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This paper takes a design-driven human-centred approach to Face Recognition Technology (FRT). In a process of Research through Design
we first generated 120 ways to dodge face recognition, then distilled and tested 50 concepts in the lab. The 19 disguises that successfully
bypasses FRT informed the implementation of 7 disguises initially tested with 14 white participants walking through a hall, a corridor, a
control gate. The control gate led to a larger study (39 participants of different ethnicities) to assess the effectiveness of the disguises in
bypassing 3 open-source FR models using 3 different distance metrics and 4 backends. We compare our real-life evaluation of design-
generated disguises against previous and current computing research: while maliciously crafted digital perturbation attacks work well,
they do not capture the complexity of live FRT opening up opportunities for future research:

CCS CONCEPTS « Human computer interaction (HCI) « Human and societal aspects of security and privacy

Additional Keywords and Phrases: face recognition, public places, privacy, presentation attacks, design, interactive devices,
ethnicity, evaluation, dodging face recognition, evading face recognition.

1 INTRODUCTION

Facial recognition is a consolidated yet still growing biometric technology by which the face of a person is
recognised as known [Castelvecchi 2020]. The underpinning principle is that the human face is a (unique)
combination of features (i.e., eyes, nose, mouth, face contour) that can be used to identify an individual. For its
nature, facial recognition is very simple to use and therefore it has become a common biometric authentication
system now available on smartphones, home and building security, retailers, border control [Kortli et al. 2020].
Typical scenarios of use are security for the individual, e.g., unlocking personal devices and apps; for companies,
e.g., checking people in and out of work; and in public spaces, e.g., to monitor the crowd and rapidly identifying
specific individuals [J. Zhang et al. 2021]. When used in public spaces as a way to augment CCTV cameras with
the power of Al facial recognition is labelled by critics as a tool to create a surveillance society where citizens’
rights are eroded, and democracy is slowly moving toward authoritarianism [Polyakova and Meserole 2019].
These criticisms become news when face recognition is used by the police to control demonstrations taking
place [Sinmaz 2023] or in crime investigations sometimes resulting in individuals being falsely accused [Hill
2020, Hill 2023]. While the use of facial recognition is accepted by the vast majority of citizens for reasons of
public security [Bu 2021], more questionable is its use to monitor and regulate people’s behaviour, from limiting
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shoplifting [Chivers 2019] to school attendance and ‘good citizenship’ [Bu 2021]. The spreading of the use of
facial recognition means companies are pushing ahead with technology development and selling
internationally to both governments and individuals [Hawkins 2018]. National and international regulations
take time to be developed and agreed therefore critical aspects such as acceptable accuracy, the monetisation
of very sensitive data - our faces, privacy rights violations, data collection and use [Bu 2021] are still a matter
of debate. Social science literature has since long discussed the ethics of facial recognition [Selinger and Leong
2021] and computer scientists are now aware of the ethical implication of their work [Van Noorden 2020].
Motivated by this societal awareness, some researchers have started to investigate people’s attitude and to
address existing concerns by introducing privacy-preserving mechanisms as part of their system design [S.
Zhang et al. 2021; Lobner et al. 2023]. Nevertheless, computing research still mostly focuses on lab experiments
on system performance and technical challenges widening the gap between research and its real application.

Our research looks at Facial Recognition Technology (FRT in the following) deployed in public spaces for
the purpose of monitoring and surveillance. It is a very specific scenario where the control of the
video recorded, its analysis, use and storage are entirely in the hands of those who provide surveillance services
(to the government or the private sector) while the people whose face is captured do not have any power to
prevent being recorded and may even not be aware FRT is in operation. In this complex and articulated
landscape, we take a design-driven human-centred perspective of the sociotechnical system of technology,
people, and places. While most research in this area starts from the knowledge of how FRT works and devises
computational ways to evade it [Sharif et al. 2016; Zhou et al. 2018; Pautov et al. 2019; Zhu et al. 2019; Zolfi et
al. 2021; Vakhshiteh et al. 2021, Jaiswal et al. 2022, Li et al. 2023], our research is computing-agnostic and
founded on the human question “if I did not want to be recognised, what would I do?” We started with an
intense design phase: of an initial set of 120 concepts? 50 were fast-prototyped and tested by the researchers in
the lab (Section 4). The 19 concepts that successfully bypassed FRT were implemented as 7 disguises (4 static
and 3 interactive) and tested with 14 white participants walking through 3 cameras positioned on a corridor
door, on the corner-ceiling of a hall, and in a frontal position as in a controlled access gate (Section 5). The FRT
performed poorly in the corridor and hall. A final more extended experiment focussed on the access control
setting with 39 participants from different ethnicities. Our findings are not always aligned with existing
literature pushing us to reflect on why this'is the case (Section 6).

2 DEFINING THE RESEARCH CONTEXT AND ITS ORIGINAL CONTRIBUTION

The scenario of reference for our research is FRT deployed in public indoor places where live cameras are used
for monitoring and surveillance. This focussed goal brings some specificities that distinguish our investigation
and define our original contribution respect to other FRT research conducted in the same or close contexts.
We started with a generative Research through Design phase to conceptualise, test and select human-centred
proof-of-concepts that could be made by, for example, human-right activists against FRT. The promising
concepts were then prototyped as physical disguises to be tested first in the lab and then in realistic
experiments. The process of creating the disguises did not consider the capabilities of the FRT, rather it started
from what professional designers imagined could be effective ways to go undetected. Much previous research,
instead, implements disguises that exploit known FRT weaknesses (e.g. bespoke adversarial patches [Pautov et
al. 2019]; sharp light change [Li et al 2023]) requiring expertise in computer science, some knowledge of the
FRT being targeted, the camera and sensors in use [Bisogni et al 2021]. Some of the concepts we generated
share some features as those in the literature (a pair of glasses [Sharif et al. 2016], face projection [Li et al. 2023],
makeup [Zhu et al. 2019] or a hat [Zhou et al. 2018]). However, our disguises do not require any computing
knowledge (such as perturbation algorithms to feed obfuscation systems [Rosenberg et al. 2023, Vakhshiteh et
al. 2021]) and could be made with minimal DIY skills. Therefore, our work takes a human-centred perspective,
complementing, expanding and challenging existing research by offering similar, yet different physical
disguises generated following a design approach. Some of our results contradict papers in the literature pointing

2*Concept’ is a term commonly used in design to indicate a rough idea of a potential solution to a problem or a question. A concept does
not have to be realistic or feasible, it functions as an inspiration and as a starting point.
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to key role of computational deceptions such as gradient-based perturbation rather than the physical means of
delivering it such as a mask, a pair of glasses or a makeup, as discussed in Section 7.

Generative design does not pursue a single solution, rather it explores the problem through multiple and
diverse options simultaneously [Brown 2009], in our case physical disguises with different features. Following
a design thinking approach we also quickly prototyped and tested many concepts in the lab to help us select
the most promising to be taken to implementation and testing. Existing research mostly focusses on a single
object type (e.g. mask [Zolfi et al. 2021], glasses [Sharif et al. 2016], hat [Zhou et al. 2018]). Instead, our informal
tests in the lab and more structured realistic evaluations simultaneously compare multiple different types of
wearable disguises trying to assess the most effective ones. This comparison across disguises is a unique
contribution.

During our study we conducted three different assessments of FRT against the disguises, always using live
video. The first was a lab test (Section 4.1): the researchers presented themselves to the FRT wearing one of the
50 proof-of-concepts to check if they were recognised or not. The result of this test informed the prototyping
of the 7 disguises, 3 of which were interactive. In the second test, 14 white participants walked along a corridor,
around a hall, and in front of a camera wearing the disguises; in the third experiment we expanded the number
of participants to 39 including white, brown and black people. We also tried to balance the sample by inviting
participants of different ages and different gender. This quasi-realistic setup makes our research unique as the
data used to test FRT in the lab is generally a database of images computationally manipulated [Hernandez-
Ortega et al. 2019] or images captured in ideal conditions with the subject and the camera in fixed positions
within a controlled environment and perfect illumination (e.g., [Sharif et al. 2016, Li et al. 2023]). To the
contrary, our participants were wearing the disguises and walked through three different spaces with different
illuminations and the camera placed at different angles. Finally, we run multiple tests to compare different FRT
configurations over a period of 3 years, from Spring 2021 to Summer 2024 showing how FRT has improved over
time and providing empirical evidence of the best performing configuration. Therefore, our research is the first
to show the combined effect of free movement of people, ethnicity, disguises, camera angle, and light variation
on the performance of multiple FRT systems over time. We also performed a series of cross tests to assure our
results are consistent and reliable, including: the test of different video samples rating to balance accuracy and
processing times; logistic regression to evaluate the impact of each variable (disguise, gender, ethnicity) on the
predictive capacity of one of the top-performing FRT pipelines; open-world settings with larger databases of
identities to check if the performance changes as the number of individuals increases. These tests could be a
guide for other researchers.

3 FACE RECOGNITION TECHNOLOGY

In this section we review the literature on FRT to identify individuals and deception strategies to avoid
identification in video streams. We attempt to include both academic and commercial systems, although public
reports on real uses of commercial systems are very rare. In reviewing the literature, we limit our effort to the
specific scenario of reference: FRT deployed in public indoor places where live cameras are used for monitoring
and surveillance where the people whose face is captured do not have any power other than to wear a disguise.
Therefore, user-controlled privacy [Aditya al. 2016], devices that guarantee privacy by adding noise to the
image files [Vakhshiteh et al. 2021, Jaiswal et al. 2022], by “cancelling” bystanders [Hasan et al. 2020], or camera
that shut when people are in view [Steil et al 2019, Aditya et al. 2016] are excluded from this review because
those pursue the opposite goal. Mechanisms that identify people by other means than only their faces (e.g.
clothes and pose [Oh et al. 2016], gait [Wang et al. 2018], information in Linkdin or FaceBook [Acquisti 2014])
are also considered out of scope.

3.1 Face recognition technology

Face recognition is a biometric tool to identify faces in images, both photos and video stills. Although there is
a tendence to think of FRT as pure software, the starting point is the sensing of the world through a camera
(that captures the image), possibly complemented by additional sensors that can help to better interpret the
scene, for example an infrared camera, a depth camera, or an eye tracking sensor [Kortli et al. 2020]. The
performance of FRT depends on the accuracy of the sensing system and additional sensors to a camera could
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improve performance in conditions of illumination variation, or additional sensors could prevent ‘presentation
attacks’ [Hernandez-Ortega et al. 2019]. The processing pipeline is articulated in several steps some of which
are common across different purposes (see [Kortli et al. 2020] for recognition techniques):

1. Face detection scans the image seeking faces [Kortli et al. 2020]. The output is a bounding box for each
face detected in the image. Face detection may fail because of variation in the illumination of the scene,
partial obstruction of the face and facial expressions.

2. Face alignment locates face landmarks such as eyes, nose and mouth and aligns them generating a
frontal and well-lit view of the face [Castelvecchi 2020].

3. Features extraction extracts the geometry of the face(s) to create a ‘faceprint’, that is unique for every
person, and encodes the faceprint into the feature space [Kortli et al. 2020]. The output of features
extraction can be used in multiple ways, for example in Facial Analysis to classify a person respect to
their age or gender or to assess the person’s emotional state [Castelvecchi 2020], or to populate the
database of identities used in Facial Identification [Kortli et al. 2020].

4. Face matching confirms or checks the identity of a person. Verification is a one-to-one comparison in
which the faceprint extracted from the image is compared with the one stored. Examples are unlocking
a smartphone, passport control or work attendance [Castelvecchi 2020].Identification is a one-to-many
comparison in which the faceprint extracted is checked against a database of known people to discover
the identity of the person detected [Castelvecchi 2020]. An example is the scanning of a crowd to find
people of interest in police operations [Fussey and Murray 2019, Mansfield 2023].

This paper focuses on facial recognition for identification. FRT failure in identifying a person can occur at
different points: detection failure when no face is detected in the image or a face is detected where there is none;
recognition failure when a known face is not recognised in the image or the person is recognised as someone
else. The rate of failures determines the accuracy of the FRT. The performance of FRT in ideal, controlled
environments can be very high: [Kortli et al. 2020] compared different techniques and reported scores of 96-
99% with perfect illumination, a fixed pose, optimal computational power, and computational time. Similarly, a
comparison of commercial3 FRTs on a database of 80 celebrities for which excellent visual material is available,
e.g., multiple photographs from different angles, found 93-99% accuracy [Raji et al. 2019].

Reliable data of FRT performance in uncontrolled, in-the-wild, real-life use is an exception. Hindsight from
a live facial recognition trial carried out by the police in the UK in 2018 showed a correct match of 19.05% (8
correct out of 42 matches found by the FRT used) [Fussey and Murrey 2019]. However, a recent and larger
study from 2022 carried out by the police in the UK using real-life recordings in the streets of London in a
sunny summer day (i.e., optimal illumination) with a controlled cohort of subjects found a positive identification
of 89% across all ethnicities [Mansfield 2023]. It is an impressive increase in performance and a steep drop in
the error for false positive (when a person is wrongly identified as being in the watchlist)*. Even with a minimal
error rate, false positives are particularly critical when the scale of reference is the entire population of a
country given the consequences of false accusation on the life of the individuals wrongly accused. As the media
report cases of false accusations following FRT misidentifications (by USA police [Hill 2020, Hill 2023, Williams
2020] and by Apple in their shops [BBC 2019]), the accuracy in real-life use and across different FR systems
becomes crucial. In addition, while governments are likely to have rules and procedures to safeguard their
citizens (e.g. the UK requires a final verification by a police officer before any action is taken [Fussey and
Murrey 2019]), the private sector may be acting in a vacuum of regulation rising concerns about potential
misuses and abuses (as in recent cases in the USA [Murphy 2023, Bhuiyan 2023, Bhuiyan 2024]).

3 The largest comparative continuous assessment of FRT commercial algorithms is carried out by the USA National Institute of Standards
and Technology NIST using very large datasets of images: companies apply to NIST to have their software tested in both facial
identification and analysis. The last report from 2020 is available at https://www.nist.gov/programs-projects/face-recognition-vendor-
test-frvt

4 [Mansfield 2023] reports an estimated false positive error rate of at 0.017% for a watchlist set of 10,000 and a false positive rate of 0.002%
for a set of 1,000.
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3.2 Presentation and adversarial attacks

Even if the first successful face recognition system dates back to the 1960s, it has been only with the last
advancement of deep learning and the availability of abundant data that FRT has reached accurate performance
[Vakhshiteh et al. 2021]. However, deep learning face recognition systems are vulnerable to data variation
[Vakhshiteh et al. 2021]. Thus, much effort is spent on making the technology more robust to attacks
[Hernandez-Ortega et al. 2019].

The literature distinguishes physical attacks, those modifying the appearance of a face before image
capturing, and digital attacks, those modifying the captured image by adding ‘noise’ (or perturbation) to create
an adversarial image that deceives FRT but still shows the original face to a human eye [Vakhshiteh et al. 2021].
In essence, digital attacks exploit known weaknesses of FRT to mislead it.

Our research investigates physical attacks in the real world, called presentation or spoofing attacks. Such
attacks on facial sensors can be carried out by simply presenting the artifact to the camera and do not require
any knowledge on how the biometric system works [Ramachandra and Busch 2017]. A presentation attack can
have different purposes: the ‘active impostor’ wants to be identified as a specific individual (impersonation); the
‘active impostor’ aims to be identified as any other individual (dodging); and the ‘concealer’ intends to evade
being recognised as any individual known to the system (evasion) [Ramachandra and Busch 2017, Vakhshiteh
et al. 2021]. Impersonation attacks make use of artifacts such as a photo, video or 3D mask of the target person.
Software mechanisms have been implemented in FRT to detect the ‘liveliness’ in the face (e.g:; skin texture and
blink detection against images and 3D masks) or by measuring the depth of the scene through reflectance (e.g.,
variation of camera focus or infrared against the use of video on tablet) [Ramachandra and Busch 2017,
Hernandez-Ortega et al. 2019].

Impersonation can be also achieved using ‘adversarial patches’, i.e., print out of perturbations to be worn on
glasses [Sharif et al. 2019], on a t-shirt [Xu et al. 2020], disposable masks [Zolfi et al. 2021], or on part of the
face [Pautov et al. 2019]. These patches are created ad-hoc to impersonate a specific person, a result also
achieved by projecting perturbations on the face [Shen et al. 2019, Nguyen et al. 2020, Li et al. 2023]. However,
the use of adversarial perturbation in presentation attacks requires substantial computing knowledge to create
patches for impersonation out of an image of the target person, therefore it cannot be considered an attack easy
to carry out.

In this paper we explore different forms of presentation attacks and test if the disguises can dodge or evade
FRT. We implemented and tested several strategies similar to a few in the literature, yet our work is unique in
three ways: (1) we implement wearable prototypes, (2) in the evaluation we asked participants to wear the
disguises and walk towards a camera, and (3) we compare the effectiveness of the disguises in bypassing FRT.
Literature on physical attacks very rarely presents prototypes used in real life conditions. For example, attacks
by projection on the face [Shen et al. 2019, Nguyen et al. 2020, Li et al. 2023] place the projector far from the
person who stands still while their image is captured; conversely, we explored and implemented projection as
part of a hat (Figures 9, 10, 11) that participants wore while walking around during the evaluation. Another
example is the use of makeup in an adversarial attack that automatically add eye and lips makeup to images or
avideo feed [Lin et al. 2022]: we experimented with different makeups by painting our faces and found different
results. Section 3 discusses our design with reference to examples in the literature to highlight when our
approach differs and when it is similar.

4 DESIGN RESEARCH TO EXPLORE FACE RECOGNITION DECEPTION

This section discusses the design process. We used a Research through Design methodology [Stappers 2007,
Koskinen et al. 2011] starting with a phase where the brief of bypassing FRT is expanded and explored from
different angles. The concepts generated are then assessed in a convergent phase, some are eliminated, other
are aggregated. The most promising are taken forward to a phase of experimentation with material, fabrication
and testing that is instrumental to build an understanding of what could work and what could not. On the bases
of empirical evidence a few concepts are then developed to be evaluated in a more rigorous way with recruited
participants.

ACM Trans. Comput.-Hum. Interact.



4.1 Proof of concepts

As discussed in 3.2, attacks to FRT exploit known weaknesses and generally require computer science expertise
to implement the precise attack that will fool FRT. Instead, a human-centred, naturalistic approach runs through
our research. We started with the question: “if I did not want to be recognised, what would I do?” and speculate
on possible scenario of use, e.g., disguises that would go unnoticed in the street and make the wearer invisible
to FRT at will.

Six (6) experienced professional product designers participated in a 2-hour generative workshop. The design
brief was to imagine a wearable that could successfully bypass FRT. What the technology could or could not
do was not discussed, rather it was left to the intuition of the designers to imagine what could be effective to
go undetected. The product designers then proposed concepts explaining what the deception was and how it
worked. We stayed open to both simpler and complex concepts irrespective of how ‘implementable’ or ‘realistic’
such concepts might appear at first sight (Fig. 1) for their potential to inspire design. Overall,1120 different
concepts were generated, several described an interactive piece that could be switched on and off. We did not
brief the product designers on which physical attacks have been tried in the scientific community, yet a few of
the concepts generated in the workshop resemble presentation attacks tested by computer scientists: 3D mask
[Ramachandra and Busch 2017, Hernandez-Ortega et al. 2019], adversarial face mask [Zolfi et al 2021], different
types of projection on the face [Shen et al. 2019, Nguyen et al. 2020, Li et al. 2023] and dazzled glasses [Sharif
et al. 2016, Sharif et al. 2019]. The key difference between the concepts generated by the designers and those in
the literature was the mechanism to bypass FRT, for example the dazzled glasses use ‘perturbation’ for
impersonation, what looks like random bright-coloured patterns placed on the glasses frame [Sharif et al. 2016]
while the glasses imagined by the designers generated a hologram when clicked together and were later
implemented with a hidden mechanisms for light projection against the camera (Fig. 6).

The workshop was a divergent, generative phase that was followed by a selective, convergent phase [Brown
2009]: the 120 concepts generated in the workshop were critically assessed by the researchers, those similar
were aggregated, and 50 were taken forward. Fig. 2 and Fig. 6 show examples of aggregated concepts. The
proof-of-concept eye-mask in Figure 2-bottom merges two concepts: a textured mask and a lighting mask in
Fig.2-top. Figure 6 shows the merging of two different objects a pair of hearings emitting light and a pair of
holographic glasses combined into a proof-of-concept of glasses projecting light. The aggregation of concepts
could occur at any time during the design process: Fig. 10 shows how the projection in, already an aggregate
of several projection concepts, was implemented with a geometric pattern that was successfully tested as
makeup, bottom left in Fig. 3.

Most concepts were quickly mocked-up as proof-of-concept and tested by the researchers themselves in
Spring 2021 during COVID lockdown (Fig. 3). The interactive disguises, discussed in Section 4.2.2 and 4.2.3,
where warn by the researcher and switched on and off: if the disguise was effective, the FRT system would flip
between recognising when the switch was off and missing to recognise the person when the switch was on, as
shown in Fig. 10.-A few concepts could not be prototyped due to difficulties to procure special materials and
access fabrication machinery while in lockdown; however, elements of those concepts were transferred, for
example the thermochromic face cover (Fig. 1, centre bottom) shares elements of the ‘prosthetic patches’ and
the ‘projection in’ concepts, both developed as proof-of-concept (see Fig. 3). In this way we were able to test
features commons across multiple concepts. An example is given in Fig. 2 that combines two concepts of mask,
one with a textured surface, the other with a light diffuser. Even though this specific exploration was not taken
forward to become a prototype to be tested with participants, the process of designing and making it increased
our knowledge of material-digital hybrids.

ACM Trans. Comput.-Hum. Interact.
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Figure 1. Some of the concepts generated in the workshop, from simple (top) to complex (bottom).
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Figure 2 A proof-of-concept (bottom) that combines two similar concepts (top): a mask with a 3D texture (Concept 12)
and refracting light (Concept 30). It combines light and mask using internal refraction to create a glow effect. The 3D
printed sheet adds the pattern.

The proof-of-concepts were tested against DeepFace’, running VGG and Facenet models, paired with a
laptop or an external camera in Spring 2021. The multiple hardware and software settings were instrumental
in the process of gaining an empirical understanding of the variables that come into play. For example, the
optics of different cameras may impact the performance of FRT and different models are likely to have different
performance: we considered successful only those proof-of-concept that bypassed all configurations. Testing
the 50 concepts, or part of their features, was instrumental to build an understanding on which strategies could
be effective in deceiving FRT and which were not. Indeed, while face recognition software is available
opensource for everybody to use, which are the key facial features for each model is not clearly disclosed. From
our experiments, some of which are shown in Figure 3, we inferred that the eyes and the nose bridge were key
points for-recognition whereas the mouth and the chin were not critical. For example, the masks and the
prosthetics leave the eyes and the nose-bridge visible and failed to bypass FRT while all the concepts that
successfully bypassed FRT hid the eyes and the nose-bridge.

The tests of the proof-of-concepts eliminated those that did not bypass FRT. For example, most makeups
were not effective, possibly because makeup emphasises facial features rather than disguising them, whereas
many snoods® bypassed FRT successfully, and projection in gave inconsistent results (see Fig. 3 for examples).
Interestingly, our tests were not always consistent with the literature, for example the synthetic makeup in [Lin
et al. 2022] was effective in deceiving FRT while two of our makeups were detected while one was successful,
this in line with [Chen et al 2017] who recorded equally patchy results. Our results also contradict [Shen et al.
2019] face-on-face projection and [Zolfi et al. 2022] nose-mouth mask, see discussion in Section 7.

5 DeepFace software was downloaded from: https://github.com/serengil/deepface
6 A ‘snood’ is a wide ring of knitted material worn as a hood on the head or as a scarf around the neck. When worn around the neck a
snood can be easily pulled up to cover the face, as in the concepts explored here.
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Figure 3. Some examples of disguises that failed to bypass FRT (top) and succeeded (bottom).

By systematic testing, we identified 19 successful deceptions, organised into four categories classified respect
to key features, specifically how easy they were to make (simple vs. complex) and if they were analogue or
digital. These four categories of deceptions were the foundation for the second phase of the research, the
development of the simplest and the most complex concepts (from prototypes to products) and their assessment
under near-real life conditions.

4.2 Prototyping disguises

From the classification of successful disguises, we selected three generic concepts to be implemented in different
forms: camouflage, projection out and projection in. At this point we started to consider realistic scenarios of
both making and use. The disguises are described below starting from the original concept (in the set of 50)
through to experiments with materials and proof-of-concepts (tested by the researchers) to the final
implementation ready to be used in the comparative evaluation discussed in section 5. In this process, from
early concept to final implementation, we had, at times, to simplify the original concept to make it feasible and
implementable or to make it safe and easy for participants to wear during the comparative evaluation. In
hindsight, our choice to prefer ease of use and the comfort of the participants taking part in the experiment
against maintaining the successful technical solution as tested in the lab drastically compromised the
effectiveness of the disguises, as discussed in Section 5 and 7.

Figure 4. Extensive testing: (top) different fabric and invisible bandages; (bottom) different patterns draws and printed.

4.2.1 Camouflage

The concept of camouflage includes a wide range of ‘analogue’ disguises to wear. A camouflage can be ‘long-
lasting’ such as an elaborate makeup that needs time to be put on and off, or it can be a ‘quick’ disguise such
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as a patterned snood, a face shield or a veil that can be put up and down quickly. The snoods successfully
bypassed FRT and the concept was taken further (Fig. 3). The next design iteration of the snoods explored
materials, patterns and how to make them (Figure 4). Inspired by the idea of multiple skins to peel off (Fig. 1,
Concept 21), we experimented with invisible bandages (also called ‘second skin’), an adhesive film applied
directly over the skin, for example, to heal burns. The effect on the face is similar to the snood (see Fig. 5) and
has the advantage of being quick to dispose of, a key factor in eliminating evidence of a disguise (Fig. 4, top
right). Different patterns were designed and tested (Fig. 5, bottom row) and 3 were selected for production (Fig.
5).

Figure 5. Camouflage: 3 snoods with different patterns printed on tights (left), 2 patterned second skin (middle), goggles
(right).

A further simple camouflage was introduced following the observation by a design researcher that they
were unable to unlock their phone (that use a one-to-one FRT) when wearing dusty, safety goggles. We
therefore introduced this disguise imagining that someone dressed as a maintenance worker could easily walk
in the street unnoticed.

4.2.2  Projection out

A small set of the 50 concepts proposed a camera-attack strategy: a beam, controlled by the user, is directed
toward the camera with the intent of confounding its optics and prevent face detection. These concepts of
attacking the camera fed an initial exploration of materials that could reflect infrareds (Fig. 6, middle) as infrared
sensors could be added to a standard camera to sense the scene at night [Kortli et al. 2020]. This very quick and
effective proof-of-concept fed the exploration of two interactive disguises that used non-visible wavelength
light: ultraviolet (UV) led and infrared (IR) led (Fig. 6, third and second from right). The UV interactive glasses
were very effective in bypassing FRT under different light conditions whereas the IR glasses failed in daylight
conditions with one of the cameras.

Although successful in bypassing FRT, the 8 UV LEDs mounted on the frame made the shape bulky and the
wires were unpractical for the evaluation with participants. As we aimed at wearables that participants could
easily put on and off, we decided to make the projecting out glasses using an off-the-shelf frame. To eliminate
the wires the number of light points was reduced and optical fibres along the top of the frame were used to
form a line of 4 light points (Fig. 6, right). The light projected is visible light 400 — 780nm and the battery needed
to switch the light on/off is small (UV and IR would have required a much larger battery pack). We were aware
that the change from UV/IR to visible light and the reduced points could impact the power of deception of this
disguise; what we gained was to move closer to a standard pair of glasses that could be used in real life and
observe its wearability and ease of use in the evaluation. If this disguise would be partially successful in
bypassing FRT in the evaluation, then the effort to micro-engineer the projection-out glasses to reduce the size
of the electronics would be justified.
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Concept 2

Concept 6

2
/8
b

Earrings with laser pointers builtin, can be aimed at a camera,
the intersecting point then creates bloom, ensuring the
camera cannot see the face.

Pair of glasses that clip together with holographic effect to
make eyes appear closer together. Could have Dazzle pattern
on rims of glasses

initial inspirational concepts

3D printed frame 3D printed frame off-the-shelf frame fibreoptics

light and infrared
reflective glasses

UV light 400-315nm IR light 780nm visible light 400 - 780nm

Figure 6. The concepts of morphing glasses and a camera-attack mechanism that inspired the design of glasses projecting
out.

4.2.3 Projection in

A set of concepts from the workshop propose hats or headgears that project images or patterns on the face
(Fig. 7). Rather than attacking the camera directly, these projections disguise the person by confounding their
facial features. It was a promising intuition, and three quick tests were done early in the research, two were
successful (Fig. 3): one floods the face with white light, the other projects geometric patterns. This started an
exploration of two different headgears, tested as proof-of-concepts. The ‘halo hat’ is a round brim straw hat
with a ribbon of white LED on the bottom of the brim; a switch controls when it is on-off (Fig. 8). It was effective
in bypassing FRT, wearable and easy to use thus ready for the evaluation.
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Concept 5 Concept 41

Concept 3 f Concept 4

In built projector to project different faces onto face, concealed In built LED torch to project dazzling'light onto face, concealed In built projector to project moving shapes onto the face. Headband with in built light technology and 3D shape.
through a baseball cap. within a woolly hat. Pull down folded part to release and tur on. Concealed within a baseball cap. Moving dazzle effect. When the light shines, the shapes cast shadows across the
face obscuring the nodal points.

Figure 7. Headgear that ‘project in’: (1) the face of someone else — tested as proof-of-concept, it failed, see Fig. 3; (2) a
dazzling light — the ‘halo hat’ prototype; (3) geometric shapes tested as makeup succeeded, see fig. 9; (4) shades - tested
as the ‘rainbow hat’ prototype.

Inbuikt LED torch oy fng lght ontoface,concesled
within  woolly hat Pull down olded part o relesse nd trn on.

Figure 8. The ‘halo hat’ with a ring of LED around the brim. The on-off control is a simple switch.

More articulated was the exploration of the geometric projection. To become wearable, the pico-projector
used in the quick tests in Fig.3 had to be fixed to the head to guarantee an alignment between the position of
the head and the projection. A test rig was made using carbon fibre and a bespoke 3D printed holding piece for
the pico-projector to be mounted on a bike helmet (Fig. 9, left). In the proof-of-concept the face-projection
alignment was consistent and the bypassing of the FRT very effective (Fig. 9, right). Incidentally, the geometric
projection implements the geometric makeup, the only makeup to effectively bypass FRT in the test (Fig. 3),
another example of merging different features while progressing along the design thinking process [Brown
2009].

Figure 9. The ‘projection in’ of a geometric patter: FRT recognizes the user when the projection is off but not when it is
switched on.

To use this concept in the evaluation we needed to improve its wearability and ease of use. However, this
would require much engineering work (e.g., to miniaturise the electronics) that was not affordable in terms of
time and expertise. Thus, a much simpler projection-in prototype was implemented for the evaluation (Fig. 10).
As for the projection-out glasses, we had to compromise the original concept for the evaluation. The ‘rainbow
hat’ prototype projects a carousel of coloured lights on the face; it is controlled by a smart watch to avoid
attracting attention while quickly switching it on and off.

ACM Trans. Comput.-Hum. Interact.



13

As for the glasses (see 4.2.2 Fig.6), the constraints for disguises that were easily wearable to be used in a
naturalistic evaluation by participants external to the project walking around spaces, changed part of the
concept, specifically the type of the pattern projected. Given the result of the lab tests (Fig. 3), in changing the
pattern we were aware of the potential failure (i.e. to be detected): our intent was to see the result of the
evaluation, learn from it, and then review the design, see section 7 Discussion.

Figure 10. The rainbow hat and the smart watch used to control it: a line of coloured led below the visor of the cap
projects animated coloured lights on the face. A smart watch controls the on-off switch of the light without attracting
attention.

5 UNPACKING FRT PERFORMANCE

5.1 The ethics of evaluating FRT with participants

Conducting research on FRT requires a degree of sensitivity to the subject that only recently has been
developing within the computer science community [Von Noorden 2020]. As HCI researchers we were aware
of the ethical concerns since the inception of the project and ethical considerations run throughout the whole
research, from designing comfortable and safe disguises; to wearability and ease of use to perform the
evaluation; from system configuration for assure privacy to personal data dissemination in publications. The
evaluation plan was reviewed and accepted by Anonym ethical committee that implements rigorous standard
of ethical research’. In this section we describe how we delt with ethical issues at different points in the research
process.

In moving from concepts tested in the lab by the researchers on themselves to implemented disguises to be
worn by participants in the evaluation we chose comfort and ease of use above technical coherence. In this
process some disguises were: eliminated because they were too intrusive (the ‘second skin’ bandage Fig. 5,
second and third from the right); redesigned to improve wearability (the UV or IR glasses needed many wires
around the head and a bulky power battery to carry around) or to guarantee health and safety (in projection-
in, ‘halo-hat’ in Fig. 8 floods light from above had to avoid the eyes; ‘rainbow-hat’ in Fig. 10 projects mild LED
light on the face). We were aware these choices could lower the effectiveness of the disguise, yet we preferred
to have lower results and then to go back to the drawing board with informed knowledge. To guarantee
hygiene, we made a large set of one-use snoods and dispose of them after use.

Our commitment to guarantee the privacy of our participants impacted on the technical setup. To assure the
recorded videos were always under our control in full, we limited ourselves to open source non-commercial
FRT software to be installed on the local machine together with the videos. This was clearly stated in the
participants’ consent form: it was an essential and indispensable condition of the experiment. We were fully
aware that commercial systems offer better performances, yet we intended to use only a configuration that
guaranteed participants’ facial features stayed local and under our control even if we had to renounce to optimal
performance. We are also aware that our videos would be an important resource for other researchers, yet, we
committed not to distribute it to maintain the privacy of our participants.

On arrival participants were asked to read the information sheet and sign the consent form which had
different options: they could opt not to wear a specific disguise if they felt uncomfortable (a person preferred

7A link to the university policy will be added upon acceptance.
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not to wear the snoods) or they could opt out of having their faces used in publications or presentations (three
participants opted out).

glasses_off rainbowhat_off halohat_off snood_lines snood_blobs

clean(no disguise) glasses_on rainbowhat_on halohat_on snood. crosses goggles

Figure 11. One of the participants wearing the disguises. Top left: the photo portrait used to create the database of
identities. Bottom left: a frame from the clean video used as benchmark. From second left the 10 disguises, the interactive
are shown as off and on.

5.2 Experimental design and procedure

The evaluation was designed to assess which disguises bypassed FRT in realistic situations while maintaining
data confidentiality. We balanced the rigour of a controlled in-lab experiment with a veridic naturalistic setup:
in a within-subject experimental design each participant wore all the disguises in turn and walked toward the
cameras positioned as to resemble real FR conditions. The experimental design was planned and piloted,
changes and amendments implemented. The first experimental variable is the disguise. Of the prototypes
developed, the ‘second skin’ was tested only by 2 researchers as it was considered too intrusive for the
participants to wear; however, patterns printed on the second skin were tested with participants in the 3 snood
conditions. The three interactive disguises (glasses, halo-hat, rainbow-hat) were evaluated in two states, on and
off. The benchmark is ‘no disguises’, so a clean face. Overall, there are 11 values for the experimental variable
disguise: clean, snood-blobs, snood-lines, snood-crosses, goggles, glasses-off, glasses-on, halo-off, halo-on, rainbow-
off, rainbow-on (Fig. 11).

A proved critical element in FRT performance is the skin colour [Buolamwini and Gebru 2018, Rosenberg et
al. 2023]. We recruited 39 participants and distinguish them by skin colour: 22 white participants from both
North and South Europe and the Middle East (13 males and 9 females aged 23 to 76); 9 brown participants from
India (4 mans and 5 females aged 26 to 32); 8 black participants from Nigeria (4 males and 4 females aged 25 to
35). The sample is too small to test intersectional samples of skin-gender or skin-age, thus we limit the second
variable to ethnicity: white, brown, black.

Further variables define the environment, i.e., the position of the camera with respect to the person to be
identified, the FRT configuration, i.e., the model (e.g. ArcFace), the backend (e.g. OpenCV), and the distance
metrics used to compare the face identified with those in the database (e.g. Euclidean). These variables changed
from the first explorative evaluation to the second more extended one and are discussed in 5.4 FRT performance
evaluation.
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To reflect a real-life situation where images from passports, identity cards, driving licences, or mugshots
database are used to identify an unknow person, we created the database of identities with a single high-quality
image for each participant taken full front on a white background at the start of the evaluation (Fig. 11 top left).

To replicate reality as close as possible, we intended to use CCTV cameras. However, the surveillance
infrastructure we were able to procure was part of a closed system making it impossible to connect CCTV
output with parametric FRT within the limited resources of the project. A high-performance USB streaming
camera® was then chosen. The camera connected to a MacBook laptop running Photo Booth to record videos
in the .mov format to preserve the high quality of the camera video output. The videos were then trimmed to
the intended clip, 2 frames per second were extracted ready to be processed by the FRT following the steps
described in 3.1, namely detection, alignment, extraction and matching.

On arrival, participants were informed about the project and the experiment; it was made clear the
recordings would not be shared with anyone and that commercial systems would not be used to guarantee data
privacy. After signing the consent form each participant was first photographed front-face on a white
background to create the database of identities; then they were shown the walking route and asked to move in
a natural way while the camera-laptop setup recorded a video. In the first walk they did not wear any disguise
(disguise:clean condition). They wore each disguise in turn and walked corridors and rooms toward the camera
before returning to change disguise.

Participation in the evaluation was voluntary. White participants were recruited among colleagues from
design, social science, and humanities aged 23 to 74. Black and brown participants were all international
students attending master courses, were recruited in the university hall and received a £20 voucher as a thank
you gift for their time (20-30 min)°.

5.3 FRT performance evaluation

We carried out 2 evaluations, reported below. The first assessed a broader setup of 3 environments and 2 FRT
systems; the findings were used to focus the larger second study on the system and the environment with the
best performance while expanding the number of participants and their ethnicity.

5.3.1 Exploratory evaluation

The motivation underpinning the research was to study FRT in realistic conditions. We setup three recording
stations that simulate realistic situations. The variable environment: corridor, hall, or gate depends on the
position of the camera with respect to the person to be recognised (Fig. 12).

—  The hallis a large room with a 4m ceiling; the camera was placed high, in the corner opposite the
entrance door to get a wide-angle view of the whole space; the camera recorded participants
entering the hall (from the corridor), walking toward the camera then turning around a large
meeting table before leaving the room. The position of this camera matches CCTV monitoring
public buildings, halls and the street.

— The corridor has a 2.5m ceiling and a series of spotlights that resulted in a rapidly changing
illumination; the camera was places above a door frame pointing down to capture participants
walking the corridor. This set-up resembles public passageways in cities, underground, or train
stations.

— Inthe access control gate the camera is placed front face as in a passport control or private entrance.

8 Technical details: full HD video 1080P, 60 FPS, 64 megapixels still resolution, wide-angle lens, auto-focus.
9 Testing the disguises lasted about 10 minutes, the 20-30 minutes include a short interview that assessed participants’ attitude towards
FRT. The analysis of the interview is not included in this paper.
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Fig. 12 The scenes recorded in the three settings in the exploratory evaluation: the hall, the corridor, and the access
control gate.

Beside different camera-person settings, in the first evaluation we tested the open-source system DeepFace°.
While the performance of open-source FRT may be below that of proprietary services such as Amazon
Rekognition or Microsoft Azure, it guarantees the privacy of the participants’ data. Deepface was used ‘as is’
with its pre-trained models Facenet512 and VGG-Face; we did not do any fine tuning to improve the systems
performance on our data.

Fourteen (14) white participants took part in this evaluation; they walked the 3 environments with 11
disguises; the video clips were then computed. There is a notable discrepancy in the performance of both models
when comparing the environment:gate with environment:hall and environment:corridor. In the gate scenario,
both models demonstrate robust accuracy scoring 1 for the clean condition and achieving above 0.7 for seven
distinct disguise types. This level of accuracy is significantly diminished in the other environments. For
FaceNet-512, an accuracy above 0.7 is only observed for the clean and halohat-off in the environment:hall.
Similarly, in the environment:corridor, this level of accuracy is reached only for the clean, halohat-off, and
snood_lines, again specifically for FaceNet-512 (Fig. 13). The poor performance could be the combination of
multiple factors: the corridor had sharp light-dark illumination due to a sequence of spots lights in the ceiling;
in the hall the camera was placed high looking down with a skewed angle that may have obscured some facial
features. It might be that a more powerful camera could have improved the performance or that, instead, for
these challenging environments a different technique such as gait recognition would be more effective as it
works with low-resolution video and does not need to detect the face [Wang et al. 2018].

In general, the disguises were effective in all environments although at different degrees. The good
performance in environment:gate pushed us to focus on this setting as it puts the disguises in the most
challenging conditions (i.e., the best conditions for FRT) giving us a better understanding of bypassing FRT.

5.3.2 Extended evaluation

In the second evaluation phase (July 2023) we engaged more participants of different ethnicities (white, brown,
black). All the 11 disguises were used by 39 participants: 22 white, 9 brown, 8 black for a total of 429 video clips.
The sample is unbalanced towards white (56%) participants respect to participants of colour (44%; brown 23%,
black 21%), while it is balanced for gender (20 male and 19 female).

We used DeepFace and tested different parameters to generalise the results and avoid algorithm-specific
limitations or idiesyncrasies. We selected three parameters for the two steps of (1) face detection and (2) face
identification (see 3.1): (1) detector backend: ssd, opencv, retinaface; (2) face identification recognition model:
VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, and ArcFace; and (2) face identification distance metrics:
cosine, Euclidean, and euclidean_I2. The combinations of the values of the 3 parameters (backend, algorithm,
and metrics) generate 54 different configurations for the DeepFace system. All 429 video clips were tested with
each configuration resulting in 23,166 single datapoints of performance (system configuration 54 with 11
disguises worn by 39 participant).

10 DeepFace has been developed by Sefik Ilkin Serengil https://github.com/serengil/deepface
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Fig. 13 Evaluation with 3 environments (hall, corridor, gate) and 11 disguises on DeepFace with Facenet512 and VGG-

Face models.

The allocation of an identity to a video is done by majority votes: for each video, the occurrences of all the
faces found in the frames are counted and the winner is decided by majority. For example, if the system detects
11 faces in the video and P1 is recognised 8 times while P2 is recognised 3 times, then P1 is selected as the
person recognised in the video. In the tables, the columns Total and Count report the overall number of faces
detected (total) and the number of times the person assigned to the video has been identified in the frames

(count). The disguises can potentially have two effects:

— to prevent face detection (evasion): if evasion occurs, no face is detected in a frame where, instead, there is
a face; this is shown by the Total number of times a face is recognised: the lower the Total, the higher

the evasion.

— to increase the confusion of the system (increase the chances of dodging): the system is confused when more
than one person is detected in a video, i.e., the closer Count and Total are, the less confused the system
is. In the example above, for P1=8 and P2=3 the certainty is 8/11=0.72; if three people are identifies among
11 faces P3=5, P4=4, P5=2 then P3 is the winner and certainty decrease to 5/11=0.45 showing the disguise

has been effective in confounding the FRT.

Less confusion does not equate to correct identification: the winning identity may or may not be the expected
identity, i.e., the correct identity of the person in the video. The successful identification is given by ‘accuracy’,
a standard measure used to evaluate machine learning systems defined as the number of correct predictions
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divided by the number of predictions!!. The tables below are ordered by decreasing ‘accuracy’. To simplify the
comparison and interpretation of the results, we report and discuss only the 10 best performing configurations.
Extended tables of results can be found in Appendix A.1.

Table 1. White participants with no disguise (clean): best 10 performing configurations (extended table in Appendix A.1).

Model Distance Metric Backend Total Count Ratio Accuracy
Facenet512 euclidean_I2 retinaface 391 242 0.62 1.0
Facenet512 euclidean retinaface 414 225 0.54 0.95
ArcFace cosine retinaface 367 185 0.50 0.77
ArcFace euclidean_I2 retinaface 361 184 0.50 0.77
Facenet512 euclidean opencv 465 202 0.43 0.77
Facenet512 euclidean_I2 opencv 448 221 0.49 0.77
ArcFace euclidean retinaface 374 172 0.45 0.77
Facenet cosine retinaface 329 164 0.41 0.73
Facenet512 cosine retinaface 222 126 0.56 0.73
VGG-Face cosine retinaface 409 200 0.49 0.73

We first assess the performance on disguise:clean, the benchmark where participants did not wear any
disguise, tabled by ethnicity. Unsurprisingly, the best performance is achieved for the white, although there was
a wide variation from the first 2 configurations that achieve 100% and 95% and the 8-10 places with 73% (Table
1). With brown the best performance drops to 89% (Table 2),-a result consistent across the top 23 positions
occupied by the same 3 models (Facenet, Facenet512, VGG-face) albeit with different metric and backend. The
top performance for black is 88% for the first 2 positions, comparable to that of the brown participants, but
drops to 75% from the third position down (Table 3). The top 2 score across all ethnicities are between 88% and
100% thus in line with the performance reported in a 2022 study carried out using a FR commercial system
(NEC Neoface V4 using HD5 Face Detector) to assess recordings done in the streets in the UK [Mansfield 2023].
Although there is a substantial difference in the scale of the database of identities (39 for us, 10,000 and 1,000
in [Mansfield 2023]) and the much more complex scene of a crowd walking along a street vs. a single individual
walking toward a camera, the close result seems to indicate that the performance of open-source FRT and our
experimental settings are a good approximation of a real situation and therefore a credible benchmark to check
the effectiveness of the disguises.

11 To compute the correctness of results we used Scikit-learn, an open-source Python library providing a wide range of
tools and algorithms supporting a number of machine learning tasks and their evaluation.
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Table 2. Brown participants with no disguise (clean): best 10 performing configurations (extended table in Appendix A.1).

Model Distance Metric Backend Total Count Ratio Accuracy
Facenet cosine opencv 186 121 0.65 0.89
Facenet512 cosine ssd 172 116 0.67 0.89
Facenet euclidean opencv 194 120 0.61 0.89
VGG-Face euclidean_I2 ssd 203 121 0.60 0.89
VGG-Face cosine ssd 204 121 0.59 0.89
VGG-Face euclidean_I2 retinaface 202 146 0.72 0.89
VGG-Face euclidean retinaface 206 130 0.63 0.89
VGG-Face cosine retinaface 204 147 0.72 0.89
VGG-Face euclidean_I2 opencv 208 134 0.64 0.89
VGG-Face euclidean opencv 209 116 0.55 0.89

Table 3. Black participants with no disguise (clean): best 10 performing configurations (extended table in Appendix A.1).

Model Distance Metric Backend Total Count Ratio Accuracy
Facenet512 euclidean opencv 168 94 0.56 0.88
Facenet512 euclidean retinaface 162 108 0.66 0.88
Facenet512 euclidean_[2 opencv 164 87 0.53 0.75
VGG-Face euclidean_I2 retinaface 162 97 0.59 0.75
Facenet512 euclidean ssd 160 87 0.54 0.75
Facenet512 euclidean_I2 retinaface 158 98 0.62 0.75
VGG-Face cosine retinaface 162 97 0.60 0.75
Facenet cosine opencv 152 72 0.47 0.75
ArcFace cosine ssd 156 77 0.49 0.75
ArcFace euclidean_I2 retinaface 156 81 0.52 0.75

These three tables show that best models were more effective on white participants but more consistent
with brown participants. The accuracy on black participants was lower than for white ones and more
inconsistent than for brown ones. The most accurate configuration is Facenet512, Euclidean, RetinaFace
occurring in the top 2 for both white and black and has the same top score of 0.89 accuracy for brown, see
extended table in Appendix A:1.

Across all three ethnicities there are outliers, individuals who are easier or more difficult to recognise. For
example, Figure 14 shows that, among the white, 015wtm (white male) is 8 times more difficult to identify than
the easiest 014wtf (white female); among the brown 022brf (brown female) is 5 times more difficult than 037brf
(brown female); and among the black 021blf (black female) is 7 times more difficult than 032blm (black male).
Among all participants only 1 brown female was always correctly identified. Checking the video clips, we
cannot find any obvious explanation due to the participants’ behaviour. Indeed, one may expect that
participants who did not pause much in front of the camera would be more difficult to recognise, yet all the
three participants more difficult to identify paused for a few seconds before turning back giving the camera
plenty of time to autofocus and to record good images. We may then conclude that some faces are more
challenging to identify than others.
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Fig. 14 The most difficult to the easiest person to identify among white (top), brown (left bottom), and black (right bottom) participants.

We then looked at who was most misrecognised, i.e. recognised as somebody else (Fig. 15). Unexpectedly
the participant who is most frequently wrongly identified when a white person is in the video is a bearded
brown man 034brm (55 times); the second is a brown female 037brf (20 times) followed by a white man 004wtm
(17 time). A few more mistaken identities across ethnicities occur including white to black and vice versa. We
could speculate why this is the case. In the process of facial features extraction, the coloured image is processed
into levels of grey losing the skin colour and making brown skin closer in colour to South European or Middle
Eastern people. The fact that a single individual has more than double the probability of being mistaken for
others is significant in light of cases of mistaken identities.
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Fig. 15 The number of mistakes made in recognizing white (top), brown (bottom left), and black (bottom right).

Tables 4, 5, and 6 report the accuracy in correctly identifying the person when wearing a disguise.
Comparing these tables with Tables 1, 2, and 3, the accuracy for clean, we see a sharp drop of about 20% in the
performance with white participants from the very beginning while there is no difference for brown and black
for the highest accuracy. Similarly, the disguises:glass | halohat | rainbowhat do not impact the performance for
brown and black as much as for the white: the accuracy for white drops well below that of both brown and black.

The 4 best disguises across all ethnicities are the snoods and the goggles with a fall below 50% recognition.
Comparing the ethnicities, it is evident that halohat_on is effective on the face of white while it has the opposite
effect for black most likely because the bright light on the face makes facial features of black people more
evident and therefore easier to be recognised. At the opposite, the bright light on white people makes features
such as the nose and the face contour disappear thus effectively bypassing FRT.
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Table 4. Effectiveness of the disguises for white participants. The most effective disguises in evading FRT are at the

bottom.

Disguise Model Distance Metric ~ Backend Total Count Ratio Accuracy
clean Facenet512 euclidean_I2 retinaface 391 242 0.62 1.0
halohat_off Facenet512 euclidean_I2 retinaface 374 185 0.49 0.82
glasses_off Facenet512 euclidean_[2 retinaface 316 139 0.43 0.73
rainbowhat_on Facenet512 euclidean_I2 retinaface 389 161 0.41 0.68
rainbowhat_off Facenet512 euclidean_I2 retinaface 328 136 0.41 0.64
glasses_on ArcFace cosine retinaface 348 111 0.31 0.59
halohat_on ArcFace cosine retinaface 397 123 0.30 0.55
snood_crosses VGG-Face cosine retinaface 378 122 0.32 048
goggles DeepFace cosine retinaface 80 25 0.31 0.4
snood_blobs DeepFace euclidean_[2 opencv 6 2 0.33 0.33
snood_lines DeepFace cosine opencv 42 10 0.23 0.18

Table 5. Effectiveness of the disguises for brown participants. The most effective disguises in evading FRT are at the

bottom.
Disguise Model Distance Metric Backend Total Count Ratio Accuracy
clean Facenet cosine opencv 186 121 0.65 0.89
glasses_off Facenet cosine retinaface 170 105 0.61 0.89
glasses_on Facenet euclidean retinaface 196 133 0.68 0.89
halohat_off Facenet512 euclidean_I2 opencv 196 111 0.56 0.89
rainbowhat_on ArcFace cosine opencv 186 109 0.59 0.89
halohat_on ArcFace cosine retinaface 221 120 0.54 0.78
rainbowhat_on ArcFace cosine retinaface 192 119 0.61 0.78
snood_crosses Facenet cosine retinaface 232 90 0.39 0.56
goggles DeepFace cosine retinaface 98 14 0.14 0.44
snood_blobs ArcFace cosine opencv 188 44 0.23 0.33
snood_lines DeepFace euclidean opencv 318 168 0.52 0.33
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Table 6. Effectiveness of the disguises for black participants. The most effective disguises in evading FRT are at the

bottom.
Disguise Model Distance Metric ~ Backend Total Count Ratio Accuracy
clean Facenet512 euclidean opencv 168 94 0.56 0.88
halohat_off ArcFace cosine retinaface 152 95 0.62 0.88
halohat_on ArcFace cosine retinaface 186 106 0.57 0.75
rainbowhat_on ArcFace cosine retinaface 166 119 0.71 0.75
glasses_off ArcFace cosine retinaface 152 94 0.62 0.62
glasses_on Facenet512 euclidean retinaface 201 76 0.38 0.62
rainbowhat_off ArcFace cosine retinaface 157 102 0.65 0.62
snood_crosses ArcFace cosine retinaface 178 94 0.52 0:50
goggles Facenet512 euclidean_[2 retinaface 181 70 0.39 0.43
snood_blobs ArcFace euclidean retinaface 176 34 0.19 0.25
snood_lines DeepFace euclidean opencv 86 14 0.16 0.25
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In tables 4-6 we present the best performing settings for each disguise. This is unrealistic as in a real-world

scenario where only one configuration is used most likely reducing accuracy across the different disguises. For
example, quite a few configurations report zero accuracy when confronted with the snood disguises.

Looking into the confounding effect of the disguises some interesting phenomena emerge. For white in clean,
015wtm in the most misrecognised; in disguises 015wtm is joined by 10wtm and 19wtm as people most difficult
to identify when wearing disguises. Moreover, the number of mistakes increases dramatically across the whole
sample (Fig. 16). Brown and black show a similar trend when comparing clean and disguises (see appendix 2.A).
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Fig. 16 The number of mistakes made in recognizing white in the benchmark clean (top) and across all the disguises
(bottom).

Even if not every disguise was effective in the same way across ethnicities (see Tables 4, 5, 6), taken together
they were effective in confounding FRT. Fig. 17 shows that the disguises confound ethnicity for brown with all
three ethnicities (white, brown, and black) all scoring as the three most frequent mistakes. This phenomenon
is less marked for black even if some white are mistaken for black (Fig. 17 bottom). Fig. 17 top shows participant
034brm, the bearded brown man wrongly identified most often as white in the clean (55 times, Fig. 15) shoots
to about 950 mistakes when disguises are worn making the case of mistaken identities (due to dodging) a serious
issue. The most reasonable explanation is that somehow 034brm has a ‘common face’.
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Fig. 17 The number of mistakes made in recognizing white (top), brown (centre), and black (bottom) when the disguises
are worn.

The creation of a 3D model of the face is an essential part of the FRT process [Kortli et al. 2020]. To complete
our empirical exploration, we created a second database of identities adding to the one created out of 1 high-
quality photo per participants, a further 4 images of the person in different positions extracted from the ‘clean’
video. The rationale was that images with different face positions would improve the recognition performance.
For this test only the two best performing configurations were used, namely Facenet512-euclidean-retinaface
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and Facenet512-euclidean_[2-retinaface, on 39 participants with environment:gate. Unexpectedly, the comparison
points in the opposite direction with a 20% drop in accuracy across the three ethnicities in the clean benchmark.
We hypothesize that this is because the increased number of images and positions of the face reduces somehow
the distance among the photos of different participants in the database making the process of recognition
harder. Should this be the case, this could point towards a problem for systems using very large databases.
There is only a limited loss, if any, in the disguises condition, most likely because the disguises had already
drastically reduced the performance. The tables are in Appendix A.3.

5.3.3 Logistic regression analysis
A Likelihood Ratio Test (LRT) was used to evaluate the impact of each variable on the predictive capacity of
one of the top-performing FRT pipelines, specifically Facenet512-retinaface-euclidean_I2. This was achieved by
comparing two logistic regression models. The full model consists of a logistic regression in the form: ‘Result ~
Gender + Ethnicity + Disguise’. This is compared with three reduced models where in each one of the regressors
is removed. The p-value from these tests indicates whether that variable is useful in explaining the predictive
performance of the FRT pipeline. We formulate the following hypothesis:
— Null hypothesis Hy: if the full model and the nested model fit the data equally then the removed variable
is not significant to the capacity of the FRT model to recognize or not a person.
— Alternative hypothesis H,: if the full model fits the data better than the nested model, so the variable is
significant to the capacity of the FRT model to recognize or not a person.
The p-values from our LRT analyses are as follows:
— “Result ~ Gender + Ethnicity” (reduced model): 1.58 x 107173
— “Result ~ Ethnicity + Disguise” (reduced model): 3.78 x 1077°
— “Result ~ Gender + Disguise” (reduced model): 1.31 x 1078
The LRT test for all three models yields p-values less than 0.05. This leads us to reject the null hypothesis,
pointing to Disguise, Ethnicity and Gender as significant contributors to the FRT pipeline’s capacity to predict.

Table 7 The coefficients (coef), p-value (P>|z|), and [0.025, 0.977] show 95% confidence interval (Cl) of the logistic
regression model, with the coefficients for disguise being compared to clean as reference level (one-hot encoding), the one
for gender is compared to female and ethnicity compared to black.

Feature Coefficient P>[z| [0.025 0.975]
Intercept 0.59 0.00 0.41 0.77
Gender[Male] 0.29 0.00 0.19 0.40
Ethnicity[Brown] 0.57 0.00 0.43 0.70
Ethnicity[ White] -0.53 0.00 -0.65 -0.40
Disguise[glasses_off] -0.63 0.00 -0.84 -0.41
Disguise[glasses_on] -0.76 0.00 -0.97 -0.54
Disguise[goggles] -1.42 0.00 -1.65 -1.20
Disguise[halohat_off] -0.24 0.26 -0.46 -0.03
Disguise[halohat_on] -0.86 0.00 -1.07 -0.65
Disguise[rainbowhat_off] -0.60 0.00 -0.82 -0.39
Disguise[rainbowhat_on] -0.50 0.00 -0.71 -0.29
Disguise[snood_blobs] -2.31 0.00 -2.60 -2.02
Disguise[snood_crosses] -1.50 0.00 -1.73 -1.27
Disguise[snood_lines] -3.00 0.00 -3.33 -2.66
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We also include an analysis of the coefficients of the full model to assess how each level of the categorical
variables influences the predictive accuracy of the FRT pipeline. For the three categorical variables we use as
reference category clean for disguise, female for gender and black for ethnicity. The coefficients for the other
levels of these variables represent the effect of that level on the predictive accuracy of the model compared to
the reference level. The results in Table 7 point to a significant difference between the disguises compared to
the reference and for the ethnicities.

The coefficients associated with the various disguises are negative. This means that the presence of disguises
negatively impacts the FRT pipeline’s predictive accuracy compared to clean faces. Notably, snood_lines,
snood_blobs, snood_crosses and goggles exhibit the larges absolute impacts on prediction capacity. Ethnicity also
showed a significant impact: compared to the black reference group, white ethnicity had a negative impact on
performance, while brown ethnicity showed a positive impact. Finally, the gender male has a slightly positive
impact on performance compared to the female reference group.

5.4 Testing FRT advancements

1.1.1  5.4.1 Comparison of models performance one year on

The extended evaluation reported in 5.3.2 used FRT available in December 2022. As facial recognition is
improving fast in light of the evolution of Al in January 2024 we run new tests to check if and how the
performance of FRT had changed with the latest development. A year on, the models used in the extended
evaluation had not changed while new models have been proposed. In selecting the models for the comparative
test, we used variety as key factor and chose three new models to test:

— QMagFace [Terhorst et al. 2023] focuses on FRT in difficult conditions, combining a quality-aware
comparison function with a face recognition model trained (MagFace) [Terhorst et al. 2023]. It assesses
the quality of a face image (including factors such as lighting and pose) to enhance recognition accuracy.
In training this helps the model to weight facial features based on their importance, improving
performance, especially in challenging conditions like varying angles and image quality.

— ElasticFace [Boutros et al. 2022] uses a FR strategy based on the use of flexible margin loss which enhances
the model's ability to closely group similar faces (intra-class compactness) while better distinguishing
between different faces (inter-class discrepancy), helping the model to differentiate more effectively
between face classes [Boutros et al. 2023].

— GhostFaceNet [Alansari et al. 2023] uses Ghost modules for generating feature maps with fewer
parameters and less computational complexity. The architecture employs a modified Global Depthwise
Convolution (GDC) for improved face feature representation. These advancements enable GhostFaceNets
to achieve a balance between computational efficiency and high accuracy in facial recognition tasks
[Alansari et al. 2023].

The three models were downloaded from their respective Git Hub repositories!?. For QMagFace, MTCNN
was used as the backend framework, as suggested by the developers. For ElasticFace and GhostFaceNet models,
a combination of RetinaFace, OpenCV, and ssd were selected as the backend framework. These models were
selected for analysis based on two key criteria: their superior performance across a wide array of public
evaluation datasets and their distinction as significant advancements of the state-of-the-art FRT. Consequently,
our primary aim with this round of tests is to evaluate whether these new models constitute a marked
improvements over the models available in January 2023 on the same setup, datasets and videos described in
section 5.3.2. The extended results are in Appendix B.

12 QMagFace has been developed by pterhoer and mihlefeld: https://github.com/pterhoer/QMagFace

ElasticFace has been developed by Fadi Boutros : https://github.com/fdbtrs/ElasticFace

GhostFaceNet has been developed by HamadYA: https://github.com/HamadYA/GhostFaceNets
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Tables 8, 9, and 10 compare the best 10 performances for clean (participants wearing no disguise) for the
three ethnicities (white:clean; brown:clean; black:clean). As in 2023 (see 5.3.2), we calculate the total number of
faces detected (Tot) and then we count how many times the person in the video was correctly identified (Corr).
The closer T is to C, the more accurate (Acc) the system was in detecting the face and in recognising the person.
Tables 8, 9 and 10 show a clear and marked improvement, with accuracy increasing for all three ethnicities. As
a general observation, the performance of QMagFace:Mtcnn and ElasticFace:retinaface tend to pair, while the
lightweight GhostFaceNet system does not perform well: GhostFaceNet appears only 1 time in the 10th position
for white:clean, but does not make the grade for brown:clean and black:clean (see Appendix B for the results in
full).

Table 8. The best 10 performing configurations in 2023 and 2024 for white ethnicity with no disguise (white:clean).

Evaluation 2023 white:clean Evaluation 2024 white:clean

System configuration T C TC |A System configuration T C T-C |A
Facenet512 : euclidean_I2 : 391 242 [149 1.0 QMagFace : euclidean : Mtcnn 394 |282 112 1.0
Fa?:enétSQ :euclidean : retinaface | 414 | 225 |189  |0.95 QMagpFace : euclidean_12 : Mtcnn 394 1284 {110 [1.0
ArcFace : cosine : retinaface 367 | 185 |[182 0.77 ElasticFace-Arc+ : cosine : retinaface 403|245 158  [0.95
ArcFace : euclidean_I2 : retinaface 361 184 (177 0.77 ElasticFace-Arc+ : euclidean_12: 403|245 158 0.95
Facenet512 : euclidean : opencv 465 | 202 |263  |0.77 EIa’StiC’FaCe’AI’C+ : cosine : opency 403|239 164 1091
Facenet512 : euclidean_[2: opencv | 448 | 221 |227 |0.77 ElasticFace-Arc+ : euclidean_12 : opencv 403|239 164 1091
ArcFace : euclidean : retinaface 374 172|202 0.77 QMagFace : cosine : Mtcnn 394 |270 124 [0.91
Facenet : cosine : retinaface 329 | 164 |165 0.73 ElasticFace-Cos : cosine : retinaface 403|223 180  [0.86
Facenet512 : cosine : retinaface 222 | 126 |96 0.73 ElasticFace-Cos : euclidean_12 : retinaface (403 |223 180 [0.86
VGG-Face : cosine : retinaface 409 | 200 |209 0.73 GhostFaceNet :euclidean_12 : retinaface [403 {201 202 0.86

Table 9. The best 10 performing configurations in 2023 and 2024 for brown ethnicity with no disguise (brown:clean).

Evaluation 2023 brown:clean Evaluation 2024 brown:clean

System configuration T C T-C (A System configuration T C T-C |A
Facenet : cosine : opencv 186 121 |65 0.89 ElasticFace-Arc+ : cosine : retinaface 205 |145 60 1.0
Facenet512 : cosine : ssd 172 116 |56 0.89 QMagpFace : cosine : Mtcnn 200 (170 30 1.0
Facenet : Euclidean : opencv 194 120 |74 0.89 QMagFace : euclidean : Mtcnn 200 (174 26 1.0
VGG-Face : euclidean_I2 : ssd 203 121 (82 0.89 QMagFace : eucliidean_12 : Mtcnn 200 |177 23 1.0
VGG-Face : cosine : ssd 204 121 (83 0.89 ElasticFace-Arc+ : euclidean_12 205 |145 60 1.0
VGG-Face : euclidean_12 : 202 146 |56 0.89 E[ais;tic;:ace—Cos :euclidean_12: opencv (205 |134 71 0.89
V(‘JAG—I;ace : euclidean : retinaface 206 130 |76 0.89 ElasticFace-Cos : euclidean_12: 205 |137 68 0.89
VGG-Face : cosine : retinaface 204 147 |57 0.89 E[-a'stk:fFacefCos : cosine : retinaface 205 (137 68 0.89
VGG-Face : euclidean_I2 : opencv 208 134 |74 0.89 ElasticFace-Cos : cosine : opencv 205 (134 71 0.89
VGG-Face : uclidean : opencv 209 |116 |93 0.89 ElasticFace-Arc+ : euclidean_12: openvc (205 |142 63 0.89
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Table 10. The best 10 performing configurations in 2023 and 2024 for black ethnicity with no disguise (black:clean).

Evaluation 2023 black:clean Evaluation 2024 black:clean

System configuration T C T-C A System configuration T C T-C A

Facenet512 : Euclidean : opencv 168 | 94 74 0.88 ElasticFace-Cos : cosine : retinaface 162 1 51 1.0
Facenet512 : euclidean : retinaface 162 | 108 54 0.88 ElasticFace-Cos: euclidean_|2: retinaface 162 111 51 1.0
Facenet512 : euclidean_|2 : opencv 164 | 87 77 0.75 ElasticFace-Arc+ : cosine: opencv 162 93 69 0.88
VGG-Face : euclidean_I2 : retinaface | 162 | 97 65 0.75 ElasticFace-Arc+ : euclidean_|2 : retinaface| 162 93 69 0.88
Facenet512 : euclidean : ssd 160 | 87 73 0.75 ElasticFace-Arc+ : cosine : retinaface 162 97 65 0.88
Facenet512 : euclidean_12: 158 | 98 60 0.75 ElasticFace-Arc+ : euclidean_12: 162 975 65 0.88
V(-J.Gflgace : cosine : retinaface 162 | 97 65 0.75 EI;sticﬁFacefCos : cosine : opencv 162 105 57 0.88
Facenet : cosine : opencv 152 | 72 80 0.75 ElasticFace-Cos : euclidean_|2 : opencv 162 105 57 0.88
ArcFace : cosine : ssd 156 | 77 79 0.75 QMagFace : cosine : Mtcnn 159 121 38 0.88
ArcFace : euclidean_I2 : retinaface 156 | 81 75 0.75 QMagFace : euclidean : Mtcnn 159 124 35 0.88

There has been a sharp improvement in performance with clean for brown and black. There is also an
increase, albeit to a lower degree when participants wear the disguises (Tables 11, 12 and 13). However, there
is a considerable difference in the system rankings with QMagFace firmly inthe lead. Remarkably this happens
with several 100% results for brown and black participants which, in the past, have been difficult faces to
recognise. The reason for QMagFace outperforming the other systems may be the intentional goal to cope with
difficult images, possibly rotated heads and partially obstructed faces. The result seems to be a system able to
infer an identity from very limited visible facial features.

An unexpected result is the higher performance with brownand black than with white participants. This
could be explained by the sample size as the white participants (22) are nearly 3 times the brown (9) and black
(8). A small sample set means each may be easily discriminated by the neural networks so that they look distant
from the others in the search space and hence they are more easily discriminated. As the sample size increases
even slightly (as in the case of the white), the distance between the individuals decreases, therefore potentially
inducing more mistakes when the face is partially concealed. Our interpretation is then that, while in 2023 the
disguises were disruptive for the performance of the systems that often missed to detect the face entirely, in
2024 the systems are able to detect and discriminate faces form just a few facial features when the sample is
small as there is enough information to separate the individuals in the image reference set. However, as the
sample increases those few features are not enough to discriminate between individuals and the performance
decreases. We could then expect that the same reduction in performance with white would occur with a larger
sample of brown and black participants.
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Table 11. Comparison of the performance of the systems against the disguises in 2023 and 2024 for white ethnicity.

Evaluation 2023 white : disguises

Evaluation 2024 white : disguises

Ran System configuration T|C| A Disguise Ran System configuration T|C| A
0 B Facenet512:euclidean_12:retinaface |391|  [1.0 clean 0 B QMagFace : euclidean : Mtcnn 394 (282 (1.0
1 Facenet512:euclidean_12:retinaface (347 | ; |0.82 | halohat off |3 QMagFace : euclidean_12 : Mtcnn 388 |243 |0.91
2 Facenet512:euclidean_12:retinaface (316 | ; [0.73 glasses_off |5 ElasticFaceArc+:cosine:retinaface 375 |167 |0.86
3 Facenet512:euclidean_I2:retinaface {389 | ; |0.68 |rainbowhat_on |6 QMagFace : euclidean_12 : Mtenn (424 |203 |0.76
4 Facenet512:euclidean_l2:retinaface {328 | ; |0.64 |rainbowhat_off |1 QMagFace:euclidean_l2:Mtcnn 339 1205 |1.0
5 ArcFace : cosine : retinaface 348 | 1 [0.59| glasses_on |8 ElasticFaceArc+:cosine:retinaface 365 {150 [0.73
6 ArcFace : cosine : retinaface 397 | 1 [0.55| halohat_on |10 QMagFace:euclidean_l2:Mtcnn 428 |142 |0.45
7 VGG-Face : cosine : retinaface 378 | 1 [0.48 | snood_crosses (2 QMagFace:euclidean:Mtcnn 364 (216 [0.95
8 DeepFace : cosine : retinaface 80 |25 (0.4 goggles 9 ElasticFaceArc+:cosine:retinaface 370 (128 [0.68
9 DeepFace : euclidean_12 : opencv 6 |2 0.33| snood_blobs |4 QMagFace:euclidean_l2:Mtcnn 188 |351 (0.9
10  |DeepFace : cosine : opencv 42 |10 [0.18 | snood_lines |7 QMagFace : euclidean_12 : Mtcnn . (361 |173 |0.76
Table 12. Comparison of the performance of the systems against the disguises in 2023 and 2024 for brown ethnicity.
Evaluation 2023 brown : disguises Evaluation 2024 brown : disguises

Ran System configuration T C | A Disguise Ran System configuration T|C A
0 B Facenet : cosine : opencv 186 | 121 |0.89 clean 0 S QMagFace : cosine : Mtcnn 200|170 |1.0
1 Facenet : cosine : retinaface 170 | 10 |0.89| glasses_off |5 QMagFace : cosine : Mtcnn 196 (164 |1.0
2 Facenet : euclidean : retinaface 196 1F3 0.89| glasses_on |8 QMagFace : cosine : Mtcnn 211 (166 (1.0
3 Facenet512 : euclidean_I2 : opencv |196 1"1 0.89| halohat off |3 QMagFace : cosine : Mtcnn 186 (145 [1.0
4 Arcface : cosine : opencv 186 1<0 0.89 | rainbowhat_on |7 QMagFace : euclidean : Mtcnn 235|187 |1.0
5 ArcFace : cosine : retinaface 221 1“2 0.78| halohat on |4 QMagFace : euclidean_12 : Mtenn |201 |142 |1.0
6 ArcFace : cosine : retinaface 192 1A1 0.78 | rainbowhat_off |6 QMagFace : cosine : Mtcnn 181 |143 (1.0
7 Facenet : cosine : retinaface 232 9"0 0.56 | snood_crosses |2 QMagFace : euclidean : Mtcnn 201 (148 |1.0
8 DeepFace : cosine : retinaface 98 14 10.44 goggles 9 QMagFace : euclidean_12 : Mtenn |228 |159 |0.89
9 Arcface : cosine : opencv 188 | 44 |0.33| snood_blobs (10 QMagFace : euclidean_12 : Mtenn [197 |154 |0.89
10  |DeepFace : euclidean : opencv 318 | 16 [0.33| snood_lines |1 QMagFace : euclidean_12 : Mtenn |215 |163 |1.0
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Table 13. Comparison of the performance of the systems against the disguises in 2023 and 2024 for black ethnicity.

Evaluation 2023 black : disguises Evaluation 2024 black : disguises
Ran System configuration T [C| A Disguise Ran System configuration T| C A
0 B Facenet512 : Euclidean : opencv  |168 9 10.88 clean 0 B QMagFace : euclidean_12 : Mtcen|162 |111 (1.0
1 ArcFace : cosine : retinaface 152 : 0.88 halohat_off |2 QMagFace: euclidean_12 : Mtcnn 176 (138 |1.0
2 ArcFace : cosine : retinaface 186 - 075 halohat_on |5 QMagFace: euclidean_12 : Mtcnn |200 {148 |0.88
3 ArcFace : cosine : retinaface 166 ; 0.75 | rainbowhat_on |7 QMagFace: euclidean_12 : Mtenn |191 {141 |0.88
4 ArcFace : cosine : retinaface 152 ; 0.62 glasses_off |1 QMagFace: euclidean_12 : Mtcnn 197 (155 |1.0
5 Facenet512 : euclid : retinaface 201 - 0.62 glasses_on 4 ElasticFace-Cos : cosine : ssd 211 [125 |0.88
[3 ArcFace : cosine : retinaface 157 - 0.62 | rainbowhat_off |6 QMagFace: euclidean_12 : Mtcnn |172.|130 |0.88
7 ArcFace : cosine : retinaface 178 ] 0.50 snood_crosses |3 QMagFace: euclidean_12 : Mtcnn |186 |140 |1.0
8 Facenet512:eucl_12:retinaface 181 : 0.43 goggles 10 ElasticFace-Arc+:cosine: 200 (60 10.38
9 ArcFace : euclidean : retinaface 176 - 0.25 snood_blobs |9 El;stichace-Arc+:cosine: 179 (87 (0.5
10  |DeepFace : euclidean : opencv 86 1"4 0.25 snood_lines (8 El;stichace-Arc+:cosine: 200 (94 |0.62

Fig. 18 shows the increase in performance from 2023 when white individuals were mostly missed to be
recognised: for all ethnicities the number of missed identifications has consistently decreased meaning that the
new systems make less mistakes. The most pronounced improvement is for white with the highest number
nearly halved and the other reduced of about 20% (the graphs for brown and black are in Appendix B.2).
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Fig. 18 A comparison of the white participants most missed to be identified: 2023 on the left, 2024 on the right.

The last comparison between the 2023 and 2024 evaluations is the misclassification of individuals wearing
disguises. Fig. 19 compares the misclassification for the three ethnicities in 2023 and 2024. While for white and
black there has been a decrease in misrecognitions, the values are still high. The people misrecognised have
changed, but there is a consistence within the experimental setup meaning that the same small group of people
is the most misrecognised within the evaluation of 2023 and another one is misrecognised in the evaluation of
2024. In both years misrecognition occurs across ethnicities in contradiction with the results shown in
[Rosenberg et al. 2023] “that it is easier to impersonate identities in the same demographic” (pg.7236): our
physical disguises were most effective across ethnicities in white and brown in 2023 and across white and black
in 2024. The most misrecognised participants were 034brm in 2023 and 033brf both brown participants from
India, a male and a female respectively. Several could be the reasons for this contradictory results. The
individuals mostly misrecognised are both from India, a group poorly represented in [Rosenberg et al. 2023]
that distinguish White (10.000 individuals), Asian (2.500), Black (1240) and Indian (20). Assuming ‘Asian’
includes ethnicities from China, Japan, and Korea, we could speculate that the ‘impersonation within the same
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demographic’ is due to distinct facial traits for each demographic group White, Asian and Black and therefore
easier to cluster, while people from India tend to have Caucasian facial features similar to those of white people
but different in skin tone. Another potential explanation could be the process of generating computational
perturbations from the same photos used for recognition [Rosenberg et al. 2023] that is radically different from
our physical approach: most likely our disguises conceal or change the facial features in a radically different
way and, therefore, our results are simply not comparable with computational perturbations. Indeed,
[Rosenberg et al. 2023] pg. 7236 states that “With the exception of the Indian demographic group, which is too
small to source any significant conclusions, minority groups have lower matching performance. This is
attributed to the tightly clustered embeddings we observe for minority demographic groups.” A further
explanation could be the source material, live videos for us vs. photos for [Rosenberg et al. 2023], or because of
different models and different processing pipeline. Indeed [Rosenberg et al. 2023] observe that demographics
are discernible in the embedding phase with skin tones differentiated in early layers of the network. While we
cannot say with certainty what the cause is, if, for example a single setting is responsible for the majority of
misidentifications or if instead is one among the algorithms, the metrics, or the backends, the logistic regression
provides some hindsight.

We conducted a Likelihood Ratio Test (LRT) to evaluate the impact of each variable on the predictive
capacity of one of the recent top-performing FRT pipelines, specifically QMagFace:mtcnn:euclidean_I2. This was
achieved by comparing two logistic regression models. The full model consists of a logistic regression of the
form: ‘Result ~ Gender + Ethnicity + Disguise’. This is compared with three reduced models where in each one
of the regressors is removed. The p-value from these tests indicates whether that variable is useful in explaining
the predictive performance of the FRT pipeline. Our hypothesis are:

— Null hypothesis Hy: if the full model and the nested model fit data equally then the removed variable is

not significant to the capacity of the FRT model to recognize ormnot a'person.

— Alternative hypothesis Hy: if the full model fits data better then the nested model, so the variable is

significant to the capacity of the FRT model to recognize or not a person.

The p-values from our LRT analyses are as follows:

— Result ~ Gender + Ethnicity’ (reduced model): 3.88 x 10773

— ‘Result ~ Ethnicity + Disguise’ (reduced model): 0.44

— Result ~ Gender + Disguise’ (reduced model): 1.19 x 10~%°

The LRT test for the models of ‘Result ~ Gender + Ethnicity’ and ‘Result ~ Gender + Disguise’ both yield p-
values less than 0.05. This leads us to reject the null hypothesis, pointing to disguise and ethnicity as significant
contributors to the FRT pipeline’s capacity to predict. Conversely, the ‘Result ~ Ethnicity + Disguise’ LRT results
in a high p-value (0.44), leading us to not reject the null hypothesis. This supports the conclusion that gender is
not a significant factor in the recent FRT model's ability to recognize individuals in this context.

We also.include an analysis of the coefficients of the full model to assess how each level of the categorical
variables influences the predictive accuracy of the FRT pipeline. For the three categorical variables we use as
reference category clean for disguise, female for gender and black for ethnicity. The coefficients for the other
levels of these variables represent the effect of that level on the predictive accuracy of the model compared to
the reference level. The results in Table 14 also point to significant differences between disguises compared to
the reference and for ethnicities, while there is no significant difference in the predictive accuracy of the model
for male compared to female. Significance is assessed at a 5% level of significance. The coefficients associated
with the various disguises are negative meaning that the presence of disguises negatively impacts the FRT
pipeline's predictive accuracy compared to clean faces. Notably, googles, halohat_on, and snood_lines exhibit
the largest absolute impacts on prediction capacity.
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Fig. 19 A comparison of the misclassification for the three ethnicities from 2023 (left) and 2024 (right).

Table 14. The coefficients (coef), p-value (P>|z|) and [0.025, 0.977] show a 95% confidence interval (Cl) of the logistic
regression model, with the coefficients for disguise being compared to clean as reference level (one-hot encoding), the one
for gender is compared to female and ethnicity compared to black.

Feature Coefticient P>z [0.025 0.975]
Intercept 1.43 0.00 1.23 1.63
Gender[Male] -0.04 0.439 -0.13 0.06
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Ethnicity[Brown] 0.77 0.00 0.63 0.91
Ethnicity[ White] -0.53 0.00 -0.65 -0.42
Disguise[glasses_off] -0.34 0.05 -0.58 -0.10
Disguise[glasses_on] -0.74 0.00 -0.97 -0.50
Disguise[goggles] -1.38 0.00 -1.61 -1.15
Disguise[halohat off] -0.34 0.05 -0.58 -0.10
Disguise[halohat on] -1.22 0.00 -1.45 -1.00
Disguise[rainbowhat off] -0.40 0.01 -0.64 -0.16
Disguise[rainbowhat on] -0.80 0.00 -1.03 -0.57
Disguise[snood blobs] -0.99 0.00 -1.23 -0.76
Disguise[snood _crosses] -0.44 0.00 -0.68 -0.20
Disguise[snood_lines] -1.44 0.00 -1.67 -1.21

Ethnicity also showed a significant impact. Compared to the black reference group, white ethnicity had a
negative impact on performance, while brown ethnicity showed a positive impact. In contrast to the old model
analyzed in section 5.2, gender did not demonstrate a significant impact on prediction capacity, with a p-value
of 0.44. This suggests that gender:male, relative to the female reference group, did not significantly affect the
FRT pipeline's predictions.

1.1.2  5.4.3 Verifying Model Consistency: A Comprehensive Re-evaluation

Up to now, our experiments occurred in a ‘closed world” where the participants to be recognised where the
same as those in the database of identities. In this section we report two experiments to assess our results
against two different ‘open worlds’ where the database of identities holds a much larger set of people than the
39 individuals in our sample to be recognised in the recorded videos, this a more realistic settings in
surveillance. To check the validity of our results in an ‘open world’ we conducted a comprehensive re-
evaluation using an expanded face database against an increased frame sampling of the recorded videos. We
first expanded the face matching database (database of identities) from the 39 participants to 2 databases
containing 1000 and 3000 individuals randomly chosen within the LFW dataset!3. We then compared the
performance of the models with both the original and expanded databases. The combinations of MTCNN,
QMagFace, and Euclidean models, which exhibited strong performance in previous benchmarks, were selected
for this analysis. As there was no statistical significance difference between the 1000 and 3000 databases, we
report only the result with the latter. Tables 15, 16, 17 show 3 main key findings:

— Increasing the identity database size from 39 to 3000 did not significantly affect the recognition of clean
faces across all ethnicities.

— Certain disguises, particularly goggles, snood_lines, snood_blobs, and snood_crosses, had a more
pronounced effect on recognition accuracy for white individuals. Brown individuals were also impacted
by goggles.

— In some cases, expanding the database led to improved accuracy due to majority voting. For example, if
a person's identity is initially ambiguous, adding more faces to the database could clarify the match and
increase recognition accuracy. Consider a video of Luigi where 10 faces are extracted. With a database of
39 people, the system recognizes Luigi 4 times, Mario 5 times, and 1 time an unknown person. Therefore,
the recognized person will be Mario, which is incorrect. When the database increases to 3000 people, the

13 LFW Labeled Faces in the Wild https://vis-www.cs.umass.edu/Ifw/
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system recognizes Luigi 4 times, Mario 3 times, and 3 times a new person added to the database. Thus,
through majority voting, the system correctly recognizes Luigi.

After this analysis, we also revisited previous experiments by increasing the number of sampled frames from
the videos. This allowed us to determine if a larger number of frames would improve or degrade model
performance. By sampling at 5 and 10 frames per second, we determined that the performance of our models
was not statistically significantly affected. This confirms the reliability of our findings from the initial 2 frames
per second sampling rate.

Table 15. Effectiveness of the disguises for white participants using one of the best recent models evaluated in the
previous chapter expanding face database adding 3000 new faces provided by LFW database.

39 persons in the database white: disguises 3000 persons in the database white: disguises
Rank System configuration T C A Disguise Ran System configuration T (o} A
clean [QMagFace : euclidean : Mtcnn 394 | 28 [1.0 clean cléz;n QMagFace : euclidean : Mtcnn  |373 247 10.95
1 QMagFace : euclidean : Mtcnn 345 | 21 ]0.95 snood_crosses |4 QMagFace : euclidean : Mtenn  |325 (147 [0.68
2 QMagFace : euclidean : Mtcnn 388 | 24 ]0.86 halohat_off |1 QMagFace : euclidean : Mtenn |366 (208 0.9
3 QMagFace : euclidean : Mtcnn 372 | 22 |0.82 glasses_off |3 QMagFace : euclidean : Mtcnn {356 (183 [0.81
4 QMagFace : euclidean : Mtcnn 339 | 20 |0.76 rainbowhat_off |2 QMagFace : euclidean : Mtenn  |323 (165 [0.85
5 QMagFace : euclidean : Mtcnn 351 | 18 (0.71 snood_blobs |7 QMagFace : euclidean : Mtenn 338 (105 |0.3
6 QMagFace : euclidean : Mtcnn 361 | 15 |0.62 snood_lines (10 QMagFace : euclidean : Mtenn 345 |74 0.2
7 QMagFace : euclidean : Mtcnn 424 | 20 |0.57 raimbowhat_on |5 QMagFace : euclidean : Mtenn  |406 (171 [0.65
8 QMagFace : euclidean : Mtcnn 357 | 18 ]0.55 glasses_on |6 QMagFace : euclidean : Mtenn {336 (153 |0.57
9 QMagFace : euclidean : Mtcnn 365 [ 15 |05 goggles 8 QMagFace : euclidean : Mtenn 343 |84 0.24
10 QMagFace : euclidean : Mtcnn 428 (154 |0.32 halohat_on (9 QMagFace : euclidean : Mtcnn |408 (109 [0.24

Table 16. Effectiveness of the disguises for brown participants using one of the best recent models evaluated in the
previous chapter expanding face database adding 3000 new faces provided by LFW database

39 persons in the database brown: disguises 3000 persons in the database brown: disguises
Rank System configuration T C A Disguise Rank System configuration T C A
clean |QMagFace : euclidean : Mtcnn {100 17 1.0 clean clean  |QMagFace : euclidean : Mtcnn  |200 {170 [1.0
1 QMagFace : euclidean : Mtenn {211 17 |10 glasses_on |1 QMagFace : euclidean : Mtenn {211 {162 |1.0
2 QMagFace : euclidean : Mtcnn [186 15 |[1.0 halohat_off |5 QMagFace : euclidean : Mtenn {186 (144 |1.0
3 QMagFace : euclidean : Mtenn 196 17 |1.0 glasses_off (2 QMagFace : euclidean : Mtenn {196 [161  |1.0
4 QMagFace : euclidean : Mtcnn 181 15 |[1.0 rainbowhat_off |3 QMagFace : euclidean : Mtenn {156 (116 |1.0
5 QMagFace : euclidean : Mtenn  |235 18 1.0 raimbowhat_on |4 QMagFace : euclidean : Mtenn {191 [144 |10
6 QMagFace : euclidean : Mtcnn 201 14 |1.0 snood_crosses (8 QMagFace : euclidean : Mtenn {173 |95 0.75
7 QMagFace : euclidean : Mtcnn {201 14 (0.89 halohat_on |6 QMagFace : euclidean : Mtenn  [167  |104  |0.89
8 QMagFace : euclidean : Mtenn  |215 15 [0.78 snood_lines |7 QMagFace : euclidean : Mtenn (163 |99 0.75
9 QMagFace : euclidean : Mtenn 197 15 [0.78 snood_blobs |9 QMagFace : euclidean : Mtenn {176 |96 0.75
10 QMagFace : euclidean : Mtenn 228 149 10.67 goggles 10 QMagFace : euclidean : Mtenn (228 |34 0.11

Table 17. Effectiveness of the disguises for black participants using one of the best recent models evaluated in the
previous chapter expanding face database adding 3000 new faces provided by LFW database

39 persons in the database black: disguises 3000 persons in the database black: disguise

‘Rank‘ System configuration ‘ T ‘ C ‘ A ‘ Disguise ‘Rank‘ System configuration ‘T ‘ C |A ‘
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clean |QMagFace : euclidean : Mtenn 159 | 12 [0.88 clean clean |QMagFace : euclidean : Mtcnn 159 | 120 |0.88
1 QMagFace : euclidean : Mtcnn 197 | 15 |0.88 glasses_off |1 QMagFace : euclidean : Mtcnn 197|149 0.88
2 QMagFace : euclidean : Mtcnn |186 | 14 ]0.88 | snood_crosses |7 QMagFace : euclidean : Mtcnn ~ [186 (118 0.75
3 QMagFace : euclidean : Mtcnn |208 | 15 ]0.75 glasses_on |3 QMagFace : euclidean : Mtcnn (208 (144 ]0.75
4 QMagFace : euclidean : Mtcnn 176 | 13 ]0.75 halohat_off |2 QMagFace : euclidean : Mtcnn {176 {135 |0.88
5 QMagFace : euclidean : Mtcnn [200 | 14 |0.75 halohat_on |4 QMagFace : euclidean : Mtcnn {200 {140 ]0.75

6 QMagFace : euclidean : Mtcnn |172 | 13 |0.75 | raimbowhat_off |5 QMagFace : euclidean : Mtcnn (172 {130 |0.75

7 QMagFace : euclidean : Mtcnn |191 | 14 [0.75 raimbowhat_o |6 QMagFace : euclidean : Mtcnn {191 (138 ]0.75
8 QMagFace : euclidean : Mtcnn {196 | 97 [0.38 goggles 9 QMagFace : euclidean : Mtcnn ~ [196 (34 |0.12
9 QMagFace : euclidean : Mtcnn {175 | 76 10.38 snood_blobs |8 QMagFace : euclidean : Mtcnn ~ |175 (57 |0.38

10 QMagFace : euclidean : Mtcnn (196 |44 0.0 snood_lines |10 QMagFace : euclidean : Mtcnn {196 (39 0.12

5.5 Lessons learnt from the evaluations

The three evaluations with participants and the additional cross tests inform our research in different ways.
The first (5.3.1) showed slightly different accuracies by the two FRT (Facenet512 and FGGface) used with their
performance in the corridor and hall settings poorer than in environment: gate. The change of the illumination
along the corridor and the skewed top-down angle of view in the hall may explain the reduced performance
and a more powerful camera may produce improved results. The second more extended evaluation (5.3.2) tested
the easiest environment: gate well-lit front-face video capturing with a larger group of participants from
different ethnicities. Even in this best-condition setting there is a high variation of results for the same system
with different configurations. Moreover, different configurations perform better with different ethnicities
making it impossible to select the best one overall. The last evaluation (5.3.3) assessed the advancements of FRT
showing there has been substantial improvement but, when disguises are used, misclassifications still occur.
We have also seen a potential tendency towards a lower performance when the sample increases.

The disguises were all successful in reducing the accuracy across all ethnicities albeit at different degrees.
The two hats projecting light on the face of black participants made their faces easier to recognise thus having
the opposite effect than intended. Of concern is the number of misrecognitions that occur in the clean and
increase substantially with the disguises. It is worth noticing that misrecognitions occur across ethnicities as
well as within ethnicities. It is then essential that the process of identification is supervised by a human who
takes responsibility for the final decision?*.

Finally, we consider the design decision taken at the time of moving from the proof of concepts to the
prototype. To guarantee wearability and ease of use during the evaluation we had to compromise some aspects
of the design of the glasses (the light emitted, Fig. 6) and the rainbow hat (the pattern projected, Fig. 10). While
the evaluation shows a drop in accuracy, this has been much less than we expected following the early tests. A
design iteration to make prototypes that are closer to the initial concepts may produce the high deception
expected.

6 LIMITATIONS

Our study has some limitations. First is the number of participants (39) that resulted in a very small number
of faces tested when compared with large datasets of still images. However, a clear distinction and novelty of
our work is the use of live video rather than still images: with 39 people of different ethnicities, our study is the
largest of presentation attacks in real-life video-feed conditions.

14 The identification procedure may vary from country to country. In the UK a police-person checks the FRT output and may decide to take
the process of identification forward or may decide not to
proceed. /https://www.met.police.uk/SysSiteAssets/media/downloads/central/services/accessing-information/facial-recognition/met-
evaluation-report.pdf
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A second limitation is the different size of groups belonging to different ethnicities with white participants
being more than black and brown combined (56% vs. 44%). However, when compared with other studies in the
literature, our sample has a more participants [Sharif et al. 2019] and a more balanced proportion [Rosenberg
et al. 2023], a possible reason for achieving different findings. This shows the complexity in studying FRT.

A further limitation is due to the choices made when designing the final disguises. For reasons to do mostly
with the comfort of participants, the final disguises implemented favoured ease of wear and use rather than
technical solutions. Our choices, e.g. to project normal light rather than IR or UV, impacted on the ability of the
disguises to bypass FRT, a negative impact much stronger than what we expected. We can only speculate that,
had we used IR (infrared) or UV (ultra-violet) light the disguises would have been much more effective given
the excellent FRT bypass achieved in preliminary tests (Fig. 3, 6, 9). In hindsight, focusing on the product rather
than the technology was a mistake.

Following on the same attitude of focussing on the participants, we decided not to use commercial software
as to secure the privacy of our volunteers (an example of ‘privacy by design’ [Almeida et al. 2022]). Therefore,
our comparison across models and over time is limited to open access software we could control in full.

In our study we tried to replicate as close as possible realistic conditions. As such we should have used a
CCTV system where the camera has been designed for indoor monitoring. Our attempt to use such devices was
frustrated by CCTVs being close systems meaning that only compressed video is fed out as record. We
considered compressed video not suitable as the performance of the FRT would have been lower not for the
effectiveness of the disguises, but because of the video compression. Reports of the actual use of FRT in public
spaces [Fussey and Murray 2019; Mansfield 2023] do not state at which point in the pipeline FRT is placed, from
video acquisition to detection flagging, we can infer FRT is fed with the best quality images thus before the
compression stage. Seen in the perspective of achieving a realistic simulation, our choice replicates the most
likely pipeline but falls short of using the correct camera devices: this is a clear limitation albeit in line with
other academic work.

Despite these limitations, our study contributes to shed some light on FRT when it is taken out of the lab
and challenged, not through the expert knowledge of computer scientists that know how to trick it, but by the
ingenuity of design.

7 CONCLUSIONS AND FUTURE WORK

Our work frames FRT through design practice and understands its use and impact through the lens of HCIL. Our
approach does not start from what the technology can or cannot do, rather from the question “if I did not want
to be recognised, what would I do?” In a generative design process, first we imagined 120 disguises of different
complexity and feasibility, then distilled those in 50 concepts to be tested in the lab as mock-ups to identify
which ones successfully bypassed FRT. Our purpose was to empirically select the promising concepts to be
prototyped for a wider evaluation. Since these early stages, a few of our concepts had similarities with published
research, yet our lab tests (Fig. 3) were not always consistent with the literature: the synthetic makeup applied
on photos in [Lin et al. 2022] deceived FRT while two of our makeups failed; face-on-face projection was
successful in [Shen et al. 2019] while it was not in our experiment; a mask with a fake nose and mouth was
successful in [Zolfi et al 2022] but failed out lab test. As [Lin et al. 2022], [Shen et al. 2019] and [Zolfi et al 2022]
are all computational attacks, we may infer they were effective not because of the type of disguise (makeup,
projection, mask), but because they have been maliciously crafted to target known FRT weaknesses. However,
in our lab tests (Fig. 3) the geometric make-up and the pink-dots face projection successfully bypassed FRT
showing that computational knowledge is not a ‘must have’.

Our empirical exploration then progressed towards wearable prototypes that could be worn by participants
in a comparative evaluation against different FRT settings. We selected the two ends of the spectrum: simple
camouflage (the snoods) and complex interactives that projected light on the face (hats) or against the camera
(glasses). At this stage of the design process our intent was to get closer to disguises that people (such as civil
right activists) could wear in the street without raising alarm, disguises that could be easily put on and off (the
snoods) or that could be switches on and off at will (the hats and the glasses). Moving from mock-ups to
prototypes posed a challenge for the complex concepts: the UV and IR emitters attached to the glasses to attack
the camera by projecting out light (Fig. 7) could not be seamlessly integrated in an off-the-shelf glass frame (the
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lab mock-up was a larger 3D printed frame), and the pico-projector that shed a geometric pattern on the face
(Fig. 10) could not be micronized to be integrated in a hat within the resources of the project. We then took the
decision to favour wearability and to implement disguises that looked realistic to be used in the evaluation: the
glasses had fibre optics, the hat an animated coloured led strip. Most likely we paid this choice with an increase
in FRT detection (i.e., a decrease in the power of the disguises) as the disguises were not as effective as expected
given the results of the lab test. In future work, it could be worth going back to the drawing board to find ways
to incorporate the original concept into a wearable disguise, for example LEDs could be placed under the hat
brim to create a sharp light-dark effect as in [Li et al. 2023] or infrared light projected used by [Zhou et al. 2018]
although safety and comfort of the participants may be an issue here.

We evaluated the prototypes in three different settings that simulated real-world conditions: the cameras
were placed in different spaces (a hall, a corridor, a passport gate); at different heights, angles and lighting
conditions; the attacker was wearing a physical disguise and free to move as they liked. In the hall and the
corridor FRT performed poorly respect to the front-face at the gate (Fig. 14). We could not find any study that
attempted to replicate real environmental conditions or the behaviour of the attacker as we did: The standard
FRT experimental material is one or more photos taken front-face of a person sat in front of a camera to which
digital patches are automatically applied [Zhu et al. 2019, Pautov et al. 2019, Zolfi et al. 2022], sometimes
multiple photos with the head in different positions and light variation [Komkov and Petiushko 2021, Lin et al.
2021], and in-person attacks wearing a disguise are rare (makeup in [Chen et al. 2019], glasses in [Sharif et al.
2016]). Our results in the hall and corridor suggests that the experimental conditions in which FRT has been
evaluated so far do not reflect realistic human-centred scenarios. Taking FRT out of the lab poses new
challenges to the research community and open up new avenues of investigation.

In the second evaluation we expanded the range of participants to include black and brown ethnicities. The
findings show that disguises should be designed with a specific ethnicity in mind: halohat_on is very effective
on white people as it ‘cancels’ some facial features (the nose and the face contour) while it makes black people
much easier to recognise as it illuminates their faces.

Our analysis shows some individuals are easier to identify than others and that cases of misidentification
can occur both within and across ethnicities. This last finding is the opposite of [Rosenberg et al. 2023] that
only finds misidentifications occurring within ethnic group when testing FRT against digital obfuscation.
However, in [Rosenberg et al. 2023] the number of people identified as of Indian ethnicity were only 20 against
1240 Black, 2.500 Asian and 10.000 White, while our sample was much smaller but more balanced between 22
White, 8 Black and 9 Brown (Indian ethnicity). This observation suggests the need to experiment with more
balanced samples representing different ethnicities equally and that generalisations cannot be done as
unbalanced data may lead to-unreliable results. Indeed, in our experiments the most misrecognised individuals
as white and as black in both 2023 and 2024 were brown people (Fig. 19), an ethnicity marginal in [Rosenberg et
al. 2023] respect to the other groups.

Another explanation for the opposed results between our work and [Rosenberg et al. 2023] could be the
different setup: as [Rosenberg et al. 2023] applied digital obfuscation and did not test physical presentation
attacks, we may presume the disguises facilitated cross-ethnicities misidentifications in different ways. As
explained in 3.1, FRT extracts the facial features and use them to position a point in a vector space expecting
that to be the closest to the point of the actual face (ground truth) of the individual detected. When ‘noise’ is
introduced, being that via digital obfuscation or physical disguises, some facial features are hidden or distorted
forcing the FRT to interpret the facial features as a point positioned in the vector space far from the actual
individual and closer to others resulting in the misidentification or the overlooking of the target person. It could
be that the ‘noise’ from digital obfuscation and physical disguises occur on different features thus confound
FRT in different ways. As the two studies differ in the evaluation environment, a real-life in our case vs. the
LFW dataset (Labelled Faces in the Wild) for [Rosenberg et al. 2023], an interesting experiment could be to
apply both in sequence to see how far FRT could be bypassed when noise is maximised.

It is also impossible to compare our results against other physical presentation attacks as only [Sharif et al.
2019] included more ethnicities, 1 south Asian female and 1 middle eastern man as impersonators. The lack of
comparable work shows there are many opportunities to research FRT from a human-centred real-life
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perspective and that FRT research would benefit from empirical findings, the involvement of more than a few
participants of different ethnicities, all factors that could bring lab research closer to real uses.

The cases of misidentification are particularly critical for the potential consequences this could bring:
[Mansfield 2023] reports that in a real-life evaluation of commercial FRT used by the UK police the cases of
misidentification (false positive) where 1 in 60,000 with a watchlist on 1000 individuals but increased to 1 in
6000 when the watchlist increases to 10,000 (with 89% true positive for both settings). The consequences of FRT
misidentification if not properly verified and confirmed by a human are serious [BBC 2019, Hill 2020, Hill 2022,
Murphy 2023] and the number of people potentially affected when scaling up to the population of an entire
country raise procedural and ethical questions even more when the technology is used by the private sector,
for example when attempting to identify shoplifters [Chivers 2019]. The need to regulate FRT and its use would
be a start, better would be to impose “privacy by design” and “privacy by default” to cover the creation,
processing, sharing, and destruction of personal data as in the EU’s General Data Protection Regulation (GDPR)
[Almeida et al. 2022] and to avoid abuses [REUTERS 2023]. While GDPR does not prevent data cellection, it
requires carefully documented processes and data management, but “what is considered fair and lawful is
potentially open to interpretation” [Almeida et al. 2022, pg. 380] leaving open to individual countries how the
government controls FRT and who is ultimately responsible for its use.

The research in this paper was carried out over a period of 3 years, from the design and lab,testing of the
disguises in Spring 2021, to prototyping and real-life evaluation in three different settings, to the final
comparative evaluation in Winter 2023-24. During this period, we have experimented with different models
keeping the study up-to-date with the latest FR developments. While there is an improvement with recent
models, when disguises are in use, misidentification still occurs: the relationship between the disguise, specific
facial features and misidentification is worth exploring further.

ACKNOWLEDGMENTS

The authors thank Ursula Ankeny and Josh Hill for their contribution to the design of the disguises and the
assistance during the experiments.

REFERENCES

Alessandro Acquisti, Ralph Gross and Fred Stutzman. 2014. Face Recognition and Privacy in the Age of Augmented Reality. Journal of
Privacy and Confidentiality. 6 (82). 1-20.

Denise Almeida, Konstantin Shmarko and Elizabeth Lomas. 2021. The Ethics of Facia Recognition Technologies, Surveillance, and
Accountabilityin an Age of Artificial Intelligence: A Comparative Analysis of US, UE, and UK Regulatory Frameworks. Al and Ethics.
2.377-387.

Paarijaat Aditya, Rijurekha Sen, Peter Druschel; Seong Joon Oh, Rodrigo Benenson, Mario Fritz, Bernt Schiele, Bobby Bhattacharjee and
Tong Tong Wu. 2016. I-Pic: A Platform for Privacy-Compliant Image Capture. Proc. of ACM MobiSys’16. June 25-30, Singapore. DOI:
10.1145/2906388.2906412

Mohamad Alansari, Oussama Abdul Hay, Sajid Javed, Abdulhadi Shoufan, Yahya Zweiri and Werghi, Naoufel. 2023. GhostFaceNets:
Lightweight Face Recognition Model from Cheap Operations. IEEE Access. PP. 1-1. 10.1109/ACCESS.2023.32660688

BBC. 2019. Apple AI accused of leading to man’s wrongful arrest. BBC News. 23 April 2019. Retrieved from
https://www.bbe.co.uk/news/technology-48022890

Johana Bhuiyan, 2023. Rite Aid facial recognition misidentified Black, Latino and Asia people as ‘likely’ shoplifter. The Guardian. 20
December 2023. Retrieved from https://www.theguardian.com/technology/2023/dec/20/rite-aid-shoplifting-facial-recognition-ftc-
settlement

Johana Bhuiyan, 2024. Facial recognition used after Sunglass Hut robbery led to man’s wrongfully jailing, say suit. The Guardian. 23 January
2024. Retrieved from https://www.theguardian.com/technology/2024/jan/22/sunglass-hut-facial-recognition-wrongful-arrest-lawsuit

Carmen Bisogni, Lucia Cascone, Jean-Luc Dugelay and Chiara Pero. 2021. Adversarial Attacks through Architectures and Spectra in Face
Recognition. Pattern Recognition Letters. 147. 55-62. https://doi.org/10.1016/j.patrec.2021.04.004

Fadi Boutros, Naser Damer, Florian Kirchbuchner, Arjan Kuijper; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, 2022, pp. 1578-1587

Fadi Boutros, Vitomir Struc, Julian Fierrez and Naser Damer. 2023. Synthetic data for face recognition: Current state and future prospects.
Image and Vision Computing. Vol. 135. DOI: https://doi.org/10.1016/j.imavis.2023.104688

Tim Brown. 2009. Change by Design: How Design Thinking Transforms Organisations and Inspires Innovation. Harper Collins.

Qingxiu Bu. 2021. The global governance on automated facial recognition (AFR): ethical and legal opportunities and privacy challenges.
International Cybersecurity Law Review. 2:113-145.

ACM Trans. Comput.-Hum. Interact.


https://www.bbc.co.uk/news/technology-48022890
https://www.theguardian.com/technology/2023/dec/20/rite-aid-shoplifting-facial-recognition-ftc-settlement
https://www.theguardian.com/technology/2023/dec/20/rite-aid-shoplifting-facial-recognition-ftc-settlement
https://www.theguardian.com/technology/2024/jan/22/sunglass-hut-facial-recognition-wrongful-arrest-lawsuit
https://doi.org/10.1016/j.imavis.2023.104688

40

Joy Buolamwini and Tinit Gebru. 2018. Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. Proc. of
Machine Learning Research. Conference on Fairness, Accountability, and Transparency. 81:1-15.

Davide Castelvecchi. 2020. Beating Biometric Bias. Nature, 587, 19 November 2020, 347-349.
Cunjian Chen, Cunjian Dantcheva, Thomas Swearingen and Ann Ross. 2017. Spoofing Faces Using Makeup: An Investigative Study. Proc.
of 3rd IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2017), (New Delhi, India), February 2017.

Tom Chivers. 2019. Facial recognition... coming to a supermarket near you. The Guardian, 4 August 2019. Retrieved from
https://www.theguardian.com/technology/2019/aug/04/facial-recognition-supermarket-facewatch-ai-artificial-intelligence-civil-
liberties

Debayan Deb, Xiaoming Liu and Anil K. Jain. 2023. Unified Detection of Digital and Physical Face Attacks. Proc. of IEEE 17th International
Conference on Automatic Face and Gesture Recognition. DOI: 10.1109/FG57933.2023.10042500

Peter Fussey and Daragh Murray. 2019. Independent Report on the London Metropolitan Police Service’s Trial of Live Facial Recognition
Technology. Project Report. University of Essex Human Rights Centre. Retrieved from https://repository.essex.ac.uk/24946/

Rakibul Hasan, David Crandall, Mario Fritz and Apu Kapadia. 2020. Automatically Detecting Bystanders in Photos to Reduce Privacy Risks.
Proc. of IEEE Symposium on Security and Privacy. 18-21 May, San Francisco, CA, USA. DOI: 10.1109/SP40000.2020.00097

Amy Hawkins. 2018. Beijing’s Big Brother Tech Needs African Faces. Foreign Policy. July 24 2018. Retrieved from
https://foreignpolicy.com/2018/07/24/beijings-big-brother-tech-needs-african-faces/

Kashmir Hill. 2023. The Secretive Company That Might End Privacy as We Know It. The New York Times. International Edition. January 6,
2023.

Kashmir Hill. 2020. Eight Months Pregnant Woman Arrested After False Facial Recognition Match. The New York Times. August 20, 2020.

Javier Hernandez-Ortega, Julian Fierrez, Aythami Morales and Javier Galbally. 2019. Introduction to Face Presentation Attack Detection.

In: Marcel, S., Nixon, M., Fierrez, J., Evans, N. (eds.) Handbook of Biometric Anti-Spoofing — Advances in Computer Vision and Pattern
Recognition. Springer Cham. 187-206. DOI: https://doi.org/10.1007/978-3-319-92627-8 9

Siddarth Jaiswal, Karthikeya Duggirala, Abhisek Dash and Animesh Mukherjee. 2022. Two-Face: Adversarial Audit of commercial Face
Recognition Systems. Proc. of 16th International AAAT Conference on Web and Social Media (ICWSM 2022). 381-392.

Stepan Komkov and Aleksandr Petiushko. 2021. AdvHat: Real-World Adversarial Attack on ArcFace ID System. Proc. of 25th International
Conference on Pattern Recognition (IPCR 2021). DOI: 10.1109/ICPR48806.2021.9412236

Yassin Kortli, Maher Jtdi, Ayman Al Falou and Mohamed Arti. 2020. Face Recognition System: A Survey. Sensors 20, 342. DOI:
https://doi.org/10.3390/s20020342

Ilpo Koskinen, John Zimmerman, Tomas Binder, Johan Redstrom and Stephan Wensveen. 2011. Design Research Through Practice: From
the Lab, Field and Showroom. Morgan Kaufmann:

Yanjie Li, Yiquan Li, Xuelong Dai, Songtao Guo and Bin Xiao. 2023. Physical-World Optical Adversarial Attacks on 3D Face Recognition.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 2023, pp. 24699-24708, doi:
10.1109/CVPR52729.2023.02366.

Chang-Sheng Lin, Chia-Yi Hsu, Pin-Yu Chen and Chia-Mu Yu. 2022. Real-World Adversarial Examples via Makeup. Proc. of IEEE
International conference on Acustic, Speech and Signal Processing (ICASSP 2022). 2854-2858 DOI: 10.1109/ICASSP43922.97047469

Sascha Lobner, Sebastian Pape, Vanessa Bracamonte. 2023. User Acceptance Criteria for Privacy Preserving Machine Learning Techniques.
18th International Conference on Availability, Reliability and Security (ARES 2023).
https://dl.acm.org/doi/fullHtml/10.1145/3600160.3605004

Tony Mansfield. 2023. Facial Recognition Technology in Law Enforcement Equitability Study (Final Report). NPL Report MS 43. chrome-
extension://efaidnbmnnnibpcajpcglclefindmkaj/https://science.police.uk/site/assets/files/3396/frt-equitability-study_mar2023.pdf

Tom Murphy. 2023. Rite Aid Banned from Facial Recognition Tech Use for 5 years After Faulty Theft Targeting in Store. Time. 20 December
2023. https://time.com/6549652/rite-aid-banned-facial-recognition-tech/

Dinh-Luan Nguyen, Sunpreet S. Arora, Yuhang Wu, Hao Yang. 2020. Adversarial Light Projection Attack on Face Recognition Systems: A
Feasibility Study. IEEE Computer Vision and Pattern Recognition (CVPR) Biometrics Workshop 2020. Accessible at
https://arxiv.org/abs/2003.11145

Seong Joon Oh, Rodrigo Benenson, Mario Fritz and Bert Schiele. 2016. Faceless Person Recognition; Privacy Implications in Social Media.
Proc. of European Conference in Computer Vision ECCV 2026, pp. 19-35, Spinger Lecture Notes in Computer Science LNIP vol. 9907.
DOI: 10.1007/978-3-319-46487-9_2

Mikhail Pautov, Grigorii Melnikov, Edgar Kaziakhmedov, Klim Kireev and Aleksandr Petiushko. 2019. On Adversarial Patches: Real-World
Attack on ArcFace-100 Face Recognition System. 2019 International Multi-Conference on Engineering, Computer and Information
Sciences (SIBIRCON) DOI: https://doi.org/10.1109%2Fsibircon48586.2019.8958134

Alina Polyakova and Chris Meserole. 2019. Exporting digital authoritarianism. Brookings Foreign Policy. Democracy and Disorder.
https://www.brookings.edu/wp-content/uploads/2019/08/FP_20190826_digital authoritarianism_polyakova_meserole.pdf

Inioluwa Deborah Raji, Timnit Gebru, Margaret Mitchell, Joy Buolamwini, Joonseok Lee and Emily Denton. 2020. Saving Face: Investigating
the Ethical Concerns of Facial Recognition Auditing. AAAI/ACM Conference on Al Ethics and Society - AIES ’20, February 7-8, 2020,
New York, NY, USA

Raghavendra Ramachandra and Christoph Busch. 2017. Presentation Attack Detection Methods for Face Recognition Systems: A

ACM Trans. Comput.-Hum. Interact.


https://www.theguardian.com/technology/2019/aug/04/facial-recognition-supermarket-facewatch-ai-artificial-intelligence-civil-liberties
https://www.theguardian.com/technology/2019/aug/04/facial-recognition-supermarket-facewatch-ai-artificial-intelligence-civil-liberties
https://doi.org/10.1109/FG57933.2023.10042500
https://repository.essex.ac.uk/24946/
https://foreignpolicy.com/2018/07/24/beijings-big-brother-tech-needs-african-faces/
https://doi.org/10.1007/978-3-319-92627-8_9
https://time.com/6549652/rite-aid-banned-facial-recognition-tech/
https://doi.org/10.1109%2Fsibircon48586.2019.8958134

41

Comprehensive Survey. ACM Computing Surveys, 50, 1, Article 8. DOI: http://dx.doi.org/10.1145/3038924

REUTERS (2023) Privacy group challenges Ryanair’s use of facial recognition. 27 July 2023 Retrieved from
https://www.reuters.com/business/aerospace-defense/privacy-group-challenges-ryanairs-use-facial-recognition-2023-07-27/.

Harrison Rosenberg, Brian Tang and Somesh Jha. 2023. Fairness Properties of Face Recognition and Obfuscation Systems. Proc of 32nd
USENIX Security Symposium. 7231-7248. https://doi.org/10.48550/arXiv.2108.02707

Aimee Kendall Roundtree. 2021. Ethics and Facial Recognition Technology: An Integrative Review. Proc. of 3 World Symposium on
Artificial Intelligence (WSAI 2021). IEEE Publisher. DOI: 10.1109/WSAI51899.2021.9486382

CO, USA. DOI: https://doi.org/10.1145/3314111.3319913

Evan Selinger and Brenda Leong. 2021. The Ethics of Facial Recognition Technology. In: C. Véliz (ed.) The Oxford Handbook of Digital

Ethics. Oxford University Press. DOIL: 10.2139/ss1rn.3762185 Available at SSRN:
https://papers.ssrn.com/sol3/papers.cfm?abstract id=3762185

Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer and Michael k. Reiter. 2016. Accessorize to a Crime: Real and Stealthy Attacks on State-of-
the-Art Face Recognition. ACM Computer and Communication Security CCS’16. 1528-1540.

Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer and Michael k. Reiter. 2019. A General Framework for Adversarial Examples with
Objectives. ACM Trans. Priv. Secur. 22, 3, Article 16. DOI: https://doi.org/10.1145/3317611

Emine Sinmaz. 2023. Live facial recognition labelled ‘Orwellinan’ as Met police push ahead with use. The Guardian. 5 April 2023. Retrieved
from https://www.theguardian.com/technology/2023/apr/05/live-facial-recognition-criticised-metropolitan-police
Meng Shen, Zelin Liao, Liewhuang Zhu, Ke Xu and Xiaojiang Du. 2019. VLA: A Practical Visible Light-based Attack on Face Recognition

Systems in Physical World. Proc of ACM Interactive, Mobile, Wearable and Ubiquitous Technologies, 3, 3, Article No: 103.
https://doi.org/10.1145/3351261

Pieter Jan Stappers. 2007. Doing Design as a Part of doing Research. In: R. Michel. Design Research Now ~ Essays and Selected Projects.

Julian Steil, Marion Koelle, Wilko Heuten, Susanne Bolol and Andreas Bulling. 2019. PrivacEye: Privacy-Preserving Head-Mounted Eye
Tracking Using Egocentric Scene Image and Eye Movement Features. Proc. of Eye Tracking Research and Applications (ETRA’19),
June 25-28, Denver.

Philipp Terhorst, Malte Thlefeld, Marco Huber, Naser Damer, Florian Kirchbuchner, Kiran Raja.and Arjan Kuijper. 2023. QMagFace: Simple
and Accurate Quality-Aware Face Recognition. 3473-3483. 10.1109/WACV56688.2023.00348

Fatemeh Vakhshiteh, Ahmad Nickabadi and Raghavendra Ramachandra. 2021. Adversarial Attacks Against Face Recognition: A
comprehensive Study. IEEE Access. DOI: https://doi.org/10.1109/ACCESS.2021.3092646

Richard Van Noorden. 2020. The Ethical Questions that Haunt Facial-Recognition Research. Nature. Vol. 587. (19 November 2020), 354-358.

Changsheng Wan, Li Wang, and Vir V. Phoha. 2018. A:Survey on Gait Recognition. ACM Comput. Surv. 51, 5, Article 89 (September 2019),
35 pages. https://doi.org/10.1145/3230633

Robert Williams. 2020. I was Wrongly Arrested Because of Face Recognition. Why Are Police allowed to Use It? The Washington Post. June
24, 2020.

Kaidi Xu, Gaoyuan Zhang, Sijia Liu, Quanfu Fan, Mengshu Sun, Hongge Chen, Pin-Yu Chen, Yanzhi Wang and Xue Lin. 2020. Adversarial
T-Shirt! Evading Person Detectorsin a Physical World. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision - ECCV
2020. Lecture Notes in Computer Science, 12350. Springer. https://doi.org/10.1007/978-3-030-58558-7_39

Jialiang Zhang, Lixiang Lin, Jianke Zhu, Yang Li, Yun-chen Chen and Yao Hu. 2021. Attribute-Aware Pedestrian Detection in a
Crowd. in IEEE Transactions on Multimedia, vol. 23. 3085-3097. doi: 10.1109/TMM.2020.3020691

Shikun Zhang, Yuanyuan Feng; and Norman Sadeh. 2021. Facial Recognition: Understanding Privacy Concerns and Attitudes Across
Increasingly —Diverse Deployment Scenarios.16"  Symposium on Usable Privacy and Security. August9-10.
https://www.usenix.org/system/files/soups2021-zhang-shikun.pdfZhe Zhou, Di Tang, Xiaofeng Wang, Weili Han, Xiangyu Liu and
Kehuan Zhang. 2018. Invisible Mask: Practical Attacks on Face Recognition with Infrared. Retrieved from ARXIV repository (Cornell
University) https://doi.org/10.48550/arXiv.1803.04683

Zheng-Han Zhu, Yun-Zhong Lu, Chen-Kuo Chiang. 2019 Generating Adversarial Examples By Makeup Attacks on Face Recognition, IEEE
International Conference on Image Processing (ICIP), Taipei, Taiwan, 2019, pp. 2516-2520, doi: 10.1109/ICIP.2019.8803269.

Alon Zolfi, Shai Avidan, Yuval Elovici and Asaf Shabtai. 2022. Adversarial Mask: Real-World Adversarial Attack Against Face Recognition
Models. 22nd Joint European conference on Machine Learning and Principles and Practice of Knowledge discovery in Databases —
ECML PKDD 2022. Springer Lecture Notes in Computer Science. DOI: https://doi.org/10.1007/978-3-031-26409-2 19

ACM Trans. Comput.-Hum. Interact.


http://dx.doi.org/10.1145/3038924
https://www.reuters.com/business/aerospace-defense/privacy-group-challenges-ryanairs-use-facial-recognition-2023-07-27/
https://doi.org/10.1109/WSAI51899.2021.9486382
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3762185
https://www.theguardian.com/technology/2023/apr/05/live-facial-recognition-criticised-metropolitan-police
https://doi.org/10.1145/3351261
https://doi.org/10.1109/ACCESS.2021.3092646
https://doi.org/10.48550/arXiv.1803.04683
https://doi.org/10.1007/978-3-031-26409-2_19

42

APPENDICES

A.1 Tables of the top results for disguise:clean

ethnicity:white
Model Distance_Metric Backend Count Total Accuracy
Facenet512 euclidean 12 retinaface 242 391 .
Facenet512 euclidean refinaface 225 14 0.95
Arcrace COSINE Tetinatace 185 367 0.77
ArcFace euclidean_[2 retinaface 184 361 0.77
Facenet512 euclidean opencv 202 365 0.77
Facenet512 euclidean_I2 Opency 221 448 0.77
ArcFace euclidean retinaface 172 374 0.77
Facenet cosine retinatace 164 329 0.73
Facenet512 cosine refinaface 126 222 0.73
VGG-Face cosine retinaface 200 409 0.73
VGG-Face euclidean_I2 retinatace 200 391 0.73
VGG-Face cosine opencv 176 430 0.68
VGG-Face euclidean retinaface 161 422 0.68
Facenet euclidean 12 retinatace 135 296 0.68
Facenet euclidean refinaface 142 329 0.68
VGG-Face euclidean_[2 opency 175 420 0.68
ArcFace cosine opencv 163 418 0.59
ArcFace euclidean_2 opency 161 413 0.59
ArcFace euclidean opencv 143 409 0.55
Facenet cosine opencv’ 141 383 0.55
DeepFace euclidean_12 Tetinatace 133 312 0.5
DeepFace euclidean ssd 94 282 0.5
Facenet512 cosine opency 109 264 0.5
VGG-Face euclidean Opencv 152 469 0.5
DeepFace cosine retinaface 164 546 0.45
Facenet euclidean opency 115 369 0.41
ethnicity:brown
Model Distance_Metric Backend Count Total Accuracy |
Facenet cosine opencv 121 186 0.89
Facenets1Z cosine ssd 116 172 0.89 |
Facenet euclidean opencv 120 194 0.89 |
VGG-Face euclidean_[2 ssd 121 203 0.89
VGG-Face cosine ssd 121 204 0.89
VGG-Face euclidean 12 retinatace 146 202 0.89
VGG-Face euclidean retinaface 130 206 0.89
VGG-race cosine retinatace 147 204 0.89 |
VGG-Face euclidean_|2 opencv 134 208 0.89 |
VGG-Face euclidean opencv 116 209 0.89
VGG-Face cosine opencv 134 208 0.89
Facenef512 euclidean ssd 12 204 0.89
Facenet512 euclidean_[2 ssd 131 199 0.89
Facenet512 euclidean 12 retinatace 158 197 0.89 |
Facenef512 euclidean relinaface 154 204 0.89 |
Facenetd12 cosine refinaface 135 162 0.89
Facenet512 euclidean 12 opencv 146 203 0.89
Facenet512 euclidean opencv 142 210 0.89
Facenets512 cosine Opencv. 122 165 0.89
Facenet euclidean 12 ssd 110 184 0.89
Facenet euclidean ssd 110 19T 0.89 |
Facenet cosine ssd 112 191 0.89
Facenet euclidean_[2 opencv 115 176 0.89
ArcFace cosine ssd 106 203 0.78
Facenet euclidean_I2 retinatace 130 170 0.78
Facenet euclidean refinaface 131 184 0.78
Facenet cosine refinaface 133 178 0.78
ArcFace euclidean 12 ssd 105 201 0.78
ArcFace euclidean ssd 57 151 0.78
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ethnicity:black
Model Distance_Metric Backend Count Total Accuracy
Facenet512 euclidean encv 94 168 .
Facenet512 euclidean retinaface 108 162 0.88 |
Facenet512 euclidean_[2 opency 87 164 0.75
VGG-Face euclidean_[2 retinaface 97 162 0.75
Facenef512 euclidean ssd a7 160 0.75
FacenetS12 euclidean T2 retinatace 98 158 0.75
VGG-Face cosine retinaface 97 162 0.75
Facenet cosine Opency 72 152 0.75
ArcFace cosine ssd 77 156 0.75
ArcFace euclidean |2 retinaface 81 126 0.75
ArcFace cosine retinaface 87 142 0.75
Facenet512 cosine refinaface 74 100 0.62
VGG-Face euclidean_[2 ssd 79 160 0.62
VGG-Face euclidean ssd 65 160 0.62
VGG-Face cosine ssd 73 160 0.62
VGG-Face euclidean retinaface 63 162 0.62
VGG-Face euclidean_2 Opencv 84 168 0.6
VGG-Face cosine opencv B84 168 0.62
Facenet512 euclidean_|2 ssd 82 159 0.62
Facenet euclidean opencv 73 152 0.62
Facenet euclidean retinaface (] 122 0.62
Facenet cosine retinaface 69 117 0.62
Arcrace euclidean 12 ssd 73 148 0.62
ArcFace euclidean ssd 69 147 0.62
ArcFace euclidean retinaface 72 126 0.62
ArcFace euclidean_[2 OpENCY 85 158 0.62
ArcFace cosine opencv 87 161 0.62
Facenet euclidean ssd 65 146 0.5
VGG-Face euclidean opencv 71 168 0.5
Facenets12 cosine ssd 71 124 0.5
Facenet512 cosine opencv 51 104 0.5
Facenet euclidean 12 ssd 63 141 0.5
ArcFace euclidean opencv 72 147 0.5
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A.2 Comparative charts clean vs. disguises for brown and black

Number of mistakes made in recognizing brown in the benchmark clean (left) and across all the disguises (right).

Clean - Brown people most missed Disguise - Brown people most missed
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Number of mistakes made in recognizing black in the benchmark clean (left) and across all the disguises (right).
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A.3 Performance of the 2 best configurations testing the extended database of identities

The primary database of identities uses a single high-quality photo taken full front on a white background to replicate a
real situation where photos in passports, identity cards, driving licences, or mugshots are used to identify people. A second
database was created adding to the 1 high-quality image a further 4 headshots taken from the clean video when the
participant is in different positions. The tables below report the accuracy of the two best configurations, namely Facenet512-
euclidean-retinaface and Facenet512-euclidean_I2-retinaface, on 39 participants with environemnt:gate.

disguise:clean ethnicity:white

Model Distance_Metric Backend Count Total Accuracy
Facenet512 euclidean [2 retinaface 194 369 0.73
Facenet512 euclidean retinaface 169 399 0.64
disguise:clean ethnicity:brown
Disguise Model Distance_Metric Backend Count Total Accuracy
clean Facenet512 euclidean retinaface 92 203 0.67
clean Facenet512 euclidean_[2 retinaface 104 203 0.67
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Disguise Model Distance_Metric Backend Count Total Accuracy
clean Facenet512 euclidean retinaface 86 162 0.62
clean Facenet512 euclidean_[2 retinaface 91 162 0.62
All disguises ethnicity:white
Disguise Model Distance Metric Backend Count Total Accuracy
glasses_off Facenet512 euchdean_[2 retinaface 123 351 0.64
halohat_off Facenet512 euclidean 12 refinaface 175 377 0.64
rainbowhat_off Facenet512 euclidean_[2 retinaface 143 352 0.64
rainbowhat_on Facenei512 euclidean_[2 retinaface 178 421 0.64
glasses_on Facenei512 euclidean retinaface o8 375 0.41
snood_crosses Facenet512 euclidean_[2 retinaface 70 287 0.29
halohat_on Facenef512 euclidean_[2 retinaface 101 356 0.27
goggles Facenei512 euclidean_[2 retinaface 75 328 0.25
snood_blobs Facenet512 euclidean_[2 retinaface 53 276 0.24
snood_lines Facenets512 euclhidean_|2 retinatace 33 298 0.13
All disguises ethnicity:brown
Disguise Model Distance_Metric Backend Count Total Accuracy
glasses_on Facenet512 euclidean_T2 retinaface 233 0.89
glasses_oft Facenets512 euclidean retinalace 110 227 0.67
rainbowhat_off Facenet512 euclidean_[2 retinaface 100 197 0.67
goggles Facenei512 euclidean_[2 retinaface 126 252 0.56
halohat off Facenet512 euclidean retinaface 79 193 0.56
halohat_on Facenet512 euclidean retinaface 78 216 0.56
rainbowhat_on Facenet512 euclidean retinaface 8 266 0.33
snood_blobs Facenet512 euclidean refinaface 7 197 0.11
snood_crosses Facenet512 euclidean retinaface 25 218 0.11
snood_lines Facenet512 euclidean retinaface 30 239 011
All disguises ethnicity:black
Disguise Model Distance_Metric Backend Count Total Accuracy
rainbowhat_cn Facenets12 euclidean retinaface 107 192 0.88
glasses _off Facenet512 euclidean [2 retinaface 124 199 0.75
glasses_on Facenet512 euclidean retinaface 127 211 0.75
halohat_off Facenets12 euclidean retinaface 111 179 0.75
rainbowhat off Facenet512 euclidean [2 retinaface 100 174 0.75
halohat_on Facenet512 euclidean retinaface 98 203 0.62
goggles Facenet512 euclidean 12 retinaface 73 181 0.43
snood crosses Facenets12 eucldean retinaface 27 186 0.25
snood _blobs Facenet512 euclidean retinaface 10 179 0.12
snood_lines “Facenets512 euclidean retinaface 9 200 0.0
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B.1 Evaluation 2024

The extended results of the many combinations of model: metric : backend

disguise:clean ethnicity:white

Disguise Model Distance_Mefric Backend Count Total Accuracy
cean QMagFace euclidean Mtcnn 282 394 1.0
dean QMagFace euclidean T2 Mtcnn 284 394 1.0
dean ElasticFace-Arc+ cosine refinaface 245 403 0.95
clean ElasticFace-Arc+ euclidean_[2 retinaface 245 403 0.95
clean ElasticFace-Arc+ cosine opency 239 403 0.91
dean ElasticFace-Arc+ euclidean [2 opencv 239 403 0.91
clean QMagFace cosine Mtcnn 270 394 0.91
clean ElasticFace-Cos cosine refinaface 223 385 0.86 |
clean ElasticFace-Cos euclidean T2 retinaface 223 385 0.86
clean GhostFaceNet euclidean_[2 retinaface 201 403 0.86
dean Flasticrace-Arc+ euclidean retinatace 216 403 0.82
dean ElasticFace-Arc+ euclidean opencv 217 403 0.77
cean ElasticFace-Cos cosine opencv 211 385 0.76
dean ElasticFace-Cos euclidean_[2 opency 21T 385 0.76
clean ElasticFace-Cos+ euclidean_[2 opency 174 385 0.71
clean ElasticFace-Cos+ cosine opencv 174 385 0.71
clean ElasticFace-Arc+ cosine ssd 154 403 0.64
clean ElasticFace-Arc+ euclidean [2 ssd 154 403 0.64
clean GhostFaceNet euclidean [2 opency 178 403 0.64
dean GhostraceNet cosine retinaface 167 403 0.64
clean GhostFaceNet euclidean retinaface 173 403 0.64
clean ElasticFace-Cos euclidean opency 197 385 0.62
dean ElasticFace-Cos euclidean refinaface 191 385 0.57
dean ElasticFace-Cos+ cosine retinaface 172 385 0.57
clean ElasticFace-Cos+ euclidean_[2 retinaface 172 385 0.57
dean GhostraceNet cosine opencv 156 403 0.45
dean ElasticFace-Cos+ euclidean opency 15T 385 0.43
clean ElasticFace-Cos+ euclidean retinaface 137 385 0.43
clean GhostFaceNet euclidean opency 147 403 0.41
clean ElasticFace-Cos+ euclidean_[2 ssd 124 385 0.29
clean ElasticFace-Cos+ cosine ssd 124 385 0.29
dean ElasticFace-Arc+ euclidean ssd 148 403 0.18
dean ElasticFace-Cos cosine ssd 143 385 0.14
dean ElasticFace-Cos euclidean_[2 ssd 143 385 0.14
dean GhostFaceNet cosine ssd 88 403 0.1
clean GhostFaceNet euclhdean_[2 ssd 111 403 0.14
clean ElasticFace-Cos+ euclidean ssd 99 385 0.1
clean GhostFaceNet euclidean ssd 90 403 0.09
clean ElasticFace-Cos euclidean ssd 138 385 0.05
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disguise:clean

ethnicity:brown

Disguise Model Distance_Metric Backend Count Total Accuracy

cean ElasticFace-Arc+ cosine retinaface 145 205

clean QMagFace cosine MEcnn 170 200 1.0
clean QMagFace euclidean Micnn 174 200 1.0
dean QMagFace euclidean 12 Mtcnn 177 200 1.0
clean ElasticFace-Arc+ euclidean_[2 retinaface 145 205 1.0
clean ElasticFace-Cos euclidean_[2 opencv 134 205 0.89
dean ElasticFace-Cos euclidean_[2 retinaface 137 205 0.89
dean ElasticFace-Cos cosine refinaface 137 205 0.89
clean ElasticFace-Cos cosine opencv 134 205 0.89
clean ElasticFace-Arc+ euclidean_[2 opencv 142 205 0.89
dean ElasticFace-Arc+ euclidean opency 132 205 0.85
clean ElasticFace-Arc+ cosine opencv 142 205 0.89
clean GhostFaceNet cosine retinaface 128 205 0.78
clean Ghostracenet euclidean_[2 ssd 110 205 0.78
dean GhostFaceNet cosine ssd 107 205 0.78
clean GhostFaceNet euclidean_[2 retinaface 134 205 0.78
clean GhostFaceNet euclidean retinaface 132 205 0.78
clean ElasticFace-Cos+ euclidean_[2 opency 117 205 0.78
clean ElasticFace-Cos+ cosine opencyv 117 205 0.78
clean Elasticrace-Arc+ euclidean_[2 ssd 123 205 0.78
dean Flasticrace-Arc+ cosine ssd 123 205 0.78
clean ElasticFace-Arc+ euclidean retinaface 131 205 0.78
clean ElasticFace-Arc+ euclidean ssd 119 205 “0.67
dean ElasticFace-Cos+ cosine refinaface 117 205 0.67
clean ElasticFace-Cos+ euclidean retinaface 106 205 0.67
dean Elasticrace-Cos+ euclidean_|2 refinarace 117 205 0.67
clean ElasticFace-Cos+ cosine ssd 113 205 0.67
cean ElasticFace-Cos+ euclidean ssd 95 205 0.67
dean ElasticFace-Cos+ euclidean_[2 ssd 113 205 0.67
cean ElasticFace-Cos euclidean_[2 ssd 120 205 0.56
cean GhostFaceNet euclidean ssd 111 205 0.56
dean Elasticrace-Cos+ euclidean Opencv 54 205 0.56
dean Elasticrace-Cos euclidean retinaface 125 205 0.56
dean Elasticface-Cos euclidean ssd 119 205 0.56
dean Elasticrace-Cos euclidean opencv 128 205 0.56
dean ElasticFace-Cos cosine ssd 120 205 0.56
clean GhostFaceNet cosine opencv 54 205 0.44
dean GhostFaceNet euclidean opencyv 69 205 0.44
cean GhostFaceNet euclidean_[2 opencv 66 205 0.44
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disguise:clean ethnicity:black

Disguise Model Distance_Metric Backend Count Total Accuracy
clean ElasticFace-Cos cosine retinaface 111 162 1.0
clean ElasticFace-Cos euclidean_[2 retinaface 11T 162 1.0
clean ElasticFace-Arc+ cosine opencv 93 162 0.88
clean ElasticFace-Arc+ euclidean_[2 ency 93 162 0.88
clean ElasticFace-Arc+ cosine ﬁace 97 162 0.88
clean ElasticFace-Arc+ euclidean_[2 refinaface 97 162 0.88
clean ElasticFace-Cos cosine opency 105 162 0.88
—__ dean | ElasticFace-Cos euclidean_12 opencv 105 162 0.88
clean )MagFace cosine Mtcnn 121 159 0.88
clean QMagFace euclidean Mtcnn 124 159 0.88
clean )MagFace euclidean_[2 Mtcnn 125 159 0.88
clean ElasticFace-Cos cosine ssd 107 162 0.75
clean ElasticFace-Cos euclidean_[2 ssd 107 162 0.75
clean GhostFaceNet euclidean retinaface 95 162 0.62
clean GhostFaceNet euclidean [2 refinaface 89 162 0.62
clean ElasticFace-Arc+ euclidean opencv 92 162 0.62
clean ElasticFace-Arc+ euclidean_[2 ssd 89 162 0.62
clean ElasticFace-Arc+ cosine ssd 89 162 0.62
clean ElasticFace-Arc+ euclidean retinaface 91 162 0.5
clean ElasticFace-Arc+ euclidean ssd 89 162 0.5
clean FlasficFace-Cos euclidean opencv ::] 162 0.5
clean ElasticFace-Cos euclidean retinaface 89 162 0.5
clean ElasticFace-Cos euclidean ssd 88 162 ~ 0.5
clean GhostraceMet euclidean_|2 opencv 70 162 0.5
clean ElasticFace-Cos+ euclidean_[2 retinaface 73 162 038
clean GhostFaceNet COSINe refinaface 78 167 0.38
clean GhostFaceNet euclidean opencv 75 162 0.33
clean GhostFaceNet euclidean ssd 62 162 0.38
clean Elasticrace-Cos+ cosine retinaface 73 162 0.38
clean ElasticFace-Cos+ cosine opencv 71 162 0.38
clean ElasticFace-Cos+ euclidean [2 opencv 71 162 0.38
clean ElasticFace-Cos+ euclidean_[2 ssd 43 162 0.25
clean GhostFaceNet cosine ssd 32 162 0.25
clean GhostFaceNet cosine opencv 48 162 0.25
clean GhostFaceNet euclidean_[2 ssd 50 162 0.25
clean ElasticFace-Cos+ euclidean ssd 35 162 0.25
clean ElasticFace-Cos+ cosine ssd 49 162 0.25
clean ElasticFace-Cos+ euclidean refinaface 7 162 0.25
dean ElasticFace-Cos+ euclidean opencv 48 162 0.25
disguise:all ethnicity:white
Disguise Model Distance_Metric Backend Count Total Accuracy
rainbowhat_off QMagFace euclidean |2 Mtcnn 205 339
snood crosses QMagFace euclidean Mtcnn 216 345 0.95
halohat_off QMagFace euclidean 12 Mtcnn 243 388 091
snood _blobs QMagFace euclidean |2 Mtcnn 188 351 09
glasses_off ElasticFace-Arc+ cosine retinaface 167 375 0.86
rainbowhat_on OMagFace euchdean 12 Mtcnn 203 323 076
snood lines QMagFace euclidean |12 Mtcnn 163 361 0.76
glasses_on ElasticFace-Arc+ cosine retinaface 150 365 073
goggles ElasticFace-Arc+ cosine retinaface 128 370 0.68 |
halohat_on QMagFace euclidean |2 Mtcnn 142 428 045
disguise:all ethnicity:brown
Disguise Model Distance_Metric Backend Count Total Accuracy
snood_lines QMagFace euclidean |2 Mtcnn 163 215 1.0
snood_Crosses QMagrace euclidean Mtcnn 148 201 1.0
halohat_off QMagFace cosine Mtcnn 145 186 1.0
halohat_on QMagFace euclidean_|2 Mtcnn 142 201 10
glasses_oft QMagFace cosine Mtcnn 164 196 1.0
rainbowhat_off )MagFace cosine Mtcnn 143 181 1.0
rainbowhat_on QMagFace euclidean Mtcnn 187 235 1.0
glasses_on QMagFace cosine Mtcnn 166 211 1.0
goggles OMagFace euclidean 12 Mtcnn 159 228 0.89
snood_blobs QMagFace euclidean [2 Mtcnn 154 197 0.89
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disguise:all ethnicity:black

Disguise Model Distance_Metric Backend Count Total Accuracy
glasses_off OMagFace euclidean 2 Mtcnn 155 197
halohat_oft agrace euclidean_2 Mtcnn 138 176 10
snood_crosses OQMagFace euclidean_[2 Mtcnn 140 186 1.0
glasses_on ElasticFace-Cos cosine ssd 125 211 0.88
halohat on CﬂagFace euclidean 12 Mtcnn 148 200 0.88
rainbowhat off QMagFace euclidean [2 Mtcnn 130 172 0.88
rainbowhat_on Cﬂig'ﬁace euclidean |2 Mtcnn 141 191 0.88 |
snood _lines ElasticFace-Arc+ cosine refinaface 94 200 0.62
snood_blobs Elasticrace-Arc+ cosine retinaface 87 179 0.5
goggles ElasticFace-Arc+ cosine retinaface 60 200 0.38 |
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