

High-intensity interval and resistance training programme improves pain and fatigue outcomes in people with systemic sclerosis: a European multicentre randomised controlled trial

MITROPOULOS, Alexandros http://orcid.org/0000-0002-9453-0808, JENSEN, Kasper Yde http://orcid.org/0000-0003-4232-6079, KOUIDI, Evangelia, BOSTRÖM, Carina http://orcid.org/000, Giovanna, DIEDERICHSEN, Louise Pyndt, MATTSSON, Malin http://orcid.org/0000-0003-2715-7481, HOEKSTRA, Eva M, DE VRIES-BOUWSTRA, Jeska http://orcid.org/0000-0003-2715-7481, HOEKSTRA, Eva M, DE VRIES-BOUWSTRA, Jeska http://orcid.org/0000-0003-2715-7481, AKIL, Mohammed, JACOBSEN, Søren and KLONIZAKIS, Markos http://orcid.org/0000-0002-8864-4403>

Available from Sheffield Hallam University Research Archive (SHURA) at: https://shura.shu.ac.uk/36386/

This document is the Published Version [VoR]

Citation:

MITROPOULOS, Alexandros, JENSEN, Kasper Yde, KOUIDI, Evangelia, BOSTRÖM, Carina, CUOMO, Giovanna, DIEDERICHSEN, Louise Pyndt, MATTSSON, Malin, HOEKSTRA, Eva M, DE VRIES-BOUWSTRA, Jeska, DIMITROULAS, Theodoros, AKIL, Mohammed, JACOBSEN, Søren and KLONIZAKIS, Markos (2025). High-intensity interval and resistance training programme improves pain and fatigue outcomes in people with systemic sclerosis: a European multicentre randomised controlled trial. RMD Open, 11 (4): e005946. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive http://shura.shu.ac.uk

ORIGINAL RESEARCH

High-intensity interval and resistance training programme improves pain and fatigue outcomes in people with systemic sclerosis: a European multicentre randomised controlled trial

Alexandros Mitropoulos , ¹ Kasper Yde Jensen , ² Evangelia Kouidi, ³ Carina Boström , ⁴ Giovanna Cuomo, ⁵ Louise Pyndt Diederichsen, ² Malin Mattsson , ^{4,6} Eva M Hoekstra, ⁷ Jeska De Vries-Bouwstra , ⁷ Theodoros Dimitroulas , ⁸ Mohammed Akil, ⁹ Søren Jacobsen, ² Markos Klonizakis. ¹ IMPACT-SSc CONSORTIUM

To cite: Mitropoulos A, Jensen KY, Kouidi E, et al. High-intensity interval and resistance training programme improves pain and fatigue outcomes in people with systemic sclerosis: a European multicentre randomised controlled trial. *RMD Open* 2025;11:e005946. doi:10.1136/ rmdopen-2025-005946

► Additional supplemental material is published online only. To view, please visit the journal online (https://doi.org/10.1136/rmdopen-2025-005946).

Received 25 May 2025 Accepted 16 October 2025

© Author(s) (or their employer(s)) 2025. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ Group.

For numbered affiliations see end of article.

Correspondence to

Dr Alexandros Mitropoulos; alexandros.mitropoulos@shu.

ABSTRACT

Background Pain and fatigue are among the most debilitating symptoms of systemic sclerosis (SSc), severely impairing quality of life (QoL). Pharmacological management is often inadequate, and evidence on exercise is limited. This study aimed to evaluate the effects of a tailored exercise programme on pain and fatigue in people with SSc (PwSSc).

Methods This European multicentre randomised controlled trial (n=6) recruited 170 PwSSc (89% limited cutaneous SSc), randomised to an exercise intervention group (EIG) or usual care group (UCG). The EIG completed a 12-week, twice-weekly supervised programme combining 30 min of high-intensity interval training (HIIT) and 15 min of resistance training (RT), in addition to usual care. The UCG received usual care alone. Outcomes were assessed at baseline, 12 weeks (primary endpoint) and 24 weeks, with pain and fatigue as primary outcomes, and QoL, depression, functional ability, musculoskeletal strength/endurance and cardiorespiratory fitness as secondary outcomes.

Results At 12 weeks, the mean group differences for the primary, fatigue (–10.4 (95% Cl 19.4 to –1.4), p<0.05) and pain (0.48 (95% Cl 0.21 to 0.76), p<0.05), secondary, depression (p<0.001), QoL and self-reported function (p<0.05) and exploratory outcomes musculoskeletal strength and endurance (p<0.01), and cardiorespiratory fitness (p<0.001) were significantly improved in EIG compared with UCG.

Conclusions A 12-week supervised combined upper body exercise programme can improve pain, fatigue, depression, QoL, function, strength and cardiorespiratory fitness in PwSSc. HIIT combined with RT is safe for the study population and may serve as an effective non-pharmacological adjunct to pharmacotherapy to manage SSc symptoms and enhance QoL. Trial registration number NCT05234671.

INTRODUCTION

Systemic sclerosis (SSc) is an autoimmune connective tissue disease characterised by

WHAT IS ALREADY KNOWN ON THIS TOPIC

⇒ Pain and fatigue are two of the most debilitating symptoms in systemic sclerosis (SSc), and current medical treatments alone are often insufficient.

WHAT THIS STUDY ADDS

⇒ A 12-week supervised, individualised exercise programme adjunct to pharmacotherapy can improve pain, fatigue and other SSc-related symptomatology in people with SSc.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

⇒ The exercise prescription of a combined training programme could be implemented as part of the clinical care in people with SSc to support disease management.

complex pathology¹ and a high prevalence of pain,² reported in 63%–93% of people with SSc (PwSSc).² Pain is among the most debilitating symptoms, significantly affecting quality of life (QoL).³ It commonly arises from joint and musculoskeletal involvement (including arthritis),³ Raynaud's phenomenon (RP) and skin ulcers.²

Fatigue in SSc is defined as abnormal tiredness disproportionate to activity and not improved by rest.⁵ Similarly to pain, it is among the most common and disabling symptoms,⁵ with a prevalence of 50%–90%.⁵ Fatigue is strongly linked to depression, pain and sleep disorders severely affecting QoL in PwSSc.⁵

Medical treatment has shown limited effectiveness for alleviating pain and fatigue in PwSSc. Pain is commonly managed with non-steroidal anti-inflammatory drugs, opioids and/or low-dose glucocorticoids, while therapies⁶ such as tocilizumab and L-thyroxine have not improved fatigue.⁷ In addition, medications including opioids, antidepressants, immunosuppressants and cardiovascular drugs may alleviate certain symptoms but often exacerbate fatigue.⁸ These limitations highlight the need to explore non-pharmacological approaches such as exercise.⁹

Increased physical activity levels in PwSSc have been correlated with lower levels of fatigue compared with inactive individuals. Moreover, PwSSc who were interviewed following a 12-week combined high intensity interval (HIIT) and resistance training (RT) programme reported feeling more energetic, stronger and noted improvements in fitness and social life. Although this evidence is promising, definitive randomised controlled trials (RCTs) that assess the effects of exercise on pain and fatigue quantitatively in PwSSc are warranted.

Building on existing evidence, ^{11–13} this European multicentre RCT is the first to assess the effects of a combined and RT programme on pain and fatigue in PwSSc. We hypothesised that the intervention would significantly reduce pain and fatigue compared with usual care and would also improve secondary outcomes such as physical function and cardiorespiratory fitness. The interactions between key SSc symptoms (eg, pain, fatigue, depression, physical dysfunction) and fitness components (eg, musculoskeletal strength and endurance and cardiorespiratory fitness) remain poorly understood. Identifying predictors and exploring these relationships could provide valuable insights into the mechanisms underlying the exercise responses.

METHODS Study design

Our study was a multicentre (n=6) randomised (1:1 ratio), parallel-group, superiority, single-blinded (ie, assessor-blinded and statistician-blinded), controlled clinical trial. 170 PwSSc were recruited across 6 European research institutions (figure 1). Following the eligibility criteria confirmation, participants provided informed consent and were randomly assigned via stratified (by research centre, SSc-type, disease duration and severity) block randomisation remotely by an independent statistician to either exercise (supervised combined exercise for 12 weeks, twice/week adjunct to usual care) or control (usual care alone) groups. Both groups continued receiving their usual medical as well as non-pharmacological treatment (if applicable) throughout the study. Following the 12-week exercise intervention period, the exercise intervention group (EIG) was encouraged to continue exercising independently (either at home or at local health clubs) by

replicating their individualised programme according to available resources. The baseline assessments were repeated at 12 (primary endpoint) and 24 weeks. The study's protocol and registration were published on ClinicalTrials.gov (NCT number: NCT05234671).

Participants

Adults with SSc and able to perform exercise were recruited. Individuals with active exacerbations (eg, digital ulcers), and advanced cardiac (eg, New York Heart Association class 3 or 4) and severe/uncontrolled pulmonary involvement (eg, severe pulmonary arterial hypertension (PAH)) were excluded. Except PwSSc, who did not present with severe symptoms (eg, dyspnoea at rest, syncope, chest pain and extreme fatigue) and was cleared for exercise following a clinical appraisal by the rheumatologists.

Eligibility criteria were standardised across study sites; however, the final appraisal of suitability was made by the local rheumatologist, which could occasionally introduce variation in interpretation. This ensured that clinical judgement was applied alongside the protocol to safeguard patient safety and appropriateness for participation.

Patient and public involvement

A patient and public involvement and engagement group contributed to the study design, outcome selection and interpretation of results.

A detailed study's methodology and reporting according to the Consolidated Standards of Reporting Trials guidelines for RCTs on non-pharmacological interventions can be found in online supplemental file 1.

Baseline assessments

Demographics

A detailed medical history including current medication was recorded. Stature (cm), weight (kg) and body composition (eg, percentage of fat and muscle masses) via bioelectrical impedance analysis were performed. The demographics are presented in table 1.

Primary outcomes

Pain (overall and digital)

Overall pain was assessed using the visual analogue scale (VAS) scores (0–3 scale) included in the Scleroderma Health Assessment Questionnaire (SHAQ; online supplemental file 2). ¹⁴ Digital pain was assessed using a unidimensional measure of pain intensity, widely used in diverse adult populations, including rheumatic diseases. ¹⁵ Lower score indicates less pain.

Fatigue

Fatigue was assessed using the 40-item functional assessment of chronic illness therapy—fatigue (FACIT-F, version 4; online supplemental file 3) that assesses self-reported fatigue and its impact on daily activities and function. Higher scores indicate less fatigue.

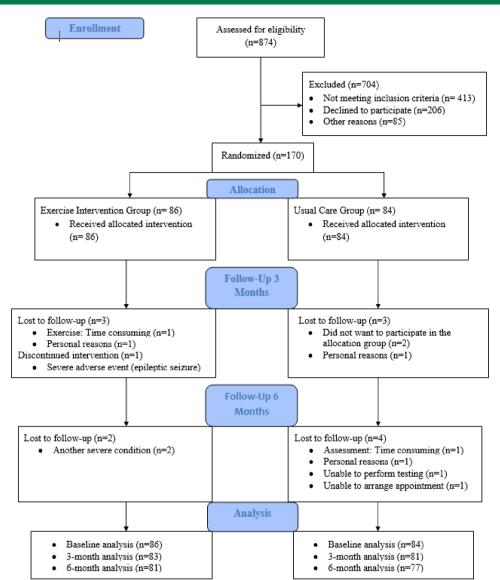


Figure 1 CONSORT flow diagram of a randomised controlled trial on a 12-week exercise intervention in people with systemic sclerosis. CONSORT, Consolidated Standards of Reporting Trials.

Secondary outcomes

Self-reported QoL, functional ability and depressive symptoms

SSc-related QoL and self-reported functional ability were assessed using the SScQoL and SHAQ questionnaires, ¹⁴ ¹⁶ respectively (online supplemental files 4 and 2). As included in SHAQ, the VAS-breathing, intestinal and overall disease activity were also assessed. The Centre for Epidemiologic Studies Depression Scale (CES-D; online supplemental file 5)¹⁷ was used to assess the depressive symptoms. Lower scores indicate a higher level of QoL, functional ability, and lower level of depression, respectively.

Exploratory outcomes

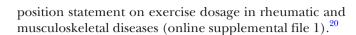
Cardiorespiratory fitness

The cardiorespiratory fitness was assessed via a peak oxygen uptake (VO_{2peak}) test, performed on an arm crank ergometer. Throughout the test, gas exchange was collected and analysed by an online breath-by-breath

analysis system. Heart rate (HR), ratings of perceived exertion (BORG-RPE; 6-20 points) and the ECG were continuously monitored. Peak power output (PPO) was measured in watts and was used as a critical component for the individualised exercise prescription.

Upper body musculoskeletal strength and endurance

The upper body strength was assessed using the Southampton handgrip strength test protocol. 18 The endurance was assessed via the 30s biceps curl test of the dominant arm. 19 The detailed protocols are described in online supplemental file 1.


Exercise programme

The exercise programme, including the frequency, intensity, time and type and training (ie, specificity, overload, progression, initial values, reversibility and diminishing returns) principles, has been reported according to the

Table 1 Baseline demographics, clinical profile, medical history and treatment of participants in a randomised controlled trial on a 12-week exercise intervention

on a 12-week exercise intervention Baseline characteristics	N	Intervention group (n=86)	N	Usual care group (n=84)	Total (n=170)
Female gender, n (%)	86	68/86 (79.1)	84	73/84 (86.9)	141/170 (82.9)
Age, years, mean (SD)	86	58.3 (11.3)	84	60.5 (12.6))	59.4 (12.0)
Weight, kg, mean (SD)	86	67.5 (12.2)	84	68.1 (11.9)	67.8 (12.1)
Body mass index, kg/m², mean (SD)	86	25.1 (4.6)	84	25.8 (4.6)	25.4 (4.6)
Lean muscle mass, % (SD)	86	53 (17.7)	84	51 (17.5))	52 (17.6)
Fat mass, % (SD)	86	33 (8.6)	84	34.5 (8.7)	33.7 (8.6)
Smoking status	65	,	62	,	,
Current, n (%)		9 (13.8)		11 (17.7)	20 (15.7)
Never smoked, n (%)		56 (86.2)		51 (82.3)	107 (84.3)
SSc type	86	,	84	,	,
Limited, n (%)		77 (89.5)		74 (88.1)	151 (88.8)
Diffuse, n (%)		9 (10.5)		10 (11.9)	19 (11.2)
Clinical profile		·			,
ANA positive, n (%)	80	62 (72.1)	77	66 (78.6)	128 (75.3)
ACA positive, n (%)	80	27 (33.8)	78	24 (30.8)	51 (32.3)
Anti-ScI-70 positive, n (%)	80	29 (36.3)	77	32 (41.6)	61 (38.9)
ESR (mm/hour), mean (SD)	61	18.2(14.3)	61	21.6(18.8)	19.9(16.7)
CRP (mg/L), mean (SD)	76	2.4(2.8)	69	2.9(5.7)	2.6(4.4)
FEV, (%), mean (SD)	71	91.1(15.5)	68	88.6(21.7)	89.9(18.8)
DLCO (%) predicted, mean (SD)	73	70.4(14.6)	73	68.1(15.9)	69.3(15.3)
Duration of SSc (years), mean (SD)	74	10.0(7.4)	72	10.7(7.7)	10.3(7.5)
Hyperlipidaemia, n (%)	68	25 (36.8)	74	29 (39.2)	54 (38)
Hypertension, n (%)	79	19 (24.1)	82	26 (31.7)	45 (28)
Pulmonary hypertension, n (%)	80	4 (5)	82	4 (4.9)	8 (4.9)
Pulmonary fibrosis, n (%)	82	34 (41.5)	80	30 (37.5)	64 (39.5)
Oesophageal involvement, n (%)	80	40 (50)	82	39 (47.6)	79 (48.8)
Medication					
Steroids, n (%)	78	20 (25.6)	79	34 (43)	54 (34.4)
Anti-hypertensives, n (%)	78	20 (25.6)	79	24 (30.4)	44 (28)
Calcium channel blockers, n (%)	78	47 (60.3)	79	43 (54.4)	90 (57.3)
Anti-hypercholesterolaemia, n (%)	78	18 (23.1)	79	22 (27.8)	40 (25.5)
Immunosuppressives, n (%)	78	46 (59)	79	49 (62)	95 (60.5)
PDE inhibitors, n (%)	77	7 (9.1)	78	12 (15.4)	19 (12.3)
NSAIDs, n (%)	60	2 (3.3)	59	3 (5.1)	5 (4.2)
Comorbidities					
Osteoporosis, n (%)	50	9 (18.0)	55	8 (14.5)	16.2
Sjögren's, n (%)	50	10 (20.0)	55	7 (12.7)	16.2
Chronic kidney disease, n (%)	50	1 (2)	55	2 (3.6)	3 (2.9)
Biliary cirrhosis, n (%)	50	2 (4.0)	55	4 (7.3)	6 (5.7)
Osteoarthritis, n (%)	60	10 (16.7)	61	10 (16.4)	20 (16.5)

ACA, anticentromere antibody; ANA, antinuclear body; CRP, C reactive protein; DLCO, diffusing capacity for carbon monoxide; ESR, erythrocyte sedimentation rate; FEV₁, forced expiratory volume in 1 s; NSAIDS, non-steroidal anti-inflammatory drugs; PDE, phosphodiesterase; SSc, systemic sclerosis.

Exercise intervention group

The exercise programme was performed by the EIG adjunct to usual care. The programme consisted of a 12-week training period, twice per week and all exercise sessions were supervised by a qualified healthcare professional. The exercise protocol (~60 min duration) consisted of upper body HIIT (30min; 30s at 100% of PPO and 30s passive recovery) and RT (upper body circuit weight training at 75%-80% of one repetition maximum performing 10 repetitions of each exercise interspersed by 20–30). 12

Disease-specific exercise modifications were applied only when participants presented with musculoskeletal limitations that restricted performance.

Safety monitoring

Participant safety was prioritised throughout the trial. Eligibility criteria and medical history were carefully reviewed prior to enrolment, and all participants completed a baseline cardiopulmonary exercise test to identify any abnormal responses to exercise stress. During the intervention, participants were instructed to fast for at least 2–3 hours before each session. Prior to exercise, HR, blood pressure and potential symptoms (eg, dizziness) were assessed at rest, and during each session HR, RPE and vital signs were continuously monitored.

Usual care group

Participants in the usual care group (UCG) continued with their standard management as directed by their treating rheumatology team. This typically included routine or as-needed clinic visits, during which pharmacological and/or non-pharmacological treatments (eg, physiotherapy and occupational therapy, patient education and self-management) were prescribed according to individual clinical needs. None of the participants engaged in structured HIIT or RT before or during the study.

Statistical analysis

Data were analysed using SPSS (IBM) version 30. Descriptive statistics are presented as mean (SD) for normally distributed data. Normality and homogeneity of variance were tested using the Kolmogorov-Smirnov test (n>50) and Levene's test, respectively. Between-group comparisons for primary outcomes (pain, fatigue) and physical fitness measures (VO2peak, handgrip strength, biceps curl) used independent t-tests, Wilcoxon, Mann-Whitney U, χ² or Kruskal-Wallis tests, as appropriate. Missing data were addressed using maximum likelihood estimation. Effect sizes (ES) (Cohen's d) were reported for significant results (small=0.2, medium=0.5, large=0.8). Significance was set at p ≤ 0.05 .

Correlations and regressions assessed associations between outcomes at 12 weeks. Spearman correlations quantified strength and direction (0.00-0.10 negligible, 0.10-0.39 weak, 0.40-0.69 moderate, 0.70-0.89 strong, 0.90-1.00 very strong). Multiple linear regression identified predictors of pain and fatigue. Stepwise regression (exercise group only) examined predictors of 12-week pain (VAS-Pain) and fatigue (F-Scale 13-Item), including QoL (SScQoL), depression, disease severity (VAS), fatigue, pain, functional ability (SHAQ), strength/ endurance (handgrip, biceps curl) and cardiorespiratory fitness (VO₂peak in mL/kg/min and L/min).

Sample size calculation

The primary outcome was the VAS-digital pain. For our calculations, we used commercial software (G*Power V.3.1.7, HHU of Düsseldorf) by using data from two studies that examined the exercise training effects on SSc-QoL including digital pain following a 12-week exercise intervention (mean RP pain, 1.8±0.6). 11 12 Based on those calculations, we required no more than 90 patients in each group (180 in total) to detect a difference in RP's pain at 3 months (significance level=0.05; power=80%) accounting also for an estimated 15% dropout and 5% site effect.

RESULTS

Recruitment, randomisation and dropouts

A total of 874 PwSSc were screened for eligibility, of whom 170 were eligible, willing to participate and were randomly allocated to receive a 12-week exercise intervention adjunct to usual (n=86) care or usual care alone (n=84; figure 1). Three participants per group were lost at 12 weeks assessment, and a further two from the EIG and four from the UCG were lost at 24 weeks assessment. The mean age of dropouts was 53±15 years, with 80% female and most presenting mild disease severity, reflecting the overall study population (table 1).

Demographics

The demographics (eg, population characteristics, SSctype, clinical profile and medical history) are demonstrated in table 1.

Primary outcomes Pain

At 12 weeks (based on independent t-tests), the EIG demonstrated a significant reduction in VAS-Pain (p<0.001, ES=0.6) and VAS-RP (p<0.001, ES=0.55) but not for VAS-digital pain (p>0.05) compared with the UCG (table 2). The within-group differences (based on paired-samples t-test) when the 12 weeks were compared with baseline demonstrated that VAS-pain, RP and digital pain were significantly improved (p<0.001) for the EIG. The within-group differences for the UCG at 12 weeks compared with baseline showed no significant change for the VAS digital pain and VAS-pain, but a significant worsening for the VAS-RP (p<0.01). At 24 weeks, the group differences were maintained for VAS-pain (p<0.01) and VAS digital pain (p>0.05), but not for the VAS RP (p>0.05).

	Exercise inte	Exercise intervention group	Ω		Usual care group	group			Intervention vs usual care group
	Baseline Mean (SD)	12 weeks Mean (SD)	12 weeks 24 weeks Baseline 12 weeks Mean ch Mean (SD) Mean change (95% CI) Mean (SD) Mean (SD) (95% CI)	24 weeks Mean (SD)	Baseline Mean (SD)	12 weeks Mean (SD)	12 weeks Mean change Mean (SD) (95% CI)	24 weeks Mean (SD)	Mean difference in change scores 24 weeks between groups at Mean (SD) 12 weeks (95% CI)
7	86	83		81	84	81		77	
VAS Pain	0.81±0.81	0.54±0.73	-0.27 (-0.42 to 0.13)	0.69±0.71	0.69±0.71 0.96±0.83	1.02±0.88	1.02 ± 0.88 0.09 (-0.08 to 0.25) 1.05 ± 0.86 0.48 (0.21 to 0.76)	1.05±0.86	0.48 (0.21 to 0.76)
VAS RP	0.88±0.88	0.61±0.75	-0.27 (-0.42 to 0.12)	0.72±0.80	0.72±0.80 0.84±0.87	1.11±1.05	1.11±1.05 0.27 (0.10 to 0.44)	1.05±1.07	1.05±1.07 0.50 (0.19 to 0.81)
VAS digital pain	1.19±1.04	0.88±0.91	-0.32 (-0.45 to 0.18)	1.01±0.93	0.99 ± 0.94	0.97±0.98	0.97 ± 0.98 0.07 (-0.08 to 0.21) 1.03±1.01 0.08 (-0.23 to 0.40)	1.03±1.01	0.08 (-0.23 to 0.40)

A general linear model including baseline pain, SSc subtype, disease duration, centre and group allocation explained 54% of the variance in 3-month pain scores $(F(5,107)=25.49, p<0.001; adjusted R^2=0.522)$. Baseline pain was the strongest predictor (F(1,107)=90.21,p<0.001). Group assignment remained significantly associated with pain after adjustment (F(1,107)=9.23,p=0.003), with participants in the EIG reporting lower adjusted pain scores than the UCG (table 2). SSc subtype (p=0.343), disease duration (p=0.302) and centre (p=0.365) were not significant predictors.

In a model including sex and group, the group effect remained significant (F(1,134)=10.59, p=0.001), whereas no overall difference in pain at 12 weeks between males and females was observed (p=0.314), indicating that the intervention effect did not differ by sex.

Fatique

The 40-item FACIT-F total score was significantly better (p<0.05, Cohen's d=0.36) at 12 weeks for the EIG compared with the UCG, based on independent t-test. The 13-item fatigue scale did not demonstrate any significant differences between the two groups at 12 weeks (p=0.56, Cohen's d=0.3) and 24 weeks. All the fatigue-related subscales (eg, physical, social, emotional and functional wellbeing) were significantly (p<0.05) improved at 12 weeks for the EIG compared with the UCG. These differences were not maintained at 24 weeks except for the fatiguerelated subscale social well-being (table 3).

A general linear model including baseline fatigue, SSc subtype, disease duration, centre and group allocation explained 63% of the variance in 12 weeks fatigue scores $(F(5,133)=44.88, p<0.001; adjusted R^2=0.614)$. Baseline fatigue was the strongest predictor (F(1,133)=206.68,p<0.001). Group assignment remained significantly associated with fatigue after adjustment (F(1,133)=10.50,p=0.002), with participants in the EIG reporting lower adjusted fatigue scores than the UCG (table 3). SSc subtype (p=0.315), disease duration (p=0.632) and centre (p=0.611) were not significant predictors.

In a model including sex and group, group assignment was significantly associated with 12-week fatigue (F(1,161)=5.01, p=0.027), whereas no overall difference between males and females was observed (p=0.792) indicating that the intervention effect did not differ by sex.

Secondary outcomes

Range: 0.00 (no involvement/pain) 3.00 (severe involvement/pain). RP, Raynaud's phenomenon.

Raynaud's phenomenon

QoL, symptoms of depression and self-reported functional ability

The QoL was significantly improved at 12 weeks for the EIG (p<0.05, Cohen's d=0.34) compared with the UCG using independent t-test (table 4). Symptoms of depression were significantly improved at 12 weeks for the EIG (p<0.001, Cohen's d=0.55) compared with the UCG. The difference between the groups for depression was maintained at 24 weeks (Cohen's d=0.41).

Concerning the self-reported functional ability activities at 12 weeks (table 4), the EIG was found to be statistically improved in the eating disability index (DI;

Table 3 Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F) version 4 including physical well-being, social/family well-being, emotional well-being and functional well-being

	Exercise inte	Exercise intervention group (n=86)	(98=u) dr		Usual care ç	Usual care group (n=84)			Intervention vs usual care group
	Baseline	12 weeks	Mean change (95% CI)	24 weeks	Baseline	12 weeks	Mean change (95% Cl)	24 weeks	Mean difference in change scores between groups at 12 weeks (95% CI)
Z	98	83		81	84	81		77	
FACIT_F Total (score range: 0–160)	110.2±25.6 118.2±25.9	118.2±25.9	9.4 (6.4 to 12.3) 113.5±27.7	113.5±27.7	109.2±29.4	107.8±32.2	109.2±29.4 107.8±32.2 -1.9 (-6.7 to 2.9)	104.5±31.2	104.5±31.2 -10.4 (-19.4 to 1.4)
Fatigue 13-Item Scale (score range: 0-52)	34.7±11.3	36.9±10.6	2.8 (1.6 to 4.0)	35.6±11.6	34.9±12.2	33.6±11.6	33.6±11.6 -1.5 (-3.0 to 0.02) 33.4±11.8 -3.3 (-6.8 to 0.1)	33.4±11.8	-3.3 (-6.8 to 0.1)
Physical WB (score range: 0-28)	20.7±5.9	22.3±5.2	1.9 (0.9 to 2.9)	21.3±6.2	20.6±6.2	20.5±6.0	-0.1 (-0.9 to 0.6)	20.8±6.0	-1.8 (-3.5 to 0.1)
Social WB (score range: 0–28)	20.3±5.2	21.5±4.9	1.4 (0.7 to 2.1)	21.1±5.4	19.9±5.9	18.8±5.8	-1.2 (-2.1 to 0.3)	18.5±5.9	-2.7 (-4.3 to 1.0)
Emotional WB (score range: 0-24)	17.5±4.0	18.1±4.1	0.8 (0.08 to 1.5) 17.6±4.1	17.6±4.1	16.9±5.3	16.7±7.0	-0.4 (-1.2 to 0.4)	16.7±4.6	-1.4 (-2.8 to 0.03)
Functional WB (score range: 0-28)	17.3±5.3	18.9±5.6	1.8 (1.1 to 2.5)	18.0±5.9	17.4±6.7	16.7±7.0	$-0.8 (-1.6 \text{ to } -0.02) 16.9\pm6.9$	16.9±6.9	-2.3 (-4.2 to 0.3)

Between-group and within-group differences at baseline, 12 and 24 weeks are presented as means (SD) and mean changes (95% CI). Lower scores indicate worse fatigue. WB, well-being.

RMD Open: first published as 10.1136/rmdopen-2025-005946 on 11 November 2025. Downloaded from https://rmdopen.bmj.com on 14 November 2025 by guest.

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Table 4 Quality of life (SScQoL), depression (CES-D) and self-reported functional ability (SHAQ)— between-group and within-group differences at baseline, 12 and 24 weeks are presented as means (SD) and mean changes (95% CI)

	Exercise in	Exercise intervention group (n=86)	(98=u) dn		Usual care	Usual care group (n=84)			Intervention vs usual care group
	Baseline	12 weeks	Mean change (95% CI)	24 weeks	Baseline	12 weeks	Mean change (95%CI)	24 weeks	Mean difference in change scores between groups at 12 weeks (95% CI)
Z	98	83		81	84	81		77	
SSc QoL (score range: 0–29)	10.3±7.5	9.2±7.0	-1.4 (-2.1 to 0.6)	10.0±7.5	11.3±7.3	11.6±7.2	0.3 (-0.6 to 1.2)	11.8±7.2	2.4 (0.2 to 4.7)
CES-D (score range: 0-60)	13.2±8.8	11.4±8.5	-1.9 (-3.6 to 0.3)	13.2±9.2	15.3±11.2	16.9±11.2	1.7 (0.03 to 3.3)	17.5±11.8	5.5 (2.4 to 8.6)
Dressing and Grooming DI	0.44 ± 0.56	0.39 ± 0.55	-0.04 (-0.11 to 0.03)	0.40 ± 0.56	0.49 ± 0.64	0.54 ± 0.58	0.08 (-0.01 to 0.17)	0.54 ± 0.58	0.2 (-0.03 to 0.3)
Arising DI	0.41±0.62	0.41±0.62		0.33±0.53	0.46 ± 0.56	0.47±0.56		0.53±0.63	0.05 (-0.1 to 0.2)
Eating DI	0.44 ± 0.61	0.39 ± 0.6	-0.05 (-0.12 to 0.01)	0.38 ± 0.62	0.52 ± 0.57	0.60±0.61	0.10 (0.02 to 0.18)	0.57 ± 0.61	0.2 (0.02 to 0.4)
Walking DI	0.40±0.6	0.31±0.5	-0.09 (-0.18 to 0.01)	0.37 ± 0.53	0.44 ± 0.53	0.51±0.56	0.08 (-0.004 to 0.16)	0.56 ± 0.53	0.2 (0.04 to 0.4)
Hygiene DI	0.37 ± 0.53	0.31 ± 0.47	-0.06 (-0.14 to 0.02)	0.41 ± 0.57	0.43 ± 0.48	0.45 ± 0.52	0.04 (-0.03 to 0.12)	0.52 ± 0.56	0.2 (-0.01 to 0.3)
Reach DI	0.51±0.72	0.42 ± 0.64	-0.08 (-0.2 to 0.03)	0.50±0.71	0.66±0.75	0.68±0.7	0.04 (-0.1 to 0.2)	0.68±0.7	0.3 (0.05 to 0.5)
Grip DI	0.37 ± 0.53	0.31 ± 0.46	-0.06 (-0.13 to 0.02)	0.34 ± 0.53	0.45 ± 0.54	0.51 ± 0.57	0.1 (-0.02 to 0.15)	0.47 ± 0.56	0.2 (0.04 to 0.4)
Activities DI	0.52 ± 0.64	0.39 ± 0.56	-0.06 (-0.1 to 0.02)	0.46 ± 0.64	0.6±0.7	0.65±0.7	0.1 (-0.03 to 0.2)	0.68±0.68	0.3 (0.06 to 0.5)
Overall DI	0.41 ± 0.52	0.35 ± 0.47	-0.04 (-0.07 to 0.003)	0.39 ± 0.54	0.49 ± 0.51	0.51 ± 0.49	0.05 (0.02 to 0.09)	0.56 ± 0.51	0.2 (0.01 to 0.3)
VAS Intestinal	0.84±0.96	0.80±1.22	-0.04 (-0.28 to 0.19)	0.8±1.2	1.1±1.3	1.2±1.4	0.08 (-0.10 to 0.26)	1.2±1.3	0.41 (-0.04 to 0.86)
VAS Breathing	0.59±0.71	0.43±0.65	-0.16 (-0.26 to 0.06)	0.6±0.8	0.8±0.9	0.9±0.9	0.12 (-0.00 to 0.25)	0.9±1.0	0.50 (0.23 to 0.77)
VAS Overall disease activity	0.98±0.88	0.77±0.7	-0.22 (-0.38 to -0.06)	1.0±0.9	1.1±0.8	1.3±0.9	0.15 (0.02 to 0.29)	1.3±1.0	0.48 (0.20 to 0.76)

The higher scores indicate worsening for all three questionnaires. CES-D, Centre for Epidemiologic Studies Depression Scale; DI, Disability Index; SHAQ, Scleroderma Health Assessment Questionnaire; SSc, systemic sclerosis; VAS, Visual Analogue Scale.

ble 5 Musculoskeletal and cardiorespiratory fitness outcomes between-group and within-gro	
Musculoskeletal and cardiore	(10 /030) sessede sees bee (C
ble 5	6

	Exercise inte	Exercise intervention group (n=86)	(98=u) dn		Usual care group (n=84)	group (n=84)			Intervention vs usual care group
	Baseline	12weeks	Mean change (95% CI)	24weeks Baseline	Baseline	12 weeks	Mean change (95%Cl)	24 weeks	Mean difference in change scores between groups at 24 weeks 12 weeks (95% CI)
7	98	83		81	84	81		77	
Handgrip right arm (kg)	24.9±9.3	26.1±9	1.2 (-0.3 to 2.6) 25.1±8.5	25.1±8.5	23.5±6.7	24.2±17.6	0.7 (-2.7 to 4.2)	21.8±9.2	-1.9 (-6.2 to 2.4)
Handgrip left arm (kg)	23.5±9.5	25.2±9.4	1.6 (0.3 to 3.0)	24.4±9	22.7±6.6	21.3±8.8	$-1.4 (-2.7 \text{ to } -0.04) 21.1\pm9.1$	21.1±9.1	-3.9 (-6.7 to 1.1)
Biceps curl (reps)	18.3±6.8	21.9±6.9	3.6 (2.3 to 5.0)	21±8	19.1±6.4	18.7±7.1	-0.5 (-1.8 to 0.8)	18±7	-3.2 (-5.3 to 1.0)
VO _{2peak} (L/min)	0.93±0.32	1.1±0.37	0.14 (0.08 to 0.2) 0.94 ± 0.36 0.90 ± 0.24	0.94±0.36	0.90±0.24	0.84±0.21	-0.06 (-0.1 to 0.00) 0.84±0.24 -0.2 (0.1 to 0.3)	0.84±0.24	-0.2 (0.1 to 0.3)
VO _{2peak} (mL/kg/min)	13.5±4.4	15.5±5.1	2.0 (1.1 to 3.0)	13.6±4.9	13.2±3.6	12.2±3.0	-1.0 (-1.8 to -0.1) 12±3.4	12±3.4	-3.1 (-4.6 to 1.6)
HR _{peak} (bpm)	132.8±23.4	132.8±23.4 133.3±23.9	0.5 (-3.5 to 4.5)	132±24	126.7±20.2	122.4±21.5	126.7±20.2 122.4±21.5 -4.2 (-8.5 to -0.01) 121±23	121±23	-10.9 (-18.8 to 3.0)
Peak power output (watts) 43±17.7	43+17.7	53+20	10 (4.4 to 15.5)	47+20	37.1±13.1	38.2+13.6	38.2±13.6 1.2 (-2.7 to 5.0)	40+19	-14 (-21,4 to 6.6)

p<0.05, Cohen's d=0.34), walking DI (p<0.01, Cohen's d=0.39), hygiene DI (p<0.05, Cohen's d=0.30), reach and grip DI (p<0.01, Cohen's d=0.40), activities DI (p<0.01, Cohen's d=0.41) and overall DI (p<0.05, Cohen's d=0.34) compared with the UCG, assessed via independent t-tests.

At 12 weeks, the EIG demonstrated improvements in VAS-Intestinal (p<0.05, ES=0.31), VAS-Breathing (p<0.001, ES=0.62) and VAS-Overall disease activity (p<0.001, ES=0.59) when compared with the UCG.

At 24 weeks, some of the improvements were maintained for the EIG except for hygiene DI, grip DI, VASintestinal, breathing and overall disease activity.

Exploratory outcomes

Musculoskeletal and cardiorespiratory fitness

Table 5 illustrates that at 12weeks, the EIG statistically improved the handgrip left arm (p<0.01, Cohen's d=0.43), biceps curl (p<0.01, Cohen's d=0.45), VO_{2neak} L/min (p<0.001, Cohen's d=0.71), VO_{2peak} mL/kg/min (p<0.001, Cohen's d=0.73), HR_{peak} (p<0.01, Cohen's d=0.48), PPO (p<0.001, Cohen's d=0.79) when compared with the UCG. At 24weeks, handgrip strength right (p<0.01, Cohen's d=0.37) and left arm (p<0.05, Cohen's d=0.37) and biceps curl (p<0.01, Cohen's d=0.38) were higher for the EIG compared with the UCG, as assessed via independent t tests. The differences between the cardiorespiratory fitness components were not maintained between the two groups at 24weeks.

Regression analysis

The findings in table 6 indicate that for pain (VAS-Pain), higher disease severity is associated with higher reported pain levels, while worse depressive symptoms are modestly but significantly linked to higher pain ratings.

The depressive symptoms (CES-D) are significantly associated with greater fatigue (FACIT-F), with higher depression scores predicting lower FACIT-F scores (ie, more fatigue). Additionally, perceived disease severity (VAS-Disease Severity) is also a strong predictor of fatigue, independently contributing to lower FACIT-F scores.

The majority of the correlations between the patientreported outcomes were higher than between the objective measured physical functional tests. VAS disease severity had strong correlations to VAS pain, FACIT-F and SScQoL. CES-D had a strong correlation to FACIT-F, a moderate correlation to SSc-QoL and a weak correlation to VAS-pain (table 7).

Adverse events

HR, heart rate; VO_{2peak}, peak oxygen uptake.

One participant in the EIG experienced a moderate, expected epileptic seizure before the start of the exercise programme and required hospitalisation. The participant was already receiving treatment for this condition. This was a one-time event and thus it was deemed unrelated to the exercise intervention overall. No major and/ or minor exercise-related side effects occurred.

Table 6 Stepwise regression analysis to explore predictors of fatigue and pain at 12 weeks for the exercise group

Dependen	t variable: F-Scale 13-Ite	m			95% CI for B	
Model		Unstandardised B	Coefficients SE	P value	Lower bound	Upper bound
1	CES-D	-1.2	0.2	< 0.001	-1.6	-0.8
2	CES-D	-0.8	0.2	< 0.001	-1.2	-0.4
	VAS-Disease Activity	-7.9	2.4	<0.01	-12.7	-3.0
Dependent	variable: VAS-Pain					
1	VAS-Disease Activity	0.9	0.1	< 0.001	0.7	1.2
2	VAS-Disease Activity	1.2	0.2	<0.001	0.8	1.5
	CES-D	-0.03	0.01	< 0.05	-0.06	-0.006

CES-D, Centre for Epidemiologic Studies Depression Scale; VAS, Visual Analogue Scale.

DISCUSSION

This large multicentre European definitive RCT is the first study to demonstrate the benefits of a combined exercise programme on debilitating symptoms (eg, pain and fatigue) including QoL, self-reported functional ability and depression in PwSSc. Namely, our exercise programme was shown to be safe (ie, no adverse events) and effective in improving at 12weeks overall pain and fatigue, QoL, depression, self-reported functional ability and overall fitness including cardiorespiratory fitness and upper body musculoskeletal strength and endurance.

Pain

Baseline pain levels were mild in both groups. Exercise may reduce pain in SSc, commonly caused by inflammatory arthritis, by improving vascular tone, modulating immune responses, decreasing inflammation, reducing disease activity and strengthening the musculature system.²⁴

At 12 weeks, the EIG improved by 0.27 VAS units from baseline and 0.46 units compared with UCG, a change meeting the reported minimal clinically important differences (MCID) of 0.2–0.3 units for PwSSc. ²⁵

VAS digital pain did not differ between groups following the exercise intervention, likely reflecting a ceiling effect due to low baseline scores. Previously, VAS digital pain was improved following an exercise intervention in PwSSc; however, baseline values were higher (2.2±1.2)¹¹ compared with the current study (1.19±1.04). Numerous psychosocial risk factors (eg, emotional health including depression, perceived physical health and social support) have also been identified as predictors of pain. ²⁶ Regression analyses showed that reductions in depression and disease severity predicted pain improvement, suggesting psychological and disease-activity pathways may mediate the exercise effect.

Fatigue

The FACIT-F total score which includes subsections on physical function, social well-being and daily activities, improved significantly in the EIG at 12weeks compared with the UCG. Our group has previously shown that

exercise could improve energy levels and social profile in PwSSc. 11

The 13-item fatigue scale demonstrated a non-significant statistical improvement for the EIG compared with the UCG at 12 weeks. This finding could be attributed to an insufficient exercise dose-response for this fatigue scale. A higher exercise dose (eg, thrice weekly) and/or a whole-body exercise instead of upper body alone could have contributed to a significant change for this outcome.

In addition, our participants at baseline presented on average with mild fatigue (ie, score: 31–40) for both groups, and a ceiling effect is possible to have restricted significant improvements.²⁷

The MCID for the 13-item fatigue scale over a 12-month follow-up in PwSSc indicates that a change of -3 points reflects deterioration and +4 points reflects improvement.²⁸ In our study, after only 12 weeks, the EIG improved by +2.2 points from baseline, while the UCG deteriorated by -1.3 points. Although this difference did not reach clinical significance, the magnitude and direction of change achieved in just 12weeks suggest a potentially meaningful clinical effect for PwSSc that would warrant confirmation in longer trials. Previous studies report similar findings; an 8-week, thrice-weekly aerobic and muscle endurance programme in a small PwSSc sample (n=4) showed fatigue improvement,²⁹ and other exercise³⁰ and Tai Chi³¹ studies reported benefits. However, both studies presented methodological limitations (eg, absence of exercise dosage).³²

Our protocol may reduce fatigue through both psychological (reduced depression) and physical (lower perceived disease impact) pathways, supported by regression analyses showing CES-D and VAS-disease activity as meaningful fatigue predictors.

QoL, depression and self-reported functional ability

The QoL (SScQoL) improved significantly in the EIG compared with the UCG at 12weeks, in agreement with previous systematic reviews and RCTs demonstrating exercise benefits in PwSSc. 33 34 Lower limb muscle strength has strongly correlated with QoL in PwSS. 35 In our study, a weak correlation between upper body strength and QoL

Exercise group		VAS Pain severity	VAS disease	100000	F-Scale	FACIT-F	CES-D	Har SHAD DI IA	Handgrip Biceps	Biceps	VO2peak
VAS Pain	Correlation Coefficient 1.0	1.0	0.77	0.62	-0.55	-0.64	0.59	0.59	0.04	-0.46	-0.21
	Sig. (two-tailed)		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	>0.05	<0.001	>0.05
FACIT-F Total Score	FACIT-F Total Score Correlation coefficient	-0.64	-0.72	-0.80	0.88	1.0	-0.45	-0.45	-0.002	0.40	0.23
	Sig. (two-tailed)	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	>0.05	<0.001	>0.05
SScQoL	Correlation coefficient	0.62	0.71	1.0	-0.74	-0.80	0.52	0.52	90.0	-0.30	-0.15
	Sig. (two-tailed)	<0.001	<0.001		<0.001	<0.001	<0.001	<0.001	>0.05	<0.05	>0.05

peak oxygen uptake.

Assessment Questionnaire; SScQoL, systemic sclerosis quality of life questionnaire; VAS, Visual Analogue Scale; VO2peak,

was reported, potentially because lower limb strength is closely linked to mobility, independence in daily living and physical functioning scales included within QoL questionnaires.

Depressive symptoms (CES-D) also improved significantly at 12weeks in the EIG compared with the UCG. Depression in PwSSc may have psycho-neuro-immunological origins, ³⁶ with chronic pain, fatigue, body-image dissatisfaction and functional disability ³⁷ promoting negative emotions and pro-inflammatory cytokine release (eg, IL-6). ³⁸ Exercise may counteract this by increasing brain serotonin via the 5-HT3-IGF-1 mechanism leading to antidepressant effects ³⁹ and reducing inflammation. ³⁴

The MCID for SHAQ-DI in PwSSc is 0.2–0.25 units.²⁵ In our study, the between-group difference at 12 weeks was 0.16 units, just below the MCID threshold. A higher exercise dose (eg, thrice weekly) or an extended exercise period (eg, 24 weeks) could have contributed to an MCID.

An MCID for the CES-D 20-item questionnaire has not been established. Applying a 10% change (as used in lupus exercise studies, ⁴⁰ the EIG improved by 14.4% from baseline and 38.9% compared with the UCG, suggesting a clinically meaningful reduction in depression.

Visual Analogue Scales

The VAS-intestinal, VAS-breathing, VAS-RP and VAS-disease activity improved significantly in the EIG compared with the UCG at 12weeks. Although baseline symptom burden was mild, these changes are important given the lack of medical cure for SSc. Gastrointestinal, pulmonary, RP and overall disease activity manifestations in SSc are underlined by vascular changes, alteration of innate immunity, inflammatory responses and the process of fibrosis. Exercise has demonstrated that it is able to improve the microvasculature and lung function, and to reduce inflammation and PwSSc.

Musculoskeletal and cardiorespiratory fitness

Cardiorespiratory and musculoskeletal improvements in the EIG at 12weeks were lost by 24weeks, most likely due to physical deconditioning. The physiological mechanisms underlying these improvements have been described previously. 12 13

Right-hand grip strength did not differ significantly between groups post-intervention, and baseline strength was similar between hands. Hand dominance and habitual use can influence muscle adaptation to RT, 43 which may explain the limited improvement in the dominant arm compared with the non-dominant arm.

A systematic review reported MCID for grip strength ranging from 0.04 to 6.5 kg across clinical populations, 44 reflecting heterogeneity in both populations and MCID calculation methods. In our study, the left-hand grip strength difference between groups was 3.9 kg above the midpoint of this reported range. Based on the 10% change to account for a significant MCID used when no

established value exists, 40 our study demonstrated an 8.5% difference between groups which is slightly below the 10% MCID. This may reflect that the biceps curl test was performed only in the dominant arm, where strength adaptations after RT are often smaller than in the non-dominant arm. 43

The MCID for VO2peak is generally considered 3.5 mL/kg/min. 45 In our study, the mean between-group difference at 12weeks was 3.1 mL/kg/min, approaching but not reaching this threshold. This may partly reflect the use of upper-limb exercise, which recruits smaller muscle groups and imposes less cardiovascular stress than lower-limb modalities. In a previous study, our group showed that arm-crank ergometry elicited a VO2peak about 29% lower than cycling in L/min⁻¹ and 41% lower when adjusted for body weight, reflecting reduced muscle mass involvement. Given the strong links between VO2peak and mortality, physical function and symptom management in chronic disease, enhancing VO2peak should remain a key target in exercise programmes for PwSSc.

Participant eligibility and recruitment considerations

A notable number of patients (704 of 874 screened) were not included in the trial. Of these, 413 were excluded mainly due to disease exacerbations (eg, active digital ulcers, uncontrolled renal crisis) or severe complications such as advanced PAH. Although exercise is not generally contraindicated in PAH, ⁴⁶ our protocol was designed at an individualised high intensity to target pain and fatigue, and we excluded patients with severe cardiopulmonary involvement for safety. Future studies should explore more exercise protocols to improve inclusivity. Additionally, 206 eligible patients declined participation; understanding barriers and facilitators to exercise uptake through qualitative research will be important for developing tailored referral strategies in PwSSc.

Strengths and limitations

Strengths of the study include a large sample size, which enhances generalisability, and the potential clinical benefit of our exercise protocol. The multicentre design also allowed resource sharing and improved networking.

Some limitations of our study were the use of different equipment for the physiological assessments (potentially increasing data variability) and the fact that we could not be blinded due to the nature of the intervention (ie, risk of intervention-driven bias). However, these limitations are unlikely to have impacted our results due to the large sample size, strict adherence to standardised procedures across centres and consistent use of the same equipment (at the respective site) and blinded assessors, ensuring data validity and reliability. In addition, all the patientreported questionnaires and assessments have previously been validated in PwSSc. In addition, we did not systematically collect detailed data on other non-pharmacological treatments (eg, physical or occupational therapy, counselling) that participants may have used alongside usual care. However, the relatively large sample size (n=170)

and the randomised design, with both groups equally able to access such adjunctive treatments, likely mitigated potential confounding and supports the robustness of our findings.

CONCLUSIONS

Our European multicentre definitive RCT demonstrated that a 12-week supervised combined upper body exercise programme (aerobic and RT) twice weekly significantly improved pain, fatigue, depression, SSc-related QoL and physical fitness compared with the control group. Improvements were also observed within the exercise group from baseline, while the control group showed slight deterioration, suggesting that exercise may not only alleviate symptoms but also help prevent disease progression. These findings support incorporating exercise as a non-pharmacological adjunct to pharmacotherapy for managing symptoms and enhancing QoL in PwSSc. A long-term RCT is warranted to investigate the feasibility, implementation and the efficacy of a wholebody exercise programme integrated with education on healthy lifestyles and behavioural support.

Author affiliations

¹Lifestyle Exercise and Nutritional Improvement (LENI) Research Group, Centre for Applied Health & Social Care Research (CARe), Sheffield Hallam University, Sheffield, UK

²Copenhagen Research Centre for Autoimmune Connective Tissue Diseases, Rigshospitalet, Copenhagen University, Copenhagen, Denmark

³Laboratory of Sports Medicine, Department of Physical Education and Sports Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece

⁴Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Stockholm, Sweden

⁵Department of Precision Medicine, Universita degli Studi della Campania Luigi Vanvitelli, Naples, Italy

⁶Department of Physiotherapy, Sunderby Hospital, Luleå, Sweden

⁷Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands

84th Department of Internal Medicine, School of Medicine, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece

⁹Department of Rheumatology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK

Acknowledgements The authors would like to thank the study participants who volunteered in the study and report no conflicts of interest with this manuscript. We would like to thank the rheumatologists: Karina Gheorghe, Karin Gunnarsson and Annika Nordin at Karolinska University Hospital, Stockholm and Panagiota Vlachogianni and Loukia Gamvrili at Sunderby Hospital, Luleå, Sweden.

Collaborators IMPACT-SSc CONSORTIUM: Eleni Pagkopoulou (4th Department of Internal Medicine, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, Greece), Thea Vliet Vlieland (Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands), David Ueckert (Copenhagen Research Centre for Autoimmune Connective Tissue Diseases, Rigshospitalet, Copenhagen University, Copenhagen, Denmark), Anil Gumber (Lifestyle, Exercise and Nutrition Improvement (LENI) Research Group, Department of Nursing and Midwifery, Sheffield Hallam University, Sheffield, UK), Tiziana Nava (Department of Translational Medicine and Surgery Programme in Physical Therapy, University of Milan-Bicocca, Milan, Italy), Henrik Pettersson (Women's Health and Allied Health Professionals, Medical Unit Occupational Therapy and Physiotherapy, Karolinska University Hospital, Stockholm, Sweden), Line Kjær Winberg (Copenhagen Research Centre for Autoimmune Connective Tissue Diseases, Rigshospitalet, Copenhagen University, Copenhagen, Denmark).

Contributors Study conception and design: Alexandros Mitropoulos (AM), Kasper Yde Jensen (KYJ), Evangelia Kouidi (EK), Carina Boström (CB), Giovanna Cuomo (GC), Louise Pyndt Diederichsen (LPD), Malin Mattsson (MM), Eva M. Hoekstra

(EMH), Jeska de Vries-Bouwstra (JdVB), Theodoros Dimitroulas (TD), Mohammed Akil (MA), Søren Jacobsen (SJ), Markos Klonizakis (MK). Funding acquisition: AM, MK, SJ, EK, CB, GC, TW, Patient and public involvement coordination; AM, CB, EK, GC, EMH, JdVB, MM, KYJ. Site set-up, participant recruitment and clinical oversight: Sheffield Hallam University/Sheffield Teaching Hospitals: AM. MK. MA. Rigshospitalet Copenhagen: KYJ, LPD, SJ. Aristotle University Thessaloniki: EK, TD. Karolinska Institutet/University Hospital Stockholm & Sunderby Hospital Luleå: CB, MM. University of Campania L. Vanvitelli Naples: GC. Leiden University Medical Center: EMH, JdVB, TVV. Exercise intervention development: AM. Data collection: All site investigators (AM, KYJ, EK, CB, GC, LPD, MM, EMH, JdVB, TD, MA, SJ, MK) and the IMPACT-SSc consortium members (Eleni Pagkopoulou, Thea Vliet Vlieland, David Ueckert, Anil Gumber, Tiziana Nava, Henrik Pettersson, Line Kjær Winberg). Data analysis and interpretation: AM, KYJ, EK, CB, MK, MA, SJ, EMH, JdVB. Manuscript drafting: AM wrote the first draft. KYJ, EK, CB, GC, LPD, MM, EMH, JdVB. TD. MA. SJ. MK critically revised and edited the manuscript for important intellectual content. Supervision and project administration: MK, AM. Guarantor: Alexandros Mitropoulos acts as the guarantor of the work. He accepts full responsibility for the integrity of the data and the accuracy of the analyses and affirms that all authors had full access to the data and approved the final version of

Funding The work is being supported and funded by the Foundation of Research in Rheumatology (FOREUM), as well as locally funded (eg, Sweden has received extra local funding support from the Swedish Rheumatism Association and Region Norrbotten). We declare that the funders were not involved in any of the study's procedures (eg, study design, data collection/analysis and interpretation).

Competing interests None declared.

Patient consent for publication Consent obtained directly from patient(s).

Ethics approval This study involved human participants and was approved by the HRA and Health and Care Research Wales (IRAS Project ID: 302054). Participants gave informed consent to participate in the study before taking part.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as supplementary information.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: https://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

Alexandros Mitropoulos https://orcid.org/0000-0002-9453-0808 Kasper Yde Jensen https://orcid.org/0000-0003-4232-6079 Carina Boström https://orcid.org/0000-0002-2506-687X Malin Mattsson https://orcid.org/0000-0003-2715-7481 Jeska De Vries-Bouwstra https://orcid.org/0000-0002-5624-1415 Theodoros Dimitroulas https://orcid.org/0000-0002-0364-1642

REFERENCES

- 1 Varga J, Trojanowska M, Kuwana M. Pathogenesis of systemic sclerosis: recent insights of molecular and cellular mechanisms and therapeutic opportunities. *J Scleroderma Relat Disord* 2017:2:137–52.
- 2 Willems LM, Kwakkenbos L, Leite CC, et al. Frequency and impact of disease symptoms experienced by patients with systemic sclerosis from five European countries. Clin Exp Rheumatol 2014;32:S–88.
- 3 De Luca R, Maresca M, Orlandi M, et al. The Emerging Challenge of Pain in Systemic Sclerosis: Similarity to the Pain Experience Reported by Sjögren's Syndrome Patients. Rheumatol Immunol Res 2021;2:113–9.
- 4 Ostojic P, Jankovic K, Djurovic N, et al. Common Causes of Pain in Systemic Sclerosis: Frequency, Severity, and Relationship to

- Disease Status, Depression, and Quality of Life. *Pain Manag Nurs* 2019:20:331–6.
- 5 Basta F, Afeltra A, Margiotta DPE. Fatigue in systemic sclerosis: a systematic review. Clin Exp Rheumatol 2018;36 Suppl 113:150–60.
- 6 Khanna D, Denton CP, Jahreis A, et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): a phase 2, randomised, controlled trial. Lancet 2016;387:2630–40.
- 7 Antonelli A, Fallahi P, Di Bari F, et al. Fatigue in patients with systemic sclerosis and hypothyroidism. A review of the literature and report of our experience. Clin Exp Rheumatol 2017;35 Suppl 106:193–7.
- 8 Medication Adverse EffectsEttinger AB, Weisbrot DM, Gallimore CE, eds. Synopsis of neurology, psychiatry and related systemic disorders. Cambridge University Press, 2019:707–806. Available: https://www.cambridge.org/core/product/80C019701BD6FDFF71B4 C1918BABE9B2
- 9 Parodis I, Girard-Guyonvarc'h C, Arnaud L, et al. EULAR recommendations for the non-pharmacological management of systemic lupus erythematosus and systemic sclerosis. Ann Rheum Dis 2024;83:720–9.
- 10 Azar M, Rice DB, Kwakkenbos L, et al. Exercise habits and factors associated with exercise in systemic sclerosis: a Scleroderma Patient-centered Intervention Network (SPIN) cohort study. Disabil Rehabil 2018;40:1997–2003.
- Mitropoulos A, Gumber A, Crank H, et al. Exploring the feasibility of an exercise programme including aerobic and resistance training in people with limited cutaneous systemic sclerosis. Clin Rheumatol 2020;39:1889–98.
- Mitropoulos A, Gumber A, Akil M, et al. Exploring the microcirculatory effects of an exercise programme including aerobic and resistance training in people with limited cutaneous systemic sclerosis. Microvasc Res 2019;125:103887.
- 13 Mitropoulos A, Gumber A, Crank H, et al. The effects of upper and lower limb exercise on the microvascular reactivity in limited cutaneous systemic sclerosis patients. Arthritis Res Ther 2018;20:112.
- 14 Steen VD, Medsger TAJ. The value of the Health Assessment Questionnaire and special patient-generated scales to demonstrate change in systemic sclerosis patients over time. *Arthritis Rheum* 1997;40:1984–91.
- 15 Hawker GA, Mian S, Kendzerska T, et al. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res (Hoboken) 2011;63 Suppl 11:S240-52.
- 16 Ndosi M, Alcacer-Pitarch B, Allanore Y, et al. Common measure of quality of life for people with systemic sclerosis across seven European countries: a cross-sectional study. Ann Rheum Dis 2018:77:1032–8.
- 17 Kwakkenbos L, van Lankveld WGJM, Vonk MC, et al. Diseaserelated and psychosocial factors associated with depressive symptoms in patients with systemic sclerosis, including fear of progression and appearance self-esteem. J Psychosom Res 2012;72:199–204.
- 18 Roberts HC, Denison HJ, Martin HJ, et al. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. *Age Ageing* 2011;40:423–9.
- 19 Langhammer B, Stanghelle JK. The Senior Fitness Test. J Physiother 2015;61:163.
- 20 Metsios GS, Brodin N, Vlieland TPMV, et al. Position Statement on Exercise Dosage in Rheumatic and Musculoskeletal Diseases: The Role of the IMPACT-RMD Toolkit. Mediterr J Rheumatol 2021;32:378–85.
- 21 Perandini LA, Sales-de-Oliveira D, Mello SBV, et al. Exercise training can attenuate the inflammatory milieu in women with systemic lupus erythematosus. *J Appl Physiol* 2014;117:639–47.
- 22 Gleeson M, Bishop NC, Stensel DJ, et al. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 2011;11:607–15.
- 23 Blank RB, Nwawka OK, Yusov AA, et al. Inflammatory arthritis in systemic sclerosis: What to do? J Scleroderma Relat Disord 2019;4:3–16.
- 24 Li Z, Wang X-Q. Clinical effect and biological mechanism of exercise for rheumatoid arthritis: A mini review. Front Immunol 2023;13:1089621.
- 25 Gazi H, Pope JE, Clements P, et al. Outcome measurements in scleroderma: results from a delphi exercise. J Rheumatol 2007;34:501–9.

- 26 Merz EL, Malcarne VL, Roesch SC, et al. Longitudinal patterns of pain in patients with diffuse and limited systemic sclerosis: integrating medical, psychological, and social characteristics. Qual Life Res 2017;26:85–94.
- 27 Daynes E, Baldwin MM, Annals M, et al. Changes in fatigue symptoms following an exercise-based rehabilitation programme for patients with long COVID. ERJ Open Res 2024;10:00089-2024.
- 28 Kiss F, Farkas N, Nagy G, et al. Minimal Clinically Important Differences (MCID) for the Functional Assessment of Chronic Illness Therapy Fatigue Scale in Patients with Systemic Sclerosis. Int J Environ Res Public Health 2022;20:771.
- 29 Alexanderson H, Bergegård J, Björnådal L, et al. Intensive aerobic and muscle endurance exercise in patients with systemic sclerosis: a pilot study. BMC Res Notes 2014;7:86.
- 30 Yakut H, Özalevli S, Aktan R, et al. Effects of supervised exercise program and home exercise program in patients with systemic sclerosis: A randomized controlled trial. Int J Rheum Dis 2021;24:1200–12.
- 31 Cetin SY, Calik BB, Ayan A. Investigation of the effectiveness of Tai Chi exercise program in patients with scleroderma: A randomized controlled study. Complement Ther Clin Pract 2020;40:101181.
- 32 Mitropoulos A, Klonizakis M. Scientific critique on the effects of supervised exercise program and home exercise program in patients with systemic sclerosis: A randomized controlled trial. *Int J Rheum Dis* 2021;24:1543–4.
- 33 Liem SIE, Vliet Vlieland TPM, Schoones JW, et al. The effect and safety of exercise therapy in patients with systemic sclerosis: a systematic review. Rheumatol Adv Pract 2019;3:rkz044.
- 34 Pettersson H, Alexanderson H, Poole JL, et al. Exercise as a multi-modal disease-modifying medicine in systemic sclerosis: An introduction by The Global Fellowship on Rehabilitation and Exercise in Systemic Sclerosis (G-FoRSS). Best Pract Res Clin Rheumatol 2021;35:101695.
- 35 Lima TRL, Guimarães FS, Carvalho MN, et al. Lower limb muscle strength is associated with functional performance and quality of life in patients with systemic sclerosis. Braz J Phys Ther 2015;19:129–36.

- 36 Somani A, Kar SK, Parida JR. Depression in systemic sclerosis: Review of the neuro-immunologic link and pharmacological management. *Med J DY Patil Univ* 2016;9:294.
- 37 Thombs BD, Taillefer SS, Hudson M, et al. Depression in patients with systemic sclerosis: a systematic review of the evidence. Arthritis Rheum 2007:57:1089–97.
- 38 Maes M. The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. *Neuro Endocrinol Lett* 2008;29:287–91.
- 39 Alizadeh Pahlavani H. Possible role of exercise therapy on depression: Effector neurotransmitters as key players. *Behav Brain Res* 2024;459:114791.
- 40 Frade S, O'Neill S, Walsh S, et al. Telehealth-supervised exercise in systemic lupus erythematosus: A pilot study. Lupus (Los Angel) 2023;32:508–20.
- 41 Volkmann ER, Andréasson K, Smith V. Systemic sclerosis. *Lancet* 2023;401:304–18.
- 42 Faverzani S, Nocera F, Crisafulli E, et al. Home-based unsupervised pulmonary rehabilitation program improves the respiratory disability in systemic sclerosis patients with dyspnea: an observational prospective study. Monaldi Arch Chest Dis 2021;92.
- 43 Armstrong CA, Oldham JA. A comparison of dominant and non-dominant hand strengths. *J Hand Surg Br* 1999;24:421–5.
- 44 Franceschini M, Boffa A, Pignotti E, et al. The Minimal Clinically Important Difference Changes Greatly Based on the Different Calculation Methods. Am J Sports Med 2023;51:1067–73.
- 45 Lang JJ, Prince SA, Merucci K, et al. Cardiorespiratory fitness is a strong and consistent predictor of morbidity and mortality among adults: an overview of meta-analyses representing over 20.9 million observations from 199 unique cohort studies. Br J Sports Med 2024;58:556–66.
- 46 Sahni S, Capozzi B, Iftikhar A, et al. Pulmonary rehabilitation and exercise in pulmonary arterial hypertension: An underutilized intervention. J Exerc Rehabil 2015;11:74–9.