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Abstract
Non-thermal food processing has opened up new space and has emerged as a promising alternative to conventional thermal 
methods of food processing. These foods meet the growing consumer demands for high-quality, convenient, and minimally 
processed foods. The idea of proposing a machine learning (ML) strategy for finding the optimum process parameters and 
kinetics in food processing applications is new and challenging, but this new innovative approach requires considerable 
scientific effort. This review presents the applications of ML in the optimization of non-thermal food processing technolo-
gies such as high-pressure processing (HPP), pulsed light (PL), ultrasound (US), pulsed electric fields (PEF), cold plasma 
(CP), and irradiation (IR). These technologies have exhibited conspicuous advantages with respect to microbial inactivation, 
preservation of food quality, and environmental sustainability. Integration of ML with non-thermal technologies will enable 
better control and monitor in real time and optimize critical parameters such as pressure, frequency, and treatment duration. 
While numerical models have conventionally been used successfully for process optimization, ML provides better adapt-
ability by identification of complex nonlinear relationships in food systems for more accurate prediction and adjustment. The 
key takeaways of this paper lie in the ML-driven monitoring system, integrated sensors, and real-time data accumulation in 
response to enhancing process efficiency with dependency natures inherently presented by food matrices. Further develop-
ment of ML models, apparatus collection, and intelligent systems is expected to yield non-thermal food processing methods 
with enhanced sustainability, safety, and quality.

Keywords  Artificial intelligence · High-pressure processing · Pulsed light · Ultrasound · Pulsed electric fields · Cold 
plasma

Introduction

The traditional method of food processing is the most used 
method across the world because of its product stability, 
capacity to guarantee microbial stability, and ability to deac-
tivate spoilage enzymes (Khan et al., 2022). However, heat 
treatment may induce numerous physicochemical changes 
under severe conditions that can generate a negative impact on 
the organoleptic properties, destroy heat-sensitive food vita-
mins, remove some bioactive compounds, and produce poten-
tially harmful components (Wang et al., 2022a, 2022b, 2022c, 
2022d). Thus, the demand for novel non-heat-based technolo-
gies is increasing, and non-thermal processing technologies 
are gradually replacing traditional processing technologies.

The attention of engineers and researchers has been 
attracted to non-thermal methods such as pulsed electric 
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field (PEF), high-pressure processing (HPP), cold plasma, 
ultrasound, high voltage electric field (HVEF), irradiation, 
pulsed light (PL), which have escalated for their good qual-
ity “fresh-like” characteristics with minimal or no changes. 
These methods induce cell electroporation for solid foods 
and are chemical residue-free processing method which 
involves the application of increased pressure on the prod-
ucts to achieve shelf-stable products by microbial and enzy-
matic inactivation with minimal impact on the nutritional 
and chemical composition (Goraya et al., 2024; Guo et al., 
2024; Pezo & Donsì, 2025). In addition, they have been used 
to inactivate several pathogenic and spoilage microorgan-
isms both in vitro and in different foods while resulting in 
minimal influence on the quality attributes (Bayati et al., 
2024). Although they affect the food processing and final 
quality of the products, to achieve better quality of the prod-
uct and less energy consumption, the effective parameters 
such as field strength, treatment time, specific energy, pulse 
shape, pulse width, frequency, temperature, and voltage 
should be optimized (Goraya et al., 2024; Guo et al., 2024).

Mathematical modeling of the non-thermal processing is 
an interdisciplinary approach for optimization process that 
involves engineering background with chemistry, reaction 
kinetics, structural changes, predictive microbiology, and 
nutrition. The literature has presented the comprehensive 
and advanced mathematical analysis of various non-thermal 
processes for different food products such as meat and poul-
try (Hashemi et al., 2023), fresh fruit and vegetables (Mishra 
et al., 2024), dairy products (Kaushik et al., 2024), and soft 
drinks and beverages (Yang et al., 2024). An actual system 
can be described by mathematical equations that simplify 
the most relevant properties of that system, and its solutions 
are predicted according to the specified initial conditions. 
However, complex, non-linear interactions between ingre-
dients and processing conditions, as well as variability in 
samples and environmental factors, can lead to inaccuracies 
and uncertainties in the mathematical model’s predictions 
(Kumar et al., 2024a, 2024b, 2024c). Therefore, a method to 
handle complex, non-linear relationships and large datasets 
more effectively than traditional mathematical modeling and 
allowing for more accurate predictions and adaptive optimi-
zations in dynamic and variable processing environments 
is required.

Artificial intelligence (AI) and machine learning (ML)-
based modeling has the potential to model nonlinear com-
plex processes associated with food processing. ML-based 
modeling can effectively predict process kinetics and opti-
mize process parameters efficiently for ensuring better-qual-
ity products (Dhal & Kar, 2025; Khan et al., 2022). Dhal 
and Kar (2025) underscored that the integration of AI with 
emerging technologies such as the Internet of Things, block-
chain, and AI-powered sensors enables proactive risk man-
agement, predictive analytics, and automated quality control. 

Taking into account the unique benefits of ML-based mode-
ling strategies, many researchers have attempted to apply AI 
to non-thermal food processing operations (Evrendilek et al., 
2022; Pan et al., 2024; Yıkmış et al., 2024). ML has been 
widely used to solve problems such as dimensional reduc-
tion, feature extraction, and model prediction. Furthermore, 
the literature has been revealed that the AI could optimize 
the voltage, clay percentage, and number of cathode–anode 
for HVEF (Robin et al., 2022); optimize the range of ampli-
tudes, frequency, and power for US process (Abedi et al., 
2024; Yıkmış et al., 2024); optimize the pressure level and 
exposure time for HPP (Pan et al., 2024; Qiu et al., 2017); 
and optimize field strength, specific energy, pulse width, 
and frequency for PEF (Evrendilek et al., 2022). Thus, ML 
is crucial for optimizing and predicting outcomes in non-
thermal processing by enhancing precision, efficiency, and 
the ability to analyze complex datasets.

A number of reviews detailing the application of machine 
learning in food processing are available in the literature 
(Barthwal et al., 2024; Esmaeily et al., 2023; Hassoun et al., 
2023). However, there is no review (to the best of our knowl-
edge) exclusively focusing on potential of machine learn-
ing in to digitalize non-thermal processing in food industry. 
Therefore, the current review paper introduces the ML-based 
models to predict the quality of food products during various 
non-thermal processing as well as the optimization of effec-
tive parameters in each method. In addition, the application 
of high-tech equipment, including machine vision systems, 
spectral devices, and intelligent sensors to digitalize the 
non-thermal processes, is explained. This review encourages 
researchers to acquire data that are reliable, reproducible, 
and devoid of methodological challenges.

Non‑thermal Processing Methods

High‑Pressure Processing

HPP is a non-thermal food preservation technology which 
can be considered a clean treatment technology due to its low 
energy consumption and waste residue risk. Application of 
HPP technology was significant to microorganisms in vari-
ous food products to maintain and extending food shelf-life, 
reduced microbial load without the thermal consequences 
(Qiu et al., 2017). HPP has merits such as high color stability, 
flavor, and texture, and maintains the microbiological quality 
and quality of seafood products although the high investment 
costs (50–75% higher) of this innovative technology remain 
a problem for the food industry (Goraya et al., 2024; Pezo & 
Donsì, 2025). As has been previously reported by researchers, 
various chemical components can be effectively preserved 
by HPP in various food products (Song et al.,2023; Nuygen 
et al., 2024; Sherman et al., 2024). However, functionality of 
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HPP can be more improved by optimizing the process param-
eters and considering the properties of the food system.

By optimizing pressure level, treatment time, and tem-
perature, the HPP can be tailored to maximize microbial 
inactivation while maintaining or even enhancing the sen-
sory and nutritional quality of food products. Zhu et al., 
(2022a, 2022b) applied 100–400 MPa at 10 °C for 15 min 
as HPP to investigate the effects of HPP on microbial, 
textural, and sensory properties of low-salt emulsified 
beef sausage. Although the overall results were satisfied, 
the sensory and textural properties of sausages worsened 
for HPP treatments ≥ 300 MPa. Further, Ferreira et al. 
(2023) tried to optimize the HPP for ready-to-eat meat. 
They considered 400–600 MPa and 180–480 s for pressure 
and treatment time. They claimed that the inactivation of 
the microorganism ranged from 0.99 to 4.12 UFC/g by 
increasing the pressure and time treatment. Although the 
effect of HPP on microbial inactivation depends on the 
process parameters, some factors such as initial tempera-
ture of the food, food matrix and composition, product 
size, and geometry indexes affect the desired outcomes 
in terms of safety, quality, and shelf life (Li et al., 2020; 
Nuygen et al., 2024). Thus, controlling HPP as it enables 
the precise prediction and optimization of process param-
eters to achieve desired food safety and quality outcomes 
efficiently is essential.

On-line control of HPP operation not only improves 
nutritional value but also optimizes the operational energy 
consumption. For this reason, novel technologies such as 
machine vision have been applied to collect a series of 
parameters texture and color of the food, with the goal of 
real monitoring and control food processing (Zhu et al., 
2022a; Bhagya et al., 2022). AI algorithms can identify 
patterns and relationships that are not immediately appar-
ent through traditional methods, enabling more accurate 
predictions of microbial inactivation and quality preserva-
tion (Nayak et al., 2020). Pezo and Donsì (2025) leveraged 
ML to create advanced predictive models for microbial 
inactivation during HPP. They underscored the study’s sig-
nificance in advancing the comprehension of high pressure 
homogenization (HPH) impact on microbial inactivation, 
thereby bolstering food safety and prolonging shelf-life. 
These technologies facilitate real-time monitoring and 
adaptive control of HPP parameters, leading to enhanced 
process efficiency, consistency, and safety. The implemen-
tation of AI results in improved product quality and higher 
consumer satisfaction while also contributing to more 
sustainable and cost-effective food processing practices 
(Bhagya et al., 2022); Barthwal et al., 2024). Therefore, 
to improve the acceptance, sensory quality, and preference 
of HPP, future development needs to focus on AI-driven 
monitoring.

Pulsed Light

PL has been considered a new non-thermal sterilization 
technology that has been presenting instantaneous pulses of 
intense light with microbial inactivation, taking mere sec-
onds. Literature explored the efficacies of the PL technique 
employed in liquid products (Salazar-Zúñiga et al., 2023; 
Brito & Silva, 2024), semi-solid products (Takaki et al., 
2021), and solid products (Guo et al., 2024) and have sig-
nificantly been able to achieve microbial inactivation. PL 
becomes limited by its relatively shallow depth of penetra-
tion that only allows surface decontamination, which may 
leave internal pathogens in thick or opaque foods unaffected. 
In addition, Vargas-Ramella et al. (2021) managed to spot 
yet another limitation with regard to PL-worth mentioning. 
He stated high energy requirements implicate PL, given that 
this may promote undesired changes in sensory or nutri-
tional quality of the treated food when the system is not 
optimized. Cassar et al. (2022) and Pihen et al. (2024) also 
documented that the presence of some food items with irreg-
ular surfaces might further compromise the effectiveness of 
the PL method by allowing for nonuniform exposure and 
incomplete microbial inactivation. Since this would allow 
for better control of depth of penetration, energy distribu-
tion, and treatment uniformity, the call has been made to 
optimize the parameters of PL when trying to mitigate its 
limitations in the food industry.

Numerical models and simulations have been applied 
to address these PL challenges by modeling light distribu-
tion, optimizing treatment protocols, assessing its impact 
on food safety and quality, and overcoming limitations in 
terms of penetration depth and uneven exposure (John and 
Ramaswamy, 2020; Preetha et al., 2023; Guo et al., 2024; 
Brito & Silva, 2024). Comparison of PL inactivation kinetics 
and modeling of Escherichia coli, Clostridium sporogenes, 
and Geobacillus stearothermophilus was done by John and 
Ramaswamy (2020). Log-linear and Weibull model have 
been applied to optimize the PL process for inactivation 
kinetics. Preetha et al. (2023) used Biphasic, Log linear plus 
tail, and Weibull models to increase the performance of PL 
treatment on inactivation kinetics of Escherichia coli in fruit 
juices. Literature emphasized that various critical param-
eters are suggested by several researchers which should be 
considered when designing the experiments to assess the 
suitability of PL, such as the number of pulses, transparency 
of the medium, distance from the flash lamp, and the depth 
of the samples. Establishment of standardized treatments 
and protocols in compliance with the legal requirements for 
specific food products with specific PL equipment would 
be required for successful applications of the PL process. 
However, considering all aforementioned parameters creates 
a limitation for numerical modeling.



	 Food and Bioprocess Technology

ML can also give better flexibility than traditional math-
ematical modeling. Automatic learning of complex patterns 
from large data enables superior predictions and real-time 
adjustments in the light PL treatment process. While numeri-
cal modeling has the advantage of giving deterministic 
insight into known physical principles, ML reveals hidden 
correlations, and optimization of the treatment protocols is 
thus allowed even when the underlying dynamics are not 
well understood (Rowan, 2019).

Ultrasound

Ultrasound is the new technology deputed to the improve-
ment of quality features in food products and surely much 
more harmless to the environment. US often improves the 
system’s solubility, emulsifying characteristics, antioxidant 
features, digestibility, and sensory features (Taha et al., 
2024). It has been reported that US could enhance positively 
the stability of the bioactive component, inactivate microor-
ganisms, and enzymes of food products, as reviewed by San-
tos et al. (2024), Li et al. (2024), and Wang et al. (2025). The 
effectiveness of US is basically influenced by three param-
eters, namely, frequency, amplitude, and intensity, which 
define the extension of the cavitation effects responsible for 
microbial inactivation and quality preservation (Mohammed 
and Alqahtani, 2022; Kaushik et al., 2024). The limiting 
factors of practical importance identified that may cause 
non-uniform processing are US duration and physical prop-
erties of the food matrix, such as viscosity and composition. 
Thereby, the understanding of the parameters of US and its 
optimization is essential for process efficiency enhancement 
and to assure stable non-thermal food preservation.

Mohammed and Alqahtani (2022), Sanches et al. (2023), 
and Kaushik et al. (2024) mathematically modeled various 
bacteria and food characteristics for kinetics, which ena-
bled the optimization of parameters in the US for enhanced 
microbial safety in food and agricultural products. For exam-
ple, Kaushik et al. (2024) applied two linear and nonlinear 
models. The versatility of US in the dairy industry was dis-
cussed regarding the bacterial load reduction in milk and 
also presented a useful tool for response prediction and its 
validation through kinetic modeling of pathogens in milk. 
Similarly, Esua et al. (2022) applied nonlinear models to 
describe the relationship between bacterial inactivation and 
US parameters. However, numerical models providing an 
optimum about the US process rely on simplified assump-
tions and may be poor to characterize the complexion of a 
process accurately.

AI can further enhance the performance of the US process 
by analyzing large datasets to identify the optimal param-
eters, adaptively adjusting the protocols of treatments, and 
making more accurate predictions across a wide variety of 
food matrices (Lin et al., 2023). In this regard, Yıkmış et al. 

(2024) optimized the bioactive compounds and ultrasound 
parameters in US-treated gilaburu water. As they reported, 
the optimization of US by ML was led to the enhancement of 
bioactive compounds present in gilaburu juice by US, there-
fore improving its quality parameters. From the literature, 
AI positively optimized US parameters while preserving 
various bioactive components in those food products treated 
by US (Patra et al., 2022; Pusty et al., 2024; Yıkmış et al., 
2024; Abedi et al., 2024). However, further research regard-
ing dynamic analysis and real-time modification of condi-
tions for demand variables to achieve maximum efficiency 
and consistency always using ML and AI in US processing 
has to be performed.

Pulsed and High Voltage Electric Field

PEF and HVEF technology offer several advantages in the 
food industry, such as shelf-life extension, nutrient retention, 
and quality preservation for various food products (Brito & 
Silva, 2024; Guo et al., 2024; Huang et al., 2025). Research 
on PEF and HVEF has mainly focused on its influence on 
enzyme activity, the inactivation of microorganisms, and 
the shelf-life of fresh fruit and vegetables (Dalvi-Isfahan 
et al., 2023), beverages and juices (Brito & Silva, 2024), 
meat and poultry (Guo et al., 2024), and sea foods (Kulawik 
et al., 2023). This accords with literature, where it has been 
pointed out that if PEF or HVEF treatments are not opti-
mized, they might exhibit a lack of microbial inactivation 
due to non-uniform distribution of electric fields and irregu-
lar and less treatment intensity. Besides, poor settings of 
operating parameters can bring about degradation to sensi-
tive nutrients and bioactive compounds in food (Kulawik 
et al., 2023; Brito & Silva, 2024; Guo et al., 2024; Nikzadfar 
et al., 2024; Luangapai & Siripatrawan, 2025). Thus, pulse 
duration, pulse frequency, number of pulses, and the time of 
treatment are effective parameters for PEF and HVEF, which 
should be heeded.

Many researchers and engineers have tried to optimize 
PEF and HVEF parameters by simulating the complex inter-
actions between the electric field and food matrix under vari-
ous conditions (Ziaiifar et al., 2024). Computational models 
have allowed researchers to predict the electric field distribu-
tion, the electric field strength induced, and effects resulting 
in microbial cells and food properties (Ziaiifar et al., 2024). 
The restriction will then be when numerical modeling of 
PEF optimization during food processing is involved, based 
on simplified assumptions and idealized conditions without 
considering the real complex and heterogeneous features of 
food matrices and their potential different responses to the 
electric field.

It has been suggested that ML has representatively pro-
vided an influential approach to the optimization of the PEF 
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process through its enabling in investigating complex non-
linear relationships between input parameters and treatment 
outcomes (Cheng et al., 2025; Evrendilek et al., 2022; Robin 
et al., 2022). Cheng et al. (2025) investigated the effects of 
PEF treatment on the quality and structure of duck eggs dur-
ing pickling, and a ML model was developed to predict the 
salt content utilizing the predictive abilities of ML models. 
These algorithms identify the optimal combination of elec-
tric field strength, pulse duration, and frequency in addition 
to other variables for maximum microbial inactivation per 
minimum loss of food quality by training the ML models on 
a vast quantity of experimental data.

Cold Plasma

CP technology was put into action in the case of food pro-
cessing for the desirable surface decontamination of path-
ogens and spoilage microorganisms of fresh produce and 
minimally processed foods to maintain quality and extend 
shelf life (Bayati et al., 2024). CP has been reported to inac-
tivate surface microorganisms of a wide range in food prod-
ucts through the formation of a number of reactive species, 
such as ozone, nitrogen oxides, and free radicals attacking 
cell membranes and DNA. However, CP depends upon the 
electrical discharge of the CP, which consists of a dielec-
tric barrier, corona, pulse, and high-frequency discharges 
(Kulawik et al., 2023; Nikzadfar et al., 2024; Wang et al., 
2022a, 2022b, 2022c, 2022d). Moreover, some CP process 
parameters such as duty cycle, treatment time, and voltage 
have greater effects on the performance of CP. Despite many 
advantages brought about by CP applications, this technol-
ogy still faces quite a number of challenges, especially scal-
ing up, which involves increasing productivity and treating 
foods in large formats.

Optimization and control of the effects of CP on nutri-
tional quality and sensory quality are under ongoing inves-
tigation. Various studies have conducted a deeper under-
standing of the important role that mathematical modeling 
plays in the dynamics underlying extraction of bioactive 
compounds under CP treatment (Mendes-Oliveira et al., 
2019; Arserim et al., 2021; Qian et al., 2022; Sivri, 2024). 
Mendes-Oliveira et al. (2019) focused on the application 
of modeling in the inactivation of Bacillus subtilis spores 
during CP sterilization and reported that modeling CP pro-
cessing is a matter of great interest because it may provide 
accurate estimation of time and conditions required for a 
complete plasma-based sterilization process. In addition, 
Sivri et al. (2024) applied Peleg’s model, the power law 
model, two-site kinetic model, and Elovic’s model for 
assessment of extraction kinetics from black chokeberries 
enhanced by CP. These studies show that a kinetic model 
was able to give an appropriate fit to experimental data 
obtained from samples exposed to CP, which means the 

applied model duly describes the kinetics under the CP 
process. Further, Arserim et al. (2021) utilized an inactiva-
tion model that suggested a multiphysics-based numerical 
simulation model to predict the concentrations and distri-
butions of the reactive species in the dielectric barrier dis-
charge CP system for the ultimate optimization of the CP 
process. The complexity of accurately simulating hetero-
geneous interactions of reactive species across diverse food 
matrices, together with the variability in microbial resist-
ance and surface topography, has so far limited numerical 
simulation and mathematical modeling for optimization of 
CP treatment in food processing. The applications were 
found in optimizing the CP treatment in food processing 
with the use of ML for improving the prediction of the 
efficacy of the treatment by analyzing big and complex data 
sets to find the optimal parameters for microbial inactiva-
tion and the preservation of the quality of food (Cui et al., 
2023; Özdemir et al., 2023; Rashvand et al., 2023).

Irradiation

Food irradiation in food processing involves a process 
of exposing food to ionizing radiation, with the use of 
gamma rays, X-rays, or electron beams, serving to deplete 
noxious microorganisms and parasites and hence pro-
longing the shelf life by ensuring the safety of food. IR 
enables the delay in the ripening and sprouting of fruits 
and vegetables to be maintained together with nutritional 
value and also sensory qualities of food (Chaudhary et al., 
2024). Various techniques included in IR methods consist 
of gamma, electron beam, and X-ray. IR systems have 
been selected based upon specific requirements in the 
food product targeted, especially relating to the depth of 
penetration and the nature of the microorganisms or the 
pests involved. Gamma rays have been utilized to reach 
deep penetrations so that bulk portions of food items 
could be sterilized. Similarly, X-ray IR systems provide 
deep penetration similar to rays but are rather flexible and 
besides do not require the use of radioactive materials. In 
contrast, electron beam IR systems use high-energy elec-
trons for surface-level or shallow penetration and fit best 
for the treatment of thin-packed foods besides decontami-
nation of surfaces (Chaudhary et al., 2024). In order for 
optimization of the performance of each abovementioned 
IR system, one has to take care about the dosage to be 
absorbed and time of exposure, linked to food composi-
tion and material of packaging.

Computational modeling has optimized the IR method 
to simulate dose distribution, penetration depth, and 
microbial inactivation kinetics, thus allowing for accurate 
adjustments of IR parameters that are aimed at improving 
food safety and quality while minimizing energy con-
sumption and processing time. Singleton et al. (2020) 
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presented a simple mathematical modeling of the dosage 
of irradiation calculated for single log10 reduction, con-
sidering the possible resistance that may exist for some 
pathogens after exposure to gamma-irradiation. Further-
more, Ganguli et al. (2020) optimized the IR process 
parameters for degradation using the RSM method, tak-
ing into consideration the effect of pH, the dosage of 
graphene oxide nanomaterial, and contact time as the 
variable factors in influencing the IR process efficacy. 
In addition, they employed an ML method to increase its 
accuracy in optimization. The accuracy was increased 
by 2% more than by mathematical modeling. Although 
in the previous research it was not very significant about 
the accuracy of ML and the mathematical model, ML 
could perform dynamic learning from large and complex 
datasets for outcome predictions seeking optimality with 
higher accuracy and adaptability to variable types of food 
and conditions. Therefore, different researchers need to 
continue developing ML models for the optimization of 
the irradiation process in handling complex nonlinear 
relationships between variables. This has to be pursued 
against a background of improving predictive accuracy 
across diversities of food types for efficiency and speci-
ficity in IR protocols.

According to the literature, it can be claimed that 
applying different non-thermal methods is highly popu-
lar, and all scientists have searched for the optimization 
of these processes. In Table 1 are the effects of applying 
various non-thermal processing techniques comprising 
HPP, PL, US, CP, IR, and PEF on various food products 
in terms of microbial safety, nutrient preservation, and 
physicochemical properties. Examples of the enhanc-
ing effects of HPP on both microbial safety and nutri-
ent retention can be seen in chicken meat and juices at 
optimal conditions of pressure and time (Szczepańska 
et al., 2022). On the other hand, it can degrade some 
bioactive compounds, such as polyphenols and vitamin 
C, in some products. PL treatment, while very promis-
ing in terms of retention of antioxidants and phenolic 
content in juices, at higher fluences can affect aromatic 
compounds (Wang et al., 2022a, 2022b, 2022c, 2022d). 
US treatments enhance the bioavailability of certain 
important nutrients and the vitamin C and total phenolic 
content in juices, although the anthocyanin content might 
be reduced after some time (Gomes et al., 2022). PEF, in 
a nutshell, just increases the excretion of bioactive com-
pounds from plant-based food products. In that effect, it 
gives the food better nutritional qualities (Visockis et al., 
2021). In general, these non-thermal technologies have 
the potential to provide a means for better food safety and 
nutrient retention balance, although with great variability 
based on AI development.

Machine Learning Approach

Support Vector Machine

SVM became important for optimization of process 
parameter prediction in microbial inactivation and quality 
retention. Nonthermal techniques were applied for preser-
vation value without varying the nutritional value of the 
food using PEF (Rashvand et al., 2024), HPP (Srisuwan 
and Innet, (2024), US (Fan et al., 2022), and CP (Rash-
vand et al., 2023). Therefore, SVM is put into applica-
tion for modeling and prediction of the effects of these 
processes on microbial inactivation, enzyme activity, and 
physicochemical properties of complex nonlinear data sets 
generated from these processes. The use of SVM aids in 
the optimization of conditions that offer maximum micro-
bial safety with retained sensory and nutritional qualities, 
hence improving the overall nonthermal processing effi-
ciency in general within the food industry (Srisuwan and 
Innet, (2024).

Combination of US technique and LS-SVM model pro-
vides an effective guidance for improving meat quality in 
Tan sheep, hence offering a new evaluation method for ani-
mals with superior carcass traits. Further studies should be 
performed in order to apply technologies like US for estab-
lishing higher predictive power models (Fan et al., 2022; 
Yu et al., 2025a, 2025b, 2025c). Yu et al., (2025a, 2025b, 
2025c) investigated on a fast real-time monitor of rice grains 
infested with Sitophilus oryzae based on terahertz imag-
ing combined with machine learning and SVM model was 
improved by 9.68% after first-order derivatives (1-st der) 
preprocessing. Also, Liao et al. (2016) developed a predic-
tive model hybrid of LS-SVM combined with the improved 
fruit fly optimization algorithm was adopted to predict the 
ultrasonically-assisted extraction process. Using the pro-
duced LS-SVM model, higher accuracy was manifested 
regarding the prediction and optimization of ultrasound-
assisted extraction of bioactive components with antioxidant 
activity (Liao et al., 2016). Hence, the LS-SVM model was 
more efficient in analysis and improvement in the extraction 
compared to RSM (Li et al., 2022). Similarly, Khursheed 
et al. (2022) performed the ultrasound-assisted extraction 
of protein from mosambi peel which was considered a novel 
source and optimized the process of extraction for maximum 
yield of protein using SVM and the GA. They further stated 
that SVM has difficulty handling high-dimensionality data 
sets and computational complexity, such as are provided by 
US, and that there was a potential problem with the model 
performance optimization, such as kernel and parameter 
selection, which can reduce accuracy in nonlinear relation-
ship modeling of the effects induced by ultrasounds in food 
properties.
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Also, the SVM can handle nonlinear complex relation-
ships between cold plasma parameters and food safety out-
comes with effective processing condition optimization. 
The in-packaged apricots were treated with dielectric bar-
rier discharge (DBD) cold plasma, and prediction for the 
CO2 and ethylene production for the input parameters of the 
developed SVM regression intelligence models was done 
with developed SVM to achieve more accuracy (Rashvand 
et al., 2023). Further, the influence of PEF on drying kinetics 
during vacuum-assisted microwave drying of sliced apples 
was optimized by Rashvand et al. (2024). Some such kernel 
functions developed for nonlinear support vector regres-
sion (SVR) models were radial basis function, polynomial, 
Gaussian, and Pearson universal. They suggested that the 
challenge regarding the application of kernel functions of 
SVM to optimize the PEF processing was based on select-
ing the proper kernel that might encapsulate the complex 
nonlinear relations between PEF parameters, such as electric 
field strength and pulse duration and food quality or micro-
bial inactivation outcomes. This will probably cause poor 
generalization of the model and result in suboptimal predic-
tions, especially for different food matrices with varyingly 
diverse dielectric properties due to inappropriate choice of 
the kernel. The computation involved in tuning the kernel 
parameters of high-dimensional various non-thermal pro-
cessing datasets complicates the optimization process and 
can make SVM unsuitable for scalability in food processing 
real-time process control (Rashvand et al., 2023; Srisuwan 
and Innet, 2024); Rashvand et al., 2024).

Decision Trees

Decision trees are a way of mapping out a decision, using a 
tree-like model for classification or prediction on input fea-
tures. Each internal node in DT represents the choices made 
about any given attribute, and branches represent different 
possible outcomes (Khan et al., 2022). In non-thermal food 
processing, DTs keep their strength in simplicity and inter-
operability. They allow for easily modeling cause-effect rela-
tionships between process parameters and either food safety 
or quality outcomes. Compared to the other more complex 
methods, DTs are more interpretable and, hence, suitable for 
the optimization of non-thermal processes and understand-
ing the interaction of each parameter with the final quality of 
food among other benefits (Ramirez-Asis et al., 2022; Wang 
et al., 2022a, 2022b, 2022c, 2022d).

DTs were used for process optimization in US due to its 
prowess in the provision of interpretable models that deline-
ate specific ultrasound parameter-food quality attributes for 
informed decisions in process optimization (Abedi et al., 
2024; Lin et al., 2023). In addition, for other non-thermal 
processing, cold plasma is effective with DTs. Cui et al. 
(2023) investigated a novel approach for the validation of 

plasma processing for decontamination. They indicated 
that there was a need to develop process validation since 
the species generated in plasma is complex as a function 
of conditions for plasma generation. Thus, gradient boost-
ing decision tree was applied for data analysis to validate 
the effectiveness of decontamination by cold atmospheric 
pressure plasma and plasma-activated water. Literature 
showed that the normally applied DTs were susceptible to 
overfitting, especially on small or noisy datasets, leading to 
non-generalizing models on unseen data in nonthermal food 
processing optimization. Their tendency to construct overly 
simplistic models can also lead them to fail in capturing 
complex nonlinear relationships between parameters of pro-
cessing and food quality outcomes, hence failing to capture 
important interactions that affect the efficacy of non-thermal 
methods (Ramirez-Asis et al., 2022). It is noticeable that 
only few literature can be found regarding the application 
of DTs for optimization of various non-thermal processing.

Random Forest

RF is a procedure whereby several decision trees are con-
structed based on their random subsets of data and features, 
and their predictions are merged to get better performance 
both in accuracy and generalization (Yu et  al., 2025a, 
2025b, 2025c). RF seems to be generally advantageous in 
optimization processes involving non-thermal food process-
ing methods. As Sakai et al. (2023) and Xia et al. (2025) 
mentioned, it could model complex, maybe nonlinear rela-
tionships between process parameters and food safety or 
quality outcomes. On the other hand, RF is less prone to 
overfitting compared to SVM in that it can deal with noisy 
or incomplete datasets, characteristics of experimental food 
processing applications (Khan et al., 2022). This model will 
also be capable of ranking feature importance, aiding in the 
identification of critical process parameters that will enable 
the optimization of non-thermal technologies in an effective 
manner (Wang et al., 2022a, 2022b, 2022c, 2022d).

RF has been applied in US systems for food processing to 
model and predict the effects of ultrasound parameters, such 
as frequency and intensity. Samli et al. (2020) carried out on 
computer modeling of the enrichment process of sunflower 
and corn oils with olive leaves through ultrasound treatment. 
Using RF, they demonstrated that sunflower and corn oil 
were enriched in polyphenols by adding olive leaf extracts. 
Kunjiappan et al. (2024) maximized the extraction of bioac-
tive ingredients from grape seeds using an ultrasound-aided 
extraction technique, and the validated extraction parameters 
were optimized and compared using the Adaptive Neuro-
Fuzzy Inference System (ANFIS) and random forest (RF). 
The literature revealed that using RF in US systems had 
some difficulties such as handling large, high-dimensional 
datasets generated by complex US interactions, which can 
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increase computational cost and model training time (Samli 
et al., 2020; Sakai et al., 2023).

PEF pre-treatment coupled with mechanical pressing, 
followed by water extraction, could provide an industrially 
relevant and sustainable alternative to produce value-added 
products from chicken meat using RF model to extract the 
feature importance, allowing identification of the more 
important parameters affecting the extraction of protein and 
carnosine (Robin et al., 2022). Özdemir et al. (2023) and 
Zhou et al., (2023a, 2023b) applied RF for optimizing the 
CP and IR processing, respectively. RF-based models were 
applied to predict the antimicrobial activity of the plasma-
activated and IR liquids, which are structured on ensemble 
learning and trees, might have had superior performance 
to other models because of the data distribution. Overall, 
RF offers a versatile tool for data-driven decision making 
in various aspects of food processing, from quality control 
to consumer insights (Wang et al., 2022a, 2022b, 2022c, 
2022d; Zhou et al., 2023a, 2023b).

Fuzzy Logic

Fuzzy logic is the computational approach to dealing with 
reasoning, which can be imprecise and approximate rather 
than fixed and exact by applying uncertainty and vagueness 
in the decision-making process (Jadhav et al., 2024; Zhang 
et al., 2025). In this respect, FL has been applied in the treat-
ment of food where most of the optimization in the non-
thermal methods is done using modeling based on complex 
relations among different types of inputs-pressure, tempera-
ture, and duration of treatments with consideration of the 
intrinsic variability in properties of foods and conditions of 
treatments (Ding et al., 2023). This approach makes control 
systems flexible enough to respond in view of changes in 
the real-time characteristics of food. Expert knowledge and 
subjective evaluation are combined in FL, enhancing process 
optimization—a huge factor to guarantee better preservation 
of foods along with retention of their quality without much 
loss concerning nutrition (Jadhav et al., 2024).

FL was applied in HPP to optimize treatment parameters 
by modeling and controlling the non-linear relationships 
between pressure, time, and food quality attributes (Kau-
shik et al., 2015). Sensory attributes of HPP mango pulp 
and litchi juice were evaluated and compared with untreated 
samples, and FL showed that HPP effect was dependent on 
product type and pressure. Also, Bose and Bhattacharjee 
(2018) developed a new equation in FL analysis for ascer-
taining the appropriate dose of gamma irradiation of virgin 
coconut oil. This new methodology of FL analysis could be 
used to rank samples rapidly and reliably, without any com-
plexity of conventional similarity value approach. However, 
they reported that the challenge of using FL in HPP and IR 
of food lies in accurately defining the membership functions 

and rules needed to model the complex, which can be sub-
jective and require extensive empirical data to validate.

FL demonstrated its ability to effectively manage and 
optimize other non-thermal processing such as cold plasma. 
Through FL, it was found that the sensory panelists judged 
the sample treated with cold plasma at 18.00 kV voltage for 
1.75 min and blended with 1% orange to be more acceptable 
than the samples with higher concentrations of orange juice 
(Chutia et al., 2020). Kumar et al., (2024a, 2024b, 2024c) 
and Pipliya et al. (2024) used FL to optimize CP processing 
with respect to kiwifruit and pineapple juice, respectively, 
investigating its effect on physicochemical, nutritional, 
microstructure, and rheological properties and sensory 
attributes. Inherent in this intelligent system is the ability 
for adaptive control of those parameters with respect to the 
type of food, the desired level of microbial inactivation, and 
the quality attributes to be preserved due to the incorpora-
tion of fuzzy logic.

Genetic Algorithm

GA represents an evolutionary optimization technique that 
has proven to show good results while searching for opti-
mum solutions to various bioprocesses. This approach has 
made it very possible to apply GAs in food processing opti-
mizations so that big nonlinear problems of food process-
ing can be solved by imitations of the process of natural 
selection. Food processing can be optimized according to 
various variables, and a few of them are temperature, time, 
ingredient ratios, or energy consumption. It works iteratively 
to evaluate the individual solutions, select the best ones out 
of those performing well, and generate a new candidate solu-
tion by crossover and mutation. This approach will enable 
the identification of near-optimal solutions with a view to 
improvement in product quality, improvement in efficiency, 
or reduction in production cost related to food processing 
industries (Nath et al., 2024).

Employing GA, the extraction optimization with pome-
granate peels significantly contributed to the maximization 
of yield in terms of bioactive compounds, including poly-
phenols and antioxidants (Uca & Güleç, 2024). It has been 
compared with a great number of data analysis models as an 
optimization key for the US process (Rakshit & Srivastav, 
2021; Yue et al., 2024). Further, this technique was inte-
grated with other ML models so that the performance of GA 
could be enhanced in optimizing the US process (Khursheed 
et al., 2022; Pusty et al., 2024). For example, a technique 
like SVR-GA for optimization of protein extraction helped 
improve yields of proteins from mosambi peel powder based 
on US and extraction parameters like particle size, ultrasonic 
time, and amplitude (Khursheed et al., 2022). GAs should 
be able to enable food scientists and engineers to improve 
the efficiency of extraction processes, ensure high-quality 
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products, and achieve a very efficient use of resources in 
food processing.

Researchers could also study the usage of GA in optimiz-
ing CP treatments in food industries as an effective way to 
improve food processing and optimize product quality for 
resource use. Kumar et al., (2023) and Pipliya et al. (2023) 
designed an algorithm using GA in determining the effect 
of dielectric barrier discharge non-thermal plasma treatment 
on physicochemical, nutritional, and phytochemical qual-
ity attributes of kiwifruit and pineapple juice, respectively. 
Although it yielded good results for GA in most optimiza-
tions of the non-thermal methods, some limitations take 
place while applying this technique to GA food process-
ing optimization. Some of the major limitations include 
the increase in high computation complexity while dealing 
with multi-dimensional and nonlinear problems. Besides, 
they may increase the chance of premature convergence on 
local optima rather than global solutions. Hence, careful 
tuning of parameters is an important prerequisite for yield-
ing robust and reliable results (Nayak et al., 2020; Khan 
et al., 2022). However, to achieve better accuracy, all of the 
aforementioned methods need preprocessing method.

Preprocessing methods like feature normalization (which 
is important to reduce data bias) and selection/ranking 
(which can also reduce the dimensionality of the dataset 
and concentrate the attention on the most informative vari-
ables) are indeed fundamental to increase the performance 
of machine learning techniques (Shi et al., 2024). Nayak 
et al. (2020) and El-Demerdash et al. (2022) claimed that 
straightforward preprocessing leads to better generaliza-
tion, and it stabilizes the learning process in the sense that 
it prevents overfitting and leads to more reliable and more 
robust predictions in complex food processing as well as in 
monitoring situations.

Figure 1 illustrates a novel machine learning frame-
work for sensory prediction and feature selection in food 
processing optimization. In this process, pre-processed 
input data of nine sensory attributes are normalized and 
split into training (70%) and testing (30%) for reliability 
of model. Feature selection is done dynamically based on 
rank algorithms, criteria for acceptance of new features 
being the improvement in the values of the main quality 
metrics (R2 and RMSE). This adaptive feature selection 
guarantees that only the most informative predictors are 

Fig. 1   Schematic representation of the machine learning-based framework for feature selection and sensory prediction (reproduced from Zhu 
et al. (2025))
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included for model construction, preventing overfitting 
and enhancing the prediction performance. Five predic-
tion models, neural networks, decision trees, partial least 
squares, random forest, and support vector machines, are 
implemented in the framework and systematically evalu-
ated to discover the most effective models for different sets 
of features (Zhu et al., 2025).

Yıkmış et al. (2024) highlighted that feature importance 
analysis and model explainability tools further improve the 
interpretability of the results as the most relevant sensory 
contributors to product quality can be identified. More-
over, the literature (Rashvand et al., 2023; Wang et al., 
2022a, 2022b, 2022c, 2022d; Xia et al., 2025) emphasized 
that such integration of predictive modeling with explain-
able AI is a considerable advance compared to conven-
tional black-box methods and provides better scientific 
understanding and practical assistance to food engineers. 
It can be expected that through the design of an automated 
predictive model for unknown sample and online sensual 
quality determination, the intelligent, data-driven, and 
versatile non-thermal food technique could be developed 
based on the methods mentioned above. Overall, it is a best 
practice approach that promotes the accuracy and inter-
pretability of machine learning analyses in food science.

Neural Network

Neural networks have been one of the widely used 
approaches in optimizing non-thermal food processing 

techniques. Those models can predict complex relation-
ships of processing parameters by learning from experimen-
tal data (Ulu et al., 2025; Yu et al., 2025a, 2025b, 2025c). 
NN is particularly deserving in nonlinear multi-objective 
optimization problems which conventional models cannot 
solve and have the potential to enhance efficiency, safety, 
and product quality and reduce energy use while preserving 
sensory and nutritional properties. Indeed, Zhu et al. (2025) 
and Ma et al. (2024) reported that it is the adaptive learning 
that thus enables continuous process improvement as more 
data become available. NN excels over other ML models in 
handling large, complex datasets with high-dimensional fea-
tures and non-linear relationships, making them particularly 
effective for predictive modeling in intricate systems. Their 
ability to automatically learn hierarchical feature representa-
tions without manual feature engineering provides superior 
performance in problems with unstructured data (Barthwal 
et al., 2024; Liu et al., 2023; Nath et al., 2024; Nayak et al., 
2020).

Figure 2 shows a general structure of the NN, in which 
single nodes are known as artificial neurons. Each neuron is 
simply a classifier that generates an output signal in response 
to having been fed signals from earlier neurons (Shi et al., 
2024). This flow of information between layers is aided by 
the transfer functions adopted during processing in a neural 
network, including a sigmoid, a linear transfer function, a 
hyperbolic tangent function, and a logistic function. In train-
ing, the network was exposed to input data for which there 
was already a known expected output; learning minimizes 

Fig. 2   Illustration of NNs structure and feedback control strategy based on multimodal data fusion (reproduced from Shi et al., 2024)
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differences between what was predicted and what actually 
occurred. The backpropagation method was the most fre-
quently used one for updating the weights and biases by 
propagating error back to minimize the loss function (Rash-
vand et al., 2023; Yıkmış et al., 2024). Then, researchers 
tried to investigate the optimal method and structure of NN 
for nonthermal treatment.

Determination of maximum output and efficiency requires 
optimization of the US extraction parameters. NN may be 
trained with a number of factors like frequency, intensity, 
time, and composition of solvent to obtain a preferred output 
of the extraction process (Rakshit & Srivastav, 2021). Opti-
mization of process conditions for US treatment for bioactive 
components of tomato vinegar was carried out based on the 
NN model which had a superior prediction ability compared 
to the RSM model by Kashyap et al. (2021), Yıkmış et al. 
(2021), and Shekhar et al. (2023). NNs have demonstrated 
its potential to optimize US processing by accurately mode-
ling the complex, non-linear interactions between ultrasound 
frequency, amplitude, and time. NNs could enhance pro-
cess efficiency by predicting optimal operating conditions, 
minimizing trial-and-error experimentation, and improving 
product quality while preserving nutritional and sensory 
properties (Chen et al., 2023a, 2023b; Shekhar et al., 2023; 
Silva et al., 2024; Wang et al., 2024).

Artificial neural network (ANN) is a potent tool for active 
prediction and risk assessment associated with aflatoxins in 
the food industry. With this capability, food processors can 
strengthen the safety measurement of foods and reduce con-
tamination to produce safe and quality food products. ANN 
model predicted the inactivation of aflatoxin-producing A. 
parasiticus and mitigation of aflatoxins in red pepper treated 
by PEF flakes by controlling factors or input variables such 
as frequency, treatment time, and energy instead of a statis-
tical approach (Evrendilek et al., 2022). Many researchers 
developed ANN algorithms to model the process of extrac-
tion of various oil using PEF and determined that pre-treat-
ment of PEF resulted in the production of the product with 
the desired efficiency and physicochemical properties (Lal 
et al., 2021; Razghandi et al., 2024; Zhao et al., 2022).

Also, NNs could analyze sensory data to detect quality 
attributes under HPP. Chakraborty et al. (2019) developed 
the inactivation trend of pectin methylesterase in pineapple 
puree during HPP combined ANN and kinetic approach. 
Further HPP parameters for not-from-concentrate combined 
peach and carrot juices, based on developed backpropaga-
tion neural network (BPNN) model for predicting antioxi-
dant capacity was assessed by Liu et al., (2022a, 2022b). 
Comparing the traditional and some other ML methods, NN 
had several advantages for not only HPP but also other non-
thermal processing such as CP which can help to predict 
treatment outcomes and enable real-time monitoring and 
control. Jaddu et al. (2022) and Zhou et al., (2023a, 2023b) 

combined ANN and GA in the food and juice industry to 
optimize CP processes and quality control, and they reported 
the integrated ANN could successfully analyze complex data 
patterns.

ANN exhibited specific advantages in non-thermal pro-
cessing compared to other ML models. ANN proved very 
successful in modeling complex, nonlinear relationships 
during optimization processes with the involvement of mul-
tiple variables like ingredient interactions (Bhagya Raj & 
Dash, 2022a, 2022b). The high computational requirement 
and chances of overfitting in the event of small or noisy data-
sets, commonly faced in food processing conditions, are the 
major drawbacks of ANNs (Nayak et al., 2020; Zhu et al., 
2025). Unlike simpler models like decision trees or linear 
regression, ANNs lack interpretability, making it difficult 
to understand how they derive predictions, which is crucial 
in food processing. Other models may offer faster training 
times and better generalization for smaller, structured data-
sets, making them more suitable for less complex tasks in 
the food industry (Ramirez-Asis et al., 2022; Khan et al., 
2022; Chhetri, 2024).

From the literature, it can be noted that non-thermal pro-
cessing has lately been optimized by applying the under-
attack ML method. There is a lengthy application of different 
ML algorithms to optimize various food products (Table 2). 
For the wide application area in biological products and pro-
cesses, SVM, GA, NN, and FL were used. For instance, Zhu 
et al. (2022a) and Khursheed et al. (2022) used SVMs with 
different kernel functions for the prediction of output based 
on various methods of treatment. NN-GA algorithms have 
been applied for increasing the extraction efficiencies of bio-
active compounds from fruit peel-like persimmon (Giri et al. 
et al., 2024) and cranberry (Xue et al., 2021). In addition, 
higher predictive performances of NN models have been 
recorded in process optimization, namely, lipid synthesis 
and ultrasound-assisted olive oil bleaching by Asgari et al. 
(2017), proving in this way the strong application of NN for 
both prediction and optimization purposes in food science. 
Table 2 highlights the use of ML in yield improvement, pro-
cess optimization, and enhancement of predictive accuracy 
in food systems in an effective manner.

Intelligent Devices

Applications of AI in the processing of non-thermal foods 
are effective but depend on the availability of data and the 
quality of data obtained. In this light, optimal equipment is 
necessary to obtain data accurately. The most commonly 
applied technologies in this area include the following: 
machine vision and sensors (Balkır et al., 2019). Machine 
vision systems employ cameras, image capture cards, and 
enhanced image processing technologies in data acquisition 
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in the processing of non-thermal foods (Hou & Zhang, 
2022). These systems automatize tasks that were convention-
ally performed by hand, hence enhancing efficiency and con-
sistency. Machine vision has been found particularly effec-
tive in automating food inspection processes to attain high 
standards in the quality and safety of food. Also, sensors 
are pivotal in monitoring various parameters throughout the 
stages of non-thermal food processing. These are chemical 
and physical sensors and advanced nanotechnology-based 
sensors that monitor food quality by detecting contamina-
tion and tracing spoilage (Adetunji et al., 2022; Cozzolino, 
2022).

Machine Vision

Machine vision systems utilize optical devices to identify 
food types, quality, defects, and impurities. These devices 
include hyperspectral cameras (Ren et al., 2020), imag-
ing probes (Gocławski et al., 2017), infrared (IR) cameras 
(Cisneros-Carrillo et al., 2020), and digital cameras (Çetin 
et al., 2023). Such equipment is beneficial for observing 
modifications in food products treated by nonthermal pro-
cessing methods. Machine vision facilitates the detection of 
nonthermal processed products. Distinguishing irradiated 
food products is a common application of machine vision 
systems. Despite the confirmed safety of irradiated prod-
ucts by international and national organizations, labeling 
irradiated food products is necessary for legal compliance 
and consumer transparency (Buczkowska et al., 2020). Cis-
neros‑Carrillo et al. 2020) used an automated vision system 
(AVS) for the investigation of the optical absorption coef-
ficient of laser irradiation in grains of corn. It was based on 
thermal analysis by infrared camera and photoacoustic spec-
troscopy with a monochromator and photoacoustic cell. The 
AVS implemented an integrated approach through image 
analysis, feature extraction, feature selection, and pattern 
recognition technique that correctly identified crystalline and 
floury corn grains. Further research into the feasibility of 
this approach using products of different colors and at dif-
ferent intensities of laser could be more indicative.

The assessment of food quality is necessary in non-ther-
mal processed food products. More research on real-time 
detectors by the use of machine vision can hasten things in 
food distribution and related areas. Considered very vital, 
the preprocessing techniques, such as normalization, image 
transformation, and data augmentation, are employed to 
improve model performance. Improving the applicability of 
machine vision systems in continuous food industrial moni-
toring and quality control would be possibly enhanced by the 
development of a high-speed image acquisition system and 
the exploitation of advanced machine learning algorithms.

Miscellaneous Sensors

New view related to food safety, quality, and sustainability 
was opened by the integration of smart sensors, artificial 
intelligence, and big data optimization in non-thermal food 
processing. Sensors have excellent potential in terms of data 
intake by capturing diverse parameters. E-nose and E-tongue 
devices are significantly effective for the detection of non-
thermal processed foods. One E-nose or an E-tongue con-
sists of a single array of gas or chemical sensors designed 
separately to account for the human olfactory and gustatory 
systems, respectively. The E-noses will employ gas sensor 
arrays, whereas the E-tongues apply chemical sensor arrays 
for the detection of complex chemical and biological sig-
natures. Qiu et al. (2017) assessed HP-processed mandarin 
juice using an E-nose. Data reduction through the Locality 
Preserving Projections (LPP) algorithm and classification 
algorithms such as SVM and extreme learning machine 
(ELM) enhanced the E-nose’s diagnostic accuracy.

AI-based models for optimizing nonthermal processes—
highly linked to nonthermal-assisted extraction—require 
collecting a high number of data from several parameters 
with a high level of accuracy (Shekhar et al., 2023). Sensors 
are a key point in developing reliable models of optimiza-
tion. Among them, one of the most valued groups refers to 
spectrophotometers. It also measures the total phenol con-
tent (Kumar et al., 2023), total monomeric anthocyanins 
(Yue et al., 2024), total protein content (Robin et al., 2022), 
FTIR spectra (Kashyap et al., 2023), antioxidant activities 
(Patra et al., 2022), and bioactive ingredients (Kunjiappan 
et al., 2024). This increases precision and efficiency in AI-
driven, non-thermal process optimization (Table 3).

Economic and Environmental Impact

ML has enhanced the sustainability of non-thermal food 
processing by making better use of energy, reducing waste, 
and enhancing efficiency (Wang et al., 2022a, 2022b, 2022c, 
2022d). Non-thermal methods preserve the quality of food 
away from heating; operation complications may lead to 
resource wastage. Machine learning algorithms, in turn, 
enable the optimization of these processes by predicting 
the optimal conditions of operation, thereby reducing trial-
and-error experiments and improving product consistency. 
According to Lin et al. (2023) and Khan et al. (2022), ML 
allows real-time monitoring so that any immediate adjust-
ment of parameters can be made, which otherwise would 
result in overutilization of energy or resources. It helps for 
long-term sustainability with least resource input, ensuring 
safety and quality of food, hence reducing the environmental 
burden of traditional thermal methods of food processing.
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Incorporation of ML in non-thermal food processing 
could mean economic advantages. While the initial invest-
ment with ML infrastructure is high, such as for data collec-
tion, algorithm development, and computational resources, 
the long-term benefits that come along compensate for the 
cost involved in investment (Nayak et al., 2020). Simulta-
neously, by optimization of parameters in processes and 
reduction of food losses, ML decreases operational cost, in 
particular for power-consuming methods such as those based 
on HPP (Kaushik et al., 2015; Srisuwan and Innet, 2024 or 
PEF (Evrendilek et al., 2022; Lal et al., 2021; Razghandi 
et al., 2024). Besides that, by determining the quality of 
products more precisely, firms will avoid overproducing a 
product by maintaining inventories at strategic levels and 
avoiding returns resulting from spoilage. In addition, ML 
real-time monitoring eliminates much of the manual inter-
vention and qualitative quality control testing, significantly 
lowering labor costs and further creating better efficiency on 
production lines (Chhetri, 2024; Khan et al., 2022).

Important environmental consequence of the usage of 
machine learning in non-thermal food processing is essen-
tially through optimization of resources and reduction of 
wastes. Comparatively, the carbon footprint of just non-
thermal processes themselves tends to be lower than that 
seen with traditional thermal processing, but further environ-
mental impacts can be minimized by ML through enhanced 
process control. It can predict, for example, the necessary 
pressure or strength of an electric field to inactivate the 
microbes on-site and avoid overprocessing (Razghandi 
et al., 2024). Similarly, because ML reduces food spoilage 
by enhancement of predictive quality control, it also helps 
reduce food waste and, by implication, decreases the pro-
duction of greenhouse gases that result from waste disposal 
(Wang et al., 2022a, 2022b, 2022c, 2022d). Another great 
advantage offered by the non-thermal process is reduced 
needs for chemical preservatives, thus accordingly satisfying 
the growing consumers’ interest in cleaner and more sustain-
able ways of food production (Lin et al., 2023; Ramirez-Asis 
et al., 2022).

The integration of ML in non-thermal food processing 
for multifaceted development related to sustainability, eco-
nomic effectiveness, and environmental protection all mean 
that by optimizing the processing condition, ML supports 
sustainability in food production by reducing waste. Eco-
nomically, ML has contributed to cost savings by enhancing 
efficient processing and reducing labor and material costs 
(Evrendilek et al., 2022). The environmental benefits will 
be supporting the reduction of energy consumption and food 
waste in line with global goals related to carbon footprint 
reduction and using greener technologies (Razghandi et al., 
2024). These benefits put together make ML an essential tool 
for non-thermal food processing that needs to move forward 
in a more sustainable, cost-effective, and greener direction.

Challenges and Future Work

Despite potential of ML in non-thermal food processing, 
there are a number of limitations. One major limitation is 
that ML requires a large amount of high-quality data to train 
accurate models. Since many of the non-thermal processes 
like US or CP are at a relatively nascent stage, quality data-
sets might not be available or tough to retrieve. Besides, 
most ML models easily get puzzled by the complex and 
variable nature of the biological material, such things as 
food, where small changes in the composition of the raw 
material can strongly influence the result. Then again, over-
fitting—especially in the case of dealing with databases of 
limited sizes or imbalanced datasets—can also steer models 
to poor performance in an industrial setting because of their 
good performance in a lab environment. Moreover, most ML 
models, specifically those of deep learning algorithms, are 
considered to be black box because the form of their deci-
sions is impossible to provide insights about, which might 
be a problem for industries that demand regulatory transpar-
ency, such as food safety.

Various challenges exist in implementing ML in non-ther-
mal food processing. Key among them is the complexity of 
integrating ML in food processing systems. The variables 
encompassed by non-thermal technologies are not always 
linear and easy to model. For this, sophisticated algorithms 
become necessary. Adaptation to ML tends to be expensive 
infrastructure changes, such as sensors for online data acqui-
sition and connectivity that allows for remote monitoring 
and control, thus becoming a financial burden to the usual 
smaller food processors. There are also regulatory chal-
lenges; food safety regulations demand rigorous validation 
and transparency, yet ML models, particularly complex ones 
like neural networks, are often opaque. Ensuring that ML-
driven processes meet regulatory standards for food safety 
and quality assurance is therefore difficult. Furthermore, 
there is a skills gap in the food industry, where many prac-
titioners may not have the necessary expertise in ML, data 
science, or computational methods, posing challenges for 
widespread implementation.

For the future, ML in non-thermal food processing is very 
promising since continuous technological development can 
solve known limitations and challenges. Improved IoT inte-
grations and better sensors enable better data collections, 
hence a better way to develop more accurate and generaliz-
able ML models. Other emerging fields include explainable 
AI, which could enhance the interpretability and therefore 
the suitability of ML models for regulatory environments. 
Besides, increasing computational power and ease of access 
to cloud-based ML platforms will increasingly lower the 
threshold for smaller food processors. Integration with other 
enabling technologies, including robotics and automation, 
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will also enable more real-time capability for ML systems, 
including autonomous control over non-thermal processing 
techniques. As the work continues to improve, ML might 
start to play an important role in precision food process-
ing, unique parameters being applied to different batches, 
and even individual lots, in order to optimize efficiency and 
quality.

Although ML in non-thermal food processing has bril-
liant future prospects, some of the drawbacks to be over-
come are related to data availability, model interpretability, 
and investment in considerable infrastructures. When these 
current obstacles have been surmounted through better data 
accrual, improved model explainability, and enhanced com-
putational capabilities, wider-scale adoption can take place. 
One can well expect that with the advancement of technol-
ogy, ML will be a mainstay in non-thermal food processing 
for its high efficiency, less wastage, and consistent quality 
of products. It will require continued research and develop-
ment, complemented by collaboration with the industry, to 
realize all the advantages of machine learning in this inno-
vative area.

Conclusion

This paper reviewed a number of non-thermal food process-
ing technologies and focused on showing how their opti-
mization can be done via machine learning models. Also, 
ML has been emphasized as critical for the optimization 
of those processes so as to provide real-time control with 
high precision/adaptability compared to conventional mod-
els. Similarly, the integration of machine vision systems, 
advanced sensors, and spectroscopic methods played a cru-
cial role in the development of technologies of non-thermal 
food processing. These tools together create improvements 
in data collection, monitoring, and data analysis to enhance 
the quality and safety of food. Some of the limitations and 
challenges recorded are high computational demands from 
ML models and the large datasets required for proper train-
ing of such models. Furthermore, the complexity of the food 
systems and domain interactions within the food proper-
ties and parameters of non-thermal processing have always 
hindered the application of conventional numerical mod-
els. In the future, these technologies are likely to be further 
improved by ML-driven approaches, especially when meth-
ods of data collection improve. Future progress in the use of 
non-thermal processing within industry will require AI for 
real-time monitoring and the optimization of such processes, 
together with sensors. Indeed, such integration would facili-
tate the quest for efficient, sustainable, and high-quality food 
production practices.
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