bumper

equipped with seven sets of IR proximity sensors, allowing for seamless obstacle

detection. The OAK-D spatial AI stereo camera enables the robot to perceive the

world in a human-like manner by combining a stereo depth camera and a high-

resolution colour camera with on-device Neural Network inferencing and Computer

Vision capabilities.

The robot features a Raspberry PI 4 equipped with Broadcom BCM2711, Quad-

core Cortex-A72 (ARM v8) 64-bit SoC running at 1.8GHz and XGB of LPDDR4-3200

SDRAM.
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Figure 3.2: Turtlebot 4

The robot uses a standard Lithium Ion Battery designed for Roomba® e & i

series robots. The battery onboard with the robot is a 26 Wh, 4S Lithium-Ion smart

battery pack, with a nominal voltage of 14.4 V (12 V min, 16.8 V max).

The TurtleBot 4 is built on ROS, a flexible framework for developing robotic

applications. ROS provides a set of tools and libraries for various tasks such as

sensor data processing, navigation, and control. The TurtleBot 4, specifically, comes

equipped with ROS2 Humble with the Raspberry PI 4 running on Ubuntu 22.04.

3.2.2 Training Computer

Since training efficiency is not the focus of this project, the HP Z8 G4 Workstation

is its training PC, a high-performance computing solution tailored for intensive

professional tasks. The system features dual Intel Xeon Gold 6244 CPUs with 8

cores and 16 threads operating at 3.60GHz, 512 GB of Samsung ECC RAM running

at 2666MT/s, and two NVIDIA Quadro RTX 8000 GPUs with 48GB of GDDR6

memory each.

The development environment was set up using Python 3.10.12 on the training

PC with Ubuntu 22.04. Image processing and face detection were handled using

OpenCV 4.5, the Dlib library and darknet by Alexeyab [2]. TensorFlow 2.15.1 and

Keras were used to develop and train CNN models. Speech analysis was performed

using the IBM Watson Speech-to-Text API.
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3.3 Methods

To implement emotion detection algorithms, we will utilise various software libraries

and frameworks tailored to different aspects of the task. This section outlines the

methodologies and tools that will be employed for both facial detection and emotion

recognition.

3.3.1 Facial Detection Algorithms

Haar Cascade

The emotion recognition system considers the Haar Cascade model as a choice for

face detection. This pretrained model is easily accessible and adept at identifying

faces in images. The Haar Cascade algorithm, created by Viola and Jones [111], is a

well-regarded technique for object detection, with a particular emphasis on detecting

faces within images.

The Haar Cascade algorithm identifies a collection of rectangular features referred

to as Haar-like features. These features are basic designs that exhibit variations in

pixel intensities across adjacent sections of the image. To efficiently compute these

Haar-like features, the algorithm leverages an integral image representation of the

input image. The integral image enables swift computation of the total sum of pixel

intensities within any given rectangular area of the image. The following step entails

instructing a series of weak classifiers with the Adaboost learning algorithm. Each of

these classifiers is taught to recognise a particular Haar-like feature that is indicative

of the intended object, such as a face. Throughout the training process, Adaboost

allocates greater importance to incorrectly classified examples, directing subsequent

iterations towards rectifying these mistakes.

The Haar Cascade classifier utilises a cascade structure to organise trained weak

classifiers. Sequentially arranged, each stage of the cascade consists of multiple weak

classifiers. The cascade design enables early stages to swiftly reject negative examples,

while positive examples proceed to subsequent stages for further evaluation. During

the detection phase, the Haar Cascade algorithm utilises a sliding window approach
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Figure 3.3: Image showing Haar-like features used in the Haar Cascade algorithm

to scan the input image. At each position of the sliding window, the algorithm

applies each stage of the cascade sequentially, rapidly discarding regions of the image

that are unlikely to contain the target object based on the results of earlier stages.

Figure 3.4: Image showing how the Haar Cascade algorithm rapidly discards regions of
the image that are unlikely to contain the target object

After going through all the stages of the cascade, the regions of the image that

meet the criteria for the target object are identified as positive detections. The

algorithm provides the location and size of the detected objects in the image by

producing bounding boxes around these regions.

One of the key advantages of the Haar Cascade model is its efficiency and ease

of implementation. It is pre-trained on an extensive dataset of labeled face images,

allowing for immediate use without the need for additional training. The training

set comprises 4,916 hand-labeled faces, all scaled and aligned to a base resolution

of 24×24 pixels, ensuring consistency and accuracy in detection. These faces were

39



3.3 Methods

extracted from a diverse set of images collected through a random crawl of the World

Wide Web, offering robustness across various scenarios. Additionally, the model

is evaluated on the MIT+CMU test set, which includes 130 images and 507 faces,

demonstrating its capability to perform well even in complex, real-world conditions.

Notably, Haar Cascade is renowned for its computational efficiency, making it ideal

for real-time applications, especially in resource-constrained environments where

rapid face detection is crucial.

YOLO

The You Only Look Once (YOLO) model for object detection is a highly efficient

and accurate approach for real-time object detection in images and videos. This

model is known for its unique architecture and approach, which enable it to detect

objects with remarkable accuracy. The YOLO model has gained popularity in the

academic and research communities due to its exceptional performance, and it has

become an important tool for various applications in computer vision and machine

learning.

YOLO’s heart lies its single neural network architecture that operates directly

on the full image, rather than using traditional sliding window or region proposal

methods. This enables YOLO to simultaneously predict bounding boxes and class

probabilities for multiple objects in a single forward pass through the network.

This approach eliminates the need for multiple passes and significantly reduces

computational overhead, making YOLO well-suited for a robotics application where

available computational resources are small.

The YOLO algorithm employs a technique where the input image is partitioned

into a grid of cells. Within each cell, YOLO predicts the bounding boxes and class

probabilities for objects in that cell. In particular, every grid cell is responsible for

predicting several bounding boxes, whether or not objects exist within that cell.

This approach ensures that YOLO preserves spatial information and can accurately

identify objects of diverse sizes and aspect ratios.

40



3.3 Methods

Figure 3.5: The image after being processed by the YOLO model, showing a significant
amount of the bounding boxes predicted by the model, even ones with zero confidence

The YOLO model applies a regression approach to anticipate bounding boxes,

which are denoted by a series of coordinates for the corresponding grid cell. In

addition, the model estimates the confidence score for each bounding box, which

signifies the probability of an object being present in the box and the predicted box’s

accuracy. This score considers both the objectness probability (the probability of

an object being present within the bounding box) and the precision of the box’s

coordinates. YOLO then forecasts class probabilities for each bounding box to

recognise the occurrence of specific objects within the image. [90]

Figure 3.6: Image showing the grid cells used by the YOLO model to predict confidence
scores and bounding boxes, red boxes signifies the grid cells with the highest probability of
containing the object

YOLO has a smaller variant called Tiny-YOLO. Although they share the same

underlying principles and architecture, there are notable differences between the two

in terms of model size, speed, and accuracy.
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Figure 3.7: The image with the final predicted bounding boxes after applying non-
maximum suppression

Tiny YOLO is a condensed version of YOLO that prioritises speed and efficiency.

Its streamlined network architecture reduces the number of layers and parameters,

resulting in a smaller model size. This makes Tiny YOLO an excellent choice for

real-time applications on devices with limited computational resources. While it may

sacrifice some accuracy compared to its larger counterpart, Tiny YOLO still delivers

competitive performance in object detection tasks. Its balance between speed and

accuracy makes it well suited for a robotics application.

HOG + Linear SVM

This consists of two components combined to make a method known for its robustness

and efficiency in object detection tasks, including face detection.

The Histogram of Oriented Gradients (HOG) is a feature descriptor, it focuses

on the structure or shape of an object by capturing the distribution of intensity

gradients or edge directions. The first step is gradient computation, typically done

using a filter, such as the Sobel operator.

The image is first divided into small spatial regions called cells, such as 8×8 pixels.

A histogram of gradient directions is created for each cell, with the magnitude of each

gradient used to vote into the histogram bins based on the orientation. Typically, 9

bins are used, covering 0 to 180 degrees.

Histograms are usually normalised to address differences in illumination and

contrast. This normalisation involves grouping the cells into larger spatial regions
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Figure 3.8: The resulting image after the Sobel operator

called blocks, for example, 2×2 cells to a block. The histograms within a block are

then concatenated to form the block descriptor. The normalisation factor is then

applied and typically includes options such as L2-norm, L2-Hys, L1-norm, or L1-sqrt.

A detection window is then moved across the image at multiple scales. For each

window, a HOG descriptor is calculated and used in the linear SVM.

Figure 3.9: Visualisation of the HOG descriptor

The linear Support Vector Machine (SVM) is a type of supervised learning

algorithm specifically designed for binary classification tasks. In the context of face

detection, the SVM is used to distinguish between face and non-face HOG descriptors.

This involves training the SVM on a dataset containing labelled examples of both

faces and non-faces, each represented by its corresponding HOG descriptor. During

the detection process, the HOG descriptor of each detection window is computed

and then entered into the trained SVM classifier. Based on the input, the SVM

generates a score that indicates the likelihood of the window being a face or a non-face.
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Typically, windows with scores that surpass a certain threshold are classified as faces.

[27]

3.3.2 Emotion Recognition Model

After successfully detecting faces, an emotion recognition system is created using

a Convolutional Neural Network (CNN) implemented in TensorFlow. The CNN

model will be taught to categorise facial expressions into specific emotion categories,

including happiness, sadness, anger, surprise, fear, and disgust. Using the Tensor-

Flow framework gives a flexible and effective platform for developing, training, and

implementing deep learning models.

In summary, the methodology for emotion detection involved testing multiple

facial detection algorithms, including YOLOv4, dlib, and Haar Cascade. This will

be followed by the implementation of a CNN model in TensorFlow for emotion

recognition. This comprehensive approach aims to develop a robust and accurate

system for real-time emotion detection from visual inputs.

Three models, VGG16, ResNet50 and MobileNetV2, were tested.

MobileNetV2, ResNet50, and VGG16

Convolutional Neural Networks (CNNs) are by far the most widely used architectures

in emotion recognition research. Their ability to automatically learn hierarchical

feature representations from raw image data makes them highly effective for complex

tasks like facial emotion detection. However, despite their popularity, many studies in

the literature do not specify the exact CNN architecture used, leaving out important

details about model choice and design. This lack of transparency can make it difficult

to assess and compare the performance of different approaches across datasets and

applications.

The three CNN architectures considered in this work, MobileNetV2, ResNet50,

and VGG16, were all used to high degrees of success in the literature. Each offers

different trade-offs in terms of accuracy, efficiency, and computational requirements.
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MobileNetV2 is a lightweight CNN that uses depthwise separable convolutions to

reduce the number of parameters and computations, making it highly efficient for

real-time applications on devices with limited resources. Its simplicity makes it ideal

for mobile and embedded systems, but this efficiency comes at the cost of potentially

missing more complex emotional cues in images.

ResNet50, on the other hand, uses a much deeper network with residual learning

to solve the problem of vanishing gradients, allowing it to learn more detailed and

hierarchical features. This makes ResNet50 highly effective for recognising subtle

facial expressions, although its deep architecture increases computational demand,

making it less suitable for real-time systems without powerful hardware.

VGG16, known for its simplicity and effectiveness, uses small convolutional filters

(3×3) across 16 layers. It is particularly good at capturing fine-grained visual details,

but its large number of parameters makes it resource-intensive, resulting in slower

processing times compared to more optimised models like MobileNetV2.

Figure 3.10: Visualisation of VGG16

In this work, all models were trained using transfer learning, a technique where

a pre-trained CNN is fine-tuned on a new dataset. Transfer learning leverages

the knowledge these networks have already gained from training on large-scale

image datasets, such as ImageNet, to accelerate learning on smaller, domain-specific

datasets. This approach significantly reduces computational resources and training

time required, while still achieving high accuracy. By reusing learned features from

earlier layers and adapting them to emotion recognition, transfer learning allows

these models to generalise well, even when trained on limited data specific to facial

emotions.
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3.3.3 Datasets

Face Detection Dataset

The WIDER FACE dataset [115] has been meticulously curated to support research

in face detection and recognition tasks. It comprises 12,878 images in the training set

and 3,224 images in the validation set, sourced from a wide variety of environments.

Each image is annotated with one or more bounding boxes that precisely capture the

position, orientation and scale of each face, thereby accommodating the extensive

variability found in real-world scenarios.

Figure 3.11: A sample of images from the single-face subset of the WIDER FACE dataset

This dataset is distinguished by its rich diversity in subjects, scenes, and environ-

mental conditions. It features images captured in both indoor and outdoor settings,

including crowded environments, street scenes, and surveillance footage. The an-

notations reflect a broad range of lighting conditions, facial poses, and occlusions,

making the dataset highly challenging and suitable for evaluating the robustness of

face detection algorithms.

For the experiments, the dataset was further subdivided into two distinct evalua-

tion subsets. The first subset consists of images containing only one face per image

(1,342 training and 334 validation images), providing a more controlled scenario with

minimal distractions. The second subset comprises images with multiple faces (8,245

training and 2,104 validation images), designed to assess the model’s performance
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Figure 3.12: A sample of images from the multi-face subset of the WIDER FACE dataset

under more complex conditions with higher face density. Figures 3.11 and 3.12

illustrate examples from these subsets, highlighting the diversity within the dataset.

Emotion Recognition Dataset

The datasets used for training the emotion recognition models were FERPlus [14]

and an adapted version of CK+ [60]. Both datasets are publicly available and contain

images depicting a range of facial expressions in unconstrained environments. Sample

images from these datasets are presented in Figure 3.13.

Figure 3.13: Sample of images from the combined FERPlus and CK+ dataset

FERPlus is an improved version of the FER2013 dataset, addressing issues such

as mislabeled samples and non-face images that previously led to limited recognition

accuracy. The dataset was re-annotated using 10 crowd-sourced labelers, categorising

each image into one of ten classes: eight emotion categories (happiness, neutral,

sadness, surprise, fear, disgust, contempt, and anger) and two additional categories

(unknown’ for indeterminate emotions and non-face’ for images that do not contain
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a human face). A maximum voting method was used to assign a single label to each

image. The dataset consists of 28,386 training images, 3,546 private test images, and

3,553 public test images, with the distribution of emotions detailed in Table 3.1.

Table 3.1: Emotion distribution of the training dataset

Emotion PrivateTest PublicTest Training Total
Anger 325 319 2,466 3,110
Contempt 27 24 165 216
Disgust 23 34 191 248
Fear 93 74 652 819
Happiness 928 899 7,528 9,355
Neutral 1,262 1,335 10,308 12,905
Sadness 444 412 3,514 4,370
Surprise 444 456 3,562 4,462
Total 3,546 3,553 28,386 35,485

The Extended Cohn-Kanade (CK+) dataset consists of 593 video sequences

from 123 subjects aged 18 to 50 years. The dataset includes individuals of diverse

gender and ethnicity backgrounds, with 69% female, 81% Euro-American, 13% Afro-

American, and 6% from other groups. Each sequence progresses from a neutral facial

expression to a peak expression, recorded at 30 frames per second at a resolution

of 640×480 pixels. The dataset includes seven labeled emotions: anger, contempt,

disgust, fear, happiness, sadness, and surprise.

Table 3.2: Image counts for each emotion in CK+

Emotion Count
Anger 135
Contempt 54
Disgust 177
Fear 75
Happiness 207
Sadness 84
Surprise 249

For consistency with FERPlus, an altered version of CK+ was used, where frames

were preprocessed to be grayscale and resized to 48×48 pixels. The adapted dataset

was retrieved from the database sharing website Kaggle and included the following

modifications:
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• Contains adapted data up to 920 images from 920 original CK+ dataset

• Data is already reshaped to 48×48 pixels, in grayscale format and facecropped

using haarcascade_frontalface_default.

• Noisy (based on room light/hair format/skin colour) images were adapted to

be clearly identified using Haar classifier.

• Columns from file are defined as emotion/pixels/Usage

The final dataset contains the emotion distribution summarised in Table 3.2.

The Expressions in the Wild (ExpW) [119] dataset was used to evaluate the

performance of the emotion recognition system. ExpW consists of 106,962 images,

almost all (91,793) are annotated facial images collected from the web, covering a

diverse range of real-world conditions such as varying lighting, occlusions, and head

poses. Each image is labeled with one of seven emotion categories: neutral, happiness,

sadness, surprise, fear, disgust, and anger. ExpW contains highly unconstrained

facial expressions, making it a valuable benchmark for testing the robustness of the

trained model in real-world scenarios.

Figure 3.14: A random selection of images from the ExpW dataset

A selection of random images from ExpW can be seen in 3.14.

3.3.4 Small Sentiment Dataset

To evaluate the performance of IBM Watson’s text-based emotion recognition, a

small ad-hoc dataset was constructed. This dataset consists of ten manually written

phrases, each designed to strongly reflect a specific emotional state: joy, sadness,
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anger, fear, or disgust. The phrases range from short, direct expressions to longer,

more context-rich scenarios. This approach was chosen due to its flexibility and

control, allowing for tailored testing of Watson’s ability to identify clearly defined

emotional content across varying text lengths and complexity.

The main goal of this dataset was not to replicate large-scale sentiment corpora

but to conduct a focused, qualitative probe into Watson’s classification behaviour.

Given the service’s limits on free-tier usage, a small dataset was both practical and

sufficient for demonstrating trends in how Watson interprets emotional tone.

This method also enabled direct comparison between the system’s predictions

and a known, human-assigned ground truth. While the dataset is limited in scale,

its controlled design supports clear interpretability of results and highlights how well

Watson performs under idealised textual conditions.
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Table 3.3: Phrases and their expected emotions

Text Expected Emotion
I am so happy today! Everything is going great. Joy
I am very sad and disappointed by the news. Sadness
I am so angry at the situation! Anger
This is so scary and frightening. Fear
I am just so disgusted by what happened. Disgust
The sun is shining and the birds are singing. It’s
a beautiful day to be alive. I feel so grateful for
all the wonderful things in my life. I have a loving
family, great friends, and a job that I am passionate
about. Days like today make me feel like all the
hard work has paid off and I can truly appreciate
the beauty of life.

Joy

Today I received some heartbreaking news. A dear
friend of mine passed away unexpectedly. The
shock and sorrow I feel are overwhelming. We
had so many plans together, so many dreams left
unfulfilled. It’s hard to imagine life without them.
This loss leaves a void that can never be filled.

Sadness

I am furious about the latest policy changes at
work. They were implemented without any consul-
tation with the staff, and they make our jobs much
harder. It feels like management doesn’t care about
our well-being or input. This kind of disregard is
unacceptable, and I won’t stand for it.

Anger

Walking through the dark alley, I could feel my
heart racing. Every sound seemed amplified, and
the shadows looked like they were moving. I
couldn’t shake the feeling that someone was fol-
lowing me. It was one of the most terrifying expe-
riences I’ve ever had. I just wanted to get out of
there as quickly as possible.

Fear

The food at that restaurant was absolutely disgust-
ing. The meat was undercooked, the vegetables
were soggy, and there was a strange smell coming
from the kitchen. I felt nauseous just being there.
It’s unacceptable to serve such poor quality food
to customers.

Disgust
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Chapter 4

Results

4.1 Overview

The developed system integrates Facial Emotion Recognition (FER) and sentiment

analysis to interpret user emotions, with both modalities working independently but

optimised for their respective domains. The FER system combines face detection

and emotion classification, both optimised to enhance accuracy and efficiency. For

face detection, Tiny YOLO, YOLO, HOG+Linear SVM, and Haar Cascade were

evaluated based on performance metrics including precision, speed, and robustness.

While Tiny YOLO and YOLO were specifically trained to achieve the capability

to detect faces, HOG+Linear SVM and Haar Cascade were utilised directly from

their respective libraries, Dlib and OpenCV. A comparative analysis of these models

identified the most effective solution for real-time emotion recognition tasks.

The emotion classification component used advanced models, including Mo-

bileNetV2, ResNet50, and VGG16, leveraging transfer learning techniques. These

pre-trained architectures were fine-tuned using labelled emotion datasets to improve

their performance for the specific task. During the development process, data augmen-

tation techniques were applied to the dataset to enhance classification accuracy. A

comparative analysis of these models highlighted the balance between computational

efficiency and classification accuracy.
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The sentiment analysis system, using text-based emotion recognition, utilised the

cloud-based IBM Watson platform. Rather than being developed from the ground

up, this component was selected for its advanced capabilities and tested to ensure

seamless integration with the broader system. ChatGPT, a Large Language Model

(LLM), was employed to generate speech via a synthesiser, facilitating conversational

interactions between the system and users. This user speech was subsequently

analysed by IBM Watson to extract sentiment information. Both components were

evaluated for their response times, with IBM Watson additionally assessed for its

accuracy in identifying sentiments.

4.2 Facial Emotion Detection

This section explores the facial recognition system utilised in the multimodal emo-

tion recognition framework. It encompasses the detailed training methodologies,

performance evaluations, and datasets used in the development of facial detection

and emotion classification models. The section provides an in-depth analysis of

the integration of various detection algorithms, including Haar cascades, dlib, and

YOLO (You Only Look Once), alongside the implementation of CNN architectures

MobileNetV2, VGG16, and ResNet50 for emotion detection. The comprehensive

overview aims to elucidate the effectiveness and efficiency of the system in recognising

and interpreting human emotions from facial expressions.

Considering the constrained computational resources inherent in robotic sys-

tems, the approach prioritises efficiency without compromising accuracy in emotion

recognition. Robots often operate in resource-constrained environments, where

computational overhead must be carefully managed to ensure smooth and efficient

functioning. In this robot emotion recognition system, the approach is to balance

accuracy and computational efficiency. Initially, the intent is to employ a Haar

cascade, dlib’s HOG + linear SVM, or the YOLO algorithm to locate the face within

the robot’s camera feed accurately. The use of these algorithms ensures that the

subsequent emotion recognition model receives the expected input of only the facial

region.
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Figure 4.1: System Pipeline

4.2.1 Face Detection

Training

To effectively utilise YOLO, it is necessary to undergo training from scratch or

fine-tuning on a specific dataset to suit the intended purpose. This entails collecting

a vast dataset of labelled images where each object of interest is annotated with its

bounding-box coordinates and class labels.

The models were trained using the recommended YOLOv4 settings from the

Darknet GitHub page, by changing the config file which details the training settings:

batch size set to 64, subdivisions set to 16, network size width and height both set to

416, and max_batches set to 6000. Although max_batches is typically calculated as

the number of classes multiplied by 2000, which would result in 2000 for a single class,

the minimum allowable value is 6000. Therefore, this value was adjusted accordingly

to meet the training requirements. Each [yolo] layer has a classes parameter, which

is set to 80 by default in the cloned repository, as the dataset was originally trained

on the COCO dataset. This parameter needs to be adjusted to 1 to match the single

class in our dataset. Consequently, the filter settings in the [convolutional] layer

preceding each [yolo] layer must also be updated. The number of filters is calculated

as:

filters = (classes + 5) × 3

Substituting classes = 1, the filters are set to:
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filters = (1 + 5) × 3 = 18

These changes ensure that the model predicts only one class.

Changing the Tiny-YOLO config follows the same process as full YOLO; however,

there are only 2 [yolo] layers instead of 3. Lastly, both models have their own

pre-trained weights file that was included to assist with training. The final command

used in each is shown below.

See the following commands:

$ . / darknet de t e c t o r t r a i n data/ obj . data \

yolov4_face . c f g data/ yolov4 . conv .137 −map −gpus 0 ,1

$ . / darknet de t e c t o r t r a i n data/ obj . data \

yolov4_tiny_face . c f g data/ yolov4−t iny . conv .29 \

−map −gpus 0 ,1

Performance

To ensure the effectiveness of the YOLO model in detecting faces for subsequent

emotion recognition tasks, its performance is evaluated using a variety of metrics.

These metrics offer a comprehensive view of the accuracy, speed, and robustness of

the model.

In this section, the performance of the YOLO and Tiny YOLO object detection

models was evaluated using the WIDER Face dataset, a widely used benchmark for

face detection tasks. This dataset contains a diverse range of face images, including

variations in scale, pose, occlusion, and illumination, making it an effective testbed

for assessing model robustness. To further analyse performance under different

conditions, the dataset was split into images containing multiple faces and those

containing only one face.

The evaluation employed several key performance metrics: precision, recall, F1

score, average Intersection over Union (IoU), and Average Precision (AP). Precision

measures the accuracy of positive predictions, calculated as the ratio of true positives

(correctly detected faces) to the sum of true positives and false positives (incorrect
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detections). High precision indicates that most of the detected faces are actual faces.

The inclusion of the WIDER Face dataset ensured a rigorous assessment of the face

detection models, highlighting their strengths and weaknesses in varying real-world

scenarios.

Precision = True Positives
True Positives + False Positives

Recall, or sensitivity, measures the ability of the model to find all relevant

instances. It is the ratio of true positives to the sum of true positives and false

negatives (missed detections). High recall means that the model can detect most if

not all of the faces present in a given image.

Recall = True Positives
True Positives + False Negatives

The F1 score is the harmonic mean of precision and recall, providing a single

metric to evaluate the model’s overall performance. It balances the trade-off be-

tween precision and recall and is especially useful as an evaluation metric in binary

classification.

F1 = 2 × Precision × Recall
Precision + Recall

Intersection over Union measures the overlap between the predicted bounding

box and the ground truth bounding box. It is calculated by dividing the overlap

area by the union area between the two boxes. A higher IoU means the predicted

bounding box closely matches the actual bounding box. An example of the area of

overlap can be seen in figure 4.2 and the area of union can be seen in 4.3.

IoU = Area of Overlap
Area of Union

Classification models often output a probability score indicating the likelihood that

a given input belongs to a particular class. To make a definitive class prediction, this

probability is compared against a predetermined threshold. For instance, in a binary

classification scenario, if the threshold is set at 0.5, inputs with a probability above
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Figure 4.2: An example of IoU overlap, the red box is the predicted bounding box and
the green box is the ground truth bounding box. The blue area is the overlap.

Figure 4.3: The union area of the predicted bounding box and the ground truth bounding
box, represented by the total green highlighted area, used in the IoU calculation.

0.5 are classified as positive, while those below are classified as negative. Adjusting

this threshold affects the model’s sensitivity (true positive rate) and specificity (true

negative rate), allowing practitioners to balance between false positives and false

negatives based on the application’s requirements.

By varying the confidence threshold and observing the resulting performance,

a Receiver Operating Characteristic (ROC) curve can be constructed. This curve

plots the true positive rate (sensitivity) against the false positive rate (1-specificity)

at different threshold levels. Specificity, or the true negative rate, measures the

proportion of actual negatives correctly identified by the model and is calculated as:
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Specificity = True Negatives (TN)
True Negatives (TN) + False Positives (FP)

The area under the ROC curve (AUC) quantifies the model’s performance across

all thresholds, with a higher AUC indicating better discrimination ability. An AUC

of 0.5 suggests no discrimination (random guessing), while an AUC of 1.0 indicates

perfect discrimination.

The precision-recall curve is another evaluation metric, particularly useful in

scenarios with imbalanced datasets. It plots precision against recall across different

threshold values. This curve helps in understanding the trade-off between precision

and recall for different threshold settings, providing insights into how well the model

balances between identifying positive instances and avoiding false positives.

In the context of face detection models like YOLO and Tiny YOLO, confidence

scores are provided with each prediction, enabling the construction of ROC and

precision-recall curves by varying the threshold and observing changes in performance

metrics. However, models such as Haar Cascade and dlib’s HOG+Linear SVM do

not output confidence scores with their detections. This absence makes it challenging

to adjust thresholds and generate the corresponding curves. Thus neither a precision-

recall curve nor an ROC curve can be generated for these models.

Average Precision (AP) is a metric used to evaluate classification models, especially

in imbalanced datasets. It summarises the precision-recall curve into a single value,

reflecting the model’s ability to balance precision and recall across thresholds. AP is

calculated by first sorting the predicted scores in descending order, then computing

precision and recall at each threshold. Precision measures the proportion of true

positives among positive predictions, while recall shows the proportion of true

positives among all actual positives.

The AUC represents the AP, which can be calculated as:

AP =
∑

n

(Rn − Rn−1)Pn

Where Pn and Rn are the precision and recall at the nth threshold. AP values

range from 0 to 1, with higher values indicating better performance. An AP of
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1.0 signifies perfect performance, while closer to 0 suggests poor performance. AP

provides a comprehensive measure of a model’s ability to identify positive instances

while minimising false positives.

Table 4.1: Performance of YOLO on on the Wider Face dataset and the single face and
multi face subsets

Metric Wider Face Multi Face Single Face
Precision 0.61 0.61 0.95
Recall 0.64 0.63 0.92
F1 Score 0.63 0.62 0.94
Average IoU 45.77% 45.12% 80.90%
AP 63.17% 62.11% 97.39%

Table 4.2: Performance of Tiny YOLO on the Wider Face dataset and the single face
and multi face subsets

Metric Wider Face Multi Face Single Face
Precision 0.48 0.47 0.95
Recall 0.44 0.43 0.91
F1 Score 0.46 0.45 0.93
Average IoU 35.32% 34.46% 78.08%
AP 36.63% 35.04% 92.33%

Tables 4.1 and 4.2 summarise the performance of the YOLO and Tiny YOLO

models, respectively, on the 3 datasets.

Table 4.3: Performance of Haar Cascade on the Wider Face dataset and the single face
and multi face subsets

Metric Wider Face Multi Face Single Face
Precision 0.69 0.74 0.45
Recall 0.15 0.14 0.69
F1 Score 0.25 0.24 0.55
Average IoU 69.64% 69.63% 69.36%

Tables 4.3 and 4.4 present the performance of the Haar Cascade and HOG +

Linear SVM models, respectively, on the Wider Face dataset and the single face and

multi face subsets.
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Table 4.4: Performance of HOG+Linear SVM on the Wider Face dataset and the single
face and multi face subsets

Metric Wider Face Multi Face Single Face
Precision 0.96 0.97 0.94
Recall 0.14 0.12 0.78
F1 Score 0.24 0.22 0.86
Average IoU 69.61% 69.91% 66.35%

4.2.2 Emotion Detection

Preprocessing

To ensure compatibility and consistency across VGG16, ResNet50, and MobileNetV2

models, the FER and CK+ datasets undergo specific preprocessing steps.

Firstly, all images are resized from 48×48 to 224×224 pixels. This resizing is

necessary because, while VGG16 and MobileNetV2 can be adjusted to accept 48×48

images, ResNet50 could not process the images at 48×48 and required a minimum

size of 224×224. Resizing all images to 224×224 ensures uniformity across all models.

Secondly, the images, originally in greyscale, need to be converted to have three

channels as required by the models. This is achieved using OpenCV to convert

single-channel greyscale images to three-channel images using cv2.cvtColor() with

the constant cv2.COLOR_GRAY2BGR.

Lastly, normalisation is specifically required for VGG16. The images are reshaped

for normalisation using the StandardScaler from the sklearn.preprocessing Python

library and then reshaped back to its original dimensions. This normalisation step

ensures that the input data is standardised, which is crucial for the performance of

VGG16.

In addition to these pre-processing steps, data augmentation techniques are

applied to enhance the robustness of the models and prevent overfitting. Data aug-

mentation involves artificially increasing the size of the training dataset by generating

new training samples from the original data. This can be done through geometric

transformations such as width and height shifts, horizontal flips, and zooming as

well as many other techniques such as GAN (General Adversarial Networks) and

Photometric Transformations [101]. These transformations help the models generalise
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better by exposing them to various image conditions and distortions they might

encounter in real-world scenarios.

datagen = ImageDataGenerator ( width_shift_range = 0.1,

height_shift_range = 0.1 ,

horizontal_flip = True ,

zoom_range = 0.2)

testgen = ImageDataGenerator ( width_shift_range = 0.1,

height_shift_range = 0.1 ,

horizontal_flip = True ,

zoom_range = 0.2)

Specifically, the following augmentations are applied:

• Width and Height Shifts: Images are randomly shifted horizontally and ver-

tically by up to 10% of the image width and height (width_shift_range =

0.1 and height_shift_range = 0.1).

• Horizontal Flip: Images are randomly flipped horizontally to simulate different

viewing angles (horizontal_flip = True).

• Zoom: Random zooms in and out within a range of 0.8 to 1.2 times the original

size are applied (zoom_range = 0.2).

These augmentations are performed using the ImageDataGenerator class from

the Keras library, which allows for real-time data augmentation during the training

process. By applying these augmentations, the diversity of the training data is

significantly increased.

4.2.3 Training

All of the models were obtained pre-trained on the ImageNet dataset. The base models

were loaded without their fully connected layers include_top=False, allowing it to

act as a feature extractor for the emotion recognition task.

base_model = tf. keras . applications . VGG16 (

61



4.2 Facial Emotion Detection

input_shape =( width , height , 3),

include_top =False ,

weights =" imagenet "

)

Where input_shape=(width, height, 3) are the size of the images that the

model should accept. In this case, the images were 224×224 pixels with 3 channels.

The output of all the models were flattened before being passed through a fully

connected Dense output layer with a softmax activation function, which classified

the facial expression into one of the predefined emotion categories.

model = base_model . output

model = Flatten ()( model)

output_layer = Dense( num_of_classes ,

activation =’softmax ’)( model )

model = Model ( inputs = base_model .input , outputs = output_layer )

The model was compiled using categorical cross-entropy as the loss function,

given the multi-class classification nature of the task, and the Adam optimizer with

a learning rate of 0.0001. Accuracy was selected as the primary evaluation metric.

model . compile (loss=’categorical_crossentropy ’,

optimizer =Adam( learning_rate =0.0001) ,

metrics =[ ’accuracy ’])

The model was trained for 50 epochs with a batch size of 64, using the augmented

training dataset. Validation was performed using the augmented test dataset to

assess generalisation performance. The number of steps per epoch was determined

by the dataset size, ensuring that all samples were processed within each epoch.

Then the following code is used to train the model:

history = model .fit( train_generator ,

epochs =50,

batch_size =64 ,

verbose =1,
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validation_data = test_generator ,

steps_per_epoch =len( X_train_scaled ) // 64,

validation_steps =len( X_test_scaled ) // 64)

Figure 4.4: The loss graph for the first successful training of MobileNetV2

The graph 4.4 illustrates the training and validation loss for the MobileNetV2

model. As training progresses, both losses decrease sharply, demonstrating that

the model is learning from the data. Around the 20-epoch mark, the training loss

continues to decline steadily, indicating that the model is fitting well to the training

data. The validation loss begins to see a slight upward trend after around 11 epochs

suggesting that the model is overfitting as the training loss continues to decrease.

Figure 4.5: The loss graph for the first successful training of ResNet50
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Graph 4.5 shows the training and validation loss for the ResNet50 model. Similar

to MobileNetV2, both losses start high and decrease significantly in the early epochs.

The training loss for ResNet50 drops more quickly and smoothly compared to the

validation loss, reaching a much lower value as epochs progress. The validation loss

shows a decreasing trend but with more pronounced fluctuations, indicating some

instability in performance on the validation set. After around 30 epochs the validation

loss starts a slight upward trend. By the end of the 50 epochs, the training loss is

significantly lower than the validation loss, which might suggest slight overfitting.

Figure 4.6: The loss graph for the first successful training of VGG16

Finally, graph 4.6 represents the training and validation loss for the VGG16

model. Both losses start high and decrease rapidly in the initial epochs, similarly

to the other models. However, the training loss for VGG16 continues to decrease

more steeply and steadily, reaching very low values, indicating a strong fitting to

the training data. The validation loss decreases initially but starts to exhibit more

fluctuation and even an upward trend after around 11 epochs. This divergence

between training and validation loss suggests that VGG16 might be overfitting to

the training data, capturing noise and details that do not generalise well to the

validation set.

To further mitigate the impact of overfitting in the three emotion recognition

models a few more techniques were added. Firstly an early stopper was added, this,

with a patience set at 10, stops the training of the model if no improvements are
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made after 10 epochs of training and a checkpointer that will restore the model

to the best weights. Alongside this, a reduced learning rate was implemented that

lowers the learning rate if the training starts to hit a plateau in accuracy.

checkpointer = ModelCheckpoint (fle_s , monitor =’val_loss ’,

verbose =1, save_best_only =True ,

save_weights_only =False , mode=’auto ’)

early_stopping = EarlyStopping ( monitor =’val_loss ’,

patience =10 , restore_best_weights =True)

reduce_lr = ReduceLROnPlateau ( monitor =’val_loss ’,

factor =0.2 , patience =5, min_lr =1e -6)

With the updated model fit code looking like this:

history = model .fit( train_generator ,

epochs =50,

batch_size =64 ,

verbose =1,

callbacks =[ checkpointer , early_stopping , reduce_lr ],

validation_data = test_generator ,

steps_per_epoch =len( X_train_scaled ) // 64,

validation_steps =len( X_test_scaled ) // 64)

Figure 4.7: The loss graph for the second successful training of MobileNetV2
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MobileNetV2s second training loss graph is shown in figure 4.7. The graph shows

that the training only got to 29 epochs before the early stopper function stopped it.

The application of techniques to prevent overfitting seems effective. The gap between

training and validation loss is relatively small. The model continues to improve

on both training and validation data, indicating that it is learning useful patterns

rather than just memorising the training data. The stabilisation of the validation

loss suggests that the model has reached a point where further training may yield

diminishing returns.

Figure 4.8: The loss graph for the second successful training of ResNet50

ResNet50’s second training results in a similar graph to its first run. After only

5 epochs validation loss begins to fluctuate increasing and decreasing until around

epochs 15 to 25, where the validation loss shows a slight upward trend.
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Figure 4.9: The loss graph for the second successful training of VGG16

In the second training run of VGG16 after about 5 epochs, the validation loss

begins to fluctuate, while the training loss continues to decrease steadily. From

Epochs 10 to 25, the validation loss shows a slight downward trend with occasional

fluctuations, indicating potential minor overfitting. However, the training loss

continues to decrease smoothly, suggesting that the model is still learning effectively.

Overall, the model demonstrates good generalisation, and the techniques applied

seem to mitigate the severe overfitting it saw in the first run.

67



4.2 Facial Emotion Detection

Figure 4.10: The confusion matrix detailing the performance of MobileNetV2 on the
PrivateTest set

The confusion matrix 4.10 illustrates the performance of MobileNetV2 across the

8 emotions. The model accurately classifies the ‘happiness’ and ‘neutral’ expressions,

with 853 and 1034 correct predictions, respectively. However, it struggles with ‘fear’

and ‘contempt’ frequently misclassifying them as other emotions. There is notable

confusion between ‘sadness’ and ‘neutral’ with it incorrectly classifying them as each

other.
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Figure 4.11: The confusion matrix detailing the performance of ResNet50 on the Pri-
vateTest set

ResNet50 performed very similarly to MobileNetV2 but had a slightly higher

recognition rate for each emotion except ‘fear’ and ‘sadness’. It suffers from the same

misclassification of ‘sadness’ and ‘neutral’ as MobileNetV2.

Figure 4.12: The confusion matrix detailing the performance of VGG16 on the PrivateTest
set
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VGG16 misclassified most of the ‘neutral’ pictures, only getting 178 correct,

mainly classifying them as ‘surprise’ and ‘anger’. However, VGG16 achieved the

highest results of the three models in the fear category. The model also struggles

to differentiate between ‘sadness’ and ‘fear’. Overall, the model does perform well;

however, in comparison to ResNet50 and MobileNetV2, it misclassifies too many

emotions to be considered reliable.

4.2.4 Testing Combined Face and Emotion Recognition

This section evaluates the performance of three emotion recognition models in

conjunction with face detection algorithms: Haar cascades, dlib, Tiny YOLO and

YOLO. The evaluation is conducted using the Expression in-the-Wild (ExpW) dataset,

which contains facial images captured in diverse and unconstrained environments.

This comprehensive testing aims to assess the robustness and accuracy of the models

and algorithms in recognising emotions under varied and challenging scenarios.

To determine the optimal combination of face detection and emotion detection

algorithms for use in a resource-constrained robotic system, a comprehensive test

was performed. This test involved pairing each face detection algorithm with each

emotion detection algorithm to evaluate their performance. The primary goal was to

find the best performing combination in terms of speed and accuracy for real-time

applications on the robot. Each face detection and emotion detection instance was

measured to calculate the average time taken for detection and prediction. Successful

detections of faces and correct emotion predictions were meticulously recorded and

compared to the actual emotions presented in the images of the data set.

Since only one face in each image is annotated, all faces detectable in the image

are compared to the one in the labels file, and the detected face that is closest (using

Euclidian distance) to the listed face is considered the valid face for further analysis.

Finally, the performance of the model is evaluated directly on a robot. The

system is designed to be standalone and operate without relying on a connected PC,

so testing the models in this context is essential.

The results of the Turtlebot4 tests are summarised in the table 4.7.
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Table 4.5: Average Detection Times in Milliseconds for Face and Emotion Detection
Algorithms

Algorithm Algorithm Name Avg. Inf Time (ms) Model Size (MB)
Face Tiny YOLO 25.0 22.4

Haar Cascade 40.7 1.19
dlib 45.6 0.696
YOLO 161.0 244

Emotion MobileNetV2 13.6 69.8
ResNet50 95.3 187
VGG16 312.2 80.8

Table 4.6: Accuracy and Number of Face Detection for Model Combinations, out of a
possible 91,793 faces

Model Combination Accuracy No. of Face Detections
dlib + MobileNetV2 37.06% 56098
dlib + ResNet50 37.77% 56098
dlib + VGG16 34.52% 56098
Haar + MobileNetV2 46.63% 76416
Haar + ResNet50 47.81% 76416
Haar + VGG16 44.52% 76416
Tiny YOLO + MobileNetV2 55.93% 88332
Tiny YOLO + ResNet50 57.36% 88332
Tiny YOLO + VGG16 51.94% 88332
YOLO + MobileNetV2 57.54% 90773
YOLO + ResNet50 59.02% 90773
YOLO + VGG16 53.43% 90773

Table 4.7: Average Detection Times in Milliseconds for Face and Emotion Detection
Algorithms performed on the TurtleBot4

Algorithm Type Algorithm Name Average Detection Time (ms)
Face Detection Tiny YOLO 697.4

Haar Cascade 491.7
dlib 216.2
YOLO 6846.5

Emotion Detection MobileNetV2 124.7
ResNet50 1334.3
VGG16 5384.2

4.3 Sentiment Analysis

This chapter examines the sentiment analysis component of the multimodal frame-

work, focusing on the use of IBM Watson’s capabilities. The analysis includes
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performance tests to assess the accuracy and speed of IBM Watson in detecting

emotions from text input. Additionally, this chapter discusses the limitations that

prevent the use of OpenSMILE for this project. Through a detailed evaluation,

this chapter aims to provide insight into the effectiveness of IBM Watson as an

text emotion analysis tool and the considerations involved in choosing appropriate

technologies for text/audio analysis.

Figure 4.13: The architecture of the sentiment analysis system

4.3.1 IBM Watson

Given the current computational demands of core functionalities and concurrent

facial emotion recognition processes, it would be beneficial to consider offloading

speech emotion recognition to an external entity. Using cloud-based solutions, such

as IBM Watson’s API, presents an appealing option. By interfacing with Watson,

recorded human speech can be remotely processed, allowing emotional predictions

based on textual analysis. This approach not only reduces the computational burden

on the robot, but also harnesses the advanced emotion analysis capabilities offered

by cloud services.

IBM Watson is a cognitive computing platform developed by IBM that uses

artificial intelligence (AI) techniques to analyse and interpret large amounts of data.

It includes a range of AI-powered services and tools designed to help businesses gain

insights, make informed decisions, and improve user experiences in various industries.
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Watson’s capabilities include natural language processing, machine learning, and

data analytics, making it a versatile solution for addressing complex challenges.

One useful feature of IBM Watson is its conversational abilities, which allow

for structured dialogue between the robot and the user. By integrating Watson’s

Conversation service, the robot can engage in structured conversations with users,

responding to prompts and queries based on predefined conversation trees. This

approach allows the robot to guide the conversation along predetermined paths,

collecting specific information, or addressing user inquiries within predefined topics.

Ultimately, the choice to use cloud-based emotion recognition is a strategic

decision that weighs computational efficiency against the aim of developing a flexible

and emotionally intelligent robotic system. By tapping into external resources, we

not only enhance the robot’s performance but also pave the way for integrating state-

of-the-art emotion analysis capabilities into the HRI framework, thereby enhancing

the user experience and pushing the boundaries of human-robot interaction. [53]

Initially, a system was created to incorporate IBM Watson as a chatbot to inform

people about ongoing public health issues. The goal was to provide accurate and

up-to-date responses to common questions and to give people peace of mind. The

system was designed to use IBM’s sentiment analysis to detect fear and point people

to resources that could help them. In addition, the chatbot provided the ability to

connect an Aldebaran robot, which provided a physical presence that people could

interact with. The robot would use its microphones to pick up user speech, which

could then be sent to IBM for analysis, after which the robot would respond with

what IBM Watson sent back.

This system also leveraged IBM Watson’s text-to-speech capabilities, allowing

users to fully customise the generated voice based on a variety of parameters. In

addition to selecting the gender of the voice, users could choose accents from different

regions, making the interaction more personalised and culturally relevant. This

also allows adjustments to pitch, enabling a higher or lower tone depending on user

preference or specific application needs.
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Figure 4.14: Aldebaran robot Nao with IBM Watson ChatBot

4.3.2 OpenSMILE

OpenSMILE [35], which stands for “Open-Source Speech and Music Interpretation by

Large-Space Extraction” is a powerful open-source toolkit widely used in audio signal

processing. Its primary function is to extract an extensive range of acoustic features

from audio signals, providing a versatile platform for various applications that include

speech recognition, emotion recognition, speaker identification, and music analysis.

One of the key strengths of OpenSMILE lies in its modular architecture, which allows

the customisation of the feature extraction process to suit specific requirements. This

modularity is achieved through a collection of feature extraction components known

as “functionals” each responsible for computing a particular set of features. It is

possible to choose from a rich library of functionals and combine them as needed to

create tailored feature sets.

Moreover, OpenSMILE is designed for real-time processing of audio streams,

making it suitable for applications that demand low-latency feature extraction, such

as real-time speech recognition systems or interactive multimedia applications. Its

cross-platform compatibility ensures that it can seamlessly integrate into various

environments running on major operating systems, including Windows, macOS, and

Linux. Additionally, the toolkit offers extensive configuration options that allow

one to specify parameters such as frame size, overlap, and feature selection, thus

providing flexibility to adapt to various audio processing tasks.
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OpenSMILE facilitates the integration of extracted features with machine learning

algorithms, serving as a crucial preprocessing step for tasks such as classification.

The features computed by OpenSMILE capture essential characteristics of audio

signals, enabling accurate modelling and interpretation of audio data. However, given

the limited resources available on a robotic platform, it could run into performance

issues that severely limit its capabilities. The memory requirements of OpenSMILE

can also be significant, particularly when extracting a large number of features

from lengthy audio streams, with each feature set taking up to 100MB for a short

18-second audio clip. Robotics platforms typically have limited memory capacity,

and allocating resources to OpenSMILE may strain the system, potentially impacting

overall system stability and reliability. This limitation is purely hardware based

and future robots that can afford more powerful systems would be able to utilise

OpenSMILE feature extraction plus a classification model to determine emotions.

4.3.3 IBM Waston Performance

In this section, the performance of IBM Watson’s Natural Language Understanding

(NLU) service is evaluated in analysing the emotional content of various phrases. To

ensure a robust assessment, each phrase was tested five times, and response times

were recorded. The table 4.8 presents the response times (in seconds) for each test

run with ten different phrases shown in 3.3.

Table 4.8: Test results for IBM Watson’s response times on 10 phrases across 5 runs
in seconds, alongside the average time and standard deviation. The phrases in this table
match the phrases in table 3.3 in order.

Test number Run 1 Run 2 Run 3 Run 4 Run 5 Average SD
Phrase 1 1.81 2.07 1.36 1.58 1.45 1.654 0.257
Phrase 2 0.69 0.51 0.38 0.40 0.36 0.468 0.123
Phrase 3 0.43 0.47 0.39 0.36 0.40 0.41 0.037
Phrase 4 0.69 0.63 0.38 0.39 0.43 0.504 0.130
Phrase 5 0.38 0.38 0.40 1.23 0.48 0.574 0.330
Phrase 6 0.47 0.40 0.60 0.52 0.43 0.484 0.071
Phrase 7 0.56 0.43 0.40 0.61 0.41 0.482 0.086
Phrase 8 0.43 0.42 0.39 0.44 0.39 0.414 0.021
Phrase 9 0.47 0.41 0.40 0.40 0.45 0.426 0.029

Phrase 10 0.42 0.40 0.36 0.45 0.39 0.404 0.030
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IBM Watson NLU demonstrates efficient and consistent performance in emotion

analysis, with response times typically under one second for any given phrase.

However, there is a noticeable delay for the first phrase of each session, likely due

to the system establishing an initial connection to IBM Watson. To investigate

this, five additional tests were conducted with the phrases in reverse order. The

first, more complex, phrase took an average of 1.3601 seconds to process, while

subsequent phrases averaged just 0.3713 seconds. This indicates that the first phrase

consistently experiences a longer response time. To optimise performance, it would

be beneficial for the program to send a throwaway phrase to minimise delays for

subsequent inputs.

Table 4.9: The resulting output probability for each emotion for each phrase. The phrases
in this table match the phrases in table 3.3 in order.

Test number Sadness Joy Fear Disgust Anger
Phrase 1 0.025 0.983 0.008 0.002 0.006
Phrase 2 0.960 0.014 0.025 0.017 0.008
Phrase 3 0.070 0.031 0.036 0.005 0.861
Phrase 4 0.017 0.003 0.999 0.006 0.010
Phrase 5 0.225 0.001 0.019 0.894 0.067
Phrase 6 0.093 0.921 0.009 0.004 0.011
Phrase 7 0.672 0.129 0.076 0.010 0.098
Phrase 8 0.309 0.150 0.089 0.038 0.212
Phrase 9 0.245 0.269 0.419 0.011 0.044

Phrase 10 0.390 0.026 0.131 0.452 0.067

Each row in table 4.9 shows the predicted probabilities for sadness, joy, fear,

disgust, and anger for each phrase in table 3.3. Overall, IBM Watson’s predictions

match well with the expected emotions. However, the only phrase that did not meet

the expected emotion is the one about changes in workplace policies (phrase 8),

which was predicted mainly as sadness when the expected emotion was anger, anger

was the next highest prediction.

4.4 LLM

This section presents an evaluation of a Large Language Model (LLM) that was

incorporated into the system as a conversational partner. Its purpose was to generate
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natural language responses during interactions, providing the user with meaningful

dialogue. These responses then served as input for IBM Watson’s text-based emotion

recognition system. It is important to note that the LLM itself was not responsible

for interpreting or classifying emotional content, it was solely used to produce

conversational material that could be analysed by other components of the system.

It is important to note that while IBM Watson does provide a conversation

service, it is a structured approach to dialogue management, meaning it lacks the

spontaneity and flexibility of natural human conversation. Relying on conversation

trees imposes constraints on the flow of interaction, limiting the opportunity for

open-ended dialogue and real-time adaptation to user input. As a result, interactions

with the robot may feel scripted or constrained, potentially detracting from the

overall user experience in certain situations.

To achieve a natural and engaging human-robot interaction, it is imperative to

develop a comprehensive system that integrates a Large Language Model (LLM).

ChatGPT, a state-of-the-art language model, plays a crucial role in enabling seamless

human-like conversations between the robot and the user [80]. Its ability to generate

contextually relevant responses allows for a more natural dialogue exchange that

closely resembles human conversation patterns.

By incorporating ChatGPT into this system, we can create a more interactive

and emotionally responsive dialogue experience. In this setup, the speech-emotion

recognition system handles the analysis of user speech to detect emotions such

as happiness, sadness, anger, or neutrality. These detected emotional states can

then be communicated to ChatGPT alongside the text of the user’s speech. This

allows ChatGPT to factor in both the content of the conversation and the emotional

context provided by the speech-emotion recognition system, helping it generate more

empathetic and contextually appropriate responses.

For example, if the speech-emotion recognition system detects frustration in the

user’s voice, this emotional information can be fed to ChatGPT, allowing it to adapt

its responses in real time to address the user’s emotional state more sensitively. This

synergy allows for a deeper and more emotionally aware interaction, where ChatGPT
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can tailor the flow of the conversation based on both the user’s words and their

emotional tone.

Additionally, ChatGPT can use the emotional feedback from the speech-emotion

system to adjust the direction of the conversation, perhaps steering toward topics

that might alleviate negative emotions or enhance positive ones. This makes it

possible to create a more engaging and emotionally intelligent interaction, where the

robot can respond in a way that feels more human and responsive to the user’s mood.

Using ChatGPT for dialogue and the emotion recognition system for emotional

analysis, we enable a hybrid approach where each component focuses on its strengths,

resulting in a more robust and user-centric interaction.

Thus, ChatGPT was integrated into the system. This allows users to interact

with ChatGPT seamlessly through a browser, making it accessible from virtually

any device, whether a desktop, laptop, or mobile device. This integration ensures

that users can engage with the system without the need for specialised software or

hardware, broadening its utility and accessibility. The Web Messenger supports both

text- and speech-based interactions allowing the user to converse with the robot in a

natural way.

One of the core strengths of this system lies in how it expands ChatGPT’s

capabilities, making it a far more versatile assistant. Using the function-calling

mechanism, ChatGPT can now fetch real-time data such as weather reports, time,

and date, or even retrieve specific data from databases. This transforms it from being

a static question-answering system to an interactive, real-time assistant. Moreover,

the system has been designed to allow future scalability, enabling developers to

integrate additional functions based on evolving user needs, such as connecting

to more advanced AI models, adding new APIs, or enhancing its conversational

context-awareness.

The system could also leverage locally run language models, such as GPT4All, to

enhance its natural language understanding and response capabilities. Running these

models locally ensures full control over data privacy and security. This approach

allows for greater flexibility, as the models can be fine-tuned to better suit the

system’s specific needs without reliance on external cloud services. In addition,
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the system can operate independently of an internet connection, making it more

reliable in environments with limited or unstable connectivity. This setup offers

both customisation options and scalability, ensuring robust performance for complex,

language-driven tasks.

4.4.1 LLM Performance

In this section, we evaluate the performance of several models, including GPT-3.5-

turbo, GPT-4o, and GPT-4o-mini [OpenAI], by measuring their response times to a

set of predefined phrases. Each model was tested multiple times to ensure a thorough

assessment of efficiency. The recorded response times (in seconds) for each test run

are presented in three separate tables. This analysis aims to provide insights into

the responsiveness of each model and compare their performance under consistent

testing conditions.

This section also provides an overview of the key differences among three language

models: GPT-3.5-turbo, GPT-4o, and GPT-4o Mini. Each model is built on advanced

architectures, but they vary significantly in performance and intended use cases.

In this system ChatGPT is only providing a way of interacting with the user

to prompt speech and conversation and is not being used to analyse the speech

for emotion. The role of ChatGPT in this system is strictly limited to facilitating

natural and engaging dialogue with the user. It does not perform any emotion

recognition or analysis on the user’s speech. Instead, the emotion recognition task

is handled entirely by the IBM Watson system, which processes the text input to

detect emotional states.

This distinction is crucial because the tests conducted for ChatGPT focus solely

on response times, rather than its ability to interpret or analyse emotional content. By

separating these functionalities, the system leverages the strengths of each component:

ChatGPT for conversational interaction and IBM Watson for emotion analysis.
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GPT-3.5-turbo

ChatGPT 3.5-turbo is based on the GPT-3.5 engine, which was trained on over

175 billion parameters. While it represents a significant advancement in natural

language processing, it has notable downsides. One major issue is its accuracy

and reliability; ChatGPT 3.5 is more prone to ‘hallucinations’, which means it can

generate incorrect or non-sensical information, especially when faced with ambiguous

queries. These limitations can lead to inappropriate outputs, which may affect user

trust and satisfaction. Despite these challenges, ChatGPT 3.5-turbo remains effective

for many applications, such as basic content generation and straightforward chatbot

interactions.

Table 4.10: Test results for GPT-3.5-turbo response times over 10 phrases, alongside the
average time and standard deviation. The phrases in this table match the phrases in table
3.3 in order.

Test number Run 1 Run 2 Run 3 Run 4 Run 5 Average SD
Phrase 1 0.91 0.91 0.86 1.05 0.99 0.944 0.067
Phrase 2 0.65 0.69 0.82 0.91 0.85 0.784 0.098
Phrase 3 1.26 0.95 1.95 1.70 1.20 1.412 0.362
Phrase 4 1.24 1.41 1.54 1.31 1.09 1.318 0.152
Phrase 5 0.96 1.07 1.11 1.02 1.04 1.040 0.050
Phrase 6 3.33 2.96 3.57 1.67 3.06 2.918 0.659
Phrase 7 2.93 3.43 2.73 2.70 1.84 2.726 0.514
Phrase 8 1.69 1.94 1.30 1.55 2.06 1.708 0.272
Phrase 9 2.55 3.44 2.66 4.42 2.76 3.166 0.700

Phrase 10 1.10 1.46 1.80 1.62 1.45 1.486 0.231

GPT-4o

GPT-4o is the full-fledged version of the GPT-4 architecture, representing a significant

upgrade over GPT-3.5-turbo. This model features enhanced accuracy and reliability,

being trained on more than a trillion parameters, which allows it to generate more

precise responses and significantly reduce the likelihood of hallucinations. GPT-4o

excels at understanding nuanced contexts and producing coherent, contextually

appropriate text. In addition, it is designed for complex tasks that require high
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computational power, making it suitable for applications in industries such as finance,

healthcare, and research, where precision and depth are crucial.

Table 4.11: Test results for GPT-4o response times over 10 phrases, alongside the average
time and standard deviation. The phrases in this table match the phrases in table 3.3 in
order.

Test number Run 1 Run 2 Run 3 Run 4 Run 5 Average SD
Phrase 1 1.63 1.00 0.86 0.83 1.31 1.126 0.304
Phrase 2 0.82 0.87 1.24 0.87 0.70 0.900 0.181
Phrase 3 0.86 1.36 1.37 1.24 2.00 1.366 0.367
Phrase 4 1.74 0.81 1.36 1.07 1.10 1.216 0.315
Phrase 5 0.80 5.37 1.05 0.82 0.96 1.800 1.787
Phrase 6 1.49 1.97 1.22 2.31 3.63 2.124 0.842
Phrase 7 1.64 2.95 1.73 3.02 2.42 2.352 0.583
Phrase 8 4.34 4.62 3.42 4.14 5.76 4.456 0.763
Phrase 9 5.39 4.37 2.76 4.65 5.73 4.580 1.033

Phrase 10 2.13 1.58 1.57 2.98 2.58 2.168 0.554

For simpler phrases, such as Phrase 1 and Phrase 2, GPT-4o performs relatively

quickly, with average response times of 1.13 and 0.90 seconds, respectively. The

standard deviations are low, indicating consistent performance across runs. As

complexity increases, response times gradually increase.

Phrase 5 sees a large jump in SD because one run takes 5.37 seconds to get a

response. It is not clear as to why this happened, this could have been due to a

momentary drop in internet quality or an issue with OpenAI’s servers. Without this

outlier, the average response time was 0.908 seconds and the standard deviation is

only 0.103, which is the expected result.

GPT-4o Mini

GPT-4o Mini is a compact and efficient version of GPT-4o that balances performance

with accessibility. It is smaller and more resource efficient than its larger counterpart,

sacrificing some performance for greater accessibility. Despite this, GPT-4o Mini

remains effective for various applications where the full capabilities of GPT-4o are

not required.

In general, GPT-4o-mini tends to respond slightly faster than GPT-4o, with a

couple of exceptions (phrase 2 and phrase 9). GPT-4o-mini also shows that it is
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Table 4.12: Test results for GPT-4o-mini response times over 10 phrases, alongside the
average time and standard deviation. The phrases in this table match the phrases in table
3.3 in order.

Test number Run 1 Run 2 Run 3 Run 4 Run 5 Average SD
Phrase 1 1.48 1.10 0.97 1.04 0.78 1.074 0.230
Phrase 2 1.22 1.07 1.13 1.16 0.84 1.084 0.131
Phrase 3 0.97 1.76 1.19 0.86 1.08 1.172 0.314
Phrase 4 0.95 1.53 0.65 1.34 0.80 1.054 0.331
Phrase 5 1.09 1.35 0.73 1.62 1.08 1.174 0.298
Phrase 6 1.89 2.02 1.63 1.69 1.25 1.696 0.263
Phrase 7 2.54 2.34 2.04 2.29 2.51 2.344 0.180
Phrase 8 3.25 5.00 3.66 2.25 4.51 3.734 0.964
Phrase 9 5.49 6.12 5.41 7.28 6.61 6.182 0.702

Phrase 10 1.68 1.57 2.10 1.82 1.35 1.704 0.251

more consistent with its response times having generally a lower standard deviation

on all phrases except phrase 8.
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Chapter 5

Discussion

5.1 Overview

This section critically examines the key findings, limitations, and challenges en-

countered throughout the project. The performance of the implemented emotion

recognition models is analysed in light of the results obtained, with particular at-

tention given to factors that may have influenced accuracy, generalisability, and

reliability. In addition, practical constraints such as dataset quality, class imbalance,

and system implementation limitations are explored to provide a balanced assessment

of the work. Finally, potential improvements and future directions are suggested to

address these issues and guide further development.

5.2 Face Detection

The comparative results from the face detection experiments provide valuable insights

into the strengths and weaknesses of each model within the context of this project.

Notably, the full YOLO model demonstrated superior performance in scenarios

involving multiple faces, clearly outperforming its Tiny YOLO counterpart in terms

of precision and robustness. However, in simpler cases where only a single face was

present, the performance gap between the two models narrowed considerably, with

Tiny YOLO showing only a minor drop in average Intersection over Union (IoU) and
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average precision. This finding supports the hypothesis that Tiny YOLO struggles

more with higher-complexity images but remains highly effective for simpler detection

tasks.

Given the intended application of this system, a 1-on-1 human-robot interaction

scenario, these results suggest that Tiny YOLO offers an efficient and sufficiently

accurate solution for real-world deployment. Its lower computational demands make

it a practical choice without a significant sacrifice in detection quality for single-face

contexts.

In contrast, both the Haar Cascade and HOG+Linear SVM models exhibited a

different pattern of strengths. These classical methods outperformed YOLO-based

models on the more complex Full Wider Face dataset, particularly in precision. Their

high precision but relatively low recall on the full dataset and multiple-face subset

indicate a more conservative detection strategy, successfully avoiding false positives

but at the cost of missing some true positives. This trade-off highlights their potential

utility in applications where false positives must be minimised, although their lower

recall limits their suitability for comprehensive face detection tasks.

5.3 Facial Emotion Recognition

A consistent challenge observed across all tested models was the frequent misclassifica-

tion of sadness as neutral, as highlighted in the confusion matrices. This trend points

to a significant limitation in the models’ ability to differentiate between these two

emotions. Figure 5.1 illustrates typical examples of sadness and neutral expressions,

emphasizing the subtle visual distinctions between them. This confusion likely stems

from the fact that both emotions involve minimal facial muscle movement, lacking the

exaggerated features such as broad smiles or deep frowns that make other emotions

more visually distinct. As a result, even high-performing models struggled to make

reliable distinctions in these cases.
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Figure 5.1: Example images showing the very slight variation between sadness and neutral

This finding suggests an inherent challenge in relying solely on facial cues for

emotion recognition, especially when working with subtle expressions. One potential

avenue to mitigate this limitation could involve augmenting training datasets with

more diverse and nuanced examples of sadness and neutral expressions, ideally with

high-quality labeling to capture fine-grained differences. Alternatively, leveraging

the sentiment analysis capabilities of IBM Watson could provide a complementary

approach to recognising these specific emotions, particularly in cases where facial

cues are ambiguous or difficult to interpret.

A significant limitation encountered during this project relates to the class

imbalance present in the facial emotion dataset used for training. The dataset is

heavily skewed towards the Happiness (9,355 images) and Neutral (12,905 images)

categories, which together account for more than 62% of the total images. This

overrepresentation likely introduced bias into the training process, potentially causing

the model to overfit to these dominant classes and reducing its sensitivity to less

frequently represented emotions. As noted in previous research [88], such imbalance

can adversely affect the model’s generalisability and lead to poor performance when

detecting underrepresented emotions.

In contrast, categories such as Contempt (216 images), Disgust (248 images), and

Fear (819 images) were severely underrepresented. The limited number of examples

in these categories means the model may not have learned the relevant features

needed to recognise these emotions reliably. Even emotions like Anger (3,110 images),

Sadness (4,370 images), and Surprise (4,462 images), while better represented than

the minority classes, still appear in far lower quantities than Happiness and Neutral,

which may have resulted in the model’s reduced predictive power for these classes

To mitigate this issue in future, several strategies could be employed. One poten-

tial solution is the use of data augmentation targeted specifically at the minority

classes, rather than on the entire dataset, artificially increasing their representation
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by generating variations of the existing images through techniques such as rotation,

flipping, cropping, or brightness adjustment. Another approach would involve resam-

pling methods, undersampling the overrepresented ones, to achieve a more balanced

training set [71]. Alternatively, class weighting [48] could have be implemented

during training to penalise misclassifications in minority classes more heavily, thereby

forcing the model to pay more attention to those examples. In future work, more

balanced or curated datasets should be prioritised to help improve overall model

performance and robustness across all emotion categories.

5.4 Combined Face and Emotion Recognition mod-

els

The results highlight key considerations when selecting face detection and emotion

recognition models for real-world robotic systems. Tiny YOLO and full YOLO both

provided the highest number of face detections, which directly improved the overall

accuracy of emotion recognition when paired with models such as ResNet50. While

full YOLO achieved the highest overall accuracy (59.02%), this came at a significant

computational cost, with each face detection taking 0.1610 seconds, over six times

slower than Tiny YOLO’s 0.0250 seconds. The relatively small gain in accuracy

(just 1.66% higher than Tiny YOLO) raises questions about whether this trade-off is

worthwhile in practical applications that require real-time processing.

In terms of emotion recognition, ResNet50 consistently outperformed MobileNetV2

and VGG16 across all face detection methods. However, despite its superior accuracy,

ResNet50’s high inference time (95.3 milliseconds) and large model size (187MB) in-

troduce challenges, particularly in resource-constrained environments such as mobile

robots. By comparison, MobileNetV2 delivered much faster detection times (13.6

milliseconds) and a smaller model size (69.8MB), making it a compelling alternative

in situations where speed and memory use are critical concerns. Based on these

factors, the combination of Tiny YOLO and MobileNetV2 appeared to offer the best
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overall balance of accuracy, speed, and memory efficiency, requiring just 92.2MB of

memory for both models combined.

A particularly noteworthy finding emerged when these models were deployed

on the Turtlebot 4 robot. Here, the performance trends observed during initial

tests on the high-powered training PC did not hold: both dlib and Haar Cascade

outperformed Tiny YOLO in face detection speed, despite Tiny YOLO being the

fastest model during prior evaluations. This shift in performance likely stems from

hardware limitations of the Turtlebot 4, which lacks a GPU and has significantly

fewer CPU cores than the training machine. These constraints likely prevent Tiny

YOLO from leveraging hardware acceleration and parallel processing, key advantages

it relies on for fast performance. As a result, its speed advantage diminished in the

robot environment.

The emotion recognition models, in contrast, remained consistent across both

platforms. MobileNetV2, in particular, maintained its status as the fastest and most

efficient option, reinforcing its suitability for deployment in resource-limited robotic

systems.

In reflecting on these findings, it is clear that hardware context plays a decisive

role in determining which models are optimal. While Tiny YOLO remains the top

performer in terms of detection accuracy, its slowed performance on the Turtlebot

4 highlights a key limitation for real-time robotic applications. In scenarios where

speed is a higher priority, dlib stands out as the better option despite its lower

detection accuracy, while Haar Cascade offers a balanced compromise between speed

and performance.

Although the models were ultimately tested in their standard forms, one way to

address Tiny YOLO’s diminished speed on the robot would have been to explore

more hardware-optimised versions of the model, or alternative deployment strategies

such as using external compute units, like the Neural Compter Stick 2 or offloading

processing to a server. These options could help maintain high accuracy while

alleviating on-board resource constraints, an avenue worth considering for future

work.
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5.4.1 Sentiment Discussion

While the use of a custom, hand-crafted dataset enabled targeted evaluation of IBM

Watson’s emotion recognition, this method comes with several important limitations.

Firstly, the dataset lacks inter-rater reliability; all emotional labels were assigned by

a single individual, which introduces subjectivity into the ground truth. In contrast,

standardised emotion datasets typically rely on annotations from multiple human

raters, reducing personal bias and improving validity.

Secondly, the constructed phrases may overrepresent clear or exaggerated emo-

tional expressions that do not reflect the nuance and ambiguity found in real-world

language. As such, the system’s strong performance on these examples may not

generalise well to less overt emotional content.

Additionally, the small scale of the dataset limits statistical significance and does

not support comprehensive evaluation across diverse linguistic contexts. The use of

only two examples per emotion class restricts the ability to assess variation within

categories or identify borderline or mixed emotional states.

Finally, IBM Watson’s emotion analysis API imposes a cap on the number of

free requests, meaning large-scale experimentation is not feasible without incurring

additional costs. This constraint reinforces the need for a compact, efficient dataset

but also limits the scope of evaluation.

The sentiment emotion recognition system has largely met performance expec-

tations, showing robust capabilities in real-time emotion detection. IBM Watson’s

consistent response times, typically under one second, alongside its reliable accuracy

in detecting a range of emotional tones, make it a valuable tool, especially in contexts

where facial emotion recognition may not be possible or practical. Its ability to

quickly process input and return relevant emotional insights ensures that it can

seamlessly complement or even substitute facial emotion recognition when required.
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5.5 LLM Discussion

Although the large language model (LLM) component was not responsible for any

aspect of emotion recognition, it was tested as part of the system to assess how well

it could support natural language interaction. The LLM served as a conversational

front-end, providing responses to user inputs that were later analyzed by a separate

sentiment analysis tool.

Three models were evaluated for this role, GPT-3.5-turbo, GPT-4o, and GPT-

4o-mini, with a focus on response time across a fixed set of phrases. Among the

three, GPT-3.5-turbo demonstrated the most consistent and responsive performance,

with the lowest average response times and smallest standard deviations across all

phrases. This makes it particularly suitable for systems where quick turn-taking is

essential. Note, however, that every model exhibited some variability in response

times, notably the variation increases as the complexity of the phrases increased. For

example, Phrase 1 had an average response time of 0.944 seconds with a standard

deviation of 0.067 for GPT-3.5-turbo, while Phrase 9 had an average of 3.166 seconds

and a standard deviation of 0.700.

GPT-4o generally offered higher processing times, with occasional latency spikes

(e.g., over 5 seconds for Phrase 5), which could interrupt the fluidity of interaction.

GPT-4o-mini exhibited similar variability, particularly in later phrases, with average

times exceeding six seconds in some cases. This variability may be problematic in

real-time applications, particularly on resource-constrained systems.

Given the limited role of the LLM in this architecture, acting purely as a user-

facing conversational agent, the results suggest that smaller, faster models like

GPT-3.5-turbo are preferable, particularly where consistent, low-latency performance

is more important than advanced linguistic ability. These findings help clarify the

trade-offs between model complexity and practical responsiveness in a modular

system.
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Conclusion

This thesis set out to evaluate emotion recognition methods suitable for resource-

constrained robots, focusing specifically on facial emotion recognition and text-based

sentiment analysis. It aimed to assess the accuracy and efficiency of different face

detection and facial emotion classification models and to explore how off-the-shelf

sentiment analysis tools could supplement emotion detection when visual input is

limited or unavailable. Through comparative evaluation across multiple platforms,

including robotic hardware, the study met its objectives by identifying optimal

model combinations for real-time deployment, clarifying the trade-offs between speed

and accuracy, and demonstrating how each modality can operate independently to

support more flexible emotion-aware interactions.

The project contributes to the field in several key ways. First, it offers a compar-

ative evaluation of widely used face detection and emotion recognition models in the

context of robotic deployment, providing insight into the trade-offs between speed

and accuracy. Second, it shows the potential of deploying facial and sentiment analy-

sis systems in parallel to improve system robustness. The work also demonstrates

that cloud-based processing can be effective in the short term, while identifying

the limitations this approach introduces, especially regarding latency and real-time

performance. Together, these contributions lay the groundwork for more responsive,

emotionally aware human-robot interactions.
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Future work will involve extending this system beyond controlled test environ-

ments. In particular, the next phase will focus on evaluating the system’s performance

in live interactions with human participants and in dynamic, real-world settings.

This will help assess its practical effectiveness and identify usability issues or tech-

nical constraints not evident during initial testing. Further developments will also

include integrating audio emotion recognition directly onto the robotic platform to

reduce reliance on cloud services and improve real-time responsiveness. In addi-

tion, exploring multimodal fusion techniques, advanced facial analysis methods, and

data augmentation strategies will be critical for increasing recognition accuracy and

robustness across varying conditions.

In summary, this thesis has delivered on its aim of developing a functional

multimodal emotion recognition system, provided meaningful contributions to the

field of affective robotics, and identified several promising directions for future

advancement.

91



References

[1] Adiga, S., Vaishnavi, D. V., Saxena, S., and Tripathi, S. (2020). Multimodal
emotion recognition for human robot interaction. In 2020 7th International
Conference on Soft Computing & Machine Intelligence (ISCMI). IEEE.

[2] Alexey (2021). darknet: YOLOv4 / Scaled-YOLOv4 / YOLO - neural networks
for object detection (windows and linux version of darknet ).

[3] Ali, S., Tanweer, S., Khalid, S., and Rao, N. (2021). Mel frequency cepstral
coefficient: A review. In Proceedings of the 2nd International Conference on ICT
for Digital, Smart, and Sustainable Development, ICIDSSD 2020, 27-28 February
2020, Jamia Hamdard, New Delhi, India. EAI.

[4] Allognon, S. O. C., Koerich, A. L., and Britto, Jr, A. d. S. (2020). Continu-
ous emotion recognition via deep convolutional autoencoder and support vector
regressor.

[5] Alonso-Martín, F., Malfaz, M., Sequeira, J., Gorostiza, J. F., and Salichs, M. A.
(2013). A multimodal emotion detection system during human-robot interaction.
Sensors (Basel), 13(11):15549–15581.

[6] Alshamsi, H., Këpuska, V., and Meng, H. (2017). Real time automated facial
expression recognition app development on smart phones.

[7] Anjum, M. (2019). Emotion recognition from speech for an interactive robot
agent. In 2019 IEEE/SICE International Symposium on System Integration (SII).
IEEE.

[8] Appuhamy, E. J. G. S. and Madhusanka, B. G. D. A. (2018). Development of
a GPU-based human emotion recognition robot eye for service robot by using
convolutional neural network. In 2018 IEEE/ACIS 17th International Conference
on Computer and Information Science (ICIS). IEEE.

[9] Aqdus, C., Nunes, R., Kamal, Rehm, M., and Moeslund, T. (2021). Deep Emotion
Recognition through Upper Body Movements and Facial Expression.

[10] Ashok, A., Pawlak, J., Paplu, S., Zafar, Z., and Berns, K. (2022). Paralinguistic
cues in speech to adapt robot behavior in human-robot interaction. In 2022
9th IEEE RAS/EMBS International Conference for Biomedical Robotics and
Biomechatronics (BioRob). IEEE.

[11] Augello, A., Bella, G. D., Infantino, I., Pilato, G., and Vitale, G. (2022a).
Multimodal mood recognition for assistive scenarios. Procedia Comput. Sci.,
213:510–517.

92



References

[12] Augello, A., Bella, G. D., Infantino, I., Pilato, G., and Vitale, G. (2022b).
Multimodal mood recognition for assistive scenarios. Procedia Comput. Sci.,
213:510–517.

[13] Balahur, A., Hermida, J. M., Montoyo, A., and Muñoz, R. (2011). EmotiNet:
A knowledge base for emotion detection in text built on the appraisal theories. In
Natural Language Processing and Information Systems, Lecture notes in computer
science, pages 27–39. Springer Berlin Heidelberg, Berlin, Heidelberg.

[14] Barsoum, E., Zhang, C., Canton Ferrer, C., and Zhang, Z. (2016). Training deep
networks for facial expression recognition with crowd-sourced label distribution.
In ACM International Conference on Multimodal Interaction (ICMI).

[15] Boric-Lubecke, O., Massagram, W., Lubecke, V. M., Host-Madsen, A., and
Jokanovic, B. (2008). Heart rate variability assessment using doppler radar with
linear demodulation. In 2008 38th European Microwave Conference, pages 420–423.

[16] Brandizzi, N., Bianco, V., Castro, G., Russo, S., and Wajda, A. (2021). Auto-
matic rgb inference based on facial emotion recognition. In System (Linköping).

[17] Breazeal, C. (2003). Emotion and sociable humanoid robots. Int. J. Hum.
Comput. Stud., 59(1-2):119–155.

[18] Busso, C., Bulut, M., Lee, C.-C., Kazemzadeh, A., Mower, E., Kim, S., Chang,
J. N., Lee, S., and Narayanan, S. S. (2008). IEMOCAP: interactive emotional
dyadic motion capture database. Lang. Resour. Eval., 42(4):335–359.

[19] Carolis, B. D., Ferilli, S., Palestra, G., and Redavid, D. (2016). Emotion-
Recognition from Speech-based Interaction in AAL Environment.

[20] Castellano, G., Pereira, A., Leite, I., Paiva, A., and McOwan, P. W. (2009). De-
tecting user engagement with a robot companion using task and social interaction-
based features. In Proceedings of the 2009 international conference on Multimodal
interfaces, New York, NY, USA. ACM.

[21] Chen, L., Li, M., Lai, X., Hirota, K., and Pedrycz, W. (2020a). Cnn-based
broad learning with efficient incremental reconstruction model for facial emotion
recognition. IFAC-PapersOnLine, 53(2):10236–10241. 21st IFAC World Congress.

[22] Chen, L., Li, M., Su, W., Wu, M., Hirota, K., and Pedrycz, W. (2021). Adaptive
feature selection-based AdaBoost-KNN with direct optimization for dynamic emo-
tion recognition in human–robot interaction. IEEE Trans. Emerg. Top. Comput.
Intell., 5(2):205–213.

[23] Chen, L., Li, M., Wu, M., Pedrycz, W., and Hirota, K. (2023). Coupled
multimodal emotional feature analysis based on broad-deep fusion networks in
human-robot interaction. IEEE Trans. Neural Netw. Learn. Syst., PP:1–11.

[24] Chen, L., Su, W., Feng, Y., Wu, M., She, J., and Hirota, K. (2020b). Two-
layer fuzzy multiple random forest for speech emotion recognition in human-robot
interaction. Inf. Sci. (Ny), 509:150–163.

[25] Chen, L., Zhou, M., Su, W., Wu, M., She, J., and Hirota, K. (2018). Softmax
regression based deep sparse autoencoder network for facial emotion recognition
in human-robot interaction. Information Sciences, 428:49–61.

93



References

[26] Chuah, S. H.-W. and Yu, J. (2021). The future of service: The power of emotion
in human-robot interaction. J. Retail. Consum. Serv., 61(102551):102551.

[27] Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human
detection. In 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), volume 1, pages 886–893 vol. 1.

[28] Dautenhahn, K. (2007). Socially intelligent robots: dimensions of human-robot
interaction. Philos. Trans. R. Soc. Lond. B Biol. Sci., 362(1480):679–704.

[29] Demutti, M., D’Amato, V., Oneto, L., Sgorbissa, A., and Recchiuto, C. (2022).
A cloud architecture for emotion recognition in human-robot interaction based on
the appraisal theory.

[30] Devaram, R. R., Beraldo, G., De Benedictis, R., Mongiovì, M., and Cesta, A.
(2022). LEMON: A lightweight facial emotion recognition system for assistive
robotics based on dilated residual convolutional neural networks. Sensors (Basel),
22(9).

[31] Dhuheir, M., Albaseer, A., Baccour, E., Erbad, A., Abdallah, M., and Hamdi,
M. (2021). Emotion recognition for healthcare surveillance systems using neural
networks: A survey.

[32] Dzedzickis, A., Kaklauskas, A., and Bucinskas, V. (2020). Human emotion
recognition: Review of sensors and methods. Sensors (Basel), 20(3):592.

[33] Elfaramawy, N., Barros, P., Parisi, G. I., and Wermter, S. (2017). Emotion
recognition from body expressions with a neural network architecture. In Proceed-
ings of the 5th International Conference on Human Agent Interaction, New York,
NY, USA. ACM.

[34] Esfandbod, A., Rokhi, Z., Meghdari, A. F., Taheri, A., Alemi, M., and Karimi,
M. (2023). Utilizing an emotional robot capable of lip-syncing in robot-assisted
speech therapy sessions for children with language disorders. Int. J. Soc. Robot.,
15(2):165–183.

[35] Eyben, F., Wöllmer, M., and Schuller, B. (2010). Opensmile: the munich
versatile and fast open-source audio feature extractor. In Proceedings of the 18th
ACM International Conference on Multimedia, MM ’10, page 1459–1462, New
York, NY, USA. Association for Computing Machinery.

[36] Faria, D. R., Vieira, M., Faria, F. C. C., and Premebida, C. (2017). Affective
facial expressions recognition for human-robot interaction. In 2017 26th IEEE
International Symposium on Robot and Human Interactive Communication (RO-
MAN). IEEE.

[37] Filippini, C., Perpetuini, D., Cardone, D., and Merla, A. (2021). Improving
human-robot interaction by enhancing NAO robot awareness of human facial
expression. Sensors (Basel), 21(19):6438.

[38] Goodfellow, I. J., Erhan, D., Carrier, P. L., Courville, A., Mirza, M., Hamner,
B., Cukierski, W., Tang, Y., Thaler, D., Lee, D.-H., Zhou, Y., Ramaiah, C., Feng,
F., Li, R., Wang, X., Athanasakis, D., Shawe-Taylor, J., Milakov, M., Park, J.,
Ionescu, R., Popescu, M., Grozea, C., Bergstra, J., Xie, J., Romaszko, L., Xu,

94



References

B., Chuang, Z., and Bengio, Y. (2013). Challenges in representation learning: A
report on three machine learning contests.

[39] Gunes, H. and Piccardi, M. (2006). A bimodal face and body gesture database
for automatic analysis of human nonverbal affective behavior. In 18th International
Conference on Pattern Recognition (ICPR’06), volume 1, pages 1148–1153.

[40] Gupta, S. (2018). Facial emotion recognition in real-time and static images. In
2018 2nd International Conference on Inventive Systems and Control (ICISC).
IEEE.

[41] Hajarolasvadi, N. and Demirel, H. (2019). 3D CNN-based speech emotion
recognition using k-means clustering and spectrograms. Entropy (Basel), 21(5):479.

[42] Haq, S. and Jackson, P. (2009). Speaker-dependent audio-visual emotion recog-
nition. In Proc. Int. Conf. on Auditory-Visual Speech Processing (AVSP’08),
Norwich, UK.

[43] Heredia, J., Lopes-Silva, E., Cardinale, Y., Diaz-Amado, J., Dongo, I., Graterol,
W., and Aguilera, A. (2022). Adaptive multimodal emotion detection architecture
for social robots. IEEE Access, 10:20727–20744.

[44] Hung, H. M., Kim, S.-H., Yang, H.-J., and Lee, G.-S. (2020). Multiple models
using temporal feature learning for emotion recognition. In The 9th International
Conference on Smart Media and Applications, New York, NY, USA. ACM.

[45] Hwang, C.-L., Deng, Y.-C., and Pu, S.-E. (2023). Human–robot collaboration
using sequential-recurrent-convolution-network-based dynamic face emotion and
wireless speech command recognitions. IEEE Access, 11:37269–37282.

[46] Jaiswal, S., Jain, A., and Nandi, G. C. (2020). Image based emotional state
prediction from multiparty audio conversation. In 2020 IEEE Pune Section
International Conference (PuneCon). IEEE.

[47] Jaiswal, S. and Nandi, G. C. (2022). Optimized, robust, real-time emotion
prediction for human-robot interactions using deep learning. Multimedia Tools
Appl., 82(4):5495–5519.

[48] Johnson, J. M. and Khoshgoftaar, T. M. (2019). Survey on deep learning with
class imbalance. J. Big Data, 6(1).

[49] Kansizoglou, I., Bampis, L., and Gasteratos, A. (2022). An active learning
paradigm for online audio-visual emotion recognition. IEEE Trans. Affect. Comput.,
13(2):756–768.

[50] Khan, A. (2023). Improved multi-lingual sentiment analysis and recognition
using deep learning. J. Inf. Sci., page 016555152211372.

[51] Kim, B. S., Korea Institute of Industrial Technology, Ansan-si, Gyeongi-do,
South Korea, and Kim, E. H. (2018). Speaker-independent emotion recognition
for interstate measuring of user based on separation and rejection. Int. J. Mach.
Learn. Comput., 8(2):152–157.

95



References

[52] Kim, E. H., Kwak, S. S., Hyun, K. H., Kim, S. H., and Kwak, Y. K. (2009).
Design and development of an emotional interaction robot, mung. Adv. Robot.,
23(6):767–784.

[53] Kumar, A., Tejaswini, P., Nayak, O., Kujur, A. D., Gupta, R., Rajanand, A.,
and Sahu, M. (2022). A survey on IBM watson and its services. J. Phys. Conf.
Ser., 2273(1):012022.

[54] Kusuma, G. P., Jonathan, J., and Lim, A. P. (2020). Emotion recognition on
FER-2013 face images using fine-tuned VGG-16. Adv. Sci. Technol. Eng. Syst. J.,
5(6):315–322.

[55] Lakomkin, E., Zamani, M. A., Weber, C., Magg, S., and Wermter, S. (2018).
On the robustness of speech emotion recognition for human-robot interaction with
deep neural networks. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE.

[56] Li, P., Hu, F., Li, Y., and Xu, Y. (2014). Speaker identification using linear
predictive cepstral coefficients and general regression neural network. In Proceedings
of the 33rd Chinese Control Conference, pages 4952–4956.

[57] Li, T.-H. S., Kuo, P.-H., Tsai, T.-N., and Luan, P.-C. (2019). Cnn and lstm
based facial expression analysis model for a humanoid robot. IEEE Access, 7:93998–
94011.

[58] Livingstone, S. R. and Russo, F. A. (2018). The ryerson Audio-Visual database
of emotional speech and song (RAVDESS): A dynamic, multimodal set of facial
and vocal expressions in north american english. PLoS One, 13(5):e0196391.

[59] Lopez-Rincon, A. (2019). Emotion recognition using facial expressions in
children using the NAO robot. In 2019 International Conference on Electronics,
Communications and Computers (CONIELECOMP). IEEE.

[60] Lucey, P., Cohn, J. F., Kanade, T., Saragih, J., Ambadar, Z., and Matthews, I.
(2010). The extended cohn-kanade dataset (ck+): A complete dataset for action
unit and emotion-specified expression. In 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition - Workshops, pages 94–101.

[61] Lundqvist, D., Flykt, A., and Öhman, A. (2015). Karolinska directed emotional
faces. Title of the publication associated with this dataset: PsycTESTS Dataset.

[62] Lyu, Y. and Sun, Y. (2022). Global and local feature fusion via long and
short-term memory mechanism for dance emotion recognition in robot. Front.
Neurorobot., 16:998568.

[63] Ma, K., Wang, X., Yang, X., Zhang, M., Girard, J. M., and Morency, L.-P.
(2019). ElderReact: A multimodal dataset for recognizing emotional response in
aging adults. In 2019 International Conference on Multimodal Interaction, New
York, NY, USA. ACM.

[64] Marinoiu, E., Zanfir, M., Olaru, V., and Sminchisescu, C. (2018). 3d human
sensing, action and emotion recognition in robot assisted therapy of children
with autism. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2158–2167.

96



References

[65] Marmpena, M., Lim, A., and Dahl, T. S. (2018). How does the robot feel?
perception of valence and arousal in emotional body language. Paladyn, 9(1):168–
182.

[66] Matsumoto, D. (1992). More evidence for the universality of a contempt
expression. Motiv. Emot., 16(4):363–368.

[67] Mazzoni Ranieri, C., Vicentim Nardari, G., Moreira Pinto, A. H., Carni-
eto Tozadore, D., and Francelin Romero, R. A. (2018). Lara: A robotic framework
for human-robot interaction on indoor environments. In 2018 Latin American
Robotic Symposium, 2018 Brazilian Symposium on Robotics (SBR) and 2018
Workshop on Robotics in Education (WRE), pages 376–382.

[68] Melinte, D. O. and Vladareanu, L. (2020). Facial expressions recognition for
human-robot interaction using deep convolutional neural networks with rectified
adam optimizer. Sensors (Basel), 20(8):2393.

[69] Mistry, K., Rizvi, B., Rook, C., Iqbal, S., Zhang, L., and Joy, C. P. (2020). A
Multi-Population FA for automatic facial emotion recognition. In 2020 Interna-
tional Joint Conference on Neural Networks (IJCNN). IEEE.

[70] Mohammadpour, M., Khaliliardali, H., Hashemi, S. M. R., and AlyanNezhadi,
M. M. (2017). Facial emotion recognition using deep convolutional networks. In
2017 IEEE 4th International Conference on Knowledge-Based Engineering and
Innovation (KBEI). IEEE.

[71] Mohammed, R., Rawashdeh, J., and Abdullah, M. (2020). Machine learning with
oversampling and undersampling techniques: Overview study and experimental
results. In 2020 11th International Conference on Information and Communication
Systems (ICICS). IEEE.

[72] Mohammed, S. and Alia, H. (2020). Speech emotion recognition using MELBP
variants of spectrogram image. Int. J. Intell. Eng. Syst., 13(5):257–266.

[73] Mohammed, S. N. and Hassan, A. K. A. (2021). A survey on emotion recognition
for human robot interaction. J. Comput. Inf. Technol., 28(2):125–146.

[74] Mohammed, S. N. and Karmin, A. (2021). A survey on emotion recognition for
human robot interaction. J. Comput. Inf. Technol., 28(2):125–146.

[75] Mollahosseini, A., Hasani, B., and Mahoor, M. H. (2017). AffectNet: A database
for facial expression, valence, and arousal computing in the wild.

[76] Mustaqeem, Sajjad, M., and Kwon, S. (2020). Clustering-based speech emotion
recognition by incorporating learned features and deep BiLSTM. IEEE Access,
8:79861–79875.

[77] Nawasalkar, R. K. and Butey, P. K. (2017). Study of comparison of human
bio-signals for emotion detection using HCI.

[78] Nie, W., Chang, R., Ren, M., Su, Y., and Liu, A. (2022). I-GCN: Incremental
graph convolution network for conversation emotion detection. IEEE Trans.
Multimedia, 24:4471–4481.

97



References

[OpenAI] OpenAI. ChatGPT Models. https://platform.openai.com/docs/models/o1.
[Accessed 22-10-2024].

[80] OpenAI (2022). ChatGPT. https://chat.openai.com/chat. Accessed: 2023-9-10.

[81] O’Shaughnessy, D. (1988). Linear predictive coding. IEEE Potentials, 7(1):29–
32.

[82] Pal, S., Mukhopadhyay, S., and Suryadevara, N. (2021). Development and
progress in sensors and technologies for human emotion recognition. Sensors
(Basel), 21(16):5554.

[83] Peng, Z., Li, X., Zhu, Z., Unoki, M., Dang, J., and Akagi, M. (2020). Speech
emotion recognition using 3D convolutions and attention-based sliding recurrent
networks with auditory front-ends. IEEE Access, 8:16560–16572.

[84] Picard, R. W. (2000). Affective Computing. The MIT Press. MIT Press, London,
England.

[85] Pramerdorfer, C. and Kampel, M. (2016). Facial expression recognition using
convolutional neural networks: State of the art.

[86] Qayyum, A., Arefeen, A. B., Shahnaz, A., and Ieee Xplore, C. (2019). Convolu-
tional Neural Network (CNN) Based Speech-Emotion Recognition.

[87] Ramis, S., Buades, J. M., and Perales, F. J. (2020). Using a social robot to
evaluate facial expressions in the wild. Sensors (Basel), 20(23):6716.

[88] Rangulov, D. and Fahim, M. (2020). Emotion recognition on large video dataset
based on convolutional feature extractor and recurrent neural network.

[89] Rasendrasoa, S., Pauchet, A., Saunier, J., and Adam, S. (2022). Real-time
multimodal emotion recognition in conversation for multi-party interactions. In
Proceedings of the 2022 International Conference on Multimodal Interaction, New
York, NY, USA. ACM.

[90] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2015). You only look
once: Unified, real-time object detection.

[91] Reyes, M. E., Meza, I. V., and Pineda, L. A. (2019). Robotics facial expression
of anger in collaborative human–robot interaction. Int. J. Adv. Robot. Syst.,
16(1):172988141881797.

[92] Rosula Reyes, S. J., Depano, K. M., Velasco, A. M. A., Kwong, J. C. T., and
Oppus, C. M. (2020). Face detection and recognition of the seven emotions via
facial expression: Integration of machine learning algorithm into the NAO robot. In
2020 5th International Conference on Control and Robotics Engineering (ICCRE).
IEEE.

[93] Ruiz-Garcia, A., Elshaw, M., Altahhan, A., and Palade, V. (2018a). A hybrid
deep learning neural approach for emotion recognition from facial expressions for
socially assistive robots. Neural Comput. Appl., 29(7):359–373.

98

https://platform.openai.com/docs/models/o1
https://chat.openai.com/chat


References

[94] Ruiz-Garcia, A., Webb, N., Palade, V., Eastwood, M., and Elshaw, M. (2018b).
Deep learning for real time facial expression recognition in social robots. In Neural
Information Processing, Lecture notes in computer science, pages 392–402. Springer
International Publishing, Cham.

[95] Russell, J. A. (1980). A circumplex model of affect. J. Pers. Soc. Psychol.,
39(6):1161–1178.

[96] Savchenko, A. V. (2024). HSEmotion team at the 6th ABAW competition:
Facial expressions, valence-arousal and emotion intensity prediction.

[97] Saxena, S., Tripathi, S., and Sudarshan, T. S. B. (2022). An intelligent facial
expression recognition system with emotion intensity classification. Cogn. Syst.
Res., 74:39–52.

[98] Shanta, S. S., Sham-E-Ansari, M., Chowdhury, A. I., Shahriar, M. M., and
Hasan, M. K. (2021). A comparative analysis of different approach for basic
emotions recognition from speech. In 2021 International Conference on Electronics,
Communications and Information Technology (ICECIT). IEEE.

[99] Shenoy, S., Jiang, Y., Lynch, T., Manuel, L. I., and Doryab, A. (2022). A
self learning system for emotion awareness and adaptation in humanoid robots.
In 2022 31st IEEE International Conference on Robot and Human Interactive
Communication (RO-MAN), pages 912–919.

[100] Shi, X., Yang, H., and Zhou, P. (2016). Robust speaker recognition based on
improved GFCC. In 2016 2nd IEEE International Conference on Computer and
Communications (ICCC). IEEE.

[101] Shorten, C. and Khoshgoftaar, T. M. (2019). A survey on image data augmen-
tation for deep learning. J. Big Data, 6(1).

[102] Singh, S., Singh, D., and Yadav, V. (2020). Face recognition using HOG feature
extraction and SVM classifier. Int. J. Emerg. Trends Eng. Res., 8(9):6437–6440.

[103] Sisbot, E. A., Marin-Urias, L. F., Broquère, X., Sidobre, D., and Alami, R.
(2010). Synthesizing robot motions adapted to human presence. Int. J. Soc. Robot.,
2(3):329–343.

[104] Song, K.-S., Nho, Y.-H., Seo, J.-H., and Kwon, D.-S. (2018). Decision-level
fusion method for emotion recognition using multimodal emotion recognition
information. In 2018 15th International Conference on Ubiquitous Robots (UR).
IEEE.

[105] Spezialetti, M., Placidi, G., and Rossi, S. (2020). Emotion recognition for
human-robot interaction: Recent advances and future perspectives. Front. Robot.
AI, 7:532279.

[106] Stock-Homburg, R. (2022). Survey of emotions in human–robot interactions:
Perspectives from robotic psychology on 20 years of research. Int. J. Soc. Robot.,
14(2):389–411.

[107] Tan, Y., Sun, Z., Duan, F., Solé-Casals, J., and Caiafa, C. F. (2021). A
multimodal emotion recognition method based on facial expressions and electroen-
cephalography. Biomed. Signal Process. Control, 70(103029):103029.

99



References

[108] Tang, C., Tang, C., Gong, S., Kwok, T. M., and Hu, Y. (2025). Robot character
generation and adaptive human-robot interaction with personality shaping.

[109] Troiano, E., Oberländer, L., and Klinger, R. (2023). Dimensional modeling of
emotions in text with appraisal theories: Corpus creation, annotation reliability,
and prediction. Comput. Linguist. Assoc. Comput. Linguist., 49(1):1–72.

[110] Udeh, C. P., Chen, L., Du, S., Li, M., and Wu, M. (2022). A co-regularization
facial emotion recognition based on multi-task facial action unit recognition. In
2022 41st Chinese Control Conference (CCC). IEEE.

[111] Viola, P. and Jones, M. (2001). Rapid object detection using a boosted cascade
of simple features. In Proceedings of the 2001 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. CVPR 2001, volume 1, pages I–I.

[112] Wang, Y.-X., Li, Y.-K., Yang, T.-H., and Meng, Q.-H. (2022). Multitask touch
gesture and emotion recognition using multiscale spatiotemporal convolutions with
attention mechanism. IEEE Sens. J., 22(16):16190–16201.

[113] Webb, N., Ruiz-Garcia, A., Elshaw, M., and Palade, V. (2020). Emotion
recognition from face images in an unconstrained environment for usage on social
robots. In 2020 International Joint Conference on Neural Networks (IJCNN).
IEEE.

[114] Yang, P., Cao, L. M., Zhu, L. L., and Luo, S. N. (2022). Design of atten-
dance system based on nao face, speech and emotion recognition. In 2022 10th
International Conference on Orange Technology (ICOT), pages 1–3.

[115] Yang, S., Luo, P., Loy, C. C., and Tang, X. (2016). Wider face: A face detection
benchmark. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[116] Younis, E. M. G., Zaki, S. M., Kanjo, E., and Houssein, E. H. (2022). Evaluating
ensemble learning methods for multi-modal emotion recognition using sensor data
fusion. Sensors (Basel), 22(15):5611.

[117] Yu, C. and Tapus, A. (2019). Interactive robot learning for multimodal emotion
recognition. In Social Robotics, Lecture notes in computer science, pages 633–642.
Springer International Publishing, Cham.

[118] Yu, C. and Tapus, A. (2020). Multimodal emotion recognition with thermal
and RGB-D cameras for human-robot interaction. In Companion of the 2020
ACM/IEEE International Conference on Human-Robot Interaction, New York,
NY, USA. ACM.

[119] Zhang, Z., Luo, P., Loy, C. C., and Tang, X. (2016). From facial expression
recognition to interpersonal relation prediction.

[120] Zhichao, P., Wenhua, H., Hongji, T., Minlei, X., and Ruwei, L. (2020).
Attention-based sequence modeling for categorical emotion recognition with mod-
ulation spectral feature. In 2020 7th International Conference on Information
Science and Control Engineering (ICISCE). IEEE.

100



References

[121] Zhu, C. and Ahmad, W. (2019). Emotion recognition from speech to improve
human-robot interaction. In 2019 IEEE Intl Conf on Dependable, Autonomic and
Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf
on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology
Congress (DASC/PiCom/CBDCom/CyberSciTech). IEEE.

[122] Zhu, Q., Zhuang, H., Zhao, M., Xu, S., and Meng, R. (2024). A study
on expression recognition based on improved mobilenetv2 network. Sci. Rep.,
14(1):8121.

101



Appendix A

For ChatGPT Webpage that allows connecting to a robot:

https://github.com/Terramet/ChatNao

The same thing as above with ChatGPT having the ability to access realtime apis

and runs in Python instead:

https://github.com/Terramet/ChatNaoPython

For the standalone Watson Sentiment analysis:

https://github.com/Terramet/WatsonSentimentAnalysis

Standalone facial emotion detection:

https://github.com/Terramet/MPhilFacialEmotionDetection

For the ChatGPT results, including reponse times and the actual response:

https://github.com/Terramet/MPhilDataStorage/tree/main/ChatGPTTests

For all the models used for testing the facial emotion recognition, yolo, vgg16,

resnet50 and mobilenetv2:

https://github.com/Terramet/MPhilDataStorage/tree/main/Models

For all the results from every detected face in the Exp_W dataset:

https://github.com/Terramet/MPhilDataStorage/tree/main/results_closest_face_pc

For all the results from every detected face in the Exp_W dataset on the robot:

https://github.com/Terramet/MPhilDataStorage/tree/main/results_closest_face_robot

For a video showing the different voices available through IBM Watson

https://youtube.com/shorts/Qqz03HE4MFg
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