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This paper takes a design-driven human-centred approach to Face Recognition Technology (FRT). In a process of Research through Design 
we first generated 120 ways to dodge face recognition, then distilled and tested 50 concepts in the lab. The 19 disguises that successfully 
bypasses FRT informed the implementation of 7 disguises initially tested with 14 white participants walking through a hall, a corridor, a 
control gate. The control gate led to a larger study (39 participants of different ethnicities) to assess the effectiveness of the disguises in 
bypassing 3 open-source FR models using 3 different distance metrics and 4 backends. We compare our real-life evaluation of design-
generated disguises against previous and current computing research: while maliciously crafted digital perturbation attacks work well, 
they do not capture the complexity of live FRT opening up opportunities for future research.  

CCS CONCEPTS • Human computer interaction (HCI) • Human and societal aspects of security and privacy  

Additional Keywords and Phrases: face recognition, public places, privacy, presentation aacks, design, interactive devices, 
ethnicity, evaluation, dodging face recognition, evading face recognition. 

1 INTRODUCTION 
Facial recognition is a consolidated yet still growing biometric technology by which the face of a person is 
recognised as known [Castelvecchi 2020]. The underpinning principle is that the human face is a (unique) 
combination of features (i.e., eyes, nose, mouth, face contour) that can be used to identify an individual. For its 
nature, facial recognition is very simple to use and therefore it has become a common biometric authentication 
system now available on smartphones, home and building security, retailers, border control [Kortli et al. 2020]. 
Typical scenarios of use are security for the individual, e.g., unlocking personal devices and apps; for companies, 
e.g., checking people in and out of work; and in public spaces, e.g., to monitor the crowd and rapidly identifying 
specific individuals [J. Zhang et al. 2021]. When used in public spaces as a way to augment CCTV cameras with 
the power of AI, facial recognition is labelled by critics as a tool to create a surveillance society where citizens’ 
rights are eroded, and democracy is slowly moving toward authoritarianism [Polyakova and Meserole 2019]. 
These criticisms become news when face recognition is used by the police to control demonstrations taking 
place [Sinmaz 2023] or in crime investigations sometimes resulting in individuals being falsely accused [Hill 
2020, Hill 2023]. While the use of facial recognition is accepted by the vast majority of citizens for reasons of 
public security [Bu 2021], more questionable is its use to monitor and regulate people’s behaviour, from limiting 
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shoplifting [Chivers 2019] to school attendance and ‘good citizenship’ [Bu 2021]. The spreading of the use of 
facial recognition means companies are pushing ahead with technology development and selling 
internationally to both governments and individuals [Hawkins 2018]. National and international regulations 
take time to be developed and agreed therefore critical aspects such as acceptable accuracy, the monetisation 
of very sensitive data - our faces, privacy rights violations, data collection and use [Bu 2021] are still a matter 
of debate.  Social science literature has since long discussed the ethics of facial recognition [Selinger and Leong 
2021] and computer scientists are now aware of the ethical implication of their work [Van Noorden 2020]. 
Motivated by this societal awareness, some researchers have started to investigate people’s attitude and to 
address existing concerns by introducing privacy-preserving mechanisms as part of their system design [S. 
Zhang et al. 2021; Löbner et al. 2023]. Nevertheless, computing research still mostly focuses on lab experiments 
on system performance and technical challenges widening the gap between research and its real application.  

Our research looks at Facial Recognition Technology (FRT in the following) deployed in public spaces for 
the purpose of monitoring and surveillance. It is a very specific scenario where the control of the 
video recorded, its analysis, use and storage are entirely in the hands of those who provide surveillance services 
(to the government or the private sector) while the people whose face is captured do not have any power to 
prevent being recorded and may even not be aware FRT is in operation. In this complex and articulated 
landscape, we take a design-driven human-centred perspective of the sociotechnical system of technology, 
people, and places. While most research in this area starts from the knowledge of how FRT works and devises 
computational ways to evade it [Sharif et al. 2016; Zhou et al. 2018; Pautov et al. 2019; Zhu et al. 2019; Zolfi et 
al. 2021; Vakhshiteh et al. 2021, Jaiswal et al. 2022, Li et al. 2023], our research is computing-agnostic and 
founded on the human question “if I did not want to be recognised, what would I do?”  We started with an 
intense design phase: of an initial set of 120 concepts2 50 were fast-prototyped and tested by the researchers in 
the lab (Section 4). The 19 concepts that successfully bypassed FRT were implemented as 7 disguises (4 static 
and 3 interactive) and tested with 14 white participants walking through 3 cameras positioned on a corridor 
door, on the corner-ceiling of a hall, and in a frontal position as in a controlled access gate (Section 5). The FRT 
performed poorly in the corridor and hall. A final more extended experiment focussed on the access control 
setting with 39 participants from different ethnicities. Our findings are not always aligned with existing 
literature pushing us to reflect on why this is the case (Section 6). 

2 DEFINING THE RESEARCH CONTEXT AND ITS ORIGINAL CONTRIBUTION 
The scenario of reference for our research is FRT deployed in public indoor places where live cameras are used 
for monitoring and surveillance. This focussed goal brings some specificities that distinguish our investigation 
and define our original contribution respect to other FRT research conducted in the same or close contexts.  

We started with a generative Research through Design phase to conceptualise, test and select human-centred 
proof-of-concepts that could be made by, for example, human-right activists against FRT. The promising 
concepts were then prototyped as physical disguises to be tested first in the lab and then in realistic 
experiments. The process of creating the disguises did not consider the capabilities of the FRT, rather it started 
from what professional designers imagined could be effective ways to go undetected. Much previous research, 
instead, implements disguises that exploit known FRT weaknesses (e.g. bespoke adversarial patches [Pautov et 
al. 2019]; sharp light change [Li et al 2023]) requiring expertise in computer science, some knowledge of the 
FRT being targeted, the camera and sensors in use [Bisogni et al 2021]. Some of the concepts we generated 
share some features as those in the literature (a pair of glasses [Sharif et al. 2016], face projection [Li et al. 2023], 
makeup [Zhu et al. 2019] or a hat [Zhou et al. 2018]). However, our disguises do not require any computing 
knowledge (such as perturbation algorithms to feed obfuscation systems [Rosenberg et al. 2023, Vakhshiteh et 
al. 2021]) and could be made with minimal DIY skills. Therefore, our work takes a human-centred perspective, 
complementing, expanding and challenging existing research by offering similar, yet different physical 
disguises generated following a design approach. Some of our results contradict papers in the literature pointing 

 
2 ‘Concept’ is a term commonly used in design to indicate a rough idea of a potential solution to a problem or a question. A concept does 
not have to be realistic or feasible, it functions as an inspiration and as a starting point. 
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to key role of computational deceptions such as gradient-based perturbation rather than the physical means of 
delivering it such as a mask, a pair of glasses or a makeup, as discussed in Section 7.  

Generative design does not pursue a single solution, rather it explores the problem through multiple and 
diverse options simultaneously [Brown 2009], in our case physical disguises with different features. Following 
a design thinking approach we also quickly prototyped and tested many concepts in the lab to help us select 
the most promising to be taken to implementation and testing. Existing research mostly focusses on a single 
object type (e.g. mask [Zolfi et al. 2021], glasses [Sharif et al. 2016], hat [Zhou et al. 2018]). Instead, our informal 
tests in the lab and more structured realistic evaluations simultaneously compare multiple different types of 
wearable disguises trying to assess the most effective ones. This comparison across disguises is a unique 
contribution.  

During our study we conducted three different assessments of FRT against the disguises, always using live 
video. The first was a lab test (Section 4.1): the researchers presented themselves to the FRT wearing one of the 
50 proof-of-concepts to check if they were recognised or not. The result of this test informed the prototyping 
of the 7 disguises, 3 of which were interactive. In the second test, 14 white participants walked along a corridor, 
around a hall, and in front of a camera wearing the disguises; in the third experiment we expanded the number 
of participants to 39 including white, brown and black people. We also tried to balance the sample by inviting 
participants of different ages and different gender. This quasi-realistic setup makes our research unique as the 
data used to test FRT in the lab is generally a database of images computationally manipulated [Hernandez-
Ortega et al. 2019] or images captured in ideal conditions with the subject and the camera in fixed positions 
within a controlled environment and perfect illumination (e.g., [Sharif et al. 2016, Li et al. 2023]). To the 
contrary, our participants were wearing the disguises and walked through three different spaces with different 
illuminations and the camera placed at different angles. Finally, we run multiple tests to compare different FRT 
configurations over a period of 3 years, from Spring 2021 to Summer 2024 showing how FRT has improved over 
time and providing empirical evidence of the best performing configuration. Therefore, our research is the first 
to show the combined effect of free movement of people, ethnicity, disguises, camera angle, and light variation 
on the performance of multiple FRT systems over time.  We also performed a series of cross tests to assure our 
results are consistent and reliable, including: the test of different video samples rating to balance accuracy and 
processing times; logistic regression to evaluate the impact of each variable (disguise, gender, ethnicity) on the 
predictive capacity of one of the top-performing FRT pipelines; open-world settings with larger databases of 
identities to check if the performance changes as the number of individuals increases. These tests could be a 
guide for other researchers. 

3 FACE RECOGNITION TECHNOLOGY 
In this section we review the literature on FRT to identify individuals and deception strategies to avoid 
identification in video streams. We attempt to include both academic and commercial systems, although public 
reports on real uses of commercial systems are very rare. In reviewing the literature, we limit our effort to the 
specific scenario of reference: FRT deployed in public indoor places where live cameras are used for monitoring 
and surveillance where the people whose face is captured do not have any power other than to wear a disguise. 
Therefore, user-controlled privacy [Aditya al. 2016], devices that guarantee privacy by adding noise to the 
image files [Vakhshiteh et al. 2021, Jaiswal et al. 2022], by “cancelling” bystanders [Hasan et al. 2020], or camera 
that shut when people are in view [Steil et al 2019, Aditya et al. 2016] are excluded from  this review because 
those pursue the opposite goal. Mechanisms that identify people by other means than only their faces (e.g. 
clothes and pose [Oh et al. 2016], gait [Wang et al. 2018], information in Linkdin or FaceBook [Acquisti 2014]) 
are also considered out of scope. 

3.1 Face recognition technology 
Face recognition is a biometric tool to identify faces in images, both photos and video stills. Although there is 
a tendence to think of FRT as pure software, the starting point is the sensing of the world through a camera 
(that captures the image), possibly complemented by additional sensors that can help to better interpret the 
scene, for example an infrared camera, a depth camera, or an eye tracking sensor [Kortli et al. 2020]. The 
performance of FRT depends on the accuracy of the sensing system and additional sensors to a camera could 
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improve performance in conditions of illumination variation, or additional sensors could prevent ‘presentation 
attacks’ [Hernandez-Ortega et al. 2019]. The processing pipeline is articulated in several steps some of which 
are common across different purposes (see [Kortli et al. 2020] for recognition techniques): 

1. Face detection scans the image seeking faces [Kortli et al. 2020]. The output is a bounding box for each 
face detected in the image. Face detection may fail because of variation in the illumination of the scene, 
partial obstruction of the face and facial expressions. 

2. Face alignment locates face landmarks such as eyes, nose and mouth and aligns them generating a 
frontal and well-lit view of the face [Castelvecchi 2020]. 

3. Features extraction extracts the geometry of the face(s) to create a ‘faceprint’, that is unique for every 
person, and encodes the faceprint into the feature space [Kortli et al. 2020]. The output of features 
extraction can be used in multiple ways, for example in Facial Analysis to classify a person respect to 
their age or gender or to assess the person’s emotional state [Castelvecchi 2020], or to populate the 
database of identities used in Facial Identification [Kortli et al. 2020]. 

4. Face matching confirms or checks the identity of a person. Verification is a one-to-one comparison in 
which the faceprint extracted from the image is compared with the one stored. Examples are unlocking 
a smartphone, passport control or work attendance [Castelvecchi 2020]. Identification is a one-to-many 
comparison in which the faceprint extracted is checked against a database of known people to discover 
the identity of the person detected [Castelvecchi 2020]. An example is the scanning of a crowd to find 
people of interest in police operations [Fussey and Murray 2019, Mansfield 2023]. 

This paper focuses on facial recognition for identification. FRT failure in identifying a person can occur at 
different points: detection failure when no face is detected in the image or a face is detected where there is none; 
recognition failure when a known face is not recognised in the image or the person is recognised as someone 
else. The rate of failures determines the accuracy of the FRT. The performance of FRT in ideal, controlled 
environments can be very high: [Kortli et al. 2020] compared different techniques and reported scores of 96-
99% with perfect illumination, a fixed pose, optimal computational power, and computational time. Similarly, a 
comparison of commercial3 FRTs on a database of 80 celebrities for which excellent visual material is available, 
e.g., multiple photographs from different angles, found 93-99% accuracy [Raji et al. 2019].  

Reliable data of FRT performance in uncontrolled, in-the-wild, real-life use is an exception. Hindsight from 
a live facial recognition trial carried out by the police in the UK in 2018 showed a correct match of 19.05% (8 
correct out of 42 matches found by the FRT used) [Fussey and Murrey 2019]. However, a recent and larger 
study from 2022 carried out by the police in the UK using real-life recordings in the streets of London in a 
sunny summer day (i.e., optimal illumination) with a controlled cohort of subjects found a positive identification 
of 89% across all ethnicities [Mansfield 2023]. It is an impressive increase in performance and a steep drop in 
the error for false positive (when a person is wrongly identified as being in the watchlist)4. Even with a minimal 
error rate, false positives are particularly critical when the scale of reference is the entire population of a 
country given the consequences of false accusation on the life of the individuals wrongly accused. As the media 
report cases of false accusations following FRT misidentifications (by USA police [Hill 2020, Hill 2023, Williams 
2020] and by Apple in their shops [BBC 2019]), the accuracy in real-life use and across different FR systems 
becomes crucial.  In addition, while governments are likely to have rules and procedures to safeguard their 
citizens (e.g. the UK requires a final verification by a police officer before any action is taken [Fussey and 
Murrey 2019]), the private sector may be acting in a vacuum of regulation rising concerns about potential 
misuses and abuses (as in recent cases in the USA [Murphy 2023, Bhuiyan 2023, Bhuiyan 2024]). 

 
3 e largest comparative continuous assessment of FRT commercial algorithms is carried out by the USA National Institute of Standards 
and Technology NIST using very large datasets of images: companies apply to NIST to have their soware tested in both facial 
identification and analysis. e last report from 2020 is available at hps://www.nist.gov/programs-projects/face-recognition-vendor-
test-frvt 
4 [Mansfield 2023] reports an estimated false positive error rate of at 0.017% for a watchlist set of 10,000 and a false positive rate of 0.002% 
for a set of 1,000.  
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3.2 Presentation and adversarial attacks 
Even if the first successful face recognition system dates back to the 1960s, it has been only with the last 
advancement of deep learning and the availability of abundant data that FRT has reached accurate performance 
[Vakhshiteh et al. 2021]. However, deep learning face recognition systems are vulnerable to data variation 
[Vakhshiteh et al. 2021]. Thus, much effort is spent on making the technology more robust to attacks 
[Hernandez-Ortega et al. 2019].  

The literature distinguishes physical attacks, those modifying the appearance of a face before image 
capturing, and digital attacks, those modifying the captured image by adding ‘noise’ (or perturbation) to create 
an adversarial image that deceives FRT but still shows the original face to a human eye [Vakhshiteh et al. 2021]. 
In essence, digital attacks exploit known weaknesses of FRT to mislead it.  

Our research investigates physical attacks in the real world, called presentation or spoofing attacks. Such 
attacks on facial sensors can be carried out by simply presenting the artifact to the camera and do not require 
any knowledge on how the biometric system works [Ramachandra and Busch 2017]. A presentation attack can 
have different purposes: the ‘active impostor’ wants to be identified as a specific individual (impersonation); the 
‘active impostor’ aims to be identified as any other individual (dodging); and the ‘concealer’ intends to evade 
being recognised as any individual known to the system (evasion) [Ramachandra and Busch 2017, Vakhshiteh 
et al. 2021]. Impersonation attacks make use of artifacts such as a photo, video or 3D mask of the target person. 
Software mechanisms have been implemented in FRT to detect the ‘liveliness’ in the face (e.g., skin texture and 
blink detection against images and 3D masks) or by measuring the depth of the scene through reflectance (e.g., 
variation of camera focus or infrared against the use of video on tablet) [Ramachandra and Busch 2017, 
Hernandez-Ortega et al. 2019].  

Impersonation can be also achieved using ‘adversarial patches’, i.e., print out of perturbations to be worn on 
glasses [Sharif et al. 2019], on a t-shirt [Xu et al. 2020], disposable masks [Zolfi et al. 2021], or on part of the 
face [Pautov et al. 2019]. These patches are created ad-hoc to impersonate a specific person, a result also 
achieved by projecting perturbations on the face [Shen et al. 2019, Nguyen et al. 2020, Li et al. 2023]. However, 
the use of adversarial perturbation in presentation attacks requires substantial computing knowledge to create 
patches for impersonation out of an image of the target person, therefore it cannot be considered an attack easy 
to carry out.   

In this paper we explore different forms of presentation attacks and test if the disguises can dodge or evade 
FRT. We implemented and tested several strategies similar to a few in the literature, yet our work is unique in 
three ways: (1) we implement wearable prototypes, (2) in the evaluation we asked participants to wear the 
disguises and walk towards a camera, and (3) we compare the effectiveness of the disguises in bypassing FRT. 
Literature on physical attacks very rarely presents prototypes used in real life conditions. For example, attacks 
by projection on the face [Shen et al. 2019, Nguyen et al. 2020, Li et al. 2023] place the projector far from the 
person who stands still while their image is captured; conversely, we explored and implemented projection as 
part of a hat (Figures 9, 10, 11) that participants wore while walking around during the evaluation. Another 
example is the use of makeup in an adversarial attack that automatically add eye and lips makeup to images or 
a video feed [Lin et al. 2022]: we experimented with different makeups by painting our faces and found different 
results. Section 3 discusses our design with reference to examples in the literature to highlight when our 
approach differs and when it is similar. 

4 DESIGN RESEARCH TO EXPLORE FACE RECOGNITION DECEPTION  
This section discusses the design process. We used a Research through Design methodology [Stappers 2007, 
Koskinen et al. 2011] starting with a phase where the brief of bypassing FRT is expanded and explored from 
different angles. The concepts generated are then assessed in a convergent phase, some are eliminated, other 
are aggregated. The most promising are taken forward to a phase of experimentation with material, fabrication 
and testing that is instrumental to build an understanding of what could work and what could not. On the bases 
of empirical evidence a few concepts are then developed to be evaluated in a more rigorous way with recruited 
participants.  
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4.1 Proof of concepts 
As discussed in 3.2, attacks to FRT exploit known weaknesses and generally require computer science expertise 
to implement the precise attack that will fool FRT. Instead, a human-centred, naturalistic approach runs through 
our research. We started with the question: “if I did not want to be recognised, what would I do?” and speculate 
on possible scenario of use, e.g., disguises that would go unnoticed in the street and make the wearer invisible 
to FRT at will.  

Six (6) experienced professional product designers participated in a 2-hour generative workshop.  The design 
brief was to imagine a wearable that could successfully bypass FRT. What the technology could or could not 
do was not discussed, rather it was left to the intuition of the designers to imagine what could be effective to 
go undetected. The product designers then proposed concepts explaining what the deception was and how it 
worked. We stayed open to both simpler and complex concepts irrespective of how ‘implementable’ or ‘realistic’ 
such concepts might appear at first sight (Fig. 1) for their potential to inspire design. Overall, 120 different 
concepts were generated, several described an interactive piece that could be switched on and off. We did not 
brief the product designers on which physical attacks have been tried in the scientific community, yet a few of 
the concepts generated in the workshop resemble presentation attacks tested by computer scientists: 3D mask 
[Ramachandra and Busch 2017, Hernandez-Ortega et al. 2019], adversarial face mask [Zolfi et al 2021], different 
types of projection on the face [Shen et al. 2019, Nguyen et al. 2020, Li et al. 2023] and dazzled glasses [Sharif 
et al. 2016, Sharif et al. 2019]. The key difference between the concepts generated by the designers and those in 
the literature was the mechanism to bypass FRT, for example the dazzled glasses use ‘perturbation’ for 
impersonation, what looks like random bright-coloured patterns placed on the glasses frame [Sharif et al. 2016] 
while the glasses imagined by the designers generated a hologram when clicked together and were later 
implemented with a hidden mechanisms for light projection against the camera (Fig. 6).  

The workshop was a divergent, generative phase that was followed by a selective, convergent phase [Brown 
2009]: the 120 concepts generated in the workshop were critically assessed by the researchers, those similar 
were aggregated, and 50 were taken forward.  Fig. 2 and Fig. 6 show examples of aggregated concepts. The 
proof-of-concept eye-mask in Figure 2-bottom merges two concepts: a textured mask and a lighting mask in 
Fig.2-top. Figure 6 shows the merging of two different objects a pair of hearings emitting light and a pair of 
holographic glasses combined into a proof-of-concept of glasses projecting light. The aggregation of concepts 
could occur at any time during the design process: Fig. 10 shows how the projection in, already an aggregate 
of several projection concepts, was implemented with a geometric pattern that was successfully tested as 
makeup, bottom left in Fig. 3.   

Most concepts were quickly mocked-up as proof-of-concept and tested by the researchers themselves in 
Spring 2021 during COVID lockdown (Fig. 3). The interactive disguises, discussed in Section 4.2.2 and 4.2.3, 
where warn by the researcher and switched on and off: if the disguise was effective, the FRT system would flip 
between recognising when the switch was off and missing to recognise the person when the switch was on, as 
shown in Fig. 10. A few concepts could not be prototyped due to difficulties to procure special materials and 
access fabrication machinery while in lockdown; however, elements of those concepts were transferred, for 
example the thermochromic face cover (Fig. 1, centre bottom) shares elements of the ‘prosthetic patches’ and 
the ‘projection in’ concepts, both developed as proof-of-concept (see Fig. 3). In this way we were able to test 
features commons across multiple concepts. An example is given in Fig. 2 that combines two concepts of mask, 
one with a textured surface, the other with a light diffuser. Even though this specific exploration was not taken 
forward to become a prototype to be tested with participants, the process of designing and making it increased 
our knowledge of material-digital hybrids. 
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Figure 1. Some of the concepts generated in the workshop, from simple (top) to complex (boom). 
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Figure 2 A proof-of-concept (boom) that combines two similar concepts (top): a mask with a 3D texture (Concept 12) 
and refracting light (Concept 30). It combines light and mask using internal refraction to create a glow effect. The 3D 

printed sheet adds the paern. 

The proof-of-concepts were tested against DeepFace5, running VGG and Facenet models, paired with a 
laptop or an external camera in Spring 2021. The multiple hardware and software settings were instrumental 
in the process of gaining an empirical understanding of the variables that come into play. For example, the 
optics of different cameras may impact the performance of FRT and different models are likely to have different 
performance: we considered successful only those proof-of-concept that bypassed all configurations. Testing 
the 50 concepts, or part of their features, was instrumental to build an understanding on which strategies could 
be effective in deceiving FRT and which were not. Indeed, while face recognition software is available 
opensource for everybody to use, which are the key facial features for each model is not clearly disclosed. From 
our experiments, some of which are shown in Figure 3, we inferred that the eyes and the nose bridge were key 
points for recognition whereas the mouth and the chin were not critical. For example, the masks and the 
prosthetics leave the eyes and the nose-bridge visible and failed to bypass FRT while all the concepts that 
successfully bypassed FRT hid the eyes and the nose-bridge. 

The tests of the proof-of-concepts eliminated those that did not bypass FRT. For example, most makeups 
were not effective, possibly because makeup emphasises facial features rather than disguising them, whereas 
many snoods6 bypassed FRT successfully, and projection in gave inconsistent results (see Fig. 3 for examples). 
Interestingly, our tests were not always consistent with the literature, for example the synthetic makeup in [Lin 
et al. 2022] was effective in deceiving FRT while two of our makeups were detected while one was successful, 
this in line with [Chen et al 2017] who recorded equally patchy results. Our results also contradict [Shen et al. 
2019] face-on-face projection and [Zolfi et al. 2022] nose-mouth mask, see discussion in Section 7.  

 
5 DeepFace soware was downloaded from: hps://github.com/serengil/deepface 
6 A ‘snood’ is a wide ring of knied material worn as a hood on the head or as a scarf around the neck. When worn around the neck a 
snood can be easily pulled up to cover the face, as in the concepts explored here. 
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Figure 3. Some examples of disguises that failed to bypass FRT (top) and succeeded (boom). 

By systematic testing, we identified 19 successful deceptions, organised into four categories classified respect 
to key features, specifically how easy they were to make (simple vs. complex) and if they were analogue or 
digital. These four categories of deceptions were the foundation for the second phase of the research, the 
development of the simplest and the most complex concepts (from prototypes to products) and their assessment 
under near-real life conditions. 

4.2 Prototyping disguises 
From the classification of successful disguises, we selected three generic concepts to be implemented in different 
forms: camouflage, projection out and projection in. At this point we started to consider realistic scenarios of 
both making and use. The disguises are described below starting from the original concept (in the set of 50) 
through to experiments with materials and proof-of-concepts (tested by the researchers) to the final 
implementation ready to be used in the comparative evaluation discussed in section 5. In this process, from 
early concept to final implementation, we had, at times, to simplify the original concept to make it feasible and 
implementable or to make it safe and easy for participants to wear during the comparative evaluation. In 
hindsight, our choice to prefer ease of use and the comfort of the participants taking part in the experiment 
against maintaining the successful technical solution as tested in the lab drastically compromised the 
effectiveness of the disguises, as discussed in Section 5 and 7.  

        

    

Figure 4. Extensive testing: (top) different fabric and invisible bandages; (boom) different paerns draws and printed. 

4.2.1   Camouflage 

The concept of camouflage includes a wide range of ‘analogue’ disguises to wear. A camouflage can be ‘long-
lasting’ such as an elaborate makeup that needs time to be put on and off, or it can be a ‘quick’ disguise such 
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as a patterned snood, a face shield or a veil that can be put up and down quickly. The snoods successfully 
bypassed FRT and the concept was taken further (Fig. 3). The next design iteration of the snoods explored 
materials, patterns and how to make them (Figure 4). Inspired by the idea of multiple skins to peel off (Fig. 1, 
Concept 21), we experimented with invisible bandages (also called ‘second skin’), an adhesive film applied 
directly over the skin, for example, to heal burns. The effect on the face is similar to the snood (see Fig. 5) and 
has the advantage of being quick to dispose of, a key factor in eliminating evidence of a disguise (Fig. 4, top 
right). Different patterns were designed and tested (Fig. 5, bottom row) and 3 were selected for production (Fig. 
5). 

 

 

Figure 5. Camouflage: 3 snoods with different paerns printed on tights (le), 2 paerned second skin (middle), goggles 
(right). 

 
 A further simple camouflage was introduced following the observation by a design researcher that they 

were unable to unlock their phone (that use a one-to-one FRT) when wearing dusty, safety goggles. We 
therefore introduced this disguise imagining that someone dressed as a maintenance worker could easily walk 
in the street unnoticed.   

4.2.2  Projection out 
A small set of the 50 concepts proposed a camera-attack strategy: a beam, controlled by the user, is directed 

toward the camera with the intent of confounding its optics and prevent face detection. These concepts of 
attacking the camera fed an initial exploration of materials that could reflect infrareds (Fig. 6, middle) as infrared 
sensors could be added to a standard camera to sense the scene at night [Kortli et al. 2020]. This very quick and 
effective proof-of-concept fed the exploration of two interactive disguises that used non-visible wavelength 
light: ultraviolet (UV) led and infrared (IR) led (Fig. 6, third and second from right). The UV interactive glasses 
were very effective in bypassing FRT under different light conditions whereas the IR glasses failed in daylight 
conditions with one of the cameras.  

Although successful in bypassing FRT, the 8 UV LEDs mounted on the frame made the shape bulky and the 
wires were unpractical for the evaluation with participants. As we aimed at wearables that participants could 
easily put on and off, we decided to make the projecting out glasses using an off-the-shelf frame. To eliminate 
the wires the number of light points was reduced and optical fibres along the top of the frame were used to 
form a line of 4 light points (Fig. 6, right). The light projected is visible light 400 – 780nm and the battery needed 
to switch the light on/off is small (UV and IR would have required a much larger battery pack). We were aware 
that the change from UV/IR to visible light and the reduced points could impact the power of deception of this 
disguise; what we gained was to move closer to a standard pair of glasses that could be used in real life and 
observe its wearability and ease of use in the evaluation. If this disguise would be partially successful in 
bypassing FRT in the evaluation, then the effort to micro-engineer the projection-out glasses to reduce the size 
of the electronics would be justified. 
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initial inspirational concepts 

 

   

 

 

 

   
 

light and infrared 
reflective glasses 

3D printed frame  

UV light 400-315nm 

3D printed frame 

IR light 780nm 

off-the-shelf frame fibreoptics  

visible light 400 – 780nm 

Figure 6. The concepts of morphing glasses and a camera-aack mechanism that inspired the design of glasses projecting 
out.    

4.2.3       Projection in  

A set of concepts from the workshop propose hats or headgears that project images or patterns on the face 
(Fig. 7). Rather than attacking the camera directly, these projections disguise the person by confounding their 
facial features. It was a promising intuition, and three quick tests were done early in the research, two were 
successful (Fig. 3): one floods the face with white light, the other projects geometric patterns. This started an 
exploration of two different headgears, tested as proof-of-concepts. The ‘halo hat’ is a round brim straw hat 
with a ribbon of white LED on the bottom of the brim; a switch controls when it is on-off (Fig. 8). It was effective 
in bypassing FRT, wearable and easy to use thus ready for the evaluation. 

 



 
12 

ACM Trans. Comput.-Hum. Interact. 

    

  Figure 7. Headgear that ‘project in’: (1) the face of someone else – tested as proof-of-concept, it failed, see Fig. 3; (2) a 
dazzling light – the ‘halo hat’ prototype; (3) geometric shapes tested as makeup succeeded, see fig. 9; (4) shades – tested 

as the ‘rainbow hat’ prototype. 

      
Figure 8. The ‘halo hat’ with a ring of LED around the brim. The on-off control is a simple switch. 

More articulated was the exploration of the geometric projection. To become wearable, the pico-projector 
used in the quick tests in Fig.3 had to be fixed to the head to guarantee an alignment between the position of 
the head and the projection. A test rig was made using carbon fibre and a bespoke 3D printed holding piece for 
the pico-projector to be mounted on a bike helmet (Fig. 9, left). In the proof-of-concept the face-projection 
alignment was consistent and the bypassing of the FRT very effective (Fig. 9, right). Incidentally, the geometric 
projection implements the geometric makeup, the only makeup to effectively bypass FRT in the test (Fig. 3), 
another example of merging different features while progressing along the design thinking process [Brown 
2009]. 

 

 

Figure 9. The ‘projection in’ of a geometric paer: FRT recognizes the user when the projection is off but not when it is 
switched on. 

To use this concept in the evaluation we needed to improve its wearability and ease of use. However, this 
would require much engineering work (e.g., to miniaturise the electronics) that was not affordable in terms of 
time and expertise. Thus, a much simpler projection-in prototype was implemented for the evaluation (Fig. 10). 
As for the projection-out glasses, we had to compromise the original concept for the evaluation. The ‘rainbow 
hat’ prototype projects a carousel of coloured lights on the face; it is controlled by a smart watch to avoid 
attracting attention while quickly switching it on and off. 
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As for the glasses (see 4.2.2 Fig.6), the constraints for disguises that were easily wearable to be used in a 
naturalistic evaluation by participants external to the project walking around spaces, changed part of the 
concept, specifically the type of the pattern projected. Given the result of the lab tests (Fig. 3), in changing the 
pattern we were aware of the potential failure (i.e. to be detected): our intent was to see the result of the 
evaluation, learn from it, and then review the design, see section 7 Discussion. 

 

 

Figure 10. The rainbow hat and the smart watch used to control it: a line of coloured led below the visor of the cap 
projects animated coloured lights on the face. A smart watch controls the on-off switch of the light without aracting 

aention. 

5 UNPACKING FRT PERFORMANCE  

5.1 The ethics of evaluating FRT with participants 
Conducting research on FRT requires a degree of sensitivity to the subject that only recently has been 

developing within the computer science community [Von Noorden 2020]. As HCI researchers we were aware 
of the ethical concerns since the inception of the project and ethical considerations run throughout the whole 
research, from designing comfortable and safe disguises; to wearability and ease of use to perform the 
evaluation; from system configuration for assure privacy to personal data dissemination in publications. The 
evaluation plan was reviewed and accepted by Anonym ethical committee that implements rigorous standard 
of ethical research7. In this section we describe how we delt with ethical issues at different points in the research 
process. 

In moving from concepts tested in the lab by the researchers on themselves to implemented disguises to be 
worn by participants in the evaluation we chose comfort and ease of use above technical coherence. In this 
process some disguises were: eliminated because they were too intrusive (the ‘second skin’ bandage Fig. 5, 
second and third from the right); redesigned to improve wearability (the UV or IR glasses needed many wires 
around the head and a bulky power battery to carry around) or to guarantee health and safety (in projection-
in, ‘halo-hat’ in Fig. 8 floods light from above had to avoid the eyes; ‘rainbow-hat’ in Fig. 10 projects mild LED 
light on the face). We were aware these choices could lower the effectiveness of the disguise, yet we preferred 
to have lower results and then to go back to the drawing board with informed knowledge. To guarantee 
hygiene, we made a large set of one-use snoods and dispose of them after use. 

Our commitment to guarantee the privacy of our participants impacted on the technical setup. To assure the 
recorded videos were always under our control in full, we limited ourselves to open source non-commercial 
FRT software to be installed on the local machine together with the videos. This was clearly stated in the 
participants’ consent form: it was an essential and indispensable condition of the experiment. We were fully 
aware that commercial systems offer better performances, yet we intended to use only a configuration that 
guaranteed participants’ facial features stayed local and under our control even if we had to renounce to optimal 
performance. We are also aware that our videos would be an important resource for other researchers, yet, we 
committed not to distribute it to maintain the privacy of our participants.  

On arrival participants were asked to read the information sheet and sign the consent form which had 
different options: they could opt not to wear a specific disguise if they felt uncomfortable (a person preferred 

 
7A link to the university policy will be added upon acceptance.  
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not to wear the snoods) or they could opt out of having their faces used in publications or presentations (three 
participants opted out).  
 

 

photo identity 

 

 

glasses_off 

 

 

rainbowhat_off 

 

 

halohat_off 

 

 

snood_lines 

 

 

snood_blobs 

 

 

clean(no disguise) 

 

glasses_on 

 

rainbowhat_on 

 

halohat_on 
 

snood_crosses 

 

goggles 

Figure 11. One of the participants wearing the disguises. Top le: the photo portrait used to create the database of 
identities. Boom le: a frame from the clean video used as benchmark. From second le the 10 disguises, the interactive 

are shown as off and on. 

5.2 Experimental design and procedure 
The evaluation was designed to assess which disguises bypassed FRT in realistic situations while maintaining 
data confidentiality. We balanced the rigour of a controlled in-lab experiment with a veridic naturalistic setup: 
in a within-subject experimental design each participant wore all the disguises in turn and walked toward the 
cameras positioned as to resemble real FR conditions. The experimental design was planned and piloted, 
changes and amendments implemented. The first experimental variable is the disguise. Of the prototypes 
developed, the ‘second skin’ was tested only by 2 researchers as it was considered too intrusive for the 
participants to wear; however, patterns printed on the second skin were tested with participants in the 3 snood 
conditions. The three interactive disguises (glasses, halo-hat, rainbow-hat) were evaluated in two states, on and 
off. The benchmark is ‘no disguises’, so a clean face. Overall, there are 11 values for the experimental variable 
disguise: clean, snood-blobs, snood-lines, snood-crosses, goggles, glasses-off, glasses-on, halo-off, halo-on, rainbow-
off, rainbow-on (Fig. 11).   

A proved critical element in FRT performance is the skin colour [Buolamwini and Gebru 2018, Rosenberg et 
al. 2023]. We recruited 39 participants and distinguish them by skin colour: 22 white participants from both 
North and South Europe and the Middle East (13 males and 9 females aged 23 to 76); 9 brown participants from 
India (4 mans and 5 females aged 26 to 32); 8 black participants from Nigeria (4 males and 4 females aged 25 to 
35). The sample is too small to test intersectional samples of skin-gender or skin-age, thus we limit the second 
variable to ethnicity: white, brown, black. 

Further variables define the environment, i.e., the position of the camera with respect to the person to be 
identified, the FRT configuration, i.e., the model (e.g. ArcFace), the backend (e.g. OpenCV), and the distance 
metrics used to compare the face identified with those in the database (e.g. Euclidean). These variables changed 
from the first explorative evaluation to the second more extended one and are discussed in 5.4 FRT performance 
evaluation.  
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To reflect a real-life situation where images from passports, identity cards, driving licences, or mugshots 
database are used to identify an unknow person, we created the database of identities with a single high-quality 
image for each participant taken full front on a white background at the start of the evaluation (Fig. 11 top left).  

To replicate reality as close as possible, we intended to use CCTV cameras. However, the surveillance 
infrastructure we were able to procure was part of a closed system making it impossible to connect CCTV 
output with parametric FRT within the limited resources of the project. A high-performance USB streaming 
camera8 was then chosen. The camera connected to a MacBook laptop running Photo Booth to record videos 
in the .mov format to preserve the high quality of the camera video output. The videos were then trimmed to 
the intended clip, 2 frames per second were extracted ready to be processed by the FRT following the steps 
described in 3.1, namely detection, alignment, extraction and matching. 

On arrival, participants were informed about the project and the experiment; it was made clear the 
recordings would not be shared with anyone and that commercial systems would not be used to guarantee data 
privacy. After signing the consent form each participant was first photographed front-face on a white 
background to create the database of identities; then they were shown the walking route and asked to move in 
a natural way while the camera-laptop setup recorded a video. In the first walk they did not wear any disguise 
(disguise:clean condition). They wore each disguise in turn and walked corridors and rooms toward the camera 
before returning to change disguise.  

Participation in the evaluation was voluntary. White participants were recruited among colleagues from 
design, social science, and humanities aged 23 to 74. Black and brown participants were all international 
students attending master courses, were recruited in the university hall and received a £20 voucher as a thank 
you gift for their time (20-30 min)9. 

5.3 FRT performance evaluation 
We carried out 2 evaluations, reported below. The first assessed a broader setup of 3 environments and 2 FRT 
systems; the findings were used to focus the larger second study on the system and the environment with the 
best performance while expanding the number of participants and their ethnicity.   

5.3.1    Exploratory evaluation 

The motivation underpinning the research was to study FRT in realistic conditions. We setup three recording 
stations that simulate realistic situations. The variable environment: corridor, hall, or gate depends on the 
position of the camera with respect to the person to be recognised (Fig. 12).  

− The hall is a large room with a 4m ceiling; the camera was placed high, in the corner opposite the 
entrance door to get a wide-angle view of the whole space; the camera recorded participants 
entering the hall (from the corridor), walking toward the camera then turning around a large 
meeting table before leaving the room. The position of this camera matches CCTV monitoring 
public buildings, halls and the street. 

− The corridor has a 2.5m ceiling and a series of spotlights that resulted in a rapidly changing 
illumination; the camera was places above a door frame pointing down to capture participants 
walking the corridor. This set-up resembles public passageways in cities, underground, or train 
stations. 

− In the access control gate the camera is placed front face as in a passport control or private entrance.  
 

 
8 Technical details: full HD video 1080P, 60 FPS, 64 megapixels still resolution, wide-angle lens, auto-focus. 
9 Testing the disguises lasted about 10 minutes, the 20-30 minutes include a short interview that assessed participants’ aitude towards 
FRT. e analysis of the interview is not included in this paper.  
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Fig. 12 The scenes recorded in the three seings in the exploratory evaluation: the hall, the corridor, and the access 
control gate. 

Beside different camera-person settings, in the first evaluation we tested the open-source system DeepFace10.  
While the performance of open-source FRT may be below that of proprietary services such as Amazon 
Rekognition or Microsoft Azure, it guarantees the privacy of the participants’ data. Deepface was used ‘as is’ 
with its pre-trained models Facenet512 and VGG-Face; we did not do any fine tuning to improve the systems 
performance on our data. 

Fourteen (14) white participants took part in this evaluation; they walked the 3 environments with 11 
disguises; the video clips were then computed. There is a notable discrepancy in the performance of both models 
when comparing the environment:gate with environment:hall and environment:corridor. In the gate scenario, 
both models demonstrate robust accuracy scoring 1 for the clean condition and achieving above 0.7 for seven 
distinct disguise types. This level of accuracy is significantly diminished in the other environments. For 
FaceNet-512, an accuracy above 0.7 is only observed for the clean and halohat-off in the environment:hall. 
Similarly, in the environment:corridor, this level of accuracy is reached only for the clean, halohat-off, and 
snood_lines, again specifically for FaceNet-512 (Fig. 13). The poor performance could be the combination of 
multiple factors: the corridor had sharp light-dark illumination due to a sequence of spots lights in the ceiling; 
in the hall the camera was placed high looking down with a skewed angle that may have obscured some facial 
features. It might be that a more powerful camera could have improved the performance or that, instead, for 
these challenging environments a different technique such as gait recognition would be more effective as it 
works with low-resolution video and does not need to detect the face [Wang et al. 2018]. 

In general, the disguises were effective in all environments although at different degrees. The good 
performance in environment:gate pushed us to focus on this setting as it puts the disguises in the most 
challenging conditions (i.e., the best conditions for FRT) giving us a better understanding of bypassing FRT. 

5.3.2  Extended evaluation 

In the second evaluation phase (July 2023) we engaged more participants of different ethnicities (white, brown, 
black). All the 11 disguises were used by 39 participants: 22 white, 9 brown, 8 black for a total of 429 video clips. 
The sample is unbalanced towards white (56%) participants respect to participants of colour (44%; brown 23%, 
black 21%), while it is balanced for gender (20 male and 19 female).  

We used DeepFace and tested different parameters to generalise the results and avoid algorithm-specific 
limitations or idiosyncrasies. We selected three parameters for the two steps of (1) face detection and (2) face 
identification (see 3.1): (1) detector backend: ssd, opencv, retinaface; (2) face identification recognition model: 
VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, and ArcFace; and (2) face identification distance metrics: 
cosine, Euclidean, and euclidean_l2. The combinations of the values of the 3 parameters (backend, algorithm, 
and metrics) generate 54 different configurations for the DeepFace system. All 429 video clips were tested with 
each configuration resulting in 23,166 single datapoints of performance (system configuration 54 with 11 
disguises worn by 39 participant).  

 
 

 
10 DeepFace has been developed by Sefik Ilkin Serengil hps://github.com/serengil/deepface  

 

https://github.com/serengil/deepface
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Fig. 13 Evaluation with 3 environments (hall, corridor, gate) and 11 disguises on DeepFace with Facenet512 and VGG-

Face models. 

The allocation of an identity to a video is done by majority votes: for each video, the occurrences of all the 
faces found in the frames are counted and the winner is decided by majority. For example, if the system detects 
11 faces in the video and P1 is recognised 8 times while P2 is recognised 3 times, then P1 is selected as the 
person recognised in the video. In the tables, the columns Total and Count report the overall number of faces 
detected (total) and the number of times the person assigned to the video has been identified in the frames 
(count). The disguises can potentially have two effects: 

− to prevent face detection (evasion): if evasion occurs, no face is detected in a frame where, instead, there is 
a face; this is shown by the Total number of times a face is recognised: the lower the Total, the higher 
the evasion.  

− to increase the confusion of the system (increase the chances of dodging): the system is confused when more 
than one person is detected in a video, i.e., the closer Count and Total are, the less confused the system 
is. In the example above, for P1=8 and P2=3 the certainty is 8/11=0.72; if three people are identifies among 
11 faces P3=5, P4=4, P5=2 then P3 is the winner and certainty decrease to 5/11=0.45 showing the disguise 
has been effective in confounding the FRT.  

 
Less confusion does not equate to correct identification: the winning identity may or may not be the expected 

identity, i.e., the correct identity of the person in the video. The successful identification is given by ‘accuracy’, 
a standard measure used to evaluate machine learning systems defined as the number of correct predictions 
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divided by the number of predictions11. The tables below are ordered by decreasing ‘accuracy’. To simplify the 
comparison and interpretation of the results, we report and discuss only the 10 best performing configurations. 
Extended tables of results can be found in Appendix A.1. 

Table 1. White participants with no disguise (clean): best 10 performing configurations (extended table in Appendix A.1). 

Model Distance Metric Backend Total Count Ratio Accuracy 

Facenet512 euclidean_l2 retinaface 391 242 0.62 1.0 

Facenet512 euclidean retinaface 414 225      0.54      0.95 

ArcFace cosine retinaface 367 185      0.50      0.77 

ArcFace euclidean_l2 retinaface 361 184      0.50      0.77 

Facenet512 euclidean opencv 465 202      0.43      0.77 

Facenet512 euclidean_l2 opencv 448 221      0.49      0.77 

ArcFace euclidean retinaface 374 172      0.45      0.77 

Facenet cosine retinaface 329 164      0.41      0.73 

Facenet512 cosine retinaface 222 126      0.56      0.73 

VGG-Face cosine retinaface 409 200      0.49           0.73 

 
We first assess the performance on disguise:clean, the benchmark where participants did not wear any 

disguise, tabled by ethnicity. Unsurprisingly, the best performance is achieved for the white, although there was 
a wide variation from the first 2 configurations that achieve 100% and 95% and the 8-10 places with 73% (Table 
1). With brown the best performance drops to 89% (Table 2), a result consistent across the top 23 positions 
occupied by the same 3 models (Facenet, Facenet512, VGG-face) albeit with different metric and backend. The 
top performance for black is 88% for the first 2 positions, comparable to that of the brown participants, but 
drops to 75% from the third position down (Table 3). The top 2 score across all ethnicities are between 88% and 
100% thus in line with the performance reported in a 2022 study carried out using a FR commercial system 
(NEC Neoface V4 using HD5 Face Detector) to assess recordings done in the streets in the UK [Mansfield 2023]. 
Although there is a substantial difference in the scale of the database of identities (39 for us, 10,000 and 1,000 
in [Mansfield 2023]) and the much more complex scene of a crowd walking along a street vs. a single individual 
walking toward a camera, the close result seems to indicate that the performance of open-source FRT and our 
experimental settings are a good approximation of a real situation and therefore a credible benchmark to check 
the effectiveness of the disguises. 

 
11 To compute the correctness of results we used Scikit-learn, an open-source Python library providing a wide range of 
tools and algorithms supporting a number of machine learning tasks and their evaluation. 
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Table 2. Brown participants with no disguise (clean): best 10 performing configurations (extended table in Appendix A.1). 

Model Distance Metric Backend Total Count Ratio Accuracy 

Facenet cosine opencv 186 121      0.65      0.89 

Facenet512 cosine ssd 172 116      0.67      0.89 

Facenet euclidean opencv 194 120      0.61      0.89 

VGG-Face euclidean_l2 ssd 203 121      0.60      0.89 

VGG-Face cosine ssd 204 121      0.59      0.89 

VGG-Face euclidean_l2 retinaface 202 146      0.72      0.89 

VGG-Face euclidean retinaface 206 130      0.63      0.89 

VGG-Face cosine retinaface 204 147      0.72      0.89 

VGG-Face euclidean_l2 opencv 208 134      0.64      0.89 

VGG-Face euclidean opencv 209 116      0.55      0.89 

 

Table 3. Black participants with no disguise (clean): best 10 performing configurations (extended table in Appendix A.1). 

Model Distance Metric Backend Total Count Ratio Accuracy 

Facenet512 euclidean opencv 168 94 0.56      0.88 

Facenet512 euclidean retinaface 162 108      0.66      0.88 

Facenet512 euclidean_l2 opencv 164 87      0.53      0.75 

VGG-Face euclidean_l2 retinaface 162 97      0.59      0.75 

Facenet512 euclidean ssd 160 87 0.54 0.75 

Facenet512 euclidean_l2 retinaface 158 98      0.62      0.75 

VGG-Face cosine retinaface 162 97      0.60      0.75 

Facenet cosine opencv 152 72      0.47 0.75 

ArcFace cosine ssd 156 77      0.49      0.75 

ArcFace euclidean_l2 retinaface 156 81      0.52      0.75 

 

These three tables show that best models were more effective on white participants but more consistent 
with brown participants. The accuracy on black participants was lower than for white ones and more 
inconsistent than for brown ones. The most accurate configuration is Facenet512, Euclidean, RetinaFace 
occurring in the top 2 for both white and black and has the same top score of 0.89 accuracy for brown, see 
extended table in Appendix A.1. 

Across all three ethnicities there are outliers, individuals who are easier or more difficult to recognise. For 
example, Figure 14 shows that, among the white, 015wtm (white male) is 8 times more difficult to identify than 
the easiest 014wtf (white female); among the brown 022brf (brown female) is 5 times more difficult than 037brf 
(brown female); and among the black 021blf (black female) is 7 times more difficult than 032blm (black male). 
Among all participants only 1 brown female was always correctly identified. Checking the video clips, we 
cannot find any obvious explanation due to the participants’ behaviour. Indeed, one may expect that 
participants who did not pause much in front of the camera would be more difficult to recognise, yet all the 
three participants more difficult to identify paused for a few seconds before turning back giving the camera 
plenty of time to autofocus and to record good images. We may then conclude that some faces are more 
challenging to identify than others. 
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Fig. 14 The most difficult to the easiest person to identify among white (top), brown (le boom), and black (right boom) participants. 

We then looked at who was most misrecognised, i.e. recognised as somebody else (Fig. 15). Unexpectedly 
the participant who is most frequently wrongly identified when a white person is in the video is a bearded 
brown man 034brm (55 times); the second is a brown female 037brf (20 times) followed by a white man 004wtm 
(17 time). A few more mistaken identities across ethnicities occur including white to black and vice versa. We 
could speculate why this is the case. In the process of facial features extraction, the coloured image is processed 
into levels of grey losing the skin colour and making brown skin closer in colour to South European or Middle 
Eastern people. The fact that a single individual has more than double the probability of being mistaken for 
others is significant in light of cases of mistaken identities. 
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Fig. 15 The number of mistakes made in recognizing white (top), brown (boom le), and black (boom right). 

Tables 4, 5, and 6 report the accuracy in correctly identifying the person when wearing a disguise. 
Comparing these tables with Tables 1, 2, and 3, the accuracy for clean, we see a sharp drop of about 20% in the 
performance with white participants from the very beginning while there is no difference for brown and black 
for the highest accuracy. Similarly, the disguises:glass | halohat | rainbowhat do not impact the performance for 
brown and black as much as for the white: the accuracy for white drops well below that of both brown and black.  

The 4 best disguises across all ethnicities are the snoods and the goggles with a fall below 50% recognition. 
Comparing the ethnicities, it is evident that halohat_on is effective on the face of white while it has the opposite 
effect for black most likely because the bright light on the face makes facial features of black people more 
evident and therefore easier to be recognised. At the opposite, the bright light on white people makes features 
such as the nose and the face contour disappear thus effectively bypassing FRT. 
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Table 4. Effectiveness of the disguises for white participants. The most effective disguises in evading FRT are at the 
boom. 

Disguise Model Distance Metric Backend Total Count Ratio Accuracy 

clean Facenet512 euclidean_l2 retinaface 391 242 0.62 1.0 

halohat_off Facenet512 euclidean_l2 retinaface 374 185 0.49 0.82 

glasses_off Facenet512 euclidean_l2 retinaface 316 139 0.43      0.73 

rainbowhat_on Facenet512 euclidean_l2 retinaface 389 161 0.41      0.68 

rainbowhat_off Facenet512 euclidean_l2 retinaface 328 136 0.41      0.64 

glasses_on ArcFace cosine retinaface 348 111 0.31      0.59 

halohat_on ArcFace cosine retinaface 397 123 0.30      0.55 

snood_crosses VGG-Face cosine retinaface 378 122 0.32      0.48 

goggles DeepFace cosine retinaface 80 25 0.31      0.4 

snood_blobs DeepFace euclidean_l2 opencv 6 2 0.33      0.33 

snood_lines DeepFace cosine opencv 42 10 0.23      0.18 

 

Table 5. Effectiveness of the disguises for brown participants. The most effective disguises in evading FRT are at the 
boom. 

Disguise Model Distance Metric Backend Total Count Ratio Accuracy 

clean Facenet      cosine opencv 186 121      0.65      0.89 

glasses_off Facenet cosine retinaface 170 105      0.61      0.89 

glasses_on Facenet euclidean retinaface 196 133      0.68      0.89 

halohat_off Facenet512 euclidean_l2 opencv 196 111 0.56      0.89 

rainbowhat_on ArcFace cosine opencv 186 109      0.59      0.89 

halohat_on ArcFace cosine retinaface 221 120      0.54      0.78 

rainbowhat_on ArcFace cosine retinaface 192 119      0.61      0.78 

snood_crosses Facenet cosine retinaface 232 90      0.39      0.56 

goggles DeepFace cosine retinaface 98 14      0.14      0.44 

snood_blobs ArcFace cosine opencv 188 44      0.23      0.33 

snood_lines DeepFace euclidean opencv 318 168      0.52      0.33 
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Table 6. Effectiveness of the disguises for black participants. The most effective disguises in evading FRT are at the 
boom. 

Disguise Model Distance Metric Backend Total Count Ratio Accuracy 

clean Facenet512 euclidean opencv 168 94      0.56      0.88 

halohat_off ArcFace cosine retinaface 152 95      0.62      0.88      
halohat_on ArcFace cosine retinaface 186 106      0.57 0.75      
rainbowhat_on ArcFace cosine retinaface 166 119      0.71      0.75      
glasses_off ArcFace cosine retinaface 152 94      0.62      0.62      
glasses_on Facenet512 euclidean retinaface 201 76      0.38 0.62      
rainbowhat_off ArcFace cosine retinaface 157 102      0.65      0.62      
snood_crosses ArcFace cosine retinaface 178 94      0.52 0.50      
goggles Facenet512 euclidean_l2 retinaface 181 70      0.39      0.43      
snood_blobs ArcFace euclidean retinaface 176 34      0.19      0.25      
snood_lines DeepFace euclidean opencv 86 14      0.16      0.25      

 

In tables 4-6 we present the best performing settings for each disguise. This is unrealistic as in a real-world 
scenario where only one configuration is used most likely reducing accuracy across the different disguises. For 
example, quite a few configurations report zero accuracy when confronted with the snood disguises.  

Looking into the confounding effect of the disguises some interesting phenomena emerge. For white in clean, 
015wtm in the most misrecognised; in disguises 015wtm is joined by 10wtm and 19wtm as people most difficult 
to identify when wearing disguises. Moreover, the number of mistakes increases dramatically across the whole 
sample (Fig. 16). Brown and black show a similar trend when comparing clean and disguises (see appendix 2.A). 
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Fig. 16 The number of mistakes made in recognizing white in the benchmark clean (top) and across all the disguises 
(boom). 

Even if not every disguise was effective in the same way across ethnicities (see Tables 4, 5, 6), taken together 
they were effective in confounding FRT. Fig. 17 shows that the disguises confound ethnicity for brown with all 
three ethnicities (white, brown, and black) all scoring as the three most frequent mistakes. This phenomenon 
is less marked for black even if some white are mistaken for black (Fig. 17 bottom). Fig. 17 top shows participant 
034brm, the bearded brown man wrongly identified most often as white in the clean (55 times, Fig. 15) shoots 
to about 950 mistakes when disguises are worn making the case of mistaken identities (due to dodging) a serious 
issue. The most reasonable explanation is that somehow 034brm has a ‘common face’.  
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Fig. 17 The number of mistakes made in recognizing white (top), brown (centre), and black (boom) when the disguises 
are worn. 

The creation of a 3D model of the face is an essential part of the FRT process [Kortli et al. 2020]. To complete 
our empirical exploration, we created a second database of identities adding to the one created out of 1 high-
quality photo per participants, a further 4 images of the person in different positions extracted from the ‘clean’ 
video. The rationale was that images with different face positions would improve the recognition performance. 
For this test only the two best performing configurations were used, namely Facenet512-euclidean-retinaface 
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and Facenet512-euclidean_l2-retinaface, on 39 participants with environment:gate. Unexpectedly, the comparison 
points in the opposite direction with a 20% drop in accuracy across the three ethnicities in the clean benchmark. 
We hypothesize that this is because the increased number of images and positions of the face reduces somehow 
the distance among the photos of different participants in the database making the process of recognition 
harder. Should this be the case, this could point towards a problem for systems using very large databases. 
There is only a limited loss, if any, in the disguises condition, most likely because the disguises had already 
drastically reduced the performance. The tables are in Appendix A.3.  

5.3.3    Logistic regression analysis 

A Likelihood Ratio Test (LRT) was used to evaluate the impact of each variable on the predictive capacity of 
one of the top-performing FRT pipelines, specifically Facenet512-retinaface-euclidean_l2. This was achieved by 
comparing two logistic regression models. The full model consists of a logistic regression in the form: ‘Result ~ 
Gender + Ethnicity + Disguise’. This is compared with three reduced models where in each one of the regressors 
is removed. The p-value from these tests indicates whether that variable is useful in explaining the predictive 
performance of the FRT pipeline. We formulate the following hypothesis: 

− Null hypothesis 𝐻𝐻0: if the full model and the nested model fit the data equally then the removed variable 
is not significant to the capacity of the FRT model to recognize or not a person. 

− Alternative hypothesis 𝐻𝐻𝐴𝐴: if the full model fits the data better than the nested model, so the variable is 
significant to the capacity of the FRT model to recognize or not a person. 

The p-values from our LRT analyses are as follows:  
− “Result ~ Gender + Ethnicity” (reduced model): 1.58 𝑥𝑥 10−173 
− “Result ~ Ethnicity + Disguise” (reduced model):  3.78 𝑥𝑥 10−70 
− “Result ~ Gender + Disguise” (reduced model): 1.31 𝑥𝑥 10−8 
The LRT test for all three models yields p-values less than 0.05. This leads us to reject the null hypothesis, 

pointing to Disguise, Ethnicity and Gender as significant contributors to the FRT pipeline’s capacity to predict.    

Table 7 The coefficients (coe), p-value (P>|z|), and [0.025, 0.977] show 95% confidence interval (CI) of the logistic 
regression model, with the coefficients for disguise being compared to clean as reference level (one-hot encoding), the one 

for gender is compared to female and ethnicity compared to black.   

Feature Coefficient P>|z| [0.025 0.975] 

Intercept 0.59 0.00 0.41 0.77 

Gender[Male] 0.29 0.00 0.19 0.40 

Ethnicity[Brown] 0.57 0.00 0.43 0.70 

Ethnicity[White] -0.53 0.00 -0.65 -0.40 

Disguise[glasses_off] -0.63 0.00 -0.84 -0.41 

Disguise[glasses_on] -0.76 0.00 -0.97 -0.54 

Disguise[goggles] -1.42 0.00 -1.65 -1.20 

Disguise[halohat_off] -0.24 0.26 -0.46 -0.03 

Disguise[halohat_on] -0.86 0.00 -1.07 -0.65 

Disguise[rainbowhat_off] -0.60 0.00 -0.82 -0.39 

Disguise[rainbowhat_on] -0.50 0.00 -0.71 -0.29 

Disguise[snood_blobs] -2.31 0.00 -2.60 -2.02 

Disguise[snood_crosses] -1.50 0.00 -1.73 -1.27 

Disguise[snood_lines] -3.00 0.00 -3.33 -2.66 
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We also include an analysis of the coefficients of the full model to assess how each level of the categorical 
variables influences the predictive accuracy of the FRT pipeline. For the three categorical variables we use as 
reference category clean for disguise, female for gender and black for ethnicity. The coefficients for the other 
levels of these variables represent the effect of that level on the predictive accuracy of the model compared to 
the reference level. The results in Table 7 point to a significant difference between the disguises compared to 
the reference and for the ethnicities.  

The coefficients associated with the various disguises are negative. This means that the presence of disguises 
negatively impacts the FRT pipeline’s predictive accuracy compared to clean faces. Notably, snood_lines, 
snood_blobs, snood_crosses and goggles exhibit the larges absolute impacts on prediction capacity.  Ethnicity also 
showed a significant impact: compared to the black reference group, white ethnicity had a negative impact on 
performance, while brown ethnicity showed a positive impact. Finally, the gender male has a slightly positive 
impact on performance compared to the female reference group. 

5.4 Testing FRT advancements 

1.1.1 5.4.1 Comparison of models performance one year on 
The extended evaluation reported in 5.3.2 used FRT available in December 2022. As facial recognition is 
improving fast in light of the evolution of AI, in January 2024 we run new tests to check if and how the 
performance of FRT had changed with the latest development. A year on, the models used in the extended 
evaluation had not changed while new models have been proposed. In selecting the models for the comparative 
test, we used variety as key factor and chose three new models to test:  

− QMagFace [Terhörst et al. 2023] focuses on FRT in difficult conditions, combining a quality-aware 
comparison function with a face recognition model trained (MagFace) [Terhörst et al. 2023]. It assesses 
the quality of a face image (including factors such as lighting and pose) to enhance recognition accuracy. 
In training this helps the model to weight facial features based on their importance, improving 
performance, especially in challenging conditions like varying angles and image quality. 

− ElasticFace [Boutros et al. 2022] uses a FR strategy based on the use of flexible margin loss which enhances 
the model's ability to closely group similar faces (intra-class compactness) while better distinguishing 
between different faces (inter-class discrepancy), helping the model to differentiate more effectively 
between face classes [Boutros et al. 2023]. 

− GhostFaceNet [Alansari et al. 2023] uses Ghost modules for generating feature maps with fewer 
parameters and less computational complexity. The architecture employs a modified Global Depthwise 
Convolution (GDC) for improved face feature representation. These advancements enable GhostFaceNets 
to achieve a balance between computational efficiency and high accuracy in facial recognition tasks 
[Alansari et al. 2023].  

 

The three models were downloaded from their respective Git Hub repositories12 . For QMagFace, MTCNN 
was used as the backend framework, as suggested by the developers. For ElasticFace and GhostFaceNet models, 
a combination of RetinaFace, OpenCV, and ssd were selected as the backend framework. These models were 
selected for analysis based on two key criteria: their superior performance across a wide array of public 
evaluation datasets and their distinction as significant advancements of the state-of-the-art FRT. Consequently, 
our primary aim with this round of tests is to evaluate whether these new models constitute a marked 
improvements over the models available in January 2023 on the same setup, datasets and videos described in 
section 5.3.2.  The extended results are in Appendix B. 

 

 
12 QMagFace has been developed by pterhoer and mihlefeld:  hps://github.com/pterhoer/QMagFace 

 ElasticFace has been developed by Fadi Boutros : hps://github.com/fdbtrs/ElasticFace  

GhostFaceNet has been developed by HamadYA: hps://github.com/HamadYA/GhostFaceNets 

 

https://github.com/pterhoer
https://github.com/mihlefeld
https://github.com/pterhoer
https://github.com/pterhoer/QMagFace
https://github.com/fdbtrs
https://github.com/fdbtrs/ElasticFace
https://github.com/HamadYA
https://github.com/HamadYA/GhostFaceNets
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Tables 8, 9, and 10 compare the best 10 performances for clean (participants wearing no disguise) for the 
three ethnicities (white:clean; brown:clean; black:clean). As in 2023 (see 5.3.2), we calculate the total number of 
faces detected (Tot) and then we count how many times the person in the video was correctly identified (Corr). 
The closer T is to C, the more accurate (Acc) the system was in detecting the face and in recognising the person. 
Tables 8, 9 and 10 show a clear and marked improvement, with accuracy increasing for all three ethnicities.  As 
a general observation, the performance of QMagFace:Mtcnn and ElasticFace:retinaface tend to pair, while the 
lightweight GhostFaceNet system does not perform well: GhostFaceNet appears only 1 time in the 10th position 
for white:clean, but does not make the grade for brown:clean and black:clean (see Appendix B for the results in 
full). 

Table 8. The best 10 performing configurations in 2023 and 2024 for white ethnicity with no disguise (white:clean).  

Evaluation 2023  white:clean  Evaluation 2024   white:clean 

System configuration T C T-C A  System configuration T C T-C A 

Facenet512 : euclidean_l2 : 
ti f  

391     
 

242     
 

149 1.0  QMagFace : euclidean : Mtcnn 394 282 112 1.0 

Facenet512 : euclidean : retinaface 414     
 

225     
 

189      0.95  QMagFace : euclidean_12 : Mtcnn 394 284 110 1.0 

ArcFace : cosine : retinaface 367     
 

185     
 

182      0.77  ElasticFace-Arc+ : cosine : retinaface 403 245      158      0.95 

ArcFace : euclidean_l2 : retinaface 361     
 

184     
 

177      0.77  ElasticFace-Arc+ : euclidean_12 : 
ti f  

403 245      158      0.95 

Facenet512 : euclidean : opencv 465     
 

202     
 

263      0.77  ElasticFace-Arc+ : cosine : opencv 403 239      164      0.91 

Facenet512 : euclidean_l2 : opencv 448     
 

221     
 

227      0.77  ElasticFace-Arc+ : euclidean_12 : opencv 403 239      164      0.91 

ArcFace : euclidean : retinaface 374     
 

172     
 

202      0.77  QMagFace : cosine : Mtcnn 394 270      124      0.91 

Facenet : cosine : retinaface 329     
 

164     
 

165      0.73  ElasticFace-Cos : cosine : retinaface 403 223      180      0.86 

Facenet512 : cosine : retinaface 222     
 

126     
 

96      0.73  ElasticFace-Cos : euclidean_12 : retinaface 403 223      180      0.86 

VGG-Face : cosine : retinaface 409     
 

200     
 

209      0.73  GhostFaceNet : euclidean_12 : retinaface 403 201 202      0.86 

Table 9. The best 10 performing configurations in 2023 and 2024 for brown ethnicity with no disguise (brown:clean). 

Evaluation 2023  brown:clean  Evaluation 2024   brown:clean 

System configuration  T C T-C A  System configuration T C T-C A 

Facenet : cosine : opencv 186     
 

121     
 

65      0.89  ElasticFace-Arc+ : cosine : retinaface 205 145 60 1.0 

Facenet512 : cosine : ssd 172     
 

116     
 

56      0.89  QMagFace : cosine : Mtcnn 200 170 30 1.0 

Facenet : Euclidean : opencv 194     
 

120     
 

74      0.89  QMagFace : euclidean : Mtcnn 200 174 26 1.0 

VGG-Face : euclidean_l2 : ssd 203     
 

121     
 

82      0.89  QMagFace : eucliidean_12 : Mtcnn 200 177 23 1.0 

VGG-Face : cosine : ssd 204     
 

121     
 

83      0.89  ElasticFace-Arc+ : euclidean_12 
ti f  

205 145 60 1.0 

VGG-Face : euclidean_l2 : 
ti f  

202     
 

146     
 

56      0.89  ElasticFace-Cos : euclidean_12 : opencv 205 134      71      0.89 

VGG-Face : euclidean : retinaface 206     
 

130     
 

76      0.89  ElasticFace-Cos : euclidean_12 : 
ti f  

205 137      68      0.89 

VGG-Face : cosine : retinaface 204     
 

147     
 

57      0.89  ElasticFace-Cos : cosine : retinaface 205 137      68      0.89 

VGG-Face : euclidean_l2 : opencv 208     
 

134     
 

74      0.89  ElasticFace-Cos : cosine : opencv 205 134      71      0.89 

VGG-Face : uclidean : opencv   209 116      93      0.89  ElasticFace-Arc+ : euclidean_12 : openvc 205 142      63      0.89 
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Table 10. The best 10 performing configurations in 2023 and 2024 for black ethnicity with no disguise (black:clean). 

Evaluation 2023  black:clean  Evaluation 2024 black:clean 

System configuration T C T-C A  System configuration T C T-C A 

Facenet512 : Euclidean : opencv 168 94 74 0.88  ElasticFace-Cos : cosine : retinaface 162 111 51 1.0 

Facenet512 : euclidean : retinaface 162 108     
 

54      0.88  ElasticFace-Cos: euclidean_l2: retinaface      162 111 51 1.0 

Facenet512 : euclidean_l2 : opencv 164 87     
 

77      0.75  ElasticFace-Arc+ : cosine: opencv      162 93      69      0.88 

VGG-Face : euclidean_l2 : retinaface 162 97     
 

65      0.75  ElasticFace-Arc+ : euclidean_l2 : retinaface                162 93      69      0.88 

Facenet512 : euclidean : ssd 160 87     
 

73      0.75  ElasticFace-Arc+ : cosine : retinaface           162 97      65      0.88 

Facenet512 : euclidean_l2 : 
ti f  

158 98     
 

60      0.75  ElasticFace-Arc+ : euclidean_12 : 
ti f       

162 975      65      0.88 

VGG-Face : cosine : retinaface 162 97     
 

65      0.75  ElasticFace-Cos : cosine : opencv      162 105      57      0.88 

Facenet : cosine : opencv 152 72     
 

80      0.75  ElasticFace-Cos : euclidean_l2 : opencv      162 105      57      0.88 

ArcFace : cosine : ssd 156 77     
 

79      0.75  QMagFace : cosine : Mtcnn 159 121      38      0.88 

ArcFace : euclidean_l2 : retinaface 156 81     
 

75      0.75  QMagFace : euclidean : Mtcnn 159 124      35      0.88 

 

There has been a sharp improvement in performance with clean for brown and black. There is also an 
increase, albeit to a lower degree when participants wear the disguises (Tables 11, 12 and 13). However, there 
is a considerable difference in the system rankings with QMagFace firmly in the lead. Remarkably this happens 
with several 100% results for brown and black participants which, in the past, have been difficult faces to 
recognise. The reason for QMagFace outperforming the other systems may be the intentional goal to cope with 
difficult images, possibly rotated heads and partially obstructed faces. The result seems to be a system able to 
infer an identity from very limited visible facial features.    

 

An unexpected result is the higher performance with brown and black than with white participants. This 
could be explained by the sample size as the white participants (22) are nearly 3 times the brown (9) and black 
(8). A small sample set means each may be easily discriminated by the neural networks so that they look distant 
from the others in the search space and hence they are more easily discriminated. As the sample size increases 
even slightly (as in the case of the white), the distance between the individuals decreases, therefore potentially 
inducing more mistakes when the face is partially concealed. Our interpretation is then that, while in 2023 the 
disguises were disruptive for the performance of the systems that often missed to detect the face entirely, in 
2024 the systems are able to detect and discriminate faces form just a few facial features when the sample is 
small as there is enough information to separate the individuals in the image reference set. However, as the 
sample increases those few features are not enough to discriminate between individuals and the performance 
decreases. We could then expect that the same reduction in performance with white would occur with a larger 
sample of brown and black participants. 
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Table 11. Comparison of the performance of the systems against the disguises in 2023 and 2024 for white ethnicity. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12. Comparison of the performance of the systems against the disguises in 2023 and 2024 for brown ethnicity. 

 
 

  

Evaluation 2023  white : disguises  Evaluation 2024  white : disguises 

Ran
k 

System configuration T C A Disguise Ran
k 

System configuration T C A 

0      Facenet512:euclidean_12:retinaface 391 2

      

1.0 clean 0      QMagFace : euclidean : Mtcnn 394 282 1.0 

1 Facenet512:euclidean_12:retinaface 347 1

      

0.82 halohat_off 3 QMagFace : euclidean_l2 : Mtcnn 388 243      0.91 

2 Facenet512:euclidean_12:retinaface 316 1

      

0.73 glasses_off 5 ElasticFaceArc+:cosine:retinaface      375 167 0.86 

3 Facenet512:euclidean_l2:retinaface 389 1

      

0.68 rainbowhat_on 6 QMagFace : euclidean_l2 : Mtcnn      424      203      0.76      
4 Facenet512:euclidean_l2:retinaface 328 1

      

0.64 rainbowhat_off 1 QMagFace:euclidean_l2:Mtcnn           339      205      1.0 

5 ArcFace : cosine : retinaface 348 1

      

0.59 glasses_on 8 ElasticFaceArc+:cosine:retinaface 365 150      0.73 

6 ArcFace : cosine : retinaface 397 1

      

0.55 halohat_on 10 QMagFace:euclidean_l2:Mtcnn      428 142      0.45 

7 VGG-Face : cosine : retinaface 378 1

      

0.48 snood_crosses 2 QMagFace:euclidean:Mtcnn      364 216      0.95 

8 DeepFace : cosine : retinaface 80 25      0.4 goggles 9 ElasticFaceArc+:cosine:retinaface      370 128      0.68 

9 DeepFace : euclidean_12 : opencv 6 2      0.33 snood_blobs 4 QMagFace:euclidean_l2:Mtcnn 188      351      0.9 

 10 DeepFace : cosine : opencv 42 10      0.18 snood_lines 7 QMagFace : euclidean_l2 : Mtcnn 361 173      0.76 

Evaluation 2023  brown : disguises  Evaluation 2024  brown : disguises 

Ran
k 

System configuration T C A Disguise Ran
k 

System configuration T C A 

0      Facenet : cosine : opencv 186      121 0.89 clean 0      QMagFace : cosine : Mtcnn                200      170      1.0 

1 Facenet : cosine : retinaface 170 10
5     
 

0.89 glasses_off 5      QMagFace : cosine : Mtcnn 196 164 1.0 

2 Facenet : euclidean : retinaface 196 13
3     
 

0.89 glasses_on 8      QMagFace : cosine : Mtcnn 211 166 1.0 

3 Facenet512 : euclidean_l2 : opencv 196 11
1     
 

0.89 halohat_off 3      QMagFace : cosine : Mtcnn 186 145 1.0 

4 Arcface : cosine : opencv 186 10
9     
 

0.89 rainbowhat_on  7      QMagFace : euclidean : Mtcnn 235 187 1.0 

5 ArcFace : cosine : retinaface 221 12
0     
 

0.78 halohat_on 4      QMagFace : euclidean_12 : Mtcnn 201 142 1.0 

6 ArcFace : cosine : retinaface 192 11
9     
 

0.78 rainbowhat_off  6      QMagFace : cosine : Mtcnn 181 143 1.0 

7 Facenet : cosine : retinaface 232 90 0.56 snood_crosses 2      QMagFace : euclidean : Mtcnn 201 148 1.0 

8 DeepFace : cosine : retinaface 98 14 0.44 goggles 9      QMagFace : euclidean_12 : Mtcnn 228 159      0.89 

9 Arcface : cosine : opencv 188 44 0.33 snood_blobs 10 QMagFace : euclidean_12 : Mtcnn 197 154      0.89      

 10 DeepFace : euclidean : opencv 318 16
8 

0.33 snood_lines 1      QMagFace : euclidean_12 : Mtcnn 215 163 1.0      
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Table 13. Comparison of the performance of the systems against the disguises in 2023 and 2024 for black ethnicity. 

 

Fig. 18 shows the increase in performance from 2023 when white individuals were mostly missed to be 
recognised: for all ethnicities the number of missed identifications has consistently decreased meaning that the 
new systems make less mistakes. The most pronounced improvement is for white with the highest number 
nearly halved and the other reduced of about 20% (the graphs for brown and black are in Appendix B.2). 
 

 
Fig. 18 A comparison of the white participants most missed to be identified: 2023 on the le, 2024 on the right.  

The last comparison between the 2023 and 2024 evaluations is the misclassification of individuals wearing 
disguises. Fig. 19 compares the misclassification for the three ethnicities in 2023 and 2024. While for white and 
black there has been a decrease in misrecognitions, the values are still high. The people misrecognised have 
changed, but there is a consistence within the experimental setup meaning that the same small group of people 
is the most misrecognised within the evaluation of 2023 and another one is misrecognised in the evaluation of 
2024. In both years misrecognition occurs across ethnicities in contradiction with the results shown in 
[Rosenberg et al. 2023] “that it is easier to impersonate identities in the same demographic” (pg.7236): our 
physical disguises were most effective across ethnicities in white and brown in 2023 and across white and black 
in 2024. The most misrecognised participants were 034brm in 2023 and 033brf both brown participants from 
India, a male and a female respectively.  Several could be the reasons for this contradictory results. The 
individuals mostly misrecognised are both from India, a group poorly represented in [Rosenberg et al. 2023] 
that distinguish White (10.000 individuals), Asian (2.500), Black (1240) and Indian (20). Assuming ‘Asian’ 
includes ethnicities from China, Japan, and Korea, we could speculate that the ‘impersonation within the same 

Evaluation 2023  black : disguises  Evaluation 2024  black : disguises 

Ran
k 

System configuration T C A Disguise Ran
k 

System configuration T C A 

0      Facenet512 : Euclidean : opencv 168 9
4 

0.88 clean 0      QMagFace : euclidean_12 : Mtccn 162 111 1.0 

1 ArcFace : cosine : retinaface  152 
9
     
 

0.88      halohat_off 2      QMagFace: euclidean_12 : Mtcnn 176 138 1.0 

2 ArcFace : cosine : retinaface  186 
1

     
 

075      halohat_on 5      QMagFace: euclidean_12 : Mtcnn 200 148      0.88 

3 ArcFace : cosine : retinaface  166 
1

     
 

0.75      rainbowhat_on 7      QMagFace: euclidean_12 : Mtcnn 191 141      0.88 

4 ArcFace : cosine : retinaface  152 
9
     
 

0.62      glasses_off 1 QMagFace: euclidean_12 : Mtcnn 197 155 1.0 

5 Facenet512 : euclid : retinaface 201 
7
     
 

0.62      glasses_on 4      ElasticFace-Cos : cosine : ssd 211 125      0.88 

6 ArcFace : cosine : retinaface  157 
1

     
 

0.62      rainbowhat_off 6      QMagFace: euclidean_12 : Mtcnn 172 130      0.88 

7 ArcFace : cosine : retinaface  178 
9
     
 

0.50      snood_crosses 3      QMagFace: euclidean_12 : Mtcnn 186 140 1.0 

8 Facenet512:eucl_12:retinaface 181 
7
     
 

0.43      goggles 10      ElasticFace-Arc+:cosine: 
retinaface 

200 60      0.38 

9 ArcFace : euclidean : retinaface  176 
3
           

0.25      snood_blobs 9      ElasticFace-Arc+:cosine: 
retinaface 

179 87      0.5 

 10 DeepFace : euclidean : opencv 86 14 0.25  snood_lines 8      ElasticFace-Arc+:cosine: 
retinaface 

200 94      0.62 
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demographic’ is due to distinct facial traits for each demographic group White, Asian and Black and therefore 
easier to cluster, while people from India tend to have Caucasian facial features similar to those of white people 
but different in skin tone. Another potential explanation could be the process of generating computational 
perturbations from the same photos used for recognition [Rosenberg et al. 2023] that is radically different from 
our physical approach: most likely our disguises conceal or change the facial features in a radically different 
way and, therefore, our results are simply not comparable with computational perturbations. Indeed, 
[Rosenberg et al. 2023] pg. 7236 states that “With the exception of the Indian demographic group, which is too 
small to source any significant conclusions, minority groups have lower matching performance. This is 
attributed to the tightly clustered embeddings we observe for minority demographic groups.” A further 
explanation could be the source material, live videos for us vs. photos for [Rosenberg et al. 2023], or because of 
different models and different processing pipeline. Indeed [Rosenberg et al. 2023] observe that demographics 
are discernible in the embedding phase with skin tones differentiated in early layers of the network.  While we 
cannot say with certainty what the cause is, if, for example a single setting is responsible for the majority of 
misidentifications or if instead is one among the algorithms, the metrics, or the backends, the logistic regression 
provides some hindsight. 

We conducted a Likelihood Ratio Test (LRT) to evaluate the impact of each variable on the predictive 
capacity of one of the recent top-performing FRT pipelines, specifically QMagFace:mtcnn:euclidean_l2. This was 
achieved by comparing two logistic regression models. The full model consists of a logistic regression of the 
form: ‘Result ~ Gender + Ethnicity + Disguise’. This is compared with three reduced models where in each one 
of the regressors is removed. The p-value from these tests indicates whether that variable is useful in explaining 
the predictive performance of the FRT pipeline. Our hypothesis are: 

− Null hypothesis 𝐻𝐻0: if the full model and the nested model fit data equally then the removed variable is 
not significant to the capacity of the FRT model to recognize or not a person. 

− Alternative hypothesis 𝐻𝐻𝐴𝐴: if the full model fits data better then the nested model, so the variable is 
significant to the capacity of the FRT model to recognize or not a person. 

The p-values from our LRT analyses are as follows:  
− ‘Result ~ Gender + Ethnicity’ (reduced model): 3.88 𝑥𝑥 10−73 
− ‘Result ~ Ethnicity + Disguise’ (reduced model): 0.44 
− ‘Result ~ Gender + Disguise’ (reduced model): 1.19 𝑥𝑥 10−99 
 
The LRT test for the models of  ‘Result ~ Gender + Ethnicity’ and ‘Result ~ Gender + Disguise’ both yield p-

values less than 0.05. This leads us to reject the null hypothesis, pointing to disguise and ethnicity as significant 
contributors to the FRT pipeline’s capacity to predict. Conversely, the ‘Result ~ Ethnicity + Disguise’ LRT results 
in a high p-value (0.44), leading us to not reject the null hypothesis. This supports the conclusion that gender is 
not a significant factor in the recent FRT model's ability to recognize individuals in this context. 

We also include an analysis of the coefficients of the full model to assess how each level of the categorical 
variables influences the predictive accuracy of the FRT pipeline. For the three categorical variables we use as 
reference category clean  for disguise, female for gender and black for ethnicity. The coefficients for the other 
levels of these variables represent the effect of that level on the predictive accuracy of the model compared to 
the reference level. The results in Table 14 also point to significant differences between disguises compared to 
the reference and for ethnicities, while there is no significant difference in the predictive accuracy of the model 
for male compared to female. Significance is assessed at a 5% level of significance. The coefficients associated 
with the various disguises are negative meaning that the presence of disguises negatively impacts the FRT 
pipeline's predictive accuracy compared to clean faces.  Notably, googles, halohat_on, and snood_lines exhibit 
the largest absolute impacts on prediction capacity. 
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Fig. 19 A comparison of the misclassification for the three ethnicities from 2023 (le) and 2024 (right).      

Table 14. The coefficients (coe), p-value (P>|z|)  and [0.025, 0.977] show a 95% confidence interval (CI) of the logistic 
regression model, with the coefficients for disguise being compared to clean as reference level (one-hot encoding), the one 

for gender is compared to female and ethnicity compared to black.   

Feature Coefficient P>|z| [0.025 0.975] 

Intercept 1.43 0.00 1.23 1.63 

Gender[Male] -0.04 0.439 -0.13 0.06 
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Ethnicity[Brown] 0.77 0.00 0.63 0.91 

Ethnicity[White] -0.53 0.00 -0.65 -0.42 

Disguise[glasses_off] -0.34 0.05 -0.58 -0.10 

Disguise[glasses_on] -0.74 0.00 -0.97 -0.50 

Disguise[goggles] -1.38 0.00 -1.61 -1.15 

Disguise[halohat_off] -0.34 0.05 -0.58 -0.10 

Disguise[halohat_on] -1.22 0.00 -1.45 -1.00 

Disguise[rainbowhat_off] -0.40 0.01 -0.64 -0.16 

Disguise[rainbowhat_on] -0.80 0.00 -1.03 -0.57 

Disguise[snood_blobs] -0.99 0.00 -1.23 -0.76 

Disguise[snood_crosses] -0.44 0.00 -0.68 -0.20 

Disguise[snood_lines] -1.44 0.00 -1.67 -1.21 

 
Ethnicity also showed a significant impact. Compared to the black reference group, white ethnicity had a 

negative impact on performance, while brown ethnicity showed a positive impact. In contrast to the old model 
analyzed in section 5.2, gender did not demonstrate a significant impact on prediction capacity, with a p-value 
of 0.44. This suggests that gender:male, relative to the female reference group, did not significantly affect the 
FRT pipeline's predictions. 

1.1.2 5.4.3 Verifying Model Consistency: A Comprehensive Re-evaluation  
Up to now, our experiments occurred in a ‘closed world’ where the participants to be recognised where the 
same as those in the database of identities. In this section we report two experiments to assess our results 
against two different ‘open worlds’ where the database of identities holds a much larger set of people than the 
39 individuals in our sample to be recognised in the recorded videos, this a more realistic settings in 
surveillance. To check the validity of our results in an ‘open world’ we conducted a comprehensive re-
evaluation using an expanded face database against an increased frame sampling of the recorded videos. We 
first expanded the face matching database (database of identities) from the 39 participants to 2 databases 
containing 1000 and 3000 individuals randomly chosen within the LFW dataset13. We then compared the 
performance of the models with both the original and expanded databases. The combinations of MTCNN, 
QMagFace, and Euclidean models, which exhibited strong performance in previous benchmarks, were selected 
for this analysis. As there was no statistical significance difference between the 1000 and 3000 databases, we 
report only the result with the latter. Tables 15, 16, 17 show 3 main key findings: 

− Increasing the identity database size from 39 to 3000 did not significantly affect the recognition of clean 
faces across all ethnicities. 

− Certain disguises, particularly goggles, snood_lines, snood_blobs, and snood_crosses, had a more 
pronounced effect on recognition accuracy for white individuals. Brown individuals were also impacted 
by goggles. 

− In some cases, expanding the database led to improved accuracy due to majority voting. For example, if 
a person's identity is initially ambiguous, adding more faces to the database could clarify the match and 
increase recognition accuracy. Consider a video of Luigi where 10 faces are extracted. With a database of 
39 people, the system recognizes Luigi 4 times, Mario 5 times, and 1 time an unknown person. Therefore, 
the recognized person will be Mario, which is incorrect. When the database increases  to 3000 people, the 

 
13 LFW Labeled Faces in the Wild https://vis-www.cs.umass.edu/lfw/ 
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system recognizes Luigi 4 times, Mario 3 times, and 3 times a new person added to the database. Thus, 
through majority voting, the system correctly recognizes Luigi. 

After this analysis, we also revisited previous experiments by increasing the number of sampled frames from 
the videos. This allowed us to determine if a larger number of frames would improve or degrade model 
performance. By sampling at 5 and 10 frames per second, we determined that the performance of our models 
was not statistically significantly affected. This confirms the reliability of our findings from the initial 2 frames 
per second sampling rate.  

 
Table 15. Effectiveness of the disguises for white participants using one of the best recent models evaluated in the 
previous chapter expanding face database adding 3000 new faces provided by LFW database. 

      

Table 16. Effectiveness of the disguises for brown participants using one of the best recent models evaluated in the 
previous chapter expanding face database adding 3000 new faces provided by LFW database 

 

Table 17. Effectiveness of the disguises for black participants using one of the best recent models evaluated in the 
previous chapter expanding face database adding 3000 new faces provided by LFW database 

 39 persons in the database white: disguises   3000 persons in the database white: disguises 

 Rank System configuration T C A Disguise Ran
k 

System configuration T C A 

clean QMagFace : euclidean : Mtcnn 394 28

 

1.0 clean clean QMagFace : euclidean : Mtcnn 373 247 0.95 

1 QMagFace : euclidean : Mtcnn  345 21

 

0.95 snood_crosses 4 QMagFace : euclidean : Mtcnn 325 147 0.68 

2 QMagFace : euclidean : Mtcnn  388 24

 

0.86 halohat_off 1 QMagFace : euclidean : Mtcnn 366 208 0.9 

3 QMagFace : euclidean : Mtcnn 372 22

 

0.82 glasses_off 3 QMagFace : euclidean : Mtcnn 356 183 0.81 

4 QMagFace : euclidean : Mtcnn 339 20

 

0.76 rainbowhat_off 2 QMagFace : euclidean : Mtcnn 323 165 0.85 

5 QMagFace : euclidean : Mtcnn 351 18

 

0.71 snood_blobs 7 QMagFace : euclidean : Mtcnn 338 105 0.3 

6 QMagFace : euclidean : Mtcnn 361 15

 

0.62 snood_lines 10 QMagFace : euclidean : Mtcnn 345 74 0.2 

7 QMagFace : euclidean : Mtcnn 424 20

 

0.57 raimbowhat_on 5 QMagFace : euclidean : Mtcnn 406 171 0.65 

8 QMagFace : euclidean : Mtcnn 357 18

 

0.55 glasses_on 6 QMagFace : euclidean : Mtcnn 336 153 0.57 

9 QMagFace : euclidean : Mtcnn  365 15

 

0.5 goggles 8 QMagFace : euclidean : Mtcnn 343 84 0.24 

 10 QMagFace : euclidean : Mtcnn 428 154 0.32 halohat_on 9 QMagFace : euclidean : Mtcnn 408 109 0.24 

 39 persons in the database brown: disguises   3000 persons in the database brown: disguises 

Rank System configuration T C A Disguise Rank System configuration T C A 

clean QMagFace : euclidean : Mtcnn 100 17

 

1.0 clean clean QMagFace : euclidean : Mtcnn 200 170 1.0 

1 QMagFace : euclidean : Mtcnn  211 17

 

1.0 glasses_on 1 QMagFace : euclidean : Mtcnn 211 162 1.0 

2 QMagFace : euclidean : Mtcnn  186 15

 

1.0 halohat_off 5 QMagFace : euclidean : Mtcnn 186 144 1.0 

3 QMagFace : euclidean : Mtcnn 196 17

 

1.0 glasses_off 2 QMagFace : euclidean : Mtcnn 196 161 1.0 

4 QMagFace : euclidean : Mtcnn 181 15

 

1.0 rainbowhat_off 3 QMagFace : euclidean : Mtcnn 156 116 1.0 

5 QMagFace : euclidean : Mtcnn 235 18

 

1.0 raimbowhat_on 4 QMagFace : euclidean : Mtcnn 191 144 1.0 

6 QMagFace : euclidean : Mtcnn 201 14

 

1.0 snood_crosses 8 QMagFace : euclidean : Mtcnn 173 95 0.75 

7 QMagFace : euclidean : Mtcnn 201 14

 

0.89 halohat_on 6 QMagFace : euclidean : Mtcnn 167 104 0.89 

8 QMagFace : euclidean : Mtcnn 215 15

 

0.78 snood_lines 7 QMagFace : euclidean : Mtcnn 163 99 0.75 

9 QMagFace : euclidean : Mtcnn  197 15

 

0.78 snood_blobs 9 QMagFace : euclidean : Mtcnn 176 96 0.75 

 10 QMagFace : euclidean : Mtcnn 228 149 0.67 goggles 10 QMagFace : euclidean : Mtcnn 228 34 0.11 

 39 persons in the database black: disguises       3000 persons in the database black: disguise 

Rank System configuration T C A Disguise Rank System configuration T    C  A  

 



 
36 

ACM Trans. Comput.-Hum. Interact. 

      

5.5 Lessons learnt from the evaluations 
The three evaluations with participants and the additional cross tests inform our research in different ways. 
The first (5.3.1) showed slightly different accuracies by the two FRT (Facenet512 and FGGface) used with their 
performance in the corridor and hall settings poorer than in environment: gate. The change of the illumination 
along the corridor and the skewed top-down angle of view in the hall may explain the reduced performance 
and a more powerful camera may produce improved results. The second more extended evaluation (5.3.2) tested 
the easiest environment: gate well-lit front-face video capturing with a larger group of participants from 
different ethnicities. Even in this best-condition setting there is a high variation of results for the same system 
with different configurations. Moreover, different configurations perform better with different ethnicities 
making it impossible to select the best one overall. The last evaluation (5.3.3) assessed the advancements of FRT 
showing there has been substantial improvement but, when disguises are used, misclassifications still occur. 
We have also seen a potential tendency towards a lower performance when the sample increases. 

The disguises were all successful in reducing the accuracy across all ethnicities albeit at different degrees. 
The two hats projecting light on the face of black participants made their faces easier to recognise thus having 
the opposite effect than intended. Of concern is the number of misrecognitions that occur in the clean and 
increase substantially with the disguises. It is worth noticing that misrecognitions occur across ethnicities as 
well as within ethnicities. It is then essential that the process of identification is supervised by a human who 
takes responsibility for the final decision14. 

Finally, we consider the design decision taken at the time of moving from the proof of concepts to the 
prototype. To guarantee wearability and ease of use during the evaluation we had to compromise some aspects 
of the design of the glasses (the light emitted, Fig. 6) and the rainbow hat (the pattern projected, Fig. 10). While 
the evaluation shows a drop in accuracy, this has been much less than we expected following the early tests. A 
design iteration to make prototypes that are closer to the initial concepts may produce the high deception 
expected.  

6 LIMITATIONS 
Our study has some limitations. First is the number of participants (39) that resulted in a very small number 

of faces tested when compared with large datasets of still images. However, a clear distinction and novelty of 
our work is the use of live video rather than still images: with 39 people of different ethnicities, our study is the 
largest of presentation attacks in real-life video-feed conditions.  

 
14 e identification procedure may vary from country to country. In the UK a police-person checks the FRT output and may decide to take 
the process of identification forward or may decide not to 
proceed.  /hps://www.met.police.uk/SysSiteAssets/media/downloads/central/services/accessing-information/facial-recognition/met-
evaluation-report.pdf 

clean QMagFace : euclidean : Mtcnn 159 12

 
0.88 clean clean QMagFace : euclidean : Mtcnn 159 120 0.88 

1 QMagFace : euclidean : Mtcnn  197 15

 
0.88 glasses_off 1 QMagFace : euclidean : Mtcnn 197 149 0.88 

2 QMagFace : euclidean : Mtcnn  186 14

 
0.88 snood_crosses 7 QMagFace : euclidean : Mtcnn 186 118 0.75 

3 QMagFace : euclidean : Mtcnn 208 15

 
0.75 glasses_on 3 QMagFace : euclidean : Mtcnn 208 144 0.75 

4 QMagFace : euclidean : Mtcnn 176 13

 

0.75 halohat_off 2 QMagFace : euclidean : Mtcnn 176 135 0.88 

5 QMagFace : euclidean : Mtcnn 200 14

 
0.75 halohat_on 4 QMagFace : euclidean : Mtcnn 200 140 0.75 

6 QMagFace : euclidean : Mtcnn 172 13

 

0.75 raimbowhat_off 5 QMagFace : euclidean : Mtcnn 172 130 0.75 

7 QMagFace : euclidean : Mtcnn 191 14

 

0.75 raimbowhat_o
 

6 QMagFace : euclidean : Mtcnn 191 138 0.75 

8 QMagFace : euclidean : Mtcnn 196 92 0.38 goggles 9 QMagFace : euclidean : Mtcnn 196 34 0.12 

9 QMagFace : euclidean : Mtcnn  175 76 0.38 snood_blobs 8 QMagFace : euclidean : Mtcnn 175 57 0.38 

 10 QMagFace : euclidean : Mtcnn 196 44 0.0 snood_lines 10 QMagFace : euclidean : Mtcnn 196 39 0.12 
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A second limitation is the different size of groups belonging to different ethnicities with white participants 
being more than black and brown combined (56% vs. 44%). However, when compared with other studies in the 
literature, our sample has a more participants [Sharif et al. 2019] and a more balanced proportion [Rosenberg 
et al. 2023], a possible reason for achieving different findings. This shows the complexity in studying FRT. 

A further limitation is due to the choices made when designing the final disguises. For reasons to do mostly 
with the comfort of participants, the final disguises implemented favoured ease of wear and use rather than 
technical solutions. Our choices, e.g. to project normal light rather than IR or UV, impacted on the ability of the 
disguises to bypass FRT, a negative impact much stronger than what we expected. We can only speculate that, 
had we used IR (infrared) or UV (ultra-violet) light the disguises would have been much more effective given 
the excellent FRT bypass achieved in preliminary tests (Fig. 3, 6, 9). In hindsight, focusing on the product rather 
than the technology was a mistake. 

Following on the same attitude of focussing on the participants, we decided not to use commercial software 
as to secure the privacy of our volunteers (an example of ‘privacy by design’ [Almeida et al. 2022]). Therefore, 
our comparison across models and over time is limited to open access software we could control in full.  

In our study we tried to replicate as close as possible realistic conditions. As such we should have used a 
CCTV system where the camera has been designed for indoor monitoring. Our attempt to use such devices was 
frustrated by CCTVs being close systems meaning that only compressed video is fed out as record. We 
considered compressed video not suitable as the performance of the FRT would have been lower not for the 
effectiveness of the disguises, but because of the video compression. Reports of the actual use of FRT in public 
spaces [Fussey and Murray 2019; Mansfield 2023] do not state at which point in the pipeline FRT is placed, from 
video acquisition to detection flagging, we can infer FRT is fed with the best quality images thus before the 
compression stage. Seen in the perspective of achieving a realistic simulation, our choice replicates the most 
likely pipeline but falls short of using the correct camera devices: this is a clear limitation albeit in line with 
other academic work. 

Despite these limitations, our study contributes to shed some light on FRT when it is taken out of the lab 
and challenged, not through the expert knowledge of computer scientists that know how to trick it, but by the 
ingenuity of design.  

7 CONCLUSIONS AND FUTURE WORK 
Our work frames FRT through design practice and understands its use and impact through the lens of HCI. Our 
approach does not start from what the technology can or cannot do, rather from the question “if I did not want 
to be recognised, what would I do?” In a generative design process, first we imagined 120 disguises of different 
complexity and feasibility, then distilled those in 50 concepts to be tested in the lab as mock-ups to identify 
which ones successfully bypassed FRT. Our purpose was to empirically select the promising concepts to be 
prototyped for a wider evaluation. Since these early stages, a few of our concepts had similarities with published 
research, yet our lab tests (Fig. 3) were not always consistent with the literature: the synthetic makeup applied 
on photos in [Lin et al. 2022] deceived FRT while two of our makeups failed; face-on-face projection was 
successful in [Shen et al. 2019] while it was not in our experiment; a mask with a fake nose and mouth was 
successful in [Zolfi et al 2022] but failed out lab test. As [Lin et al. 2022], [Shen et al. 2019] and [Zolfi et al 2022] 
are all computational attacks, we may infer they were effective not because of the type of disguise (makeup, 
projection, mask), but because they have been maliciously crafted to target known FRT weaknesses. However, 
in our lab tests (Fig. 3) the geometric make-up and the pink-dots face projection successfully bypassed FRT 
showing that computational knowledge is not a ‘must have’.  

Our empirical exploration then progressed towards wearable prototypes that could be worn by participants 
in a comparative evaluation against different FRT settings. We selected the two ends of the spectrum: simple 
camouflage (the snoods) and complex interactives that projected light on the face (hats) or against the camera 
(glasses).  At this stage of the design process our intent was to get closer to disguises that people (such as civil 
right activists) could wear in the street without raising alarm, disguises that could be easily put on and off (the 
snoods) or that could be switches on and off at will (the hats and the glasses). Moving from mock-ups to 
prototypes posed a challenge for the complex concepts: the UV and IR emitters attached to the glasses to attack 
the camera by projecting out light (Fig. 7) could not be seamlessly integrated in an off-the-shelf glass frame (the 
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lab mock-up was a larger 3D printed frame), and the pico-projector that shed a geometric pattern on the face 
(Fig. 10) could not be micronized to be integrated in a hat within the resources of the project. We then took the 
decision to favour wearability and to implement disguises that looked realistic to be used in the evaluation: the 
glasses had fibre optics, the hat an animated coloured led strip. Most likely we paid this choice with an increase 
in FRT detection (i.e., a decrease in the power of the disguises) as the disguises were not as effective as expected 
given the results of the lab test. In future work, it could be worth going back to the drawing board to find ways 
to incorporate the original concept into a wearable disguise, for example LEDs could be placed under the hat 
brim to create a sharp light-dark effect as in [Li et al. 2023] or infrared light projected used by [Zhou et al. 2018] 
although safety and comfort of the participants may be an issue here.  

We evaluated the prototypes in three different settings that simulated real-world conditions: the cameras 
were placed in different spaces (a hall, a corridor, a passport gate); at different heights, angles and lighting 
conditions; the attacker was wearing a physical disguise and free to move as they liked. In the hall and the 
corridor FRT performed poorly respect to the front-face at the gate (Fig. 14). We could not find any study that 
attempted to replicate real environmental conditions or the behaviour of the attacker as we did. The standard 
FRT experimental material is one or more photos taken front-face of a person sat in front of a camera to which 
digital patches are automatically applied [Zhu et al. 2019, Pautov et al. 2019, Zolfi et al. 2022], sometimes 
multiple photos with the head in different positions and light variation [Komkov and Petiushko 2021, Lin et al. 
2021], and in-person attacks wearing a disguise are rare (makeup in [Chen et al. 2019], glasses in [Sharif et al. 
2016]). Our results in the hall and corridor suggests that the experimental conditions in which FRT has been 
evaluated so far do not reflect realistic human-centred scenarios. Taking FRT out of the lab poses new 
challenges to the research community and open up new avenues of investigation. 

In the second evaluation we expanded the range of participants to include black and brown ethnicities. The 
findings show that disguises should be designed with a specific ethnicity in mind: halohat_on is very effective 
on white people as it ‘cancels’ some facial features (the nose and the face contour) while it makes black people 
much easier to recognise as it illuminates their faces.  

Our analysis shows some individuals are easier to identify than others and that cases of misidentification 
can occur both within and across ethnicities. This last finding is the opposite of [Rosenberg et al. 2023] that 
only finds misidentifications occurring within ethnic group when testing FRT against digital obfuscation. 
However, in [Rosenberg et al. 2023] the number of people identified as of Indian ethnicity were only 20 against 
1240 Black, 2.500 Asian and 10.000 White, while our sample was much smaller but more balanced between 22 
White, 8 Black and 9 Brown (Indian ethnicity). This observation suggests the need to experiment with more 
balanced samples representing different ethnicities equally and that generalisations cannot be done as 
unbalanced data may lead to unreliable results. Indeed, in our experiments the most misrecognised individuals 
as white and as black in both 2023 and 2024 were brown people (Fig. 19), an ethnicity marginal in [Rosenberg et 
al. 2023] respect to the other groups. 

Another explanation for the opposed results between our work and [Rosenberg et al. 2023] could be the 
different setup: as [Rosenberg et al. 2023] applied digital obfuscation and did not test physical presentation 
attacks, we may presume the disguises facilitated cross-ethnicities misidentifications in different ways. As 
explained in 3.1, FRT extracts the facial features and use them to position a point in a vector space expecting 
that to be the closest to the point of the actual face (ground truth) of the individual detected. When ‘noise’ is 
introduced, being that via digital obfuscation or physical disguises, some facial features are hidden or distorted 
forcing the FRT to interpret the facial features as a point positioned in the vector space far from the actual 
individual and closer to others resulting in the misidentification or the overlooking of the target person. It could 
be that the ‘noise’ from digital obfuscation and physical disguises occur on different features thus confound 
FRT in different ways. As the two studies differ in the evaluation environment, a real-life in our case vs. the 
LFW dataset (Labelled Faces in the Wild) for [Rosenberg et al. 2023], an interesting experiment could be to 
apply both in sequence to see how far FRT could be bypassed when noise is maximised. 

It is also impossible to compare our results against other physical presentation attacks as only [Sharif et al. 
2019] included more ethnicities, 1 south Asian female and 1 middle eastern man as impersonators. The lack of 
comparable work shows there are many opportunities to research FRT from a human-centred real-life 
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perspective and that FRT research would benefit from empirical findings, the involvement of more than a few 
participants of different ethnicities, all factors that could bring lab research closer to real uses.  

The cases of misidentification are particularly critical for the potential consequences this could bring: 
[Mansfield 2023] reports that in a real-life evaluation of commercial FRT used by the UK police the cases of 
misidentification (false positive) where 1 in 60,000 with a watchlist on 1000 individuals but increased to 1 in 
6000 when the watchlist increases to 10,000 (with 89% true positive for both settings). The consequences of FRT 
misidentification if not properly verified and confirmed by a human are serious [BBC 2019, Hill 2020, Hill 2022, 
Murphy 2023] and the number of people potentially affected when scaling up to the population of an entire 
country raise procedural and ethical questions even more when the technology is used by the private sector, 
for example when attempting to identify shoplifters [Chivers 2019]. The need to regulate FRT and its use would 
be a start, better would be to impose “privacy by design” and “privacy by default” to cover the creation, 
processing, sharing, and destruction of personal data as in the EU’s General Data Protection Regulation (GDPR) 
[Almeida et al. 2022] and to avoid abuses [REUTERS 2023]. While GDPR does not prevent data collection, it 
requires carefully documented processes and data management, but “what is considered fair and lawful is 
potentially open to interpretation” [Almeida et al. 2022, pg. 380] leaving open to individual countries how the 
government controls FRT and who is ultimately responsible for its use.  

The research in this paper was carried out over a period of 3 years, from the design and lab testing of the 
disguises in Spring 2021, to prototyping and real-life evaluation in three different settings, to the final 
comparative evaluation in Winter 2023-24. During this period, we have experimented with different models 
keeping the study up-to-date with the latest FR developments. While there is an improvement with recent 
models, when disguises are in use, misidentification still occurs: the relationship between the disguise, specific 
facial features and misidentification is worth exploring further.  
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APPENDICES 

A.1 Tables of the top results for disguise:clean 
ethnicity:white 

 

 

ethnicity:brown 
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ethnicity:black 
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A.2 Comparative charts clean vs. disguises for brown and black 
Number of mistakes made in recognizing brown in the benchmark clean (le) and across all the disguises (right). 

 

 

Number of mistakes made in recognizing black in the benchmark clean (le) and across all the disguises (right). 

 

A.3 Performance of the 2 best configurations testing the extended database of identities  
e primary database of identities uses a single high-quality photo taken full front on a white background to replicate a 
real situation where photos in passports, identity cards, driving licences, or mugshots are used to identify people. A second 
database was created adding to the 1 high-quality image a further 4 headshots taken from the clean video when the 
participant is in different positions. e tables below report the accuracy of the two best configurations, namely Facenet512-
euclidean-retinaface and Facenet512-euclidean_l2-retinaface, on 39 participants with environemnt:gate. 

 

disguise:clean ethnicity:white  

 

 

disguise:clean ethnicity:brown  
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disguise:clean ethnicity:black  

 

 

All disguises ethnicity:white  

 

      

All disguises ethnicity:brown  

 

 

All disguises ethnicity:black  
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B.1 Evaluation 2024 
e extended results of the many combinations of model: metric : backend 

 

disguise:clean   ethnicity:white 
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disguise:clean     ethnicity:brown 
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disguise:clean   ethnicity:black 

 

 

     disguise:all ethnicity:white 

 

 

disguise:all ethnicity:brown 
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disguise:all ethnicity:black 

 
 

A comparison of the brown participants most missed to be identified: 2023 on the le, 2024 on the right.  

  

 
 

A comparison of the black participants most missed to be identified: 2023 on the le, 2024 on the right.  
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