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Glossary of Key Concepts 

Abstractive Summarisation: A summarisation technique that generates new sentences to 

capture the essence of the original text, often producing more concise and coherent 

summaries than extractive methods. 

 

Attention Mechanism: A component in neural networks that allows the model to focus on 

different parts of the input when generating each part of the output, essential for improving 

the quality of generated summaries. 

 

BERT (Bidirectional Encoder Representations from Transformers): A transformer-based 

machine learning model for NLP pre-training, designed to understand the context of a word in 

a sentence by looking at the words that come before and after it. 

 

BERTScore: An automatic evaluation metric for text generation that computes a similarity score 

for each token in the generated text with each token in the reference text using contextual 

embeddings. 

 

BLEU (Bilingual Evaluation Understudy): An algorithm for evaluating the quality of text which 

has been machine-translated from one natural language to another, often used in 

summarisation evaluation. 

 

Chain-of-Thought (CoT) Prompting: A prompting technique that guides language models 

through a step-by-step reasoning process, often improving performance on complex tasks. 

 

Chunking: The process of breaking down large documents into smaller, manageable pieces for 

processing by language models with limited context windows. 

 

Corpus: a collection of documents. These may or may not be closely related but there is a 

complex and multilevel relationship between the topics identified within and across 

documents. 

 

Cross-encoder Re-ranking: A technique used in information retrieval to improve the relevance 

of retrieved documents by using a BERT-based model to re-score the initial results. 

 

Dense Retrieval: A method of information retrieval that uses dense vector representations of 

both queries and documents to find relevant information. 
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Document: several elements of text, each containing information about a single topic.  A 

document therefore will normally contain information about several topics. 

 

Embeddings: Dense vector representations of words, sentences, or documents that capture 

semantic meanings in a high-dimensional space. 

 

Extractive Summarisation: A summarisation technique that selects and orders existing 

sentences from the source text to form a summary. 

 

Few-shot Learning: A machine learning approach where a model is trained to perform a task 

with only a few examples, leveraging its pre-existing knowledge. 

 

Fine-tuning: The process of further training a pre-trained model on a specific task or domain to 

improve its performance. 

 

Gemma Models: A family of open-source language models developed by Google, available in 

different sizes (e.g., 2B and 7B parameters). 

 

Large Language Models (LLMs): Advanced AI models trained on vast amounts of text data, 

capable of understanding and generating human-like text. 

 

LLaMA (Large Language Model Meta AI): A family of foundation language models developed by 

Meta AI, designed for efficiency and open-source accessibility. 

 

LLM-as-a-Judge: A methodology that uses a large language model to evaluate the quality of 

outputs from other AI systems, such as summarisation models. 

 

LSTM (Long Short-Term Memory): A type of recurrent neural network architecture used in 

deep learning, designed to address the vanishing gradient problem. 

 

Multi-Document Summarisation (MDS): The task of producing a single, coherent summary 

from multiple source documents. 

 

Parameter-Efficient Fine-Tuning (PEFT): Techniques like LoRA and QLoRA that allow for 

efficient adaptation of large language models to specific tasks with minimal computational 

resources. 
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QLoRA (Quantized Low-Rank Adaptation): An efficient fine-tuning technique that combines 

quantization and low-rank adaptation to reduce the computational and memory requirements 

of adapting large language models. 

 

RAG (Retrieval-Augmented Generation): A hybrid AI framework that combines information 

retrieval with text generation to produce more accurate and contextually relevant outputs. 

 

Reciprocal Rank Fusion: A method for combining multiple ranked lists in information retrieval, 

often used to merge results from different retrieval strategies. 

 

ROUGE (Recall-Oriented Understudy for Gisting Evaluation): A set of metrics used for 

evaluating automatic summarisation and machine translation in natural language processing. 

 

SPECTER: A pre-trained language model specifically designed for scientific document 

representation, often used in academic information retrieval tasks. 

 

Summary: A text that is produced from one or more texts, that conveys important information 

in the original text(s), and that is no longer than half of the original text(s) and usually 

significantly less than that. 

 

Text: small volume of text (a paragraph, say) that contains information about a single topic. 

 

TF-IDF (Term Frequency-Inverse Document Frequency): A numerical statistic used to reflect the 

importance of a word in a document relative to a collection of documents, commonly used in 

information retrieval and text mining. 

 

Tokenisation: The process of breaking down text into smaller units (tokens), which can be 

words, subwords, or characters, for processing by natural language models. 

 

Transfer Learning: A machine learning technique where a model developed for one task is 

reused as the starting point for a model on a second task, often applied in fine-tuning large 

language models. 

 

Transformer: A deep learning model architecture that relies entirely on an attention 

mechanism to draw global dependencies between input and output. 
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Vector Database: A database optimized for storing and querying high-dimensional vector data, 

often used in conjunction with embedding models for efficient information retrieval. 

 

Zero-shot Learning: The ability of a machine learning model to solve a task it hasn't been 

explicitly trained on, leveraging its general knowledge or understanding. 
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Abstract 

The rapid growth of scientific literature in recent years has created a requirement for efficient 

methods to synthesise information from multiple related documents. This thesis addresses this 

challenge by developing and evaluating novel approaches to multi-document summarisation 

(MDS) of scientific papers, with a focus on hybrid and deep learning techniques leveraging both 

extractive and abstractive methods. 

 

The research explores the application of state-of-the-art large language models (LLMs), 

specifically Google's Gemma 2B and 7B models, to the task of scientific literature 

summarisation. A key innovative approach is the integration of Retrieval-Augmented 

Generation (RAG) techniques to enhance the summarisation process. The study employs a 

mixed-methods approach, combining quantitative evaluation metrics with qualitative human 

assessment and the recently developed novel LLM-as-judge methodology. 

 

A comprehensive literature review provides the theoretical foundation, covering the evolution 

of summarisation techniques, the emergence of transformer-based models, and recent 

advances in LLMs and related tools and techniques. The experimental design involves fine-

tuning embedding models, optimising chunking strategies, and developing a RAG pipeline that 

integrates retrieval mechanisms with generative LLMs. 

 

Results demonstrate significant improvements in summary quality, coherence, and factual 

accuracy compared to baseline methods. The fine-tuned Gemma models, coupled with RAG 

techniques, show promise in handling the complexities of scientific text. The study also shows 

interesting trade-offs between model size and performance, with implications for resource-

constrained applications. 

 

This research contributes to the field by advancing the state-of-the-art in scientific literature 

summarisation, providing insights into the effective application of LLMs to this area, and 

suggesting improved evaluation methodologies. The findings have potential implications for 

enhancing scientific communication, accelerating literature reviews, and improving access to 

scientific knowledge. 
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Chapter 1: Introduction 

1.1 Background and Motivation 

1.1.1 Importance of Effective Scientific Communication 

Effective scientific communication is very important for the advancement of knowledge and 

innovation (White, 2001; De Semir, 2009; Bautista et al., 2022). It ensures that research 

findings are disseminated accurately and comprehensively, allowing researchers from various 

disciplines to build upon each other's work (Gross, Harmon and Reidy, 2002).  

 

Furthermore, it fosters collaboration, interdisciplinary understanding, and contributes to the 

broader scientific community's ability to address complex problems (Committee on Science, 

Engineering and Public Policy, 2009). Accessible and clear communication can bridge the gap 

between experts and non-experts, enhancing the public's understanding of scientific research 

and its impact on society (Brownell, Price and Steinman, 2013). This communication is not only 

for and between other researchers but also to the wider world and can be one of the factors 

that enhances the impact of a research project. 

 

Despite the impact of social media and pre-print services, scientific papers in journals are still 

the primary medium for communicating research findings, with countless articles being 

published every year across a wide range of disciplines. As the volume and frequency of 

publication of scientific literature grows, it is becoming increasingly challenging for researchers 

to stay abreast of new developments and synthesise the existing knowledge in their fields; as 

much research is increasingly collaborative and interdisciplinary in order to produce significant 

breakthroughs. Saw (2020) emphasises this and Roche and Rickard, (2017) have described how 

interdisciplinary collaboration in scientific research helps address gaps in knowledge and tackle 

complex problems. This need to work across disciplines increases the volume of research that 

needs to be read and synthesised; making it even harder to stay updated with developments in 

a particular field. 

 

This information overload can hinder the effective communication and application of scientific 

discoveries, ultimately impeding the progress of research and innovation. In recent research by 

Lehman and Miller (2020), they discuss some approaches to managing this information 

overload, they indicate that having on hand a human expert who is able to summarise and 

distil information is one way to manage this.  Of course, not every research team has access to 
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such human experts so this opens the way to an automated tool which can create summaries 

in a particular knowledge domain. 

 

1.1.2. Challenges in Processing and Understanding Large Volumes of Scientific Literature 

This huge growth of scientific literature presents several challenges for researchers, including 

the difficulty of finding relevant articles, the time taken to read and understand complex texts 

and the need to synthesise information from multiple sources. This is echoed by Reis, (2021) 

who discusses this in relation to the rapid growth and change in a range of scientific fields and 

the impact this is having on the development of public opinion.  This work took place during 

the “Covid-19” period where very large volumes of medical research were conducted and 

published during a relatively short period of time. 

 

As the number of published papers continues to increase, so researchers are confronted with 

an ever-growing volume of information to read, sift and understand, often resulting in them 

missing key insights or connections.  This is especially prevalent in the initial stages of a 

research project and with those researchers who are new to a particular domain. Shahaf, 

Guestrin and Horvitz (2012) describe this difficulty and elaborate further, describing the 

usefulness of visual maps of the interrelationship between concepts in documents (something 

they term ‘Metro Maps of Science’) and how such visualisation can help those new to a 

domain make sense of what they read. 

 

In crossing domains however, researchers are faced with the additional challenge that scientific 

papers are often written in inaccessible and specialised language, requiring significant 

background knowledge to understand fully. This is difficult enough in a first language, but, as 

Pérez-Llantada, Plo and Ferguson (2011) describe, this becomes even more of a challenge for 

researchers attempting to read research in a different language to their own. This can further 

contribute to the time and effort required for researchers to process and integrate new 

information into their work. Additionally, interdisciplinary research increasingly demands the 

understanding of literature from diverse domains, amplifying the challenge of navigating and 

synthesising information from multiple sources. 

 

The enormous volume and complexity of scientific literature, coupled with the time constraints 

faced by researchers, highlight the need for efficient and effective methods to distil and 

summarise the wealth of knowledge available. In some domains, the rate of production of new 
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papers and knowledge poses a very real risk that an individual researcher could never keep 

updated with their field. 

 

Effective Multi Document Summarisation (MDS) of collections of scientific papers can address 

these challenges by providing concise and coherent synopses of relevant articles, enabling 

researchers to quickly assimilate critical information and facilitate better-informed decision-

making in their work. Several research groups have attempted to automate this process. One 

notable example is COVIDScholar devised by Trewartha et al. (2020); which attempts to 

automate the discovery and summarisation process by using Natural Language Processing 

(NLP) techniques to aggregate, analyse and search for (in this case) COVID-19 research 

literature. 

 

1.1.3. The Role of Multi-Document Summarisation (MDS) in Mitigating These Challenges 

MDS has emerged as a promising approach to address the challenges associated with 

processing and understanding large volumes of scientific literature (Nenkova and McKeown, 

2012). By automatically generating concise and understandable summaries from multiple 

documents on similar topics, MDS can help researchers quickly grasp the main ideas and key 

findings presented in a set of related articles (Hafeez et al., 2018).  

 

Recent advancements in natural language processing (NLP) and machine learning techniques 

have significantly improved the capabilities of MDS systems (Radev, Hovy and McKeown, 

2002). These systems can now identify and extract important and relevant information from 

various sources and present it in a coherent and easy-to-understand manner (Zhang, Xu and 

Wang, 2019). In addition, they can also analyse and aggregate data from different perspectives, 

thus facilitating a more comprehensive understanding of complex research topics (Ma et al., 

2021).   This ability to analyse and aggregate from new perspectives is one feature currently 

being explored with the new generation of Large Language Models (LLMs). Indicating the 

continued relevance of Transformer based approaches as described by Amatriain et al., (2023), 

in a paper from Lui and colleagues (Liu et al., 2021), they discuss using RoBERTa (a variant of 

the Transformer model) and its ability to rapidly learn new linguistic knowledge across 

domains. 

 

By incorporating MDS techniques into the research process, researchers can efficiently navigate 

the growing volume of scientific literature, better understand complex interdisciplinary topics, 

and more easily stay up-to-date with the latest developments in their fields. In some pre-
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transformer work by Wan et.al (2013), they describe a topic-based approach to analysing 

topics within research papers across domains that is able to do just this; identifying and 

mapping sub-topics across documents. 

 

Furthermore, these generated summaries can also serve as valuable resources for non-experts, 

helping them understand scientific research and its implications more easily  (Wang et al., 

2016). In this regard, MDS of scientific papers has the potential to significantly enhance the 

effectiveness of scientific communication and contribute to the overall progress of research 

and innovation.  
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1.2. Research Problem 

1.2.1. Problem Statement: MDS of Scientific Papers 

Multi-Document Summarisation (MDS) creates concise overviews from multiple related 

documents. In a review of techniques undertaken by Ma and colleagues (Ma et al., 2021), they 

describe MDS as potentially leading to more cogent summaries but offset by complexity and 

contradiction often seen in multiple perspectives on a similar set of topics.  The purpose of this 

study then is to create a computational pipeline, using a range of techniques, to produce 

accurate summaries quickly at the lowest possible computational cost (so using smaller and 

more energy efficient techniques and models). 

 

In the context of scientific papers then, MDS aims to provide a comprehensive overview of the 

key findings, methods and implications discussed in a set of articles (Li, Li and Li, 2012), whilst 

avoiding some or most of the complexities and contradictions. This enables researchers to 

efficiently access and assimilate information from multiple sources, so enhancing their 

understanding and decision-making in the research process (John, Premjith and Wilscy, 2017). 

In this study, the MDS process does not aim to simplify or explain the concepts further, only to 

summarise and distil. 

 

1.2.2. Identifying the Key Challenges and Limitations of Existing Methods 

Despite significant progress in MDS research, several challenges and limitations remain, 

particularly in the context of scientific papers. Some of these challenges include: 

 

1. Domain-specific terminology and concepts: Scientific papers often contain specialised 

language and concepts that may be difficult for summarisation systems to understand 

and process accurately. This can lead to the generation of summaries that are unclear 

or misleading, particularly for non-expert readers. Goldstein et al., (2000) discuss this, 

together with describing an approach to address these challenges with domain-

independent techniques (ie. slightly different approaches for different knowledge 

domains) within a modular framework for MDS, highlighting the difficulty in processing 

domain-specific terminology 

2. Identifying relevant and novel information: Summarising scientific papers requires 

identifying the most relevant and novel contributions across multiple documents. 

Existing methods may struggle to accurately distinguish between significant and trivial 

findings, leading to summaries that lack focus or omit important details. In some early 

work by Mani and Bloedorn (1997), they emphasise the importance of identifying 
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relevant and novel information in MDS to improve accuracy and topic relevance in 

summaries. This identification of ‘novel’ information (or topics within documents) then 

could form a key element of creating effective summaries. 

3. Preserving coherence and logical structure: MDS systems must not only extract 

relevant information but also present it in a coherent and well-structured manner 

(Nenkova and McKeown, 2012). Ensuring that the generated summaries are easy to 

read and understand, particularly when dealing with complex scientific topics, remains 

a challenge for many existing methods. 

4. Evaluation and benchmarking: Evaluating the quality and effectiveness of MDS 

systems is a complex task, given there is often no single "correct" summary for a given 

set of documents. Developing or selecting appropriate evaluation metrics and 

benchmark datasets for assessing the performance of scientific paper summarisation 

methods remains an ongoing challenge. In a series of studies, Koh et al., (2023) discuss 

the complexity and challenge of evaluating MDS systems, including analysing 

benchmark datasets, models, and metrics. Furthermore, they describe a number of 

interesting hybrid approaches around the selection of narratives within documents as 

a model to focus on relevant material. 

 

1.2.3. Leveraging Recent Advances in NLP and Machine Learning to Address These 

Challenges 

Recent advancements in natural language processing (NLP) and machine learning, particularly 

in the field of deep learning, have opened new avenues for addressing the challenges 

associated with MDS of scientific papers (Devlin et al., 2018). These advancements have led to 

the development of more sophisticated and effective summarisation techniques, which can 

better understand and process complex domain-specific language and generate more coherent 

and informative summaries (Gao et al., 2024) 

Some of the key advances in NLP and machine learning that can potentially improve MDS 

include: 

 

Pre-trained language models: The introduction of pre-trained language models, such as BART, 

BERT, the OpenAI GPT family, and RoBERTa, has significantly improved the performance of 

various NLP tasks, including summarisation (Devlin et al., 2018; Liu et al., 2021). These models 

can be fine-tuned for the specific task of summarising scientific papers, enabling them to better 

capture domain-specific terminology and generate more accurate and coherent summaries. 

Kumar, Choudhary and Cho (2021) show how pre-trained models like BERT and RoBERTa can be 
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used for data augmentation, which helps in adapting the models for specific domains like 

scientific paper summarisation, enabling the models to handle specialised language more 

effectively and Venkataramana, Srividya and Cristin (2022) have described the efficiency of the 

BART model in summarising and extracting important information from large documents, 

making it particularly suitable for analysing and condensing information from scientific papers. 

This ability to condense complex information into short summaries is therefore very important 

for managing the dense and technical content often found in scientific literature. 

 

Neural abstractive summarisation: Following on from the above, neural abstractive 

summarisation techniques, such as sequence-to-sequence models and transformer-based 

architectures, have demonstrated the ability to generate more fluent and informative 

summaries compared to older extractive methods. These techniques can potentially address 

the limitations of existing summarisation methods in terms of coherence and logical structure. 

Some recent studies (Song et al., 2019; Subramanian et al., 2020) have confirmed that 

abstractive methods can produce a broad range of summaries, from purely factual to ones that 

are a little more generative. These often outperform those traditional (extractive) approaches. 

 

Graph-based approaches: Graph-based approaches, such as Knowledge Graphs and Graph 

Neural Networks (GNNs), have proven to be effective in modelling complex relationships 

between entities and concepts in scientific papers. Studies have shown that GNNs can 

significantly outperform related methods in capturing these intricate relationships, thereby 

enhancing the extraction of relevant and novel information (Kipf and Welling, 2017; Zhou et al., 

2020). By capturing these relationships, GNNs can potentially improve the identification and 

extraction of relevant and novel information in MDS, but have also shown promise in tasks as 

varied as modelling physics systems, learning molecular fingerprints and classifying diseases. 

 

Interpretable and explainable AI: The development of interpretable and explainable AI (XAI) 

techniques is increasingly important in the field of scientific summarisation by aiming to make 

AI decisions more transparent and understandable, especially in high-stakes fields such as 

medicine and law. Some of the current challenges in XAI include defining model explainability 

and designing evaluation measures. However, advancements in this area can help researchers 

understand the rationale behind generated summaries, facilitate the identification of potential 

biases, and lead to more accurate and trustworthy summaries. Murdoch et al. (2019)provide a 

comprehensive overview of interpretable machine learning, discussing its importance across 

various domains, including in scientific research. They state that as AI systems become more 
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complex and are applied to critical decision-making processes, the need for interpretability and 

explainability becomes even more important. In the context of scientific summarisation then, 

the authors argue that explainable AI can help researchers understand how summaries are 

generated, identify potential biases in the summarisation process, and so increase trust in AI-

generated summaries. This is particularly important in fields like medicine and law, where the 

implications of decisions based on these summaries could be far-reaching. The paper also 

highlights the ongoing challenges in defining and measuring explainability. 

 

1.2.3. Significance of Addressing this Research Problem 

Addressing the research problem of MDS of scientific papers has wide-ranging implications and 

benefits for the scientific community and beyond. By developing more effective and efficient 

summarisation techniques, researchers can better navigate the ever-growing volume of 

scientific literature, facilitating a number of significant outcomes: 

 

1. Accelerated scientific progress: As researchers can more efficiently access and 

assimilate information from multiple sources, the time required to understand and 

build upon existing knowledge is reduced, so potentially accelerating scientific 

discovery and innovation (Hey and Trefethen, 2020) 

2. Enhanced interdisciplinary research: By providing comprehensive overviews of key 

findings, methods, and implications across different domains, MDS systems can 

facilitate interdisciplinary research, fostering collaboration and promoting the 

exchange of ideas between researchers from diverse fields (Cabanac, Frommholz and 

Mayr, 2019) 

3. Improved decision-making: Summaries generated by MDS systems can provide 

valuable insights for decision-makers in academia, industry, and policy-making. These 

insights can support evidence-based decision-making, leading to more informed 

choices and better resource allocation (Grimshaw et al., 2012). 

4. Increased research accessibility: High-quality summaries of scientific papers can make 

complex research findings more accessible to non-expert readers, including the general 

public, journalists, and policymakers. This can help bridge the gap between academia 

and society, fostering a more informed and engaged public (Nisbet and Scheufele, 

2009). 

5. Encouraging open science: Effective MDS systems can contribute to the open science 

movement by enabling researchers to quickly and easily access and understand 

research findings from various sources, regardless of their background or expertise 
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(Nosek et al., 2015). 

 

In addition to the direct benefits for the scientific community, advancements in MDS 

techniques can have broader applicability in various sectors, as these technologies are not 

limited to the summarisation of scientific papers. Some of these broader implications include: 

 

1. Enhanced business intelligence: MDS can be applied to analyse and summarise large 

volumes of business documents, such as market reports, financial statements, and 

news articles. This can provide decision-makers with a comprehensive overview of 

relevant information, enabling them to make more informed business decisions and 

better understand market trends (Gupta, Hanges and Dorfman, 2002). 

2. Improved legal research and analysis: The legal sector can benefit from the application 

of advanced MDS techniques to analyse and summarise legal texts, such as case law, 

legislation, and regulatory documents. This can help legal practitioners more efficiently 

access and understand complex legal information, leading to better legal advice, and 

more effective advocacy (Susskind, 2010). 

3. Enhanced educational resources: MDS can be employed to generate concise and 

coherent summaries of educational materials, such as textbooks, articles, and lecture 

notes. These summaries can serve as valuable study aids for students, helping them to 

better understand and retain complex concepts and information. For example, Oliveira 

et al. (2022) describe a learning tool with associated text mining functions can support 

students develop academic writing skills. 

4. Improved crisis response and management: In times of crisis, such as natural disasters 

or public health emergencies, the ability to quickly and effectively process and 

summarise large volumes of data from various sources can be important for decision-

makers. MDS systems can facilitate the rapid assimilation of critical information, 

enabling a more effective response and better allocation of resources. For instance, the 

CORD-19 dataset, which compiled over 500,000 scholarly articles about COVID-19 and 

related coronaviruses, has been used with various MDS techniques to help researchers 

quickly synthesise information from this vast corpus, accelerating the understanding of 

the virus and potential treatments (L. L. Wang et al., 2020) 

5. Streamlined media monitoring and analysis: Advanced MDS techniques can be 

employed to analyse and summarise large volumes of news articles, social media 

posts, and other media content, providing comprehensive insights into public opinion, 

sentiment, and trending topics and possibly to even rapidly identify “fake news”. This 
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can benefit organisations in diverse sectors, including public relations, marketing, and 

journalism, by allowing them to better understand and respond to the rapidly changing 

media landscape (Liu, Hu and Cheng, 2005).   
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1.3. Research Objective 

1.3.1. Developing an Efficient MDS Framework Focused on Abstractive Techniques 

To address the research problem of MDS of scientific papers, the development of an efficient 

and effective framework is essential. In this section, the focus is on abstractive summarisation 

techniques which have been shown to generate more coherent and informative summaries 

compared to extractive methods. Abstractive techniques are able to synthesise text and 

generate novel sentences, providing more accurate and context-aware summaries than other 

techniques . The key components and considerations involved in designing and implementing 

an abstractive summarisation framework are described, with an initial emphasis on the 

relatively simple BERT and BART models, and the exploration of hybrid techniques. 

 

1. Data collection and pre-processing: The first step in building a MDS framework is to 

collect a large and diverse dataset of scientific papers from various sources, such as 

academic journals, preprint repositories, and conference proceedings. Pre-processing 

techniques, including tokenisation, stemming, and stopword removal, must be applied 

to clean and normalise the text data, ensuring that the input data is consistent and 

suitable for further analysis (Isinbayeva and Przepiorka, 2024). 

2. Domain-specific language model fine-tuning: To improve the summarisation system's 

ability to handle domain-specific terminology and concepts, pre-trained language 

models, such as BERT or BART, can be fine-tuned on the collected dataset of scientific 

papers (Beltagy, Lo and Cohan, 2019a; Gururangan et al., 2020). This fine-tuning 

process allows the model to adapt to the unique linguistic characteristics and patterns 

present in scientific texts, leading to better performance in the summarisation task. 

3. Summarisation model selection and training: In this step, the focus is on abstractive 

methods for generating summaries. Transformer-based architectures, such as BERT 

and BART, have shown great promise in generating high-quality abstractive summaries 

(Cachola et al., 2020; Lewis et al., 2021). To further enhance the framework's 

effectiveness, hybrid techniques that identify sections of interest in scientific papers for 

summarisation can be explored. This approach combines the strengths of extractive 

methods in identifying key information with the abstractive capabilities of generating 

coherent and informative summaries. 

4. Evaluation metrics and benchmarking: To assess the performance and effectiveness of 

the developed summarisation framework, appropriate evaluation metrics must be 

employed. These may include ROUGE scores for measuring the overlap between 

generated summaries and human-authored reference summaries, as well as qualitative 
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assessments of coherence, informativeness, and readability (Bhandari et al., 2020; 

Fabbri et al., 2021). The framework's performance should therefore be benchmarked 

against existing summarisation systems and techniques to ensure that it represents a 

significant improvement over the work that came previously. 

5. Interpretability and explainability: Incorporating interpretable and explainable AI 

techniques into the summarisation framework can help researchers understand the 

rationale behind the generated summaries and identify potential biases and limitations 

(Danilevsky et al., 2020). These techniques can also facilitate the fine-tuning of the 

model, enabling the development of more accurate and trustworthy summaries. 
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1.3.2. Investigating the Use of Advanced Natural Language Processing Techniques 

The proposed research will potentially explore a number of advanced natural language 

processing (NLP) techniques that may be used to enhance the performance of an MDS 

framework. These techniques can aid in the extraction of key information, the generation of 

coherent summaries, and the adaptation of models to the domain-specific context of scientific 

papers. Techniques include: 

Pre-trained language models: Pre-trained language models, such as BERT, RoBERTa, GPT-3/4, 

and T5, together with newer Large Language Models such as Google’s Gemma series of 

models, have shown enormous potential in various NLP tasks, including summarisation 

(Beltagy, Peters and Cohan, 2020; Zaheer et al., 2021). By incorporating these models into the 

framework, the system can leverage their ability to understand and generate human-like text, 

resulting in improved summary quality. 

Transfer Learning: Transfer learning techniques, allow models to "store" knowledge acquired 

from one domain and then apply it to another, can be used to enhance the summarisation 

framework's performance. For instance, fine-tuning a pre-trained language model on a dataset 

of scientific papers can help the model adapt to the unique linguistic patterns and 

terminologies of the scientific domain (Gururangan et al., 2020). Transfer learning can work at 

multiple levels of fine tuning; for example, a model trained on general Computer Science 

papers can then be further trained on a specialised sub-domain with an appropriate set of 

papers. 

Attention mechanisms: Attention mechanisms, originally discussed by (Bahdanau, Cho and 

Bengio, 2016), have proven to be highly effective at various NLP tasks, including 

summarisation. These mechanisms allow models to selectively focus on different parts of the 

input text, providing a more nuanced understanding of the content and improving the 

coherence and informativeness of generated summaries (J. Zhang et al., 2020). An original 

focus of this PhD research project was to explore the applicability of LSTM (long short-term 

memory) architectures to summarisation tasks but this approach was discarded as LSTMs are 

no longer regarded as “State Of The Art”; Transformer based models (the new “State Of The 

Art” following work from Vaswani et al. (2017) ) are therefore the focus of this research, 

augmented with more traditional ML (Machine Learning) and NLP (Natural Language 

Programming) approaches.  

Graph-based methods: Graph-based methods, such as graph neural networks (GNNs), can be 

utilised to capture the complex relationships between different parts of the input text. By 

representing scientific papers (or rather the relationships between concepts in and between 



 

33 

 

papers) as graphs, GNNs can learn meaningful representations that help identify key 

information and generate higher quality summaries (D. Wang et al., 2020). 

 

Domain adaptation via fine tuning: To further improve the performance of the summarisation 

framework, domain adaptation techniques can be employed (Hua and Wang, 2017). These 

methods help the model to learn and generalise from a smaller set of labelled data by 

leveraging information from related, but distinct, domains. This can be particularly useful when 

working with those scientific papers that span multiple disciplines or sub-domains. 

 

1.3.3. Evaluating the Performance of the Proposed Framework on Diverse Scientific 

Datasets 

The effectiveness and robustness of the developed Multi-Document Summarisation (MDS) 

framework should be evaluated across a range of scientific datasets spanning various domains 

and disciplines. Several key considerations and methodologies are important for this evaluation 

process and are described below. 

 

Dataset selection is very important. A diverse set of scientific datasets should be chosen to 

assess the framework's performance across multiple domains. These datasets may include 

large-scale collections of scientific articles, such as the ACL Anthology (Bird et al., 2008), 

PubMed (Lu, 2011), or arXiv (McKiernan, 2000). The selection should cover a wide range of 

topics and disciplines to ensure a comprehensive evaluation. 

 

Data preprocessing and partitioning are also essential steps in preparing the datasets for 

evaluation. This includes tokenisation, stemming, and stopword removal (Manning, Raghavan 

and Schütze, 2008). Furthermore, the data should be partitioned into training, validation, and 

test sets to ensure that the framework's performance is evaluated on unseen data, providing a 

more reliable estimate of its generalisability (X. Liu et al., 2018). 

 

The application of suitable evaluation metrics is essential for quantitatively measuring the 

performance of the summarisation framework. Metrics such as ROUGE (Recall-Oriented 

Understudy for Gisting Evaluation) (C.-Y. Lin, 2004), BLEU (Bilingual Evaluation Understudy) 

(Papineni et al., 2002), and METEOR (Metric for Evaluation of Translation with Explicit 

ORdering) (Lavie and Agarwal, 2007) can be used to compare the generated summaries with 

human-authored reference summaries. Additionally, qualitative evaluations involving human 
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judgments of coherence, informativeness, and readability can provide valuable insights into 

the framework's performance. 

 

Comparison with existing methods is also essential for contextualising the framework's 

performance. Benchmarking against existing techniques, including classic models such as 

BERTSUM (Liu, 2019), PEGASUS (J. Zhang et al., 2020), and GPT-3 (T. B. Brown et al., 2020), can 

help identify the framework's strengths and weaknesses, as well as potential areas for 

improvement. 

Finally, generalised evaluation across various scientific domains and disciplines is necessary to 

assess the framework's robustness and adaptability. By measuring performance across 

different datasets, researchers can identify potential domain-specific biases and limitations, 

informing future improvements and adaptations of the framework (Cohan and Goharian, 

2015). 

 

1.3.4. Identifying Potential Applications and Implications of the Research Findings 

Advancing the field of MDS as applied to scientific papers can have implications and 

applications across various domains thus increasing the potential applications of the research 

findings and their broader impact on academia, industry, and society. Some potential 

applications are as follows: 

1. Accelerating scientific discovery: By providing coherent and informative summaries of 

scientific papers, the proposed summarisation framework can help researchers quickly 

grasp the main findings and contributions of relevant literature, thereby accelerating 

scientific discovery and promoting cross-disciplinary research (H. Wang et al., 2023). 

This can lead to more efficient knowledge dissemination and a better understanding of 

novel research developments. 

2. Enhancing literature review and meta-analysis: MDS techniques can aid researchers in 

conducting literature reviews and meta-analyses by extracting key insights from a large 

volume of articles (Cohen et al., 2006). This can help identify trends, gaps, and areas 

for future research, fostering innovation and collaboration in various scientific 

domains. 

3. Supporting research communication and public engagement: The generated 

summaries can be utilised to communicate research findings to non-expert audiences, 

facilitating public engagement with scientific research and promoting science literacy 

(Baram-Tsabari and Lewenstein, 2013). This can help bridge the gap between 

researchers and the public, fostering an informed dialogue on scientific issues. 
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4. Information retrieval and recommendation systems: The summarisation framework 

can be integrated into information retrieval and recommendation systems, improving 

the relevance and quality of search results and suggestions (Manning, Raghavan and 

Schütze, 2008). This can enhance user experience and facilitate access to pertinent 

scientific knowledge. 

5. Industrial applications: Beyond academic research, a developed MDS framework can 

be applied to various industries, such as healthcare, finance and the legal sectors, 

where rapid access to summarised information from multiple documents is critical for 

decision-making and analysis (Nenkova, 2011). 

 

1.3.5 Research Questions and Objectives 

The primary aim of this research is to develop an efficient and effective multi-document 

summarisation framework for scientific papers, leveraging advanced natural language 

processing techniques and focusing on abstractive approaches. The research questions for this 

study have been formulated based on the current state of the field, the identified gaps in the 

literature, and the potential practical applications of the proposed framework(s) (Afantenos, 

Karkaletsis and Stamatopoulos, 2005; Devlin et al., 2018; Lewis et al., 2020).  

 

The following research questions will guide the investigation: 

 

RQ1: What are the key features and characteristics of an efficient hybrid multi-document 

summarisation framework for scientific papers, and how can Retrieval-Augmented Generation 

(RAG) techniques be effectively incorporated to identify and use sections of interest? 

 

RQ2: How can state-of-the-art language models be adapted and fine-tuned for the task of 

multi-document summarisation of scientific papers, and what advantages do newer LLMs (such 

as Gemma 2B/7B) offer over earlier models (like BERT and BART)? 

 

RQ3: How does the performance of the proposed hybrid framework compare to existing 

approaches, both extractive and abstractive when evaluated using standard metrics (e.g., 

ROUGE, BLEU) and on diverse scientific datasets? 

 

To address these research questions, the study will address the following evaluation 

objectives: 
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1. Develop and implement multi-document summarisation frameworks based on 

advanced natural language processing techniques, with a focus on abstractive methods 

and the adaptation of pre-trained models such as BERT and BART and other language 

models as may be appropriate (Devlin et al., 2018; Lewis et al., 2020). 

2. Investigate the potential benefits of hybrid techniques, possibly combining extractive 

and abstractive approaches, to identify and summarise relevant sections of scientific 

papers effectively. 

3. Evaluate the performance of the proposed framework using established evaluation 

metrics, such as ROUGE (C.-Y. Lin, 2004) and BLEU (Papineni et al., 2002), and compare 

it to existing state-of-the-art methods on a variety of scientific datasets such as SciTLDR 

and SciSummNet.  These are widely used datasets of scientific papers, abstracts and 

summaries. 
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1.4. Scope and Limitations 

1.4.1. Justifying the Focus on Scientific Papers 

The focus on Multi-Document Summarisation (MDS) of scientific papers is based on several key 

factors that underscore the challenges and opportunities presented by this domain. This 

section describes the reasons behind concentrating on scientific papers and explores the 

potential benefits of developing summarisation techniques tailored to this particular context. 

 

As already discussed, the exponential growth of scientific literature in recent years has caused 

an information overload, making it increasingly challenging for researchers to remain abreast 

of the latest findings and developments in their respective fields (Bornmann and Mutz, 2015). 

The development of effective MDS techniques for scientific papers can then significantly aid 

researchers in swiftly identifying and assimilating relevant knowledge, thereby accelerating 

scientific discovery and facilitating interdisciplinary research. 

 

Peer-reviewed research articles in academic journals (referred to as ‘scientific papers’) are 

characterised by complex terminologies, technical jargon, and dense writing styles which pose 

substantial challenges for traditional summarisation methods (Afantenos, Karkaletsis and 

Stamatopoulos, 2005). By focusing on this domain, the proposed research can address these 

challenges and develop summarisation techniques that are robust and adaptable to the unique 

patterns and structures in scientific literature. 

 

The structured nature of academic research papers papers, typically comprising sections such 

as abstract, introduction, methodology, results, and conclusion, presents an opportunity for 

the MDS framework to leverage this inherent structure (Gupta and Lehal, 2010). This can 

facilitate the generation of more coherent and informative summaries that accurately capture 

the key contributions and findings of the source papers. 

 

Furthermore, summarising scientific papers can enhance research accessibility, making findings 

more comprehensible to a wider audience, including non-experts, policymakers, and 

practitioners (Baram-Tsabari and Lewenstein, 2013). By developing effective summarisation 

techniques tailored to scientific papers, this research can contribute to promoting scientific 

literacy and fostering public engagement with scientific research. 

 

The techniques and insights gained from the development of MDS methods for scientific 

papers have broader applicability. They can be adapted to other domains that require the 
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synthesis of complex, structured, and domain-specific information (El-Kassas et al., 2021). This 

potential for wider application can lead to the development of more effective and versatile 

summarisation tools with utility across various sectors. 

 

In conclusion, the focus on MDS of scientific papers is justified by the pressing need to manage 

the growing volume of scientific literature, the unique challenges presented by scientific 

writing, the potential to leverage document structure, the opportunity to enhance research 

accessibility, and the broader applicability of the developed techniques. This research direction 

promises to yield significant advancements in the field of automatic summarisation while 

addressing critical needs in scientific communication and knowledge dissemination. 

 

1.4.2. Limitations of the Research Context, Data Sources, and Methodologies 

While the focus on Multi-Document Summarisation (MDS) of scientific papers offers numerous 

advantages, it is still important to acknowledge and critically examine the limitations inherent 

in the research context, data sources, and methodologies. This section describes these 

constraints and their potential impact on the generalisability and applicability of any research 

findings. 

The domain-specific challenges presented by scientific literature present a double-edged 

sword. On one hand, they offer unique opportunities for developing sophisticated 

summarisation techniques. On the other hand, they may limit the direct applicability of these 

methods to other domains. Cohan and Goharian (2016) highlight the distinct linguistic and 

structural characteristics of scientific papers, including their specialised terminology, complex 

syntax, and a standardised rhetorical (way of presenting argument) structure. These features, 

while useful for summarisation within the scientific domain, may not translate directly to other 

texts such as news articles or social media content, which have been the focus of many 

previous studies (Nallapati et al., 2016; J. Zhang et al., 2020). Still, the insights gained from 

addressing these challenges could inform the development of more versatile summarisation 

methods adaptable to various contexts. 

The selection of data sources for training and evaluation introduces potential biases and 

limitations that need careful consideration. Bornmann and Mutz (2015) suggest that the 

exponential growth and diversification of scientific literature highlights the challenge of 

obtaining a truly representative sample. Focusing on specific scientific domains or journals 

might result in a narrow representation of the diversity of scientific literature. To mitigate this 

limitation, researchers should try to use diverse datasets that cover a broad range of topics and 

disciplines. For instance, (Cohan et al., 2018) introduced the PubMed and arXiv datasets, which 
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span multiple scientific domains, providing a more comprehensive basis for evaluation. 

However, even these larger datasets may not fully capture the global diversity of scientific 

literature, particularly from non-English language sources or emerging research fields. That 

notwithstanding, there are now more comprehensive datasets such as SciSummNet (Yasunaga 

et al., 2019) and TLDR; (Cachola et al., 2020) that provide focussed corpora of papers that may 

be more suitable for these summarisation tasks. 

The choice of evaluation metrics and benchmarks significantly influences the interpretation of 

the summarisation framework's performance. Traditional automatic metrics such as ROUGE 

(C.-Y. Lin, 2004) and BLEU (Papineni et al., 2002) have been widely used in summarisation tasks. 

However, these metrics have limitations in capturing the nuanced quality of summaries, 

particularly in the scientific domain. Cohan and Goharian (2018) proposed the use of citation-

based evaluation metrics for scientific document summarisation, arguing that they better 

reflect the importance of content in scientific papers. Nevertheless, reliance solely on 

automatic metrics may not fully capture the cognitive and qualitative aspects of human-

authored summaries. Therefore, incorporating human evaluation becomes essential, despite 

its time-consuming and potentially subjective nature. Fabbri et al. (2021) introduced a 

comprehensive human evaluation protocol for summarisation, which could be adapted for 

scientific document summarisation to obtain a more holistic assessment of summary quality. 

Methodological limitations arise from the choices of NLP techniques, pre-processing steps, and 

model architectures. These decisions can significantly impact the generalisability, efficiency, 

and interpretability of the developed summarisation framework. For instance, Liu and Lapata 

(2019) demonstrated the effectiveness of pre-trained language models for summarisation 

tasks. However, these models often require substantial computational resources and may 

struggle with the longer document lengths typical in scientific literature. Additionally, D. Wang 

et al. (2020) proposed a graph-based approach for scientific document summarisation which 

explicitly models the document discourse structure. While this approach shows promise in 

capturing the logical flow of scientific arguments, it may be less effective for documents with 

less explicit structure. Future research could investigate hybrid approaches that combine the 

strengths of different techniques to optimise the framework's performance and robustness 

across various scientific domains and document types. 

Ethical considerations and potential misuse of advanced summarisation techniques also raise 

important concerns. The risk of plagiarism or misrepresentation of research findings, as 

highlighted by Baram-Tsabari and Lewenstein (2013) becomes more pronounced with 

increasingly sophisticated summarisation tools. Moreover, the inherent biases in training data, 

such as gender or geographical biases in scientific publishing (Holman, Stuart-Fox and Hauser, 
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2018), could be perpetuated or even amplified by summarisation models. Researchers must 

actively work to identify, mitigate, and transparently communicate these biases. Additionally, 

there is a need to develop guidelines and best practices for the responsible use of scientific 

summarisation tools to ensure they enhance rather than undermine the integrity of scientific 

communication and to avoid possible misleading or inaccurate summaries.  In recent years, this 

is one of the areas of AI ethics that has developed into the concept of guardrails. These 

guardrails serve as important safeguards, ensuring that AI-generated summaries maintain 

factual accuracy, coherence, and ethical integrity. Recent research, such as the work by (Dong 

et al., 2024), has highlighted the critical importance of addressing issues like hallucination 

prevention, bias mitigation, and source attribution in multi-document summarisation tasks. 

 

1.4.3. Assumptions and Potential Biases in the Research Approach 

In any research activity, it is important to acknowledge the assumptions and potential biases 

that may influence the research approach. This section discusses the assumptions and 

potential biases that may be present in the development of a multi-document summarisation 

framework for scientific papers and their implications on the research findings. 

 

1. Assumptions about language and domain-specific features: The research approach 

assumes that the language and domain-specific features of scientific papers can 

actually be captured and modelled effectively using advanced natural language 

processing techniques (Beltagy, Lo and Cohan, 2019). This assumption may overlook 

the complexity and variability of these features across different scientific disciplines, 

potentially impacting the generalisability and adaptability of the developed 

summarisation framework.  As this research programme will focus on summarisation 

of scientific (and especially computer science) papers, this is a significant risk but one 

that is acceptable considering the scope and scale of typical PhD research. 

2. Assumptions about model architectures: The research approach assumes that certain 

model architectures, such as BERT and BART (although likely to be extended to more 

modern Large Language Model architectures), are well-suited for the task of multi-

document summarisation of scientific papers (Zaheer et al., 2021). This assumption 

may lead to potential biases in the selection and evaluation of model architectures, 

potentially overlooking alternative approaches that may offer better performance or 

efficiency. The following chapter (literature review) will explore the applicability of 

these and other architectures and approaches in more detail. 
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3. Assumptions about data quality and representativeness: The research approach 

assumes that the datasets used for training and evaluation are of high quality and 

adequately represent the diversity of scientific literature (L. L. Wang et al., 2020). This 

assumption may overlook potential biases or limitations in the data sources, such as 

the over-representation of certain topics or disciplines, which could impact the 

generalisability and applicability of the research findings.  In this study, it is likely that it 

will rely on standard datasets used in other studies to give some degree of 

comparability. 

4. Assumptions about evaluation metrics: The research approach assumes that the 

chosen evaluation metrics, such as ROUGE and BLEU, provide an accurate and 

meaningful assessment of the summarisation framework's performance (Bhandari et 

al., 2020). This assumption may overlook potential biases or limitations in these 

metrics, which may not fully capture the subtlety of human-authored summaries, or 

the specific challenges posed by the multi-document summarisation of scientific 

papers. 

5. Assumptions about user needs and preferences: The research approach assumes that 

the generated summaries meet the information needs and preferences of the intended 

users, such as researchers, policymakers, and practitioners (Lauscher et al., 2018). This 

assumption may overlook potential variations in user needs and preferences across 

different contexts, potentially impacting the relevance and utility of the developed 

summarisation framework.  The study will therefore need to consider the use of a 

small-scale human study to evaluate this. 

6. Assumptions about the stability of research topics: The research approach assumes 

that the topics and areas of interest in scientific literature remain relatively stable 

during the study (Boyack and Klavans, 2019). This assumption may overlook the 

dynamic nature of scientific research, where new areas of interest or emerging topics 

can arise rapidly. To mitigate this limitation, the developed summarisation framework 

should be designed to adapt to evolving research landscapes and maintain its 

performance and relevance over time. 

7. Assumptions about ethical considerations: The research approach assumes that the 

developed summarisation framework will be used responsibly and ethically by 

researchers, policymakers, and practitioners (Nanayakkara, Hullman and Diakopoulos, 

2021). This assumption may overlook potential risks, such as the misuse of the 

framework for plagiarism or misrepresentation of research findings. Researchers 

should develop guidelines and safeguards to ensure the responsible use and 
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dissemination of the summarisation framework and engage in ongoing discussions 

about the ethical implications of their work. 

 

 

1.5. Overview of Methodology 

1.5.1. Brief Introduction to the Main Research Methodologies 

To effectively address the research questions and objectives outlined in this dissertation, a 

multi-method research approach was employed, combining both qualitative and quantitative 

techniques.  A more detailed description of all aspects of methodology is in Chapter 4. 

 

Table 1: Methodological approaches 

Approach Justification 

Literature review and meta-analysis: An 
extensive and systematic review of the existing 
literature on multi-document summarisation 
techniques, advanced natural language 
processing models, and evaluation metrics will 
be conducted (Allahyari et al., 2017).  
This will include a meta-analysis of existing 
methods and their performance in order to 
identify gaps and opportunities for 
improvement. The review will inform the 
development of the proposed framework and 
provide a solid theoretical foundation for the 
study. 
 

Conducting a systematic literature review and 
meta-analysis is essential for establishing a 
strong theoretical foundation for the study and 
identifying gaps in the existing research. This 
methodology enables a more complete 
understanding of the current state of the field, 
including the most recent advancements in 
multi-document summarisation techniques and 
natural language processing models.  
Moreover, it provides useful insights into the 
performance of existing methods and the 
potential avenues for improvement, guiding the 
development of the proposed framework. 
 

Computational modelling and simulation 
(experimental approach): The development of 
the proposed multi-document summarisation 
framework will involve the adaptation and fine-
tuning of state-of-the-art natural language 
processing models, such as BERT and BART, as 
well as the exploration of hybrid techniques 
that combine extractive and abstractive 
approaches. Computational modelling and 
simulation will be employed to iteratively refine 
and optimise the framework, ensuring its 
efficiency and effectiveness. 
 

The use of computational modelling and 
simulation is vital for the development and 
optimization of the multi-document 
summarisation framework, given the complex 
nature of the task and the reliance on advanced 
natural language processing techniques. This 
methodology allows for the iterative refinement 
of the framework and the exploration of 
different approaches, such as the adaptation of 
pre-trained models and the incorporation of 
hybrid techniques. Computational modelling 
and simulation provide a means to experiment 
with various configurations and settings (such 
as hyperparameters), ensuring the efficiency 
and effectiveness of the proposed framework. 
 

Evaluation and benchmarking (mixed methods 
approach- experimental and human 
evaluation): The performance of the proposed 

A rigorous evaluation and benchmarking 
process is critical for determining the 
performance of the proposed framework and 
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framework(s) will be assessed using established 
evaluation metrics, such as ROUGE and BLEU, 
and compared to existing state-of-the-art 
methods. This will involve the curation of 
diverse scientific datasets, representing various 
disciplines and document types, to ensure the 
generalisability of the results.  
The evaluation process will also include 
qualitative assessments of the generated 
summaries, seeking input from human subjects 
to validate the framework's effectiveness in 
capturing the essential content, maintaining 
coherence and enhancing understanding. 
 

validating its effectiveness in comparison to 
existing state-of-the-art methods. By employing 
established evaluation metrics and diverse 
scientific datasets, this methodology ensures 
that the results are reliable, generalisable, and 
comparable to other approaches in the field. 
Furthermore, the inclusion of qualitative 
assessments from human readers enhances the 
validity of the evaluation process, confirming 
the framework's ability to generate coherent 
and informative summaries. 
 

Case studies and applications: To further 
demonstrate the practical utility of the 
proposed framework, case studies will be 
suggested to illustrate its potential applications 
in various contexts, such as interdisciplinary 
research, science communication, and decision-
making processes.  
These case studies will provide real-world 
examples of how the developed summarisation 
framework can be employed to facilitate 
information synthesis and knowledge 
dissemination. 

The use of case studies and applications is 
essential for demonstrating the practical utility 
of the proposed multi-document 
summarisation framework in real-world 
contexts. By illustrating how the framework 
might be employed in various situations, such 
as interdisciplinary research, science 
communication, and decision-making 
processes, this methodology helps to bridge the 
gap between theoretical advancements and 
practical applications.  
Additionally, the case studies provide valuable 
feedback on the usability and potential impact 
of the framework, informing further 
refinements and developments. 
 

 

 

1.6 Dissertation structure 

This dissertation is organised into several chapters, each focusing on a specific aspect of the 

research on Multi-Document Summarisation (MDS) of scientific papers. The following overview 

provides a brief description of each chapter's content and purpose. 

 

Chapter 1 is an introduction to the research, presenting the background and motivation for the 

study. It discusses the importance of effective scientific communication and highlights the 

challenges researchers face in processing and understanding large volumes of scientific 

literature. The chapter introduces MDS as a potential solution to these challenges, defining the 

research problem and objectives. It also outlines the key challenges and limitations of existing 

MDS methods, particularly in the context of scientific papers. The chapter also discusses recent 

research in Natural Language Processing (NLP) and machine learning that are relevant to 

addressing these challenges in MDS.  
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Chapter 2 describes the purpose of the literature review and its relevance to the research 

topic. It then explores the background of document summarisation, covering its history, 

importance in various fields, and the distinction between single and multi-document 

summarisation. 

 

A significant portion of the chapter is dedicated to comparing extractive and abstractive 

summarisation techniques, explaining their respective advantages and disadvantages. The 

focus then shifts to multi-document summarisation, discussing its complexities and challenges. 

The chapter also explores the use of pre-trained language models like BERT, RoBERTa, BART, 

GPT-3/4, and T5 in summarisation tasks. It addresses domain-specific summarisation, 

particularly for scientific papers, and the application of advanced NLP techniques in MDS. 

 

Chapter 3 examines the recent research and development in Large Language Models (LLMs) 

and their application to MDS. It focuses on state-of-the-art models like GPT-4, Google Gemini, 

LLaMA, and Mistral, tracing their evolution from earlier models such as BERT and T5. 

The chapter also explores key architectural developments, including the introduction of 

Parameter-Efficient Fine-Tuning (PEFT) techniques like LoRA and QLoRA, which have 

significantly reduced computational requirements for model adaptation. It also discusses 

advancements in embeddings, chunking techniques, and vector databases, describing their 

importance in managing large text corpora. The role of tokens and tokenisation in LLMs is 

explained, showing the impact of effective tokenisation on model performance. The chapter 

covers the phases of pre-training and fine-tuning in LLM development and introduces 

techniques like Retrieval-Augmented Generation (RAG) and the integration of knowledge 

graphs to enhance LLM capabilities. 

 

Chapter 4 outlines the methodology employed in the study of multi-document summarisation 

of scientific papers. The research aims to develop and evaluate novel hybrid approaches that 

combine extractive and abstractive methods, with a focus on adapting large language models 

like Gemma 2B and 7B. The study is based on techniques in natural language processing, 

information retrieval, and machine learning, leveraging transformer-based architectures, 

Retrieval-Augmented Generation (RAG), and transfer learning. A mixed-methods approach is 

adopted, integrating quantitative and qualitative methodologies to provide a comprehensive 

understanding the impact of the summariser. 
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Chapter 5 presents a structured experimental approach and sets of results for evaluating and 

refining a RAG-based hybrid summarisation system for scientific papers. The plan is divided 

into seven key phases, each addressing essential aspects of the summarisation pipeline. 

 

Chapter 6 covers the core parts of the summarisation framework, namely the embedding fine-

tuning and evaluation, the chunking strategy, evaluation of the LLMs, PEFT fine-tuning & 

evaluation and concludes with the full pipeline implementation and testing. 

 

Chapter 7 covers evaluation of the full pipeline, using both a human study and the ‘LLM-as-a-

judge’ methodology. 

 

Chapter 8 pulls together the evaluations and presents a correlation analysis and a discussion of 

the evaluation results. 

 

Chapter 9 provides the conclusions derived from the research, including a summary of the 

research and how the research objectives have been met, together with recommendations, 

limitations and future work. 

 

1.7 Chapter Conclusion 

This introductory chapter has outlined the research objectives and questions to be answered in 

this study. It explained the importance of effective scientific communication in the 

advancement of knowledge and innovation as a key driver of the study. It has highlighted the 

growing challenges researchers face in processing and understanding the ever-increasing 

volume of scientific literature, particularly in interdisciplinary fields. The chapter has also 

introduced Multi-Document Summarisation (MDS) as a promising solution to these challenges, 

emphasising its potential to help researchers efficiently navigate and synthesise information 

from multiple sources. 

 

The research problem of MDS for scientific papers has been clearly defined, along with the key 

challenges and limitations of existing methods. These include dealing with domain-specific 

terminology, identifying relevant and novel information, preserving coherence and logical 

structure, and the complexities of evaluation and benchmarking. 

 

Recent advances in Natural Language Processing (NLP) and machine learning, particularly in 

deep learning and pre-trained language models, have been discussed as potential avenues for 
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addressing these challenges. The chapter has also indicated the significance of this research 

problem, not only for accelerating scientific progress and enhancing interdisciplinary research 

but also for its broader applications in various sectors such as business intelligence, legal 

research, education, crisis management, and media analysis. 

 

The research objective has been established: to develop an efficient MDS framework focused 

on abstractive techniques. This framework aims to leverage state-of-the-art NLP models and 

techniques to generate more coherent, informative, and accurate summaries of scientific 

papers. 

 

The subsequent chapters will explore key research in the field, the methodological approach, 

the implementation of the proposed framework and the evaluation of its effectiveness in 

addressing the challenges of scientific literature summarisation. This research aims to make 

contributions to the field of scientific communication and information management, 

potentially revolutionising how researchers interact with and synthesise knowledge from the 

enormous collection of scientific literature. 
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Chapter 2: Literature Review 

2.1 Introduction 

The purpose of this review is to describe some of the key features of text summarisation, the 

different methods currently in use for single document and multiple document summarisation 

and to describe approaches to evaluate the summaries created by software tools and 

programs.  

 

The key features of a summary are that it should be (Radev, Hovy and McKeown, 2002): 

● Short and concise 

● Contains the important information from the donor documents 

● Contains information from one or more documents 

 

The area and discipline of modern text summarisation, despite being a relatively young field of 

study with its advent in the early 2000s, has rapidly evolved with advancements in technology 

and the growth of computational power. This advancement has been particularly propelled by 

the rise of high performance computing (HPC), general-purpose graphic processing units (GP-

GPUs), and cloud computing, enabling the development and deployment of sophisticated 

models (Manning, 2015). 

 

Deep learning, a subset of machine learning that relies on complex, multi-level artificial neural 

networks, has been instrumental in the progress of text summarisation. Lawrence and LeCun, 

renowned researchers in the field, envisage natural language processing (NLP) to be the next 

significant milestone for deep learning (Manning, 2015). The goal is to equip machines with an 

understanding that extends beyond individual words to entire sentences and paragraphs. 

 

However, the intricacy of human language and the current limitations of available tools and 

methodologies present a significant challenge in this endeavour. Specifically, there is yet to be 

a unified, simple, and efficient method to accurately and concisely summarise even a single 

structured document. This challenge is compounded when the task extends to summarising a 

corpus of documents, particularly as new concepts are added over time. Nenkova and 

McKeown (2012) discuss the complexities involved in text summarisation, highlighting the 

challenges of developing a unified, efficient method for summarising even single documents, 

let alone multiple documents. They point out that while significant progress has been made in 
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certain areas, the task of accurately and concisely summarising complex documents remains a 

considerable challenge. 

 

Despite the challenges in text summarisation, certain aspects of this field are well-researched, 

with promising tools and techniques emerging to address known issues, especially those 

associated with summarising long and complex documents. These well-researched areas 

include extractive summarisation techniques, which have been refined to effectively select and 

arrange existing sentences from source texts (Nallapati, Zhai and Zhou, 2016). Additionally, the 

application of attention mechanisms in abstractive summarisation has significantly improved 

summary quality by enabling models to focus on relevant input text portions (See, Liu and 

Manning, 2017). Domain-specific summarisation methods have been tailored for types of 

documents such as scientific literature or legal texts (Cohan and Goharian, 2018), while multi-

document summarisation approaches have been designed to consolidate information from 

multiple sources (P. J. Liu et al., 2018). Furthermore, the development and refinement of 

evaluation metrics like ROUGE have provided standardised ways to assess summary quality (C. 

Lin, 2004).  

 

The literature reviewed in this chapter is important to shape and ground the research. This 

review will provide insights into the development and current state of text summarisation and 

the computational methods used within it, including high-performance computing, deep 

learning, natural language processing, and network theory. The evolution of these techniques, 

their applications in the field of text summarisation, and their strengths and limitations will be 

explored in detail. 

 

Specifically, this review will explore the critical differences and advantages of extractive and 

abstractive summarisation, two principal methodologies in text summarisation. This 

differentiation is essential as the proposed research heavily leans towards abstractive 

summarisation. 

 

Further, the literature review will probe the use of pre-trained language models in 

summarisation tasks. These models represent some of the most advanced tools currently 

available and will form the basis for the proposed summarisation framework. This, and the 

following chapter will also discuss recent developments in Large Language Models, such as the 

OpenAI GPT models, the Google Gemma models and several other open-source models and 

techniques and their applicability to text summarisation.  
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This review of existing work on domain-specific summarisation, particularly of scientific papers, 

will show some of the unique challenges and opportunities in this field. This is particularly 

relevant as the proposed research aims to develop a summarisation framework specifically for 

scientific literature. 

 

Lastly, the review will evaluate the application of advanced NLP techniques in multi-document 

summarisation, which is the focus of this research. Understanding the potential and the 

limitations of these techniques will guide the development and refinement of the proposed 

summarisation framework. 

In summary, the relevance of the reviewed literature lies in its ability to provide a 

comprehensive understanding of the current state of text summarisation. It allows the 

identification of gaps and opportunities in the existing methods ultimately informing the 

development of a new approach that is grounded in, yet advances beyond, the current state of 

the art. 

 

2.2 A background to text summarisation 

Document summarisation is a developing field that has seen a notable increase in interest and 

application over the past two decades and an acceleration in development in just the past five 

years. At its core, document summarisation is the process of reducing a larger text document 

into a concise summary that retains the main points and salient details of the original text 

(Nenkova and McKeown, 2012). This process can be executed manually by human reviewers, 

but the rise of computational power and advanced algorithms developed through machine 

learning and deep learning has shifted the focus towards automatic summarisation techniques. 

 

The history of document summarisation as a computational rather than a purely linguistic 

problem began in the late 1950s with the work of Hans Peter Luhn (Luhn, 1958). Luhn, at the 

time working at IBM, developed an algorithm that identified the most frequent words in a 

document (excluding common words like 'and', 'the', etc.), and used this as a basis to identify 

key sentences for inclusion in the summary. This area of research remained little more than a 

curiosity and it was only in the early 2000s, with the advent of more powerful computing 

capabilities (such as GPUs and other vector processor chips) and the rise of the Internet, that 

automatic text summarisation started to gain significant momentum in research and practical 

applications (Mani, 2001). 
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Following Luhn's important and critical work, various techniques for automatic summarisation 

were explored. These included the use of semantic networks, graph-based models, and 

statistical methods. Spärck Jones (2007) provides an extensive overview of the evolution of 

automatic summarisation techniques since Luhn's original and very important work. She 

discusses various approaches that emerged over time, including the use of semantic networks, 

graph-based models, and statistical methods. The paper not only covers these techniques but 

also evaluates their effectiveness and discusses the challenges faced in the field of automatic 

summarisation. However, these early methods often struggled with maintaining the coherence 

and readability of summaries. The development of Machine Learning and Natural Language 

Processing (NLP) in the late 1990s and into the 2000s paved the way for more sophisticated 

approaches. Notably, the introduction of extractive and abstractive summarisation techniques 

have allowed rapid development in the field, offering more nuanced and accurate 

summarisation capabilities (Radev, Hovy and McKeown, 2002; Rush, Chopra and Weston, 

2015). 

 

The importance of document summarisation extends to various fields and sectors. In 

academia, summarisation can aid in literature reviews and the synthesis of research findings 

across multiple studies, thereby enhancing knowledge dissemination and uptake (Cohn and 

Lapata, 2008). For businesses, summarisation tools can help process large amounts of textual 

data, such as customer reviews or business reports, providing essential insights quickly and 

efficiently (Das and Martins, 2007). 

In the news industry, automatic summarisation can assist in generating concise news briefs or 

digesting multiple reports on the same event, such as Columbia’s ‘Newsblaster’ which is an 

early tool to cluster news into events (McKeown et al., 2003). More recently, the healthcare 

sector has begun leveraging document summarisation to condense patient records and 

medical literature, facilitating efficient information retrieval and decision-making (Spasić et al., 

2014). 

 

In the legal field, automatic summarisation can support the review of lengthy legal documents, 

contracts, and case laws, making the process more efficient and manageable (Mochales and 

Moens, 2011). In the domain of scientific research, automatic summarisation is particularly 

vital due to the exponential growth of publications. It helps researchers stay abreast of new 

developments, trends, and breakthroughs across multiple disciplines (Teufel and Moens, 2002). 

In the era of big data, the ability to summarise vast amounts of textual information will prove 

invaluable across a wide range of sectors. 
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Document summarisation then, despite being a relatively recent field of study, has quickly 

become an important tool across various sectors due to its ability to distil large amounts of text 

into digestible, informative summaries. 

 

Whilst the bulk of the research in the field initially focused on single document summarisation, 

the challenge and importance of multi-document summarisation have grown in prominence 

(Goldstein, Mittal, J. Carbonell, et al., 2000). Single document summarisation concerns itself 

with generating a summary for a lone input document. However, multi-document 

summarisation (MDS) aims to create a cohesive and non-redundant summary from a set, or 

'corpus', of documents. This could be multiple reports on the same event, a collection of 

research papers on a particular topic, or an entire body of work from a specific author. MDS 

presents additional challenges such as identifying and resolving conflicting information, 

avoiding redundancy, and maintaining a coherent narrative when drawing from multiple 

sources (Nenkova and McKeown, 2012).  

 

2.2.1 Abstractive vs Extractive summarisation 

Text summarisation is a well explored field but in common with many other problems in 

natural language programming, difficult and computationally expensive.  As researchers in the 

field are dealing with natural human language (English in this case), slight differences in the 

context or semantics of a summary can lead to different understanding by different human 

readers.  This is made even more complex in knowledge domains where terminology and 

phraseology have specific meaning, such as in clinical and engineering fields.  

 

The summarisation process, as identified by Radev, Hovy and McKeown (2002), comprises two 

primary phases. The initial stage involves the identification and extraction of salient material 

from source documents. This is followed by a second phase where the extracted material is 

merged, modified or edited to produce a new set of sentences that concisely and fluently 

summarise the original text. 

 

Earlier work Hahn and Mani (2000) classified summarisation techniques as either knowledge-

rich or knowledge-poor. Knowledge-rich approaches consider the meaning of the document 

and its constituent sentences, enabling more effective reduction and better summary creation 

through understanding. In contrast, knowledge-poor approaches treat documents as 

unordered, context-free collections of words. Despite their limitations, knowledge-poor 
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approaches offer advantages in their ability to be applied unchanged to different documents 

across new application areas, making them relatively straightforward to reapply. 

 

Prior to this, the 1980s and 1990s saw extensive use of statistical methods to produce 

moderately successful summaries. These methods often employed a 'bag of words' approach, 

treating documents as large collections of words where meaning and context were deemed 

unimportant. However, the establishment of the Document Understanding Conference (DUC) 

series was a shift towards recognising the importance of contextualisation and the inter-

relationship of sentences and paragraphs within a document. As Verma and Lee (2018) noted, 

the meaning and relative context of sentences are very important considerations in effective 

summarisation. 

 

As indicated earlier, Nenkova and McKeown (2012) have described several processes common 

to many text summarisation tools. One key process is intermediate representation, where an 

intermediate step occurs in the summarisation process. An important method within this is 

topic representation, which identifies key topics and their relationships in the text or 

document. This can be accomplished through various means, including frequency 

identification, TF*IDF (term frequency-inverse document frequency), and topic-word 

approaches. 

 

● In the frequency identification approach, the number of times a word or phrase 

appears in a document can be taken as an indicator of its importance.   

● The TF*IDF approach (actually a product of two different statistical indicators) (Sparck 

Jones, 1972) is used to weight a particular keyword in the context of the document(s) 

in which it appears. TF-IDF (Term Frequency-Inverse Document Frequency) is a 

numerical statistic used to evaluate the importance of a word in a document within a 

collection or corpus. It consists of two main components: Term Frequency (TF) and 

Inverse Document Frequency (IDF). TF measures how frequently a term appears in a 

document, calculated as the number of times a word appears in a document divided by 

the total number of words in that document and IDF measures how important a term 

is across the entire corpus, calculated as the logarithm of the total number of 

documents divided by the number of documents containing the term. TF-IDF is the 

product of these two metrics, increasing proportionally to the number of times a word 

appears in a document but offset by the frequency of the word in the corpus. This 
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adjustment helps make up for the fact that some words appear more frequently in 

general. 

● In topic word approaches, a simple table summary of words and weightings can be 

produced where highly weighted words can be regarded as more indicative of the 

topic. 

 

Once candidate sentences or phrases have been identified, the summariser then needs to 

select the most appropriate set of important sentences to produce a paragraph-length 

summary for each of the important topics identified in the document. 

Automatic text summarisation, as a field of study, has traditionally been split into two distinct 

strategies: extractive and abstractive summarisation. 

 

Extractive Summarisation, whilst a simpler approach, remains widely used and highly effective 

in certain contexts. This approach involves identifying and extracting key segments or snippets 

from the original document(s). These 'extracts', usually whole sentences deemed most 

representative of the overall content, are then concatenated to form the final summary. One 

might visualise this as creating a highlight reel of the most significant points raised in the text. 

Algorithms for extractive summarisation often rely on statistical and linguistic features, such as 

word frequency, sentence position, named entities, or similarity to the title. 

 

The main advantage of extractive summarisation lies in its relatively straightforward 

implementation. Moreover, as it uses text directly from the source, it minimises the risk of 

generating grammatically incorrect or nonsensical sentences. But, notable limitations exist. 

Extractive summaries often lack coherence when sentences are taken out of context and can 

struggle with avoiding redundancy when summarising multiple documents containing 

overlapping information. Additionally, they inherently cannot condense information beyond 

the sentence level, making them less effective for longer, more complex texts. 

 

Abstractive Summarisation, on the other hand, attempts to emulate human summarisers by 

generating new text that encapsulates the main ideas in the source document(s). This involves 

a deeper understanding of the text, as the summarisation model must parse the semantic 

meaning of the source, identify key points, and then reformulate this information in a concise 

and coherent manner. This process often involves complex NLP techniques, including parsing, 

semantic interpretation, inference, and text generation. 

 



 

54 

 

The potential of abstractive summarisation is considerable, as it can generate more natural, 

concise, and coherent summaries, especially for longer and more complex texts. It can 

synthesise information from multiple sentences or even from different documents in the case 

of multi-document summarisation, creating a summary not limited by the original phrasing or 

sentence structure. However, the challenges are equally substantial. Abstractive summarisation 

models require larger amounts of computational resources and run the risk of generating 

summaries that may misrepresent the original text or contain factual inaccuracies, as they are 

not bound to use the exact wording of the source material. The diagram below (fig. 1) 

compares the two summarisation techniques on a simple phrase. 

 

 

Figure 1: Comparison of extractive vs. abstractive approaches 

 

 

 

2.2.2 Hybrid Approaches: Combining Abstraction and Extraction 

Recent years have seen growing interest in hybrid approaches that combine elements of both 

extraction and abstraction. These methods aim to leverage the strengths of each approach 

while mitigating their respective weaknesses (Gehrmann, Deng and Rush, 2018). For instance, 

an extractive step might identify salient sentences or concepts, followed by an abstractive step 

to generate a concise and coherent summary. This approach can potentially reduce 
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redundancy and improve summary readability while maintaining a close tie to the source 

content. 

 

The implementation of such hybrid models introduces additional complexity and 

computational overhead. Careful design is required to ensure that the integration of the two 

methods does not inadvertently introduce new issues, such as discrepancies between the 

extracted and abstracted content. In the following chapter, some of the hybrid techniques 

(such as Retrieval Augmented Generation) are discussed further. 

 

As research in summarisation techniques continues, there is a clear trend towards more 

sophisticated abstractive methods. These approaches may overcome the limitations of purely 

extractive techniques, offering the potential for more flexible, concise, and human-like 

summaries. The following section will further explore abstractive summarisation, exploring its 

mechanisms, challenges, and future prospects. 

 

2.2.3 Why concentrate on abstractive summarisation? 

Recent research in neural language models have significantly enhanced the capabilities of 

abstractive summarisation. Models such as BERT and BART (Devlin et al., 2019; Lewis et al., 

2020) have demonstrated the ability to understand and generate language in a subtle manner, 

aligning closely with the requirements of creating meaningful, coherent, and contextually 

accurate summaries of complex scientific texts. These models, pre-trained on vast amounts of 

text, can generate novel sentences and be fine-tuned for specific domains, making them 

particularly suited for summarising scientific literature. 

 

Building on these foundations, the more recent development of Large Language Models (LLMs) 

has pushed the boundaries of what is possible in text generation and understanding. GPT-3 (T. 

Brown et al., 2020) was a significant milestone, demonstrating impressive few-shot learning 

capabilities across various NLP tasks, including summarisation. More recent models like GPT-4 

(OpenAI et al., 2024) have further refined these capabilities, demonstrating enhanced ability to 

understand and generate nuanced text, which is particularly valuable for summarising complex 

scientific literature. 

 

The incorporation of hybrid techniques (such as RAG), which combine elements of both 

extractive and abstractive methods, has shown promising results in recent studies. Zhang et al. 

(2020) suggested a hybrid approach that first extracts relevant sentences and then applies 
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abstractive techniques to generate a final summary. This method leverages the strengths of 

both approaches, potentially overcoming the limitations of purely extractive or abstractive 

methods. 

 

In the context of scientific document summarisation, the work of Menick et al. (2022) on 

evaluating GopherCite demonstrated how LLMs can be used to generate summaries with 

faithful attribution to source documents, addressing one of the key challenges in abstractive 

summarisation: ensuring factual accuracy and traceability of information. 

 

The emergence of open-source LLMs, such as BLOOM (BigScience Workshop et al., 2023) and 

LLaMA (Touvron et al., 2023), has democratised access to these powerful models, allowing 

researchers to explore their application in specialised domains like scientific literature 

summarisation. Models such as these offer the potential for fine-tuning on domain-specific 

corpora, which could significantly enhance their performance in summarising scientific papers. 

While these advancements in LLMs offer exciting possibilities for abstractive summarisation, 

they also present new challenges and areas for investigation. Issues such as computational 

efficiency, model interpretability, and the mitigation of biases in generated summaries remain 

active areas of research (Bender et al., 2021). 

 

In conclusion, the focus on abstractive techniques in this research is justified by their alignment 

with the complex requirements of summarising scientific literature, their potential to address 

key challenges in this domain, and the recent research in neural language models that have 

significantly enhanced abstractive summarisation capabilities. The exploration of state-of-the-

art LLMs in the context of multi-document scientific summarisation is a promising area for 

research as it builds on the strengths of earlier models while taking advantage of the enhanced 

capabilities of more recent LLMs to address the complex requirements of summarising 

scientific literature. 
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2.3 Multi-Document Summarisation (MDS) 

The progression from single document summarisation naturally leads to the domain of multi-

document summarisation (MDS). MDS extends beyond summarising a single document to 

encompass the summarisation of an entire set of documents. Whilst the primary objective 

remains the generation of a concise and coherent summary, the complexity and challenges are 

significantly amplified due to the increased volume of text and the requirement to capture 

relevant content from multiple documents which may present related or diverse viewpoints. 

 

2.3.1 Introduction to MDS and Its Complexities 

Multi-Document Summarisation involves creating a comprehensive summary from multiple 

source documents. These documents may present similar or contrasting perspectives on a 

topic, thereby introducing additional layers of complexity to the summarisation task. The 

summarisation process must account for both commonalities and discrepancies across these 

documents, ensuring that the final summary accurately represents the information without 

bias (Endres-Niggemeyer et al., 1998). In MDS, the challenges inherent in single-document 

summarisation are compounded by the additional complexities introduced by multiple 

document inputs. The system must address issues such as redundancy, contradiction, and 

coherence maintenance while synthesising information from multiple sources (Radev et al., 

2004). These challenges are particularly pronounced when dealing with large document sets or 

when the documents cover a wide array of sub-topics. 

 

Redundancy management is a critical aspect of MDS. When summarising multiple documents 

on a similar topic, the likelihood of encountering repeated information is high. A robust MDS 

system should identify these redundancies and eliminate them to prevent unnecessary 

repetition in the generated summary. Carbonell and Goldstein (1998) introduced the Maximal 

Marginal Relevance (MMR) criterion, which aims to reduce redundancy while maintaining 

relevance in the summary. This approach has been widely adopted and adapted in subsequent 

research. Conversely, the system must also manage contradictions or differences in the 

presented facts or views across documents. This becomes particularly important in fields such 

as news reporting or scientific literature, where different documents might present varied 

viewpoints or findings. Balancing these contradictions while ensuring the summary remains 

objective is a complex task. Dou et al. (2021) proposed a system called GSum, which specifically 

addressed the issue of contradictory information in news articles, demonstrating early 

attempts to tackle this challenge. 
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Maintaining coherence in the final summary presents another significant challenge. The 

summary should not only capture key information from multiple documents but also present it 

in a manner that ensures a logical and easily comprehensible narrative. This involves 

understanding the relationships between different pieces of information and structuring the 

summary accordingly. Barzilay, McKeown and Elhadad (1999) proposed an information fusion 

approach to improve the coherence of multi-document summaries, which has influenced 

subsequent research in this area. 

 

In the context of scientific literature, MDS faces the additional complexity of handling 

specialised language and technical terms commonly used in scientific texts. The system must 

possess a robust understanding of these terms and their context to generate accurate and 

meaningful summaries. Cohan and Goharian (2015) addressed this challenge by proposing a 

method specifically designed for scientific article summarisation, which takes into account the 

unique structure and language of scientific documents. 

 

Despite these challenges, MDS serves as an essential tool in a number of fields where dealing 

with large amounts of textual data is commonplace. Its applications range from summarising 

news articles (Radev et al., 2004) to condensing scientific literature (Qazvinian, 2010) and even 

summarising user-generated content on social media platforms (Inouye and Kalita, 2011). 

 

More recently, researchers have begun exploring hybrid approaches that combine the 

strengths of both extractive and abstractive methods. For example, Liu and Lapata (2019a) 

proposed a two-stage approach where an extractor first identifies relevant content, which is 

then paraphrased by an abstractor to produce the final summary. 

 

The rapid development of large language models (LLMs) has opened new avenues for MDS 

research. These models have shown remarkable capabilities in understanding and generating 

text, which could potentially be leveraged for more sophisticated MDS systems. However, the 

application of these models to MDS also brings new challenges, such as ensuring factual 

consistency and managing computational resources. 

 

As the field of MDS continues to evolve, researchers are increasingly focusing on domain-

specific applications and the integration of external knowledge to improve summary quality.  
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2.4 Challenges in Multi-Document Summarisation 

Recent rapid advancements in Natural Language Processing (NLP) have transformed Multi-

Document Summarisation (MDS) into a dynamic and rapidly evolving research field. However, 

the task of generating concise, informative, and coherent summaries from multiple documents 

still presents a unique set of challenges. These challenges are increased by the complexities of 

language, the diversity of document types, and the inherent subjectivity in defining what 

constitutes a "good" summary. 

 

2.4.1 The Challenges Described 

2.4.1.1 Information Overload and Redundancy 

One of the main challenges in MDS is managing the sheer volume of information present in 

multiple documents. This often leads to redundancy, where multiple documents contain 

overlapping information. Carbonell and Goldstein (1998) introduced the Maximal Marginal 

Relevance (MMR) criterion to address this issue, balancing relevance and novelty in summary 

generation. More recent approaches, such as the work by (Liu and Lapata, 2019a), have used 

neural architectures to capture cross-document relationships and reduce redundancy. Their 

hierarchical transformer-based model demonstrated significant improvements over previous 

methods in handling redundant information across multiple documents. 

Additionally, documents may present conflicting viewpoints or contradictory information, 

requiring the summarisation system to reconcile these differences or present a balanced 

perspective. In SummEval, Fabbri et al. (2021) dealt with this challenge by introducing a multi-

agent pointer-generator network that can effectively synthesise information from multiple, 

potentially contradictory sources. 

 

2.4.1.2 Coherence and Structure 

Maintaining coherence across multiple documents poses challenges too, particularly in 

preserving thematic consistency and temporal or causal relationships between concepts 

addressed in the documents.  Wan (2008) proposed a graph-based method to improve multi-

document summary coherence by considering both intra-document and inter-document 

relationships. More recently, Coavoux, Elsahar and Gallé (2019)introduced a neural approach 

that explicitly models discourse structure to generate more coherent summaries. 

The preservation of temporal and causal relationships is very important for accurate 

summarisation, especially in news or historical document summarisation. Gholipour 

Ghalandari and Ifrim (2020) addressed this by developing a timeline-aware neural model that 
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can capture temporal dependencies across documents, showing improvements in summary 

quality for time-sensitive topics. 

 

2.4.1.3 Context Preservation 

Preserving context while condensing information is a delicate balance, with the risk of 

oversimplifying complex ideas or losing subtle but important details. This challenge is 

particularly high when summarising specialised documents such as scientific papers or legal 

documents. Cohan et al. (2018) proposed a discourse-aware attention model specifically 

designed for summarising scientific documents, which outperformed general-purpose 

summarisation models on scientific article datasets. 

In the legal domain, Zhong et al. (2019) discusses a novel approach to legal document 

summarisation using iterative masking which could effectively summarise legal case documents 

while preserving critical legal terminology and concepts. Iterative masking is a technique where 

parts of the input text are systematically hidden or "masked" in successive rounds, allowing the 

model to focus on different aspects of the document in each iteration, thereby improving its 

ability to identify and extract the most salient information for summarisation. Their approach 

demonstrated the importance of domain-specific adaptations in MDS systems. 

 

2.4.1.4 Evaluation Complexity 

Assessing the quality of multi-document summaries presents unique challenges due to the 

subjectivity involved and the limitations of automatic metrics. While metrics like ROUGE (Lin, 

2004) are widely used, they may not fully capture the nuances of summary quality, especially 

for abstractive summaries. Recognising these limitations, Fabbri et al. (2021) introduced 

SUMMEVAL (as mentioned earlier), a comprehensive framework for summary evaluation that 

combines multiple automatic metrics with human judgments. 

The challenges in evaluation have led to increased interest in human evaluation methods. 

However, as Kryscinski et al. (2020) pointed out, human evaluation can be inconsistent due to 

individual biases and interpretations. They therefore proposed a unified framework for human 

evaluation of summarisation, aiming to standardise the process and improve reliability. 

 

2.4.1.5 Scalability and Efficiency 

As the volume of data grows, scalability becomes a significant concern in MDS. Processing large 

document sets requires substantial computational power, particularly for neural network-based 

approaches. Liu and Lapata (2019a) addressed this by introducing an efficient transformer-

based model for MDS that could handle larger input sizes than previous approaches. 
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For applications requiring quick summarisation, such as news aggregation, balancing speed and 

quality becomes essential. In early work, Zhang et al. (2013) proposed a real-time multi-

document summarisation system for twitter topic summarisation, demonstrating the feasibility 

of MDS in time-sensitive scenarios. 

 

2.4.1.6 Linguistic and Structural Diversity 

The variety in document types and linguistic styles presents additional challenges in MDS. 

Multi-lingual summarisation, in particular, adds layers of complexity. Lample and Conneau 

(2019) introduced a cross-lingual summarisation framework that can generate summaries in a 

target language different from the source documents, addressing the growing need for 

multilingual information synthesis. 

 

Handling different document formats requires flexible and adaptable summarisation 

techniques. As an example, Zhong et al. (2020) developed a discourse-aware neural 

summarisation model that can effectively handle various document structures, from academic 

papers to news articles, by explicitly modelling document discourse. 

 

2.4.1.7 Ethical Considerations and Bias 

The ethical implications of MDS are increasingly becoming evident, particularly regarding bias 

mitigation and transparency. Summarisation systems may inadvertently amplify biases present 

in the source documents or introduce new biases. Celikyilmaz, Clark and Gao (2021) addressed 

this issue by proposing a framework for evaluating and mitigating gender bias in abstractive 

text summarisation. 

 

Ensuring that the summarisation process is transparent and the results are explainable is very 

important, especially in sensitive areas. For example, DeYoung et al. (2020) introduced ERASER, 

a benchmark for evaluating rationales in NLP models, including summarisation, which can help 

in improving the explainability of MDS systems. 

 

2.4.2 Pre-trained language models such as BERT, RoBERTa, GPT-3/4, and T5 

In recent years (and leading into the development of the latest Large Language Models), the 

use of pre-trained language models, such as BERT, RoBERTa, BART, GPT-3/4, and T5, have 

improved numerous tasks in natural language processing (NLP), including multi-document 

summarisation. These models are trained on a large, often specialist, corpus of text data and 

learn to predict a word (or a sequence of words) based on its context. This pre-training step 
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allows the models to learn a rich representation of language, capturing various linguistic 

patterns and structures. All these models mentioned below have shown great promise in a 

variety of NLP tasks, including multi-document summarisation. However, their effective use in 

the specific context of scientific paper summarisation needs more careful exploration of their 

strengths and limitations, as well as the unique challenges posed by this task. This will be 

further explored in later parts of this chapter. 

 

BERT (Bidirectional Encoder Representations from Transformers), developed by Devlin et al. 

(2019), is a transformer-based model that is pre-trained on a large corpus of text from the 

Internet. Unlike previous models, BERT is trained in a bidirectional manner, allowing it to 

understand the context of a word from both its left and right. This makes BERT particularly 

effective at tasks requiring an understanding of the context, such as multi-document 

summarisation. 

 

RoBERTa (A Robustly Optimised BERT Pretraining Approach) is a variant of BERT that was 

introduced by Liu et al. (2019). RoBERTa modifies the pre-training process of BERT, including 

training the model on a larger amount of data, using a larger batch size, and removing the next 

sentence prediction objective, which leads to improved performance. 

 

BART (Bidirectional and Auto-Regressive Transformers) is another variant of the transformer 

model that combines the strengths of BERT and GPT, and has demonstrated strong 

performance in text generation tasks such as summarisation. BART, introduced by Lewis et al. 

(2020), is pre-trained by corrupting text with an arbitrary noising function and learning to 

reconstruct the original text. It uses a standard transformer-based neural machine translation 

architecture which, unlike many models, is initialised with a cross-entropy loss that allows it to 

be parallelised across multiple GPUs and across numerous documents. 

 

This has the effect that BART is especially suitable for tasks that require understanding the 

document context and generating fluent, coherent text. In the context of multi-document 

summarisation of scientific papers, BART's ability to encode an entire document context and 

generate meaningful, coherent summaries can be highly valuable. However, like other pre-

trained language models, careful fine-tuning and adaptation are necessary to handle the 

unique challenges of scientific paper summarisation effectively. 
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GPT-3/4 (Generative Pretrained Transformer), introduced by OpenAI (OpenAI et al., 2024), is 

another transformer-based language model. Unlike BERT and RoBERTa, GPT-3/4 is trained in an 

autoregressive manner, predicting each word in a sequence based on its preceding words. This 

allows GPT-3/4 to generate more coherent and fluent text, which can be highly beneficial for 

tasks like summarisation. 

 

T5 (Text-to-Text Transfer Transformer), introduced by Raffel et al (2020), is a versatile 

transformer-based model that can be trained to perform any text-to-text task. T5 views every 

NLP task as a text generation task, enabling it to perform a wide range of tasks, including 

summarisation, translation, and question answering. 

 

2.4.3: Hybrid techniques in Multi-Document Summarisation 

Hybrid techniques in multi-document summarisation (MDS) represent a convergence of several 

strategies that aim to tackle the challenges in MDS from different angles. These techniques 

often combine traditional methods, such as text ranking, graph networks and topic modelling, 

with the advanced capabilities of large language models (LLMs). 

 

The advantage of these so-called hybrid techniques lies in their ability to take advantage of the 

strengths of different approaches while mitigating their weaknesses. For example, text ranking 

can be used to identify key sentences or passages in a collection of documents, which can then 

be fed into an LLM for generating a more coherent and concise summary. Similarly, topic 

modelling or knowledge graph analysis can help in understanding the main themes across 

multiple documents, providing an additional layer of context for the LLM to generate more 

meaningful summaries. 

 

The successful application of hybrid techniques in MDS requires a deep understanding of both 

traditional summarisation methods and LLMs, and the ability to effectively integrate them. The 

following sections will provide a more detailed review of some of these techniques and discuss 

their potential for improving the performance of MDS frameworks. Further discussion follows 

in Chapter 3, with an wider exploration of the tools and techniques used in developing 

‘modern’ LLM applications. 

 

2.4.3.1 Text Ranking 

Text ranking is a fundamental task in many NLP applications, including Multi-Document 

Summarisation (MDS). It involves assigning importance scores to sentences or paragraphs 
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based on criteria such as relevance to a particular topic or overall informativeness. While 

traditional techniques like Term Frequency-Inverse Document Frequency (TF-IDF), PageRank, 

and LexRank continue to be relevant, recent advancements have led to more sophisticated 

approaches. 

 

TF-IDF continues to be a baseline for many text ranking tasks. Its effectiveness in identifying 

key terms has been demonstrated in various summarisation contexts (Bano et al., 2018). 

However, recent work has shown that combining TF-IDF with neural networks can yield 

improved results. For instance, Rossiello, Basile and Semeraro (2017) proposed a neural 

attention-based model that leverages TF-IDF features, demonstrating superior performance in 

extractive summarisation tasks. 

 

Graph-based ranking algorithms, such as PageRank and LexRank, have evolved to incorporate 

more complex linguistic features. TextRank, an adaptation of PageRank for text processing 

tasks, has seen continued development. Mihalcea and Tarau (2004) initially introduced 

TextRank for keyword extraction and sentence extraction, and subsequent research has 

expanded its applications. More recently, Mallick et al. (2018) proposed Graph-based Unified 

Model (GUM), which integrates TextRank with semantic similarity measures to improve multi-

document summarisation. 

 

LexRank, which extends PageRank by considering cosine similarity of TF-IDF vectors, has also 

seen advancements. Erkan and Radev (2004) originally introduced LexRank for text 

summarisation, and it has since been adapted for various summarisation tasks. A notable 

extension is RankSum, proposed by (Joshi et al., 2022), which incorporates continuous 

semantic spaces to capture more nuanced relationships between sentences. 

 

In the context of MDS, these text ranking techniques are increasingly being used in conjunction 

with deep learning models. For example in the work of Zhong et al. (2020), the research team 

introduced a neural extractive summarisation model that combines graph-based ranking with 

BERT embeddings, demonstrating state-of-the-art performance on multi-document 

summarisation tasks. 

 

In addition, the integration of text ranking with Large Language Models (LLMs) is opening new 

avenues for MDS. Li et al. (2023) proposed a framework that uses text ranking to guide the 

generation process of LLMs through a technique they term ‘stimulus prompting, where a small 
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model is used to fine-tune a prompt for a larger model. This results in more focused and 

relevant summaries. The approach leverages the strengths of both traditional ranking methods 

and the advanced language understanding capabilities of LLMs. 

 

2.4.3.2: Topic Modelling 

Topic modelling is a statistical approach for discovering abstract themes within a collection of 

documents. In the context of Multi-Document Summarisation (MDS), topic modelling serves as 

a powerful tool for identifying key themes across multiple texts, guiding the summarisation 

process towards more comprehensive and thematically coherent outputs. 

 

Latent Dirichlet Allocation (LDA), introduced by Blei, Ng and Jordan (2003), is still a core topic 

modelling technique. LDA represents documents as mixtures of topics, where each topic is 

characterised by a distribution over words. This approach has been widely applied in MDS to 

identify overarching themes across document sets. For instance, Gong and Liu (2001) 

demonstrated the effectiveness of topic-based summarisation by using LDA to extract key 

sentences that best represent the main topics. 

 

Recent advancements have seen the integration of neural networks with topic modelling. 

Srivastava and Sutton (2017) proposed Autoencoded Variational Inference For Topic Models 

(AVITM), which use variational autoencoders to learn topic distributions. This approach offers 

more flexibility and potentially better performance than traditional probabilistic topic models, 

especially when dealing with large and diverse document sets typical in MDS tasks. 

 

The combination of Large Language Models (LLMs) with text ranking and topic modelling 

techniques is an interesting area for future development of hybrid MDS techniques. This 

integration uses the strengths of each approach to produce summaries that are both 

informative and well-written.  

 

Text ranking techniques, such as those discussed in the previous section, can identify the most 

salient sentences or passages across multiple documents. Topic modelling enhances this 

process by revealing the main themes, guiding the selection and aggregation of content for the 

summary. For example, Ma et al. (2024) proposed a multi-document summarisation method 

that uses topic modelling to cluster similar content and guide the extraction of key information, 

which is then refined using a language model. 
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Once key content has been identified through text ranking and topic modelling, LLMs can be 

employed to generate a summary that is not only informative but also coherent and fluent. The 

advanced language understanding and generation capabilities of LLMs ensure that the 

summary maintains the original meaning and context of the source content while being 

accessible to readers. As mentioned earlier, Li et al. (2023) demonstrated this approach by 

using a large and smaller LLM together to generate abstractive summaries guided by topic-

aware extractive content, resulting in summaries that effectively captured main themes while 

maintaining readability. 

 

However, challenges remain in effectively combining these techniques. Ensuring that the LLM-

generated summary accurately reflects the topics and key information identified in earlier 

stages is very important. Xu et al. (2020) addressed this by proposing a reinforcement learning 

framework that optimises the LLM's output based on topic coherence and information 

coverage metrics. 
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2.5 Applying pre-trained language models to the summarisation problem 

Pre-trained language models (PLMs) have demonstrated significant utility in various natural 

language processing (NLP) tasks, including text summarisation. These models, trained on vast 

corpora of textual data, have developed rich representations of language that capture both 

syntactical structures and semantic meanings. This capability makes them particularly suitable 

for generating coherent and meaningful summaries (Liu and Lapata, 2019b). 

 

A key advantage of using PLMs in text summarisation is their ability to generate fluent, human-

like text. Summaries produced by these models often maintain a high degree of readability, 

enhancing their accessibility and utility for end users. Furthermore, the extensive pre-training 

of these models on diverse text data equips them with broad world knowledge, potentially 

leading to summaries that are not only accurate but also insightful (Lewis et al., 2020). What 

PLMs do may appear almost magical (and indeed they are often treated as a black box) but it is 

important to understand that they produce fluent text through their advanced understanding 

of language patterns and structures acquired during their extensive pretraining phase. This 

pretraining involves exposure to vast amounts of text data, allowing the models to learn the 

intricacies of grammar, syntax, and semantic relationships. When generating summaries, PLMs 

use this learned knowledge to construct coherent sentences and paragraphs that flow 

naturally. They can maintain context over long sequences of text, ensuring that ideas are 

connected logically and that the overall narrative remains consistent. In addition, PLMs can 

adapt to different writing styles and tones, further enhancing the human-like quality of their 

output. To the end-user, the impact is that this enables them to produce summaries that read 

as if they were written by a skilled human writer. 

 

 

PLMs offer a degree of flexibility often lacking in traditional extractive summarisation 

techniques. Their text generation capabilities enable the creation of summaries that go beyond 

merely reusing existing text from source documents. This allows for paraphrasing, rephrasing, 

or even commenting on the original text, providing a level of abstraction important for distilling 

complex documents into concise summaries (J. Zhang et al., 2020). 

 

However, despite these advantages, the application of PLMs in summarisation still has some 

challenges. Their effectiveness can vary significantly depending on the task nature and specific 

summarisation requirements. Recent studies exploring the use of PLMs for summarisation and 

other NLP tasks, along with their effectiveness and future potential in multi-document 
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summarisation (MDS), will be discussed in subsequent sections of this chapter and in Chapter 

3. 

 

2.5.1 Outline of Studies Utilising LLMs for Summarisation Tasks 

While pre-trained language models have shown some effectiveness in single-document 

summarisation, their application to multi-document summarisation (MDS) has some unique 

challenges and complexities. 

As described earlier, a primary challenge in MDS is the need to process and integrate 

information from multiple documents. This requires the summarisation model not only to 

generate accurate and coherent summaries but also to identify and handle overlapping, 

redundant, or conflicting information across documents (Lample and Conneau, 2019). 

 

Existing pre-trained models such as BERT, RoBERTa, and GPT-3 have demonstrated capability in 

understanding individual document semantics and generating meaningful summaries. 

However, their usefulness in handling information from multiple documents remains an active 

area of research (Lim and Song, 2023). 

 

One promising approach to addressing the challenges of MDS is the integration of advanced 

learning techniques with pre-trained language models. For instance, Liu and Liu (2021) 

proposed a contrastive learning framework for abstractive summarisation that can be applied 

to multi-document scenarios. Their method, SimCLS, demonstrates how contrasting different 

candidate summaries can lead to improved summarisation quality, outperforming other fine-

tuning approaches on various datasets. The application of transformer-based models like BART 

and T5 to MDS has also shown promising results. These models' inherent text generation 

abilities make them well-suited for abstractive MDS. A study by Dou et al. (2021) presented a 

BART-based MDS model that outperformed previous models on several benchmark datasets. 

Nevertheless, the optimal utilisation of pre-trained language models for MDS remains an open 

question. Further research is needed to develop strategies for integrating these models with 

techniques such as clustering, topic modelling, and text ranking to effectively manage the 

complexity of MDS. 
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2.6 Domain-Specific Summarisation: Focusing on Scientific Papers 

As discussed earlier, summarising scientific papers presents both unique challenges and 

advantages compared to summarising other types of documents. The advantages mainly arise 

from the structured nature of scientific papers, which tend to follow a standardised format 

consisting of sections such as the abstract, introduction, methodology, results, discussion, and 

conclusion (Mensh and Kording, 2017). 

This format can facilitate the extraction of relevant information from specific sections, thus 

aiding in the summarisation process. Oh, Nam and Zhu (2022) proposed a structured abstract 

summarisation method using the IMRaD format (Introduction, Methods, Results, Discussion) to 

balance the emphasis on each section, improving the overall summary quality. Conroy and 

Davis (2018) introduced section mixture models for summarising scientific documents, which 

estimate term weights and optimise sentence extraction for comprehensive coverage. Rai et al. 

(2021) demonstrated a focused summarisation framework that ensures essential scientific 

content is included, particularly useful in large repositories like CORD-19 (a large repository of 

COVID-19 relevant literature). 

 

The challenges of summarising scientific papers are numerous and complex. One main 

difficulty is the specialised language and complex concepts commonly found in scientific 

literature, which include terminologies, symbols, equations, and extensive references to other 

studies. Summarisation models not specifically trained on scientific texts often struggle with 

these complexities (Altmami and Menai, 2018). Also, summarising scientific papers involves 

not only extracting factual content but also understanding and conveying the paper’s 

contributions to the existing body of knowledge. This requires a deep semantic understanding 

to grasp complex arguments, compare results with prior studies, and identify the novel 

contribution of the research (P. Wang et al., 2023). The interdisciplinary nature of many 

scientific papers further complicates the process, as models need to handle diverse subjects 

and their interconnections (Oh, Nam and Zhu, 2022). Lastly, the structural features of scientific 

documents, such as the relationships between different sections, are often underused in 

summarisation models, leading to poorer summaries (Zhao, Yang and Cai, 2022). 

 

2.6.1 Review of previous work on summarising scientific literature 

Over the years, there has been considerable effort in the research community to develop 

effective techniques for summarising scientific literature. The path to optimise these 

techniques has seen the transition from basic sentence extraction methods to more 

sophisticated neural network architectures and pre-trained language models. 
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One of the earlier notable works in this area was by Teufel and Moens (2002). They proposed a 

sentence extraction method for summarising scientific papers. The focus was on sentences that 

convey the rhetorical status (referring to the role or function that a particular piece of 

information plays within the structure and argument of a document. It is a very important 

aspect of understanding not just what information is presented, but why it is presented and 

how it contributes to the overall message or argument of the text. of information), a vital 

aspect in understanding the crux of the paper. 

 

As research progressed, the focus shifted towards machine learning and natural language 

processing techniques for summarising scientific papers. The development of LSTM (Long 

Short-Term Memory) models provided a new direction for these tasks. LSTM is a type of 

recurrent neural network that has the ability to learn long-term dependencies in text, making 

them suitable for text summarisation tasks (Bedi, Bala and Sharma, 2023). However, a key 

limitation of LSTM-based models is their inability to effectively handle long sequences due to 

the vanishing gradient problem (the vanishing gradient problem is a difficulty encountered 

when training artificial neural networks, particularly those using backpropagation and gradient-

based optimisation methods, such as LSTMs). Additionally, they process sequences step-by-

step, which can be computationally expensive for large documents. 

 

To overcome some of the shortcomings of LSTM models, attention mechanisms were 

introduced. These allowed the model to focus on specific parts of the input sequence that are 

relevant for each step of the output sequence, which significantly improved the performance 

of neural network models in summarisation tasks (Bahdanau, Cho and Bengio, 2016). However, 

a common criticism of such models is that they often appear as black boxes, making it hard to 

interpret how they make their decisions.  The attention mechanism and how this related to the 

LSTM is explained further in Appendix 1. 

 

Advancements in transformer-based models, specifically the development of BERT 

(Bidirectional Encoder Representations from Transformers), made rapid contributions to the 

field of text summarisation. As noted earlier, BERT, proposed by Devlin et al. (2019), uses a 

bidirectional transformer, allowing it to understand the context of a word based on all of its 

surroundings (left and right of the word). This marked a significant improvement over previous 

models, which viewed the context in one direction (either left to right or right to left). 
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Expanding upon the benefits of BERT, (Beltagy, Lo and Cohan, 2019) developed SciBERT, a 

variant of BERT specifically trained on scientific literature. SciBERT demonstrated improved 

effectiveness in several tasks, including summarisation, demonstrating the importance of 

domain-specific pre-training and how it can improve performance in particular tasks. 

 

Following this, BART (Bidirectional and Auto-Regressive Transformers), a variant of BERT that is 

specifically designed for text generation tasks, has shown promise in summarising scientific 

literature. BART, proposed by Lewis et al. (2020), is pre-trained by auto-encoding the text and 

has shown improved performance in abstractive summarisation tasks. 

Work of Yasunaga et al. (2017) is worth a special mention for their interesting work in the 

multi-document summarisation of scientific articles. They developed a model that combined 

extractive and abstractive methods using graph neural networks. This provided a significant 

leap in dealing with the complexity of multiple scientific articles. 

 

2.6.2 Gaps and potential areas for improvement in the current methodologies 

Despite the considerable recent progress made in the summarisation of scientific literature, 

there still exists several prominent gaps and opportunities for further exploration and 

refinement in the methodologies employed. These gaps can be considered in the context of 

the research questions identified for this study. 

 

While models such as BERT and BART have shown promise in the task of single-document 

summarisation, their potential in the context of multi-document summarisation still remains 

underexplored. Specifically, in the context of scientific papers, these models often struggle with 

the integration and synthesis of information from multiple documents and to reflect the 

relative importance of themes and topics across documents. Further research is required to 

understand how these state-of-the-art models can be effectively adapted and fine-tuned for 

the task of multi-document summarisation of scientific papers (Fabbri et al., 2019). 

 

The current body of research lacks a detailed exploration of the specific features and 

characteristics that make an abstractive multi-document summarisation framework efficient 

for scientific papers. Additionally, newer hybrid techniques, such as Retrieval Augmented 

Generation, have not been well-integrated into the existing frameworks. These techniques can 

identify sections of interest and intelligently incorporate them into the summaries, potentially 

greatly enhancing the quality of summaries by focusing on the most critical aspects of the 

documents (Huang et al., 2020). 
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Finally, most existing studies have focused on proposing novel methodologies and 

demonstrating their effectiveness using limited datasets and evaluation metrics. There is still a 

lack of comprehensive comparative studies that analyse the performance of the frameworks 

against existing approaches, both extractive and abstractive. his gap prevents a complete 

understanding of the strengths and weaknesses of the different approaches and hinders the 

identification of best practices for the task. Evaluations need to be conducted on diverse 

scientific datasets to ensure the generalisability of the findings (Otterbacher, Erkan and Radev, 

2005). 
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2.7 Application of Advanced NLP techniques to MDS 

The ability to effectively summarise multiple documents is a complex problem. As such, and in 

terms of the neural network models themselves, researchers have employed a range of 

advanced techniques in Natural Language Processing (NLP) to deal with it. These techniques 

include transfer learning, attention mechanisms, graph-based methods, and domain 

adaptation. Considering each one in turn and its relevance to MDS: 

 

The basic concept of transfer learning is quite straightforward: it involves taking what a model 

has learned from one problem and applying it to another related problem. This approach is 

particularly useful in natural language processing (NLP), where specialised training data can be 

scarce and computational resources limited. Transfer learning supports leveraging large pre-

trained models like BERT, RoBERTa, or T5, which have already been trained on extensive 

corpora of text. These models are then fine-tuned for specific tasks, such as multi-document 

summarisation (MDS) (Devlin et al., 2019; Liu et al., 2019; Raffel et al., 2020). 

 

Transfer learning is useful because these pre-trained models already come with a rich 

understanding of language nuances, including syntax, semantics, and context, which 

significantly enhances the performance of downstream tasks. For instance, BERT (Bidirectional 

Encoder Representations from Transformers) uses a bidirectional approach to understand the 

context of a word based on all of its surroundings, both left and right (Devlin et al., 2019). This 

deep contextual understanding helps in generating more accurate and coherent summaries 

when the model is fine-tuned on specific summarisation tasks. 

 

RoBERTa (Robustly Optimized BERT Pretraining Approach) builds on BERT by optimising its 

training procedure, using more data and computational resources to improve performance (Liu 

et al., 2019). This enhancement allows RoBERTa to achieve better results in various NLP tasks, 

including summarisation, by providing a more refined understanding of language structures 

and relationships. 

 

T5 (Text-To-Text Transfer Transformer) takes a different approach by framing all NLP tasks as a 

text-to-text problem (Raffel et al., 2020). This unified framework simplifies the training process 

and allows for more flexibility in applying the model to various tasks, including MDS. T5’s ability 

to handle different tasks under a single framework makes it a powerful tool for generating 

high-quality summaries. 
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Additionally, the application of transfer learning to MDS benefits from the extensive pre-

training of these models, which already includes exposure to diverse text forms and topics. This 

exposure enables the models to generalise better to new, unseen data, producing summaries 

that are not only more accurate but also contextually rich and relevant. 

 

The attention mechanism was introduced in NLP as a part of the neural machine translation 

models to help the model focus on different parts of the input sequence when generating each 

word in the output sequence (Bahdanau, Cho and Bengio, 2016). The concept was inspired by 

the way humans pay selective attention to different parts of the input when processing 

information or making decisions. In the context of MDS, attention mechanisms have been used 

to determine the importance of different parts of the source documents when generating a 

summary. This is important in MDS because the documents often contain redundant 

information, and the goal of the summary is to present the key points concisely without extra 

information. 

 

The attention mechanism works by assigning a weight to each part of the source documents. 

This weight can be determined by the context and the relationship between different parts of 

the documents. For instance, sentences or sections that are referred to frequently in the 

document or that contain key points are likely to be given higher attention weights. 

 

The attention weights are then used to generate a context vector for each part of the summary. 

The context vector is a weighted sum of the source document embeddings, with the weights 

given by the attention mechanism. This context vector effectively represents the parts of the 

source documents that the model should 'pay attention to' when generating each part of the 

summary. See Appendix 1 for a more detailed explanation of the attention mechanism and the 

impact on summarisation. 

 

The use of attention mechanisms has been demonstrated to significantly improve the quality of 

the generated summaries in MDS (Vaswani et al., 2017). By focusing on the important parts of 

the source documents, the attention mechanism helps the model manage the complexity and 

redundancy of the information, leading to more concise and coherent summaries. 

 

It is worth noting, however, that while attention mechanisms have proven beneficial in MDS, 

there are still challenges to be addressed. One of the main challenges is determining the 

optimal way to assign attention weights in the context of MDS. This remains an area of ongoing 
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research, with new techniques and approaches being developed to further improve the 

effectiveness of attention mechanisms in MDS. 

 

Graph-based methods are a set of techniques that represent documents as graphs. Each node 

in the graph represents a sentence or a paragraph, and the edges denote the semantic 

relationship between them. Algorithms like PageRank can then be applied to these graphs to 

identify the most important nodes (i.e., the most important sentences or paragraphs) for 

inclusion in the summary (Erkan and Radev, 2004). Graph-based methods provide a useful way 

to visualise and manage the relationships between different parts of the source documents. 

 

Domain adaptation involves adjusting a model that has been trained on one domain (or type 

of data) to perform well on a different, but related, domain. This technique is particularly 

relevant in MDS, where a model may need to summarise documents from various fields of 

study or topics. Domain adaptation methods can be used to fine-tune pre-trained models to 

better understand the specific language, concepts, and structures used in different domains, 

thereby improving the quality of the generated summaries (Gururangan et al., 2020). 

 

2.7.1 Review of Studies Applying These Techniques in MDS 

As the wider domain of Natural Language Processing (NLP) has developed, the way that 

emerging techniques are applied in multi-document summarisation (MDS) has seen increased 

research attention. This section focuses on studies that have used transfer learning, attention 

mechanisms, graph-based methods, and domain adaptation in the context of MDS. 

 

2.7.1.1 Transfer Learning in MDS 

Transfer learning has revolutionised the application of deep learning models in NLP, and MDS 

has been no exception to this trend. With the release of transformer-based models, which have 

achieved state-of-the-art results across a wide range of NLP tasks, their application in MDS has 

been a natural extension. 

 

Foundations of Transfer Learning 

The fundamental principle behind transfer learning is not new. It derived from the cognitive 

sciences, where the idea is that learning in one context or task can be beneficial for 

performance in another context or task (this can be observed in our day to day lives- in the 

development of transferable skills). In the machine learning landscape, Pan and Yang (2009) 

provided an extensive overview of transfer learning, describing its significance in scenarios 
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where the target task has limited labelled data. The point is to leverage knowledge from a 

source task, where ample data might exist, and adapt it for the target task. 

Consider the scenario of transferring sentiment analysis capabilities from product reviews to 

film reviews. In this case, a model trained on a large dataset of e-commerce product reviews 

serves as the starting point, having learnt to classify text as positive, negative or neutral. This 

source task provides the model with a robust understanding of sentiment-related vocabulary 

and sentence structures. To adapt this knowledge to the target task of analysing film reviews, 

the model undergoes fine-tuning using a limited set of labelled film reviews. During this 

process, the model adjusts its understanding to the new domain, learning film-specific 

vocabulary (e.g., "Oscar-worthy", "plot twist") and adapting to the different writing styles 

typically found in cinema critiques. The model leverages its foundational knowledge of 

sentiment analysis from product reviews, allowing it to quickly adapt to the nuances of film 

reviews without requiring a large, domain-specific dataset. This transfer of knowledge enables 

the creation of an effective film review sentiment analyser with significantly less labelled data 

than would be needed to train a model from scratch. 

 

2.7.1.2 Transformers and Pre-trained Models 

The domain of NLP changed with the development of transformer architectures. Vaswani et al. 

(2017) introduced the Transformer model, which applied self-attention mechanisms to process 

input data in parallel, instead of the sequential processing in previous models like RNNs and 

LSTMs (lack of attention, up until this point, had been a major disadvantage of the LSTM model 

which had been an original focus for the development of this work). The Transformer's 

architecture was particularly applicable to the task of language modelling, leading to the 

development of several large-scale pre-trained models. 

 

BERT (Bidirectional Encoder Representations from Transformers) by Devlin et al. (2018) was 

one of the first transformer-based models that showcased the power of pre-training on vast 

corpora. BERT's design allowed it to understand context from both the left and right side of a 

token in any input sentence, making it particularly robust for many NLP tasks. 

 

This robustness of BERT was explored for MDS. Liu et al. (2019) harnessed the capabilities of 

BERT for extractive summarisation. The model, after being pre-trained on a large corpus, was 

fine-tuned on the task of selecting relevant sentences from multiple documents. The results 

showed the ability of the model to discern relevant information across documents, capturing 

the essence required for a concise summary. 
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RoBERTa, proposed by Liu et al. (2019), further built upon BERT by refining the pre-training 

process. It demonstrated that with more data, larger batch sizes, and longer training, the 

performance across various NLP tasks, including MDS, could be enhanced. Several works have 

since fine-tuned RoBERTa for MDS, noting a marked improvement in the quality of generated 

summaries. 

 

Another noteworthy model in this domain is T5 (Text-to-Text Transfer Transformer) by Raffel et 

al. (2019). Instead of designing a model specifically for each NLP task, T5 was designed to treat 

every problem as a text-to-text problem. Summarisation, translation, question-answering, and 

even classification can be framed in this paradigm. For MDS, researchers fine-tuned T5 to 

generate concise summaries from multiple input documents, benefiting from the vast 

knowledge the model gained during its pre-training phase. 

 

Benefits and Challenges in MDS 

The primary benefit of using transfer learning, especially with transformer-based models, in 

MDS is the ability to leverage vast linguistic knowledge without the need for extensive labelled 

data in the summarisation task. This is particularly useful, given that creating labelled datasets 

for summarisation can be laborious and resource intensive. Indeed in some domains that data 

may simply not exist. 

 

However, transfer learning in MDS is not without its challenges. One of the key concerns is the 

domain discrepancy. A model pre-trained on a general corpus might not capture the nuances 

of specific domains, such as medical or legal documents. While fine-tuning can address this to 

some extent, it still requires access to domain-specific data. 

 

Moreover, there is the computational challenge. Models like BERT and RoBERTa have hundreds 

of millions of parameters. Fine-tuning them requires substantial computational resources. 

While this might be feasible for large research institutions or corporations, it could be a barrier 

for individual researchers or smaller organisations. In this work, the author has been fortunate 

enough to have access to large-scale HPC (High Performance Computing) GPU resource both at 

his workplace and through the UK national JADE-2 and Bede research facilities. 

 

Transfer learning, reinforced by the advent of transformer architectures, has provided a 

significant avenue for advancements in MDS. The ability to harness vast linguistic knowledge, 
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captured by models pre-trained on extensive corpora, and apply it to the summarisation task 

has been a game-changer. However, as with any technique, it is important to be mindful of its 

challenges and limitations. Future research will potentially continue to refine these 

approaches, making them even more effective and accessible for MDS. 

 

2.7.1.3 Attention Mechanisms in MDS 

The attention mechanism is probably one of the most influential advancements in recent NLP 

research. Originating in the domain of neural machine translation, attention sought to address 

the problem of long-sequence translations, enabling the model to "focus" on different parts of 

the input when generating the output. Its application to multi-document summarisation (MDS) 

has developed new methods to generate more coherent and contextually relevant summaries. 

 

Origins and Evolution of Attention Mechanism 

The initial idea of attention was introduced by Bahdanau et al. (2014) in the context of neural 

machine translation. Their model dynamically focused on different portions of the input 

sequence when producing the translation, so overcoming limitations of fixed-length context 

vectors that were used in earlier sequence-to-sequence models. 

 

Figure 2: Attention Mechanism 

Figure 2 (above) illustrates the key difference in attention mechanisms between LSTMs and 

Transformers. In LSTMs, represented by the pink circles, attention is limited and sequential. The 

current state (t) can only directly attend to the immediate previous state (t-1), as shown by the 

green curved line. Information from earlier states must pass through intermediary states, 

potentially losing information. In contrast, Transformers, depicted by blue circles, employ a 

more comprehensive attention mechanism. The multiple green lines connecting all states in 

the Transformer model represent its ability to attend directly to all parts of the input sequence 

simultaneously. This parallel processing allows Transformers to capture both short-term and 
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long-term dependencies more effectively, enabling them to maintain context over longer 

sequences and process information more efficiently than LSTMs. 

 

Building upon this, Vaswani et al. (2017) introduced the Transformer architecture (described 

earlier), which was wholly based on self-attention mechanisms. Instead of relying on recurrent 

or convolutional layers, the Transformer used stacked self-attention layers to process input 

data, making it highly parallelisable and efficient. This architectural choice was foundational for 

many subsequent models in NLP, including those applied to MDS. 

 

 

Figure 3: Stacked Attention Layers 

 

As illustrated in the diagram above (figure 3), the process begins with an input sequence 

passing through multiple self-attention layers. Each layer calculates attention scores for every 

element in the sequence relative to all others, updating representations accordingly. This 

stacked structure allows the model to build increasingly abstract and complex representations 

of the input data. Unlike recurrent neural networks, all elements in a sequence can be 

processed in parallel within each layer, significantly improving computational efficiency. The 

arrows between layers represent information flow, with each element in a layer having access 

to all elements from the previous layer, enabling the capture of both local and global 

dependencies. This architecture can be scaled by adding more layers, allowing for deeper and 

more powerful models. The success of this stacked self-attention structure has led to its 

widespread adoption and adaptation in subsequent models. 
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Application to MDS 

Given the ability of attention mechanisms to weigh the importance of different parts of the 

input data, it was a logical step to apply this to MDS, where the challenge lies in extracting 

salient information from multiple documents. 

 

Zhou et al. (2018) made significant strides in this direction. Their model leveraged the 

Transformer's self-attention mechanism to weigh the relevance of sections across multiple 

documents. An essential aspect of their approach was the ability to capture cross-document 

relationships. This was required in those cases where documents had overlapping or 

complementary information. By effectively weighing these relationships, the model could 

generate summaries that were not just extracts of individual documents but a coherent fusion 

of information from all sources. 

 

Zhang et al. (2019) took a novel approach by integrating the attention mechanism with 

reinforcement learning. In traditional extractive summarisation, the focus is on selecting the 

most relevant sentences. Zhang and colleagues added an additional layer of sophistication by 

also considering the sequence in which these sentences were presented in the summary. By 

doing so, their model could produce summaries that were not only information-rich but also 

had a logical flow, improving readability and comprehension. 

 

The role of attention in handing redundancy 

A unique challenge in MDS is the presence of redundant information. When multiple 

documents discuss similar topics or events, there's a high likelihood of repeated information. 

The attention mechanism, with its ability to weigh the importance of different sections, plays a 

pivotal role here. Models can assign lower weights to repeated or overlapping information, 

ensuring that the final summary is concise and devoid of unnecessary repetition. 

 

Challenges and Future Directions 

While the attention mechanism has significantly advanced the field of MDS, it is not without 

challenges. One of the main concerns is the interpretability of attention weights. While these 

weights provide a measure of importance, understanding why a model assigns a particular 

weight remains a complex task. Efforts towards making attention mechanisms more 

interpretable will be very important as these models find more real-world applications. 

Moreover, as the length, complexity and volume of documents increase, there's a growing 

need to develop more efficient and scalable attention mechanisms. Current models, especially 
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those based on the Transformer architecture, can be computationally intensive, posing 

challenges for real-time applications. 

 

2.7.1.4 Graph-based Methods in MDS 

Graph-based methods, which model documents as interconnected structures, present a 

compelling approach to multi-document summarisation (MDS). By representing documents as 

nodes within a graph and determining the relationships between these nodes based on 

content similarity, these methods offer a structured way to identify and extract pertinent 

information. 

 

Foundations of Graph-based Approaches 

The use of graph representations in MDS derives from the way information in documents is 

interrelated. Each node in the graph represents a sentence or a segment of text, and the edges 

(or connections) between these nodes indicate the degree of similarity or relatedness. The 

strength of these connections is typically determined using measures of semantic or content-

based similarity. 

 

Figure 4: Graph based sentence relationships 
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This graph (figure 4) representation allows algorithms like LexRank or TextRank to calculate the 

centrality or importance of each sentence based on its connections to other sentences. 

Sentences with more and stronger connections (like the sentences “Climate change is causing 

global temperatures to rise” and “Greenhouse gas emissions are the primary driver of global 

warming” in this example) would likely be considered more important for the summary. In 

graph-based approaches to multi-document summarisation, sentences are represented as 

nodes in a graph structure, with edges between nodes indicating the relationships or 

similarities between sentences. These relationships are typically described using vector 

representations of the sentences, often derived from techniques like word embeddings or 

sentence encoders. The strength of the connection between two sentences (represented by 

the weight of the edge connecting their corresponding nodes – the number on the line in the 

example above) is usually determined by the cosine similarity or another similarity measure 

between their vector representations. This graph structure allows for the capturing of complex 

inter-sentence relationships across multiple documents, enabling algorithms to identify central 

or important sentences based on their connections within the broader context of the entire 

document set. 

This approach helps identify key themes and central ideas across multiple documents on the 

same topic, making it effective for multi-document summarisation tasks. 

 

Integration with Neural Methods 

While the initial graph-based methods for MDS were not deep learning-based, the surge in 

neural network applications in NLP soon led to their integration with graph-based techniques. 

The idea was to combine the structured representation of graph-based methods with the 

powerful feature extraction capabilities of neural networks. Yasunaga et al. (2017) 

demonstrated a noteable integration of these two paradigms. Their model combined graph 

representations with recurrent neural networks (RNNs). At each iteration, the RNN updated the 

node (sentence) representations in the graph based on the information from its neighbours. 

This iterative process allowed the model to refine its understanding of each sentence's context, 

resulting in more accurate and coherent summaries. 

Another significant advantage of this integration was the ability to handle large-scale 

document collections. Neural networks could efficiently process and update node 

representations, making it feasible to summarise extensive document sets. 
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Benefits and Challenges 

Graph-based methods offer several benefits in MDS. They provide a structured way to analyse 

and summarise documents, ensuring that the extracted information is contextually relevant. 

The integration with neural methods further enhances their capability by enabling them to 

handle larger datasets and capture more intricate patterns in the data. 

However, challenges remain. Determining the optimal graph structure and edge weights can be 

complex, especially when dealing with diverse document sets. Moreover, while neural 

integrations offer scalability, they also introduce significant computational overheads, 

especially with large graphs. 

 

2.7.1.5 Domain Adaptation in MDS 

Domain adaptation, within the scope of multi-document summarisation (MDS), addresses the 

challenges arising from the variability and diversity of document sources. Given that 

documents can span a wide range of topics, styles, and structures—from academic research 

papers to casual blog posts—the task of creating a summarisation model that works effectively 

across these domains presents a considerable challenge. 

 

Understanding Domain Adaptation 

Domain adaptation deals with the transfer of knowledge from a source domain, where lots of 

data is available, to a target domain, where data might be limited or inherently different. The 

primary goal is to use the knowledge acquired in the source domain to achieve better 

performance in the target domain, despite the differences between the two. Chu and Wang 

(2018) provide a comprehensive survey of domain adaptation techniques in the context of 

neural models for machine translation. Their work describes various strategies for adapting 

models, particularly when labelled data in the target domain is scarce. For MDS, this is 

especially pertinent. For instance, while lots of data might exist for summarising news articles, 

there may be limited data available for summarising specialised scientific papers. The 

techniques discussed by Chu and Wang suggest a framework to use what data is available to 

bridge this gap. 

 

Multi-task Learning and Domain Adaptation 

One of the more recent and promising approaches to domain adaptation is multi-task learning. 

The underlying idea is that by training a model on multiple tasks simultaneously, it can learn 

representations that are more general and less biased towards any single task. Raffel et al. 

(2020) made significant developments in this direction with the T5 (Text-to-Text Transfer 
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Transformer) model. T5 was trained on a large range of NLP tasks, including summarisation, 

translation, classification, and question answering, all contextualised as text-to-text problems. 

This unified approach allowed the model to learn rich, versatile representations that proved 

beneficial for various domain-specific tasks, including for MDS. When applied to summarisation 

tasks, T5 showed adaptability across different document domains, often requiring minimal 

fine-tuning. The performance of the model on MDS tasks showed the potential of multi-task 

learning in enhancing domain adaptation, particularly in scenarios where target domain data 

might be limited. 

 

Implications for MDS 

The introduction of domain adaptation techniques to MDS has made significant improvements 

to what is possible. As the volume and variety of digital content continue to grow, the ability to 

summarise content from diverse domains becomes increasingly important. Domain adaptation 

ensures that MDS models remain versatile and effective, regardless of the source of the 

documents. Furthermore, as MDS finds more real-world applications - from supporting 

researchers in literature reviews to helping journalists sift through enormous amounts of 

information - the importance of domain adaptation will only grow. By ensuring that 

summarisation models are adaptable and resilient to domain shifts, the quality and utility of 

generated summaries can be maintained. 
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2.8 Choosing and preparing data for MDS 

2.8.1 Importance of dataset selection for MDS 

Dataset selection is a key element of any machine learning or Natural Language Processing 

(NLP) task, but it has particular significance for multi-document summarisation (MDS). The 

quality, diversity, and representativeness of the dataset can significantly influence the success 

of summarisation models, demonstrating the critical importance of thorough consideration in 

dataset selection for MDS. 

 

Variety and Complexity 

The landscape of potential documents is enormous. From news articles and blogs discussing 

current events to intricate scientific papers delineating the latest research, each document 

type presents unique challenges and nuances. 

News Articles: These documents are often time-sensitive, centred on current events, and can 

vary significantly in depth and perspective. While some articles provide a succinct account of 

events, others (and the source of the news article is important, consider the difference in style 

between a tabloid newspaper and a news agency) dive deeper, offering analyses or multiple 

viewpoints. Summarising these articles requires models to discern central events from ancillary 

details and potentially synthesise diverse viewpoints. As noted by Fabbri et al. (2019), news 

articles present unique challenges due to their temporal nature and the need to capture 

multiple perspectives. 

Scientific Papers: These documents are typically dense, filled with domain-specific jargon, and 

structured to separate background information, methodologies, results, and conclusions. 

Summarising these documents demands a keen understanding of this structure and the ability 

to extract key findings without distorting their meaning. Cohan and Goharian (2015) 

highlighted the importance of considering citation contexts and discourse structure when 

summarising scientific articles. 

Legal Documents: Characterised by formal language and stringent structures, legal documents 

like contracts or court rulings can be particularly challenging. Extracting the essence without 

misrepresenting legal clauses is therefore essential. Bhattacharya et al. (2019) discussed the 

unique challenges in summarising legal documents, emphasising the need for domain-specific 

approaches. 

Literary Works: Fictional works, whether novels or short stories, present a different challenge. 

Here, the problem is not just about events but also themes, character developments, and 

narrative styles. As explored by Kazantseva and Szpakowicz (2010), summarising literary texts 

requires consideration of narrative structure and thematic elements. 
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Given this set of scenarios, choosing datasets that encompass this complexity and diversity 

becomes essential. For a model to be robust and adaptable in real-world scenarios, it needs 

exposure to varied document types during training, ensuring that it configured to handle 

diverse MDS tasks. 

 

2.8.1.1 Domain-Specific Considerations 

The need for domain specificity in MDS is therefore of paramount importance. Consider the 

difference between medical research papers and financial reports. While both are formal and 

structured, the former is full of medical terminologies, patient data, and experimental results, 

whereas the latter is full of economic indicators, financial jargon, and market analyses. 

 

For MDS models to be effective then, they must be trained on domain-specific datasets that 

capture these nuances. A model trained predominantly on news articles might pe less 

performant when summarising a detailed medical study. On the other hand, a model well-

trained in financial terminologies might misinterpret literary themes. Therefore, ensuring that 

the selected dataset aligns with the intended application domain of the MDS model is of 

critical importance. In the development of SciBERT as discussed earlier, Beltagy, Lo and Cohan 

(2019) demonstrated the importance of domain-specific language models for scientific text, 

showing the need for specialised datasets in technical domains. 

 

Bias and Ethical Considerations 

Dataset selection is not just a technical problem; it is also an ethical one. The data chosen to 

train models can inadvertently introduce biases, leading to skewed or prejudiced summaries. 

Potential issues with dataset bias are as follows: 

1. Representation Bias: If a dataset predominantly contains articles from a particular 

region or represents a specific demographic, the resultant model might be biased 

towards that group's perspective, sidelining other voices. Mehrabi et al. (2021) give a 

comprehensive survey of bias and fairness in machine learning, showing the 

importance of having diverse and representative datasets. 

2. Content Bias: Relying heavily on datasets with a particular stance (e.g., political or 

philosophical) can lead to models that echo that stance, reducing objectivity. As 

discussed by Olteanu et al. (2019), data collection strategies can significantly impact 

the biases present in datasets and, consequently, in the models trained on them. 
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3. Temporal Bias: Using outdated datasets might result in models that may not recognise 

contemporary terminologies or themes, reducing their effectiveness in current 

scenarios. Huang and Paul (2018) explored the impact of temporal effects on text 

classification, again showing the need for datasets that reflect current language and 

terminology usage. 

 

2.8.2 Techniques for data pre-processing and formatting 

Data pre-processing and formatting play a very important role in the success of multi-

document summarisation (MDS) models. Before delving into model training, it's essential to 

ensure that the textual data is clean, structured, and represented in a way that maximises the 

model's understanding. Some of the main techniques involved in this preparatory phase are 

described below: 

 

2.8.2.1 Text Cleaning 

Textual data, especially when sourced from the web or user-generated platforms, can be 

messy. It may contain redundant or irrelevant information, errors, or inconsistencies that can 

hinder the performance of the model. 

 

Removing Stop Words: Stop words like "and", "the", "is", etc., are frequent in text but often do 

not always have a lot of meaning in the context of MDS. Removing these can help reduce the 

dimensionality of the data without sacrificing important information. For instance, in the 

sentence "The cat sat on the mat", words like "the" and "on" can be omitted without 

compromising the primary message. 

 

Punctuation Removal: Depending on the application, punctuations might not be necessary. For 

certain NLP tasks, removing punctuation can simplify the text and enhance processing speed. 

 

Stemming and Lemmatisation: Both these techniques reduce words to their base or root form. 

For instance, "running", "runner", and "ran" might be reduced to the base "run". While 

stemming does this by heuristic chopping of word ends, lemmatisation uses vocabulary and 

morphological analysis.  

Heuristic chopping is the process of reducing words down to their basic form by applying a set 

of predefined rules and heuristics. It involves removing common suffixes and prefixes based on 

patterns observed in the language, without considering the specific linguistic properties of the 

word or its context within a sentence. The intention is to simplify words to their stem, which 
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can help in a range of natural language processing (NLP) tasks by reducing the number of 

unique terms and focusing on the core meaning of words. For example, in English, heuristic 

chopping might involve rules such as: 

• Removing common suffixes like "ing", "ed", "es", "s" (e.g., "running" becomes "run", 

"played" becomes "play"). 

• Trimming off prefixes like "un", "re", "in" (e.g., "unhappy" becomes "happy", "redo" 

becomes "do"). 

 

This process is called "heuristic" because it relies on general rules derived from experience and 

patterns rather than a deep linguistic analysis. It is often fast and computationally inexpensive 

but can be less accurate than more sophisticated methods. 

In contrast, lemmatisation is a more advanced technique that reduces words to their base or 

dictionary form, known as a "lemma." Lemmatisation involves the use of vocabulary and 

morphological analysis to accurately identify the base form of a word based on its context and 

part of speech. This process requires a comprehensive understanding of the language, 

including its grammar and syntax. 

For instance, the word "better" would be reduced to "good" by lemmatisation, considering its 

comparative form, whereas stemming might not handle this irregularity correctly. Similarly, 

"running" would be lemmatised to "run" by recognising it as a verb in its present participle 

form. 

 

These normalisation processes help to treat different forms of a word as a single entity, 

improving model consistency. For example, the NLTK (Loper and Bird, 2002) and spaCy 

(Honnibal and Montani, 2017) libraries in Python provides both stemming and lemmatisation 

utilities for this purpose, amongst other standard NLP text cleaning routines such as case 

normalisation. 

 

2.8.2.2 Segmentation and Tokenisation 

Segmenting and tokenising are basic steps in converting raw text into structured data 

amenable to processing. 

Sentence Segmentation: This involves breaking down a document into individual sentences. 

Tools like the Python Natural Language Toolkit (NLTK) or the Python library ‘spaCy’ can achieve 

this using pre-trained machine learning models and other computational techniques. 

Tokenisation: Post-segmentation, sentences are further broken down into tokens, typically 

words, but in modern Large Language Models tokens are often smaller parts of speech. For the 
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sentence "Cats chase mice", tokenisation would yield ["Cats", "chase", "mice"]. Tokenisation 

not only helps to structure the data but is also a precursor step to more advanced pre-

processing steps like embedding generation. 

  

2.8.2.3 Feature Engineering 

Turning raw text into a format that machine learning models can understand is often achieved 

through feature engineering. Together with TF-IDF (described earlier), other commonly used 

feature engineering processes are: 

 

Word Embeddings: These are dense vector representations of words that capture their 

semantic meaning. Models such as Word2Vec (Mikolov et al., 2013) or GloVe (Pennington, 

Socher and Manning, 2014) convert words into vectors based on their context within large 

corpora, resulting in semantically similar words having close vector representations. For 

instance, the vectors for "king" and "queen" might be closer than those for "king" and "apple", 

reflecting their semantic similarity. 

 

Handling Multilingual Data: As global data increases, the need to process documents in 

multiple languages becomes increasingly important. Particularly with reference to the focus of 

this research (multi-document summarisation of scientific papers- in English), it is appreciated 

that knowledge exists in other languages and other cultures although that is not a focus for this 

study. 
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2.8.3 Quality and characteristics of suitable datasets for MDS 

The quality and nature of the datasets used in multi-document summarisation (MDS) are very 

important elements that can determine the ultimate effectiveness of summarisation models. 

Some of the issues that impact dataset selection form MDS are discussed below: 

 

2.8.3.1 Size and Representativeness 

Dataset size and diversity are instrumental in shaping the robustness and versatility of MDS 

models. 

 

Dataset Size: The benefits of large datasets in machine learning are well documented. A 

comprehensive dataset offers diverse examples, allowing models to discern intricate patterns. 

Banko and Brill (2001) provide a thorough examination of this, illustrating that model 

performance often improves with increased data, especially for tasks with high variability like 

MDS. 

 

Representativeness: Beyond sheer volume, the representativeness of a dataset - its ability to 

mirror real-world scenarios - is of great importance. For instance, if an MDS model is designed 

for summarising academic papers across disciplines, a dataset restricted to physics articles 

would be insufficient. This imbalance can lead to models that are overly specialised and lack 

versatility. 

 

Real-world Application: In practice, datasets that are both large and representative are ideal. 

For instance, summarising news articles from diverse global sources would necessitate a 

dataset that covers varied topics, regions, and writing styles. Such diversity ensures that the 

model is equipped to handle real-world summarisation tasks effectively. 

 

2.8.3.2 Annotation Quality 

Annotated data plays a very important role in supervised learning, serving as the core method 

for model training. 

 

Importance of Quality Annotations: The accuracy and consistency of annotations directly 

influence model performance. Anglin, Boguslav and Hall (2022) provide a thorough 

examination of this, highlighting the pitfalls of poor annotations and the resultant challenges in 

model training and evaluation. Their work emphasises that high-quality annotations are critical 



 

91 

 

for developing robust and reliable machine learning models, as inaccuracies in the training data 

can lead to errors in model predictions and evaluations. 

 

Challenges in Annotation: Acquiring quality annotations is a substantial effort. While 

crowdsourcing platforms like Amazon's Mechanical Turk offer scalable annotation solutions, 

they often necessitate rigorous post-annotation quality checks. For domain-specific tasks, 

expert annotators are indispensable, which can escalate costs and time commitments. These 

challenges are compounded by the need for consistent and accurate annotations across 

potentially large datasets. 

 

Potential Solutions: Active learning, where models are initially trained on a small set of 

annotated data and then iteratively improved using their own predictions, can alleviate some 

annotation challenges. Such approaches, however, require careful monitoring to prevent 

model drift. This iterative process helps to optimise the annotation effort by focusing on the 

most informative examples, thereby improving the efficiency and effectiveness of the model 

training process. 

 

2.8.3.2 Accessibility and Privacy Concerns 

As data becomes the new oil (or perhaps the new renewable energy, might be a better 

analogy), its acquisition and usage come alongside significant new challenges and 

responsibilities. 

 

Data Accessibility: While vast quantities of data are available online, acquiring them in usable 

formats can be challenging. Many valuable data sources, such as academic journals, are behind 

paywalls or have other IP (intellectual property) protection; data is just not all ‘free’. Even 

open-access sources can pose challenges, with anti-scraping mechanisms in place. 

 

Privacy Concerns: The ethical and legal dimensions of data usage are gaining prominence. 

Regulations like GDPR underscore the importance of user consent and data anonymisation. But 

as Narayanan and Shmatikov (2008) point out, true anonymisation is challenging, and there is 

always a risk of de-anonymising data, so leading to privacy breaches. They demonstrated that 

supposedly anonymised datasets could often be de-anonymised, revealing the identities of 

individuals in the data. This study highlights the challenges of true anonymisation, showing 

that even when direct identifiers are removed, other indirect data points can be used to re-
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identify individuals. 

 

Implications for MDS: Given these constraints, MDS researchers need to tread carefully. Using 

proprietary or private data without requisite permissions can lead to legal complications and 

damage the credibility of the research. 

 

2.8.3.3 Benchmark Datasets 

Benchmark datasets serve as the gold standard, offering a consistent platform for model 

comparison and validation. Some of the datasets used in initial work in this domain are 

discussed below. As this is a rapidly emerging field, additional datasets suitable for MDS of 

scientific papers are further discussed in chapter 3. 

 

DUC and TAC: Over the past several years, these conferences have set the benchmark (literally) 

for MDS research. The datasets released cater to varied MDS challenges, ranging from topic-

focused summarisation to cross-document analysis. Dang's (2006) overview of DUC provides 

insights into the evolution of these challenges and the significance of the dataset. 

 

CNN/Daily Mail Dataset: This dataset, with its real-world news articles, has become a standard 

in MDS research. Hermann's et al. (2015) introduction of this dataset marked a move towards 

more realistic summarisation tasks, moving away from artificially curated texts. 

 

PubMed: The medical domain, with its vast repository of research articles, presents unique 

challenges for MDS. Lu (2011) explored these challenges, demonstrating the nuances of 

medical text summarisation and the importance of domain-specific datasets like PubMed. 
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2.9 Choice of evaluation metrics: assessing summarisation quality 

As MDS models will attempt to distil large amounts of information into concise, coherent, and 

informative summaries, assessing the quality of the summaries is very important, ensuring that 

the essence of the original content is retained and conveyed. Without a robust evaluation 

mechanism, it becomes challenging to ascertain the effectiveness of an MDS model and, 

consequently, its applicability in real-world scenarios (Nenkova and McKeown, 2012). 

 

However, the evaluation of text summaries itself presents a unique set of challenges. Unlike 

tasks with clear right or wrong answers, the subjectivity of summarisation means that multiple 

summaries might be equally valid for a given set of documents (and for different readers). This 

variability, combined with the nuances of language and the many ways information can be 

conveyed, makes the evaluation of summaries complex (C. Lin, 2004). The goal, therefore, is to 

strike a balance, using metrics and methodologies that capture both the objective and 

subjective aspects of summarisation quality. 

 

2.9.1 Automated Metrics 

In this field, the need for consistent, scalable, and rapid evaluation has driven the development 

and popularity of automated metrics. These metrics, often derived from quantifiable linguistic 

comparisons, provide researchers with objective tools to gauge model performance against 

benchmarks. 

 

Two of the most prominently utilised metrics (each with their own family of sub metrics) in the 

domain of summarisation are ROUGE (Recall-Oriented Understudy for Gisting Evaluation) and 

BLEU (Bilingual Evaluation Understudy). 

 

ROUGE: Introduced by Lin (2004), ROUGE primarily focuses on recall, evaluating the extent to 

which elements (like n-grams, word sequences, and word pairs) in the reference summaries are 

captured by the generated summary. Variants such as ROUGE-N (n-gram recall), ROUGE-L 

(longest common subsequence), and ROUGE-S (skip-bigram) offer different granularities of 

evaluation. 

 

BLEU: Originally designed for machine translation by Papineni et al. (2002), BLEU evaluates the 

precision of the generated text compared to one or more reference texts. It examines the co-

occurrence of n-grams in the generated text with those in the reference texts. Despite its origin 

in translation, its applicability has been extended to summarisation tasks. 
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This short example demonstrates ROUGE, BLEU, Precision, Recall, and F1 score. It uses a simple 

original text and a summary, then calculates these metrics. 

 

Original Text: 

"The quick brown fox jumps over the lazy dog. The dog was too tired to chase the fox. 

Meanwhile, a cat watched from a nearby tree." 

 

Summary: 

"A fox jumps over a dog. A cat watches." 

 

Calculating the metrics: 

ROUGE-1 (unigram overlap): 

Precision = (overlapping words) / (total words in summary) = 6 / 8 = 0.75 

Recall = (overlapping words) / (total words in original text) = 6 / 19 = 0.316 

F1 = 2 * (Precision * Recall) / (Precision + Recall) = 2 * (0.75 * 0.316) / (0.75 + 0.316) ≈ 0.444 

 

BLEU (using unigrams only for simplicity): 

Precision = (overlapping words) / (total words in summary) = 6 / 8 = 0.75 

BLEU Score = Precision * Brevity Penalty = 0.75 

(Assuming no brevity penalty for this short example) 

 

Precision, Recall, and F1 Score: (Using word overlap as a simple metric) 

Precision = (overlapping words) / (total words in summary) = 6 / 8 = 0.75 

Recall = (overlapping words) / (total words in original text) = 6 / 19 = 0.316 

F1 = 2 * (Precision * Recall) / (Precision + Recall) = 2 * (0.75 * 0.316) / (0.75 + 0.316) ≈ 0.444 

 

Interpretation: 

1. ROUGE-1: The F1 score of 0.444 indicates a moderate overlap between the summary 

and the original text at the unigram level. 

2. BLEU: The score of 0.75 suggests a good precision of the summary words, but it 

doesn't account for recall. 

3. Precision, Recall, and F1: 

• The high precision (0.75) indicates that most words in the summary are 

relevant. 
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• The lower recall (0.316) shows that the summary doesn't capture all the 

information from the original text. 

• The F1 score (0.444) balances precision and recall, giving an overall measure of 

the summary's quality. 

 

 

Both ROUGE and BLEU have been widely adopted in the research community due to their 

computational efficiency and ease of use. Their deterministic nature ensures consistent results, 

making them valuable for tracking model improvements and comparing different approaches. 

 

2.9.2 Strengths and Limitations of Automated Metrics 

2.9.2.1 Strengths 

Scalability: Automated metrics can rapidly evaluate large quantities of text, a feat challenging 

for human evaluators. This scalability is especially vital given the ever-growing datasets in NLP. 

Consistency: While human judgement can be influenced by numerous factors, automated 

metrics ensure consistent evaluations across different models and datasets, making them 

indispensable for comparative studies (Nenkova and McKeown, 2012). 

Ease of Use: Most automated metrics, given their algorithmic nature, are straightforward to 

implement and integrate into research pipelines. 

 

2.9.2.2 Limitations 

Potential Misalignment with Human Judgement: While metrics like ROUGE and BLEU provide 

quantitative evaluations, they might not always align with human perceptions of quality. For 

instance, a summary could achieve a high BLEU score by replicating sentences from the source 

but might lack coherence or novelty when assessed by human evaluators. Callison-Burch, 

Osborne and Koehn (2006) discuss the limitations of BLEU in evaluating translation quality, 

showing that optimizing for BLEU does not necessarily result in better translations according to 

human judgment. This discrepancy underscores the need for evaluation metrics that better 

capture the nuances of human language understanding (Callison-Burch, Osborne and Koehn, 

2006). 

 

Granularity: Automated metrics, particularly when focusing on n-gram overlaps, might not 

capture the nuances and richness of language. They can sometimes overlook the semantic 

essence of summaries, prioritising matches based on syntax. This limitation is important to 

note because a good summary should not only match the source text in terms of word usage 
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but also convey the underlying meaning effectively. For example, the nuances of medical 

literature summarisation are often lost in simple n-gram matching metrics, necessitating more 

sophisticated evaluation methods that account for deeper semantic understanding (L. L. Wang 

et al., 2023). 

 

Specificity: While automated metrics provide a general measure of summary quality, they 

might not cater to domain-specific requirements or the unique characteristics of certain 

summarisation tasks. Louis and Nenkova (2009) emphasised that standard metrics may fail to 

capture the full spectrum of quality aspects relevant to different domains. They suggested that 

for fields such as biomedical research, metrics must be tailored to reflect the specific needs 

and challenges of summarising scientific literature, such as handling contradicting evidence 

and synthesising comprehensive reviews from multiple sources (Louis and Nenkova, 2009). 

 

2.9.3 Choosing the Right Metric: A Research Perspective 

The evaluation of multi-document summarisation (MDS) outcomes is as much a reflection of 

the underlying objectives of the research as it is a technical necessity. The nature of the 

summarisation task often determines the choice of the evaluation metric. For tasks aiming to 

generate abstractive summaries, which may introduce novel phrasings or synthesise 

information across documents, metrics that purely focus on word overlap, such as ROUGE or 

BLEU, may fall short. The depth of abstraction demands a comprehensive evaluation metric 

that can simultaneously assess semantic coherence and novelty (Cohan et al., 2018). 

 

Going further, the subject domain of the summarisation task plays an important role in metric 

selection. For instance, in critical domains like medicine or law, where the precision of 

information and factual accuracy are paramount, metrics that accentuate exact matches or 

domain-specific terminology are particularly relevant. Additionally, when working with 

datasets that are full of stylistic variations or with diverse summary lengths (yet another reason 

to focus on structured scientific papers), it becomes very important to use metrics that 

consider a balance of recall and precision and potentially factor in length variations. 

 

2.9.4 Human Evaluation: The Gold Standard 

Moving beyond automated metrics is the possibility of using human evaluation. Summarisation 

developed for human understanding benefits greatly from a human-centric evaluation 

approach. As Grusky, Naaman and Artzi (2018) point out, human readers have the ability to 
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discern subtleties like readability, coherence, and the overarching 'feel' of a summary, nuances 

that might be missed by automated metrics. 

 

Several methodologies underpin human evaluations. One is to employ pairwise comparisons, 

where evaluators compare two or more summaries, ranking them on perceived (subjective) 

quality. While this approach gives relatively higher quality assessments, it might not give 

explicit quality scores. Alternatively, evaluators could rank multiple summaries in order of 

preference, a strategy that helps to understand the relative standing of different 

summarisation techniques. A more granular mode of evaluation could Likert-scale ratings, 

where evaluators can rate summaries on a set of predetermined criteria, capturing the 

multifaceted nature of summary quality (Mohtarami et al., 2018). 

 

However, human evaluations are not without their challenges. Their subjectivity implies that 

different evaluators may have different opinions on summary quality. Furthermore, the 

scalability of human evaluations is simply not comparable to that of automated metrics. The 

slower pace of human assessment makes it a difficult task to evaluate large datasets or 

summaries from multiple models or techniques. Additionally, consistency remains an elusive 

goal, with repeated evaluations by the same individual sometimes yielding very different 

results, influenced by factors ranging from boredom to evolving perceptions or just a different 

viewpoint on a different day. 

 

The contradiction between automated metrics and human evaluations is a key area of 

discussion in MDS research evaluation. While automated metrics promise scalability and 

consistency, the depth and nuance offered by human evaluations remain unparalleled. As 

chapter 3 will discuss further though, a relatively new methodology called LLM-as-a-judge 

(Zheng et al., 2023) leverages the latest LLMs to emulate an expert in the field to judge 

summary quality. 

 

2.9.5 Comparative studies – automated metrics compared to human judgement 

Finding the ideal evaluation metric in multi-document summarisation (MDS) often leads 

researchers down a twin path: the algorithmic rigour of automated metrics and the nuanced 

discernment of human evaluators. The relationship between these modes has been the subject 

of numerous studies, each attempting to unravel the interplay of their relationship. 

 

An important study by Callison-Burch, Osborne and Koehn (2006) investigated machine 



 

98 

 

translation, comparing the BLEU metric with human judgements. The findings, while centred 

on translation, offered insights transferrable to MDS. The study revealed that while BLEU 

scores often correlated with human evaluations, discrepancies arose, particularly when the 

generated text deviated syntactically from the reference yet retained semantic fidelity. Such 

small differences underscore the limitations of automated metrics that rely heavily on surface-

level textual overlaps. 

 

In the specific context of MDS, Liu and Liu (2008) did an extensive study, comparing ROUGE 

scores with human evaluations across multiple datasets. Their findings were interesting. While 

there was a general positive correlation between ROUGE scores and human judgements, the 

strength of this correlation varied across datasets. This variability highlights the challenge of 

seeking a universally applicable automated metric. The study further underscored the fact that 

high ROUGE scores did not necessarily guarantee human-perceived quality, especially in cases 

where summaries, though linguistically coherent, missed pivotal information. 

 

The potential gaps between automated metrics and human evaluations are not just statistical 

discrepancies but often mirror deeper linguistic and cognitive differences. As described further 

by Dang (2006), automated metrics, by their very design, can sometimes reward verbosity or 

penalise succinctness, deviating from human evaluators who might appreciate concise and to-

the-point summaries (and different evaluators might themselves have different preferences). 

Similarly, the granularity of evaluation differs. While human evaluators might judge a summary 

based on its overall coherence, informativeness, and fluency, automated metrics often split 

summaries into n-grams, potentially overlooking the summary's full narrative. 

 

This two-way split between automated and human evaluations has major implications for MDS 

research. It demonstrates the need for a holistic evaluation strategy, one that combines the 

scalability of automated metrics with the depth of human evaluations. The quest for the 

'perfect' evaluation metric, therefore, is not about choosing between humans and algorithms 

but about harnessing the relative strengths of each. 

 

Such an approach, as proposed by Grusky, Naaman and Artzi (2018), involves iterative 

evaluations. Initial evaluations using automated metrics can sift through vast datasets or model 

variants, narrowing down top-performing models. Subsequent in-depth evaluations using 

human evaluators can then fine-tune model selection, ensuring both algorithmic and human-

centric quality. This multi-tiered evaluation strategy, while resource-intensive, promises 
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robustness and depth, guiding the MDS community towards more impactful and human-

aligned research outcomes. 

 

2.10 Chapter Conclusion 

This chapter reviewed key concepts in multi-document summarisation (MDS) of scientific 

literature, tracing its evolution from early extractive methods to modern abstractive 

approaches. It defined fundamental terminology and compared extractive versus abstractive 

techniques, justifying this research's focus on abstractive methods for scientific texts. 

 

The review examined MDS challenges including redundancy management and coherence 

maintenance across sources and discussed applications of pre-trained language models and 

advanced NLP techniques. It addressed dataset selection considerations, evaluation metrics, 

and the specific challenges of summarising scientific papers with their specialized terminology 

and complex concepts. 

 

Key research gaps identified include: limited exploration of pre-trained language models for 

scientific MDS; lack of domain-specific approaches that handle specialised terminology; 

integration challenges with newer hybrid techniques like Retrieval Augmented Generation 

(RAG); and the need for more sophisticated evaluation metrics beyond n-gram matching. 

 

Throughout the review, current gaps and future directions in the field were identified, setting 

the stage for the research questions addressed in this dissertation. The key gaps identified in 

the current literature that will inform the research process include: 

 

1. Limited exploration of pre-trained language models for multi-document 

summarisation: While models like BERT and BART have shown promise in single-

document summarisation, their potential in MDS, particularly for scientific papers, 

remains underexplored. 

2. Lack of domain-specific approaches: There is a need for summarisation techniques 

tailored specifically to scientific literature, which can handle specialised terminology, 

complex concepts, and maintain factual accuracy. 

3. Integration of advanced techniques: The chapter suggests that newer hybrid 

techniques, such as Retrieval Augmented Generation, have not been well-integrated 

into existing MDS frameworks for scientific papers. 
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4. Comprehensive comparative studies: There is a lack of extensive studies that analyse 

the performance of different MDS frameworks against existing approaches, both 

extractive and abstractive, especially in the context of scientific literature. 

5. Evaluation metrics for scientific summarisation: The review indicates a need for more 

sophisticated evaluation metrics that can capture the nuances of summarising 

scientific papers, going beyond simple n-gram matching. 

6. Handling of multi-document complexity: There is room for improvement in techniques 

that effectively manage information redundancy, contradictions, and maintain 

coherence across multiple scientific documents. 

7. Scalability and efficiency: The review suggests that there's a need for more efficient 

methods to handle large-scale summarisation tasks, particularly for extensive 

collections of scientific papers. 

8. Addressing bias and ethical considerations: The chapter highlights the need for more 

research into mitigating biases in summarisation models and datasets, especially when 

dealing with scientific literature from diverse sources. 
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Chapter 3: Modern LLM tools and techniques and their 

applications to Multi Document Summarisation 

 

3.1 Introduction 

As described in earlier chapters, the growing complexity and volume of information being 

produced has necessitated the development of advanced techniques for extracting and 

summarising content across multiple documents. Multi-document summarisation aims to 

condense information from various sources into a cohesive and concise summary, aiding in 

knowledge discovery and decision-making processes. This chapter explores the advancements 

in large language models (LLMs) since 2021, their associated tools and techniques, and their 

application to multi-document summarisation. In terms of LLMs themselves, this chapter will 

focus on current state-of-the-art models such as GPT-4, Google Gemini and Gemma, MetaAI’s 

LLaMA, and models from Mistral. 

 

The development of so-called large language models (LLMs) since 2021 has facilitated rapid 

advancements in the field of natural language processing (NLP) and has enabled more 

sophisticated and accurate text generation and understanding. Despite their impact, these 

models exhibit inherent limitations (Bommasani et al., 2024). Consequently, it is important to 

gain an understanding of where they can be effective, their constraints and the natural 

language tasks where they can be most effective. 

 

Observers of the field will have noticed that 2021/2, significant moves have been made in the 

development of LLMs, marked by the release of models like GPT-4 by OpenAI, which builds on 

the success of its predecessors (GPT2, GPT3.5) with improved capabilities and a larger 

parameter count (T. B. Brown et al., 2020). Google’s Gemma and Gemini (the Open Source and 

proprietary variants respectively) represents a significant improvement in multimodal learning, 

combining textual and visual data to enhance comprehension and generation tasks. The 

Gemma models also perform well at low parameter counts. MetaAI's LLaMA models focus on 

efficient scaling and maintaining high performance, while models from Mistral prioritise 

computational efficiency without compromising on capability.  In isolation, the models may 

seem similar (and indeed their performance may seem similar, but they each have advantages 

and disadvantages. 
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As described earlier, the importance of effective tokenisation in LLMs cannot be overstated as 

tokens are the fundamental units these models process. Effective tokenisation impacts the 

model's performance significantly, influencing its ability to understand and generate coherent 

text. Pre-training and fine-tuning are very important phases in the development lifecycle of an 

LLM, where pre-training involves learning linguistic structures from very large corpora, and 

fine-tuning adapts the model to specific tasks using supervised learning (T. B. Brown et al., 

2020). 

 

Beyond traditional training methodologies, modern LLM systems can be augmented with 

external data sources, enhancing their performance in specific tasks. Retrieval-Augmented 

Generation (RAG) is one such technique that integrates external knowledge from a ‘knowledge 

base’ to improve the accuracy and contextual relevance of the output that the LLM generates. 

Lewis et al. ( 2021) describe the advantages of this technique in that it can help prevent LLM 

‘hallucinations’ (where an LLM arbitrarily makes up new facts) by allowing the LLM to expand 

and augment their knowledge. Additionally, the incorporation of knowledge graphs into LLM 

systems can enrich their reasoning capabilities and contextual understanding, so making them 

invaluable tools in complex information synthesis tasks such as single and multi-document 

summarisation.  

 

The subsequent sections of this chapter will explore the specifics of these tools, providing a 

detailed overview of the latest techniques and their applications to multi-document 

summarisation.  

 

The chapter will also examine the strengths and weaknesses of various new LLM models, 

describing how they can be fine-tuned and discusses the integration of external data and 

knowledge graphs to develop end-to-end solutions.  
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3.2 Advances in LLM Architectures: GPT-4, Google Gemini, LLaMA, and Mistral 

 

3.2.1 Overview of LLM Architectures 

Large Language Models (LLMs) have significantly improved in their architectural design leading 

to improved capabilities in natural language understanding and generation. The foundational 

architecture these models is the Transformer, introduced by Vaswani et al., (2017), which 

enabled efficient training of deep neural networks by leveraging mechanisms such as self-

attention (self-attention in large language models (LLMs) is a mechanism that allows each word 

in a sentence to weigh the importance of every other word when generating a representation, 

enabling the model to capture context and relationships between words more effectively). 

 

The following section explores the architectures of state-of-the-art models such as GPT-4, 

Google Gemini, LLaMA, and Mistral, comparing them with earlier transformer-based 

architectures like BERT and T5.  Figure 5 (below) shows a timeline of some of the key 

architectural enhancements leading to the development of the modern LLM. 

 

 

Figure 5: Timeline of Transformer-based model releases 

 

The timeline shows a number of significant developments in transformer-based models 

relevant to MDS. One trend is the progression towards handling longer sequences (Longformer, 

BigBird, and LongT5, for example) which address the challenge of processing extensive 

document sets. Another key development is the emergence of models specifically designed for 

summarisation tasks, such as PEGASUS, which uses novel pre-training techniques to improve 

abstractive summarisation performance. The evolution from BERT to more efficient variants 

like ALBERT and DistilBERT shows the research effort in reducing computational demand while 

maintaining performance, making these models more accessible for practical applications in 

MDS. In addition, the introduction of T5 and its variants marked a shift towards more versatile 

"text-to-text" frameworks, which had the impact of simplifying the application of these models 

to various NLP tasks, including document summarisation. 
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3.2.1.1 Transformer-Based Architectures: BERT and T5 

 

BERT (Bidirectional Encoder Representations from Transformers): 

Architecture: BERT is a language representation model developed by a research team at 

Google AI Language (Devlin et al. (2018) which  employs a bidirectional transformer encoder to 

read text in both directions (left-to-right and right-to-left) to understand the context of words.  

The diagram below (fig 6) highlights how the bidirectional nature of BERT is implemented 

through a self-attention mechanism. This allows each token to interact with all other tokens in 

the sequence and so allows the model to capture context from both directions simultaneously. 

 

 

Figure 6: BERT architecture 

 

Objective: It uses two main pre-training tasks: Masked Language Modelling (MLM) and Next 

Sentence Prediction (NSP). Masked language modelling (MLM) is a pre-training task used in 

NLP where certain words in a sentence are replaced with a mask token. The model is then 

trained to predict these masked words based on the surrounding context of words, helping it 

to learn bidirectional (words before and after a particular word) representations of text. Next 

Sentence Prediction (NSP) is a pre-training task where the model is given a pair of sentences 

and trained to predict whether the second sentence is the actual next sentence in the context 

of the first. This task helps the model to understand the relationship between sentences and 

improves its ability to comprehend and generate coherent text.  In the case of BERT, doing both 

pre-training tasks allows the model to learn both the detail of contextual relationships at the 

word level and the higher-level inter sentence relationships. 

 

Strengths: BERT is strong in tasks requiring deep contextual understanding due to its 

bidirectional nature. It set new benchmarks in various NLP tasks such as question answering 

and text classification. BERT is still used as a core component of Google Search. 

 

T5 (Text-To-Text Transfer Transformer): 

Architecture: T5 frames every NLP task as a text-to-text problem, converting inputs into a text 

format that the model then generates a text output for. It uses the standard transformer 

architecture with both encoder and decoder. 
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Figure 7: T5 architecture 

As illustrated in Figure 7, T5's architecture implements this text-to-text approach through a 

complete encoder-decoder transformer structure. The diagram shows how task-specific 

prefixes are incorporated directly into the input layer, enabling the model to process diverse 

NLP tasks through the same unified framework. 

 

Objective: T5 uses what is termed a ‘multi-task learning objective’ during pre-training, which 

includes masked language modelling but in a text-to-text format.  This means that each NLP 

task, whether it is translation, summarisation, question answering, or classification, is framed 

as feeding text as input and generating text as output. This approach makes the model 

architecture and training process simpler, and allows T5 to learn from a wide variety of tasks 

simultaneously, leveraging shared knowledge across tasks to improve the overall performance. 

 

Strengths: T5 has a unified text-to-text approach which permits it to handle a wide range of 

tasks (including text summarisation) within a single framework, therefore making it versatile 

and powerful across different NLP benchmarks.  

 

3.2.2 Modern LLM Architectures: GPT-4, Google Gemini, LLaMA, and Mistral 

 

GPT-4 (Generative Pre-trained Transformer 4): 

Architecture: GPT-4 follows the architecture of the OpenAI predecessor models but with 

significant scaling in terms of parameters. It is a unidirectional transformer, generating text by 

predicting the next token in a sequence. 

 

Figure 8: GPT architecture 

 

Figure 8 shows that GPT's decoder-only architecture consists of a streamlined flow from input 

tokens through to embedding and positional encoding, followed by repeated layers of masked 

self-attention and feed-forward networks. This shows the unidirectional nature of GPT, where 

the masked self-attention mechanism ensures each token only processes information from 

previous tokens in the sequence. 
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It introduces several key improvements over the original Transformer architecture. Most 

obviously, GPT simplifies the structure by using only the decoder portion of the Transformer, 

removing the encoder stack entirely. This streamlined approach focuses on the autoregressive 

nature of language modelling. The "Masked Self-Attention" block in the decoder ensures that 

each token can only attend to its preceding tokens, maintaining the left-to-right generation 

capability important for text prediction tasks. Unlike the original Transformer or models such as 

BERT, there is no bidirectional context or cross-attention mechanism. This unidirectional 

approach, combined with the deep stack of decoder layers (represented by the "repeated N 

times" notation in the diagram), allows GPT to generate coherent and contextually relevant 

text by building upon its own previous outputs. The simplification to a decoder-only model, 

whilst maintaining the core components of embedding, positional encoding, and the 

transformer block (self-attention followed by feed-forward layers), results in a more focused 

and potentially more efficient architecture for generative tasks. 

 

Objective: GPT-4 is trained using a generative pre-training objective called causal language 

modelling (CLM), focusing on predicting the next word in a sentence. This involves predicting 

the next word in a sequence based on the preceding words. This autoregressive approach 

(predicting future token sequences based on what has come before it) means the model 

generates text one word at a time, always considering only the previously generated words and 

not future ones.  

 

This type of training helps GPT-4 learn to generate coherent and contextually appropriate text, 

making it effective for tasks like text completion, summarisation, and conversational agents.  

CLM has a number of benefits over MLM and NSP: it has a simpler training process as its goal is 

to straightforwardly predict the next word rather than MLM requiring masking of tokens and 

the prediction of those masked tokens; autoregressive models such as those trained with CLM 

are more easily scaled to larger datasets and model sizes so improving performance; CLM 

handles input sequences of variable lengths without requiring and special handling to mark 

sentence boundaries etc. so making it more flexible across different types of text generation 

tasks. 

 

Strengths: Its massive scale and extensive training data enable GPT-4 to generate highly 

coherent and contextually relevant text, making it effective in a wide range of generative tasks. 
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3.2.3 Development of Large Language Models (LLMs) from 2022 Onwards 

The landscape of so-called Large Language Models (LLMs) has evolved rapidly since 2022 with 

significant advancements in model architectures, training techniques, and applications. This 

section explores some of the most relevant developments and models that have supported 

significant developments in this field. 

 

3.2.3.1 Advances in LLM Architectures 

GPT-3 and GPT-4 

OpenAI's GPT-4 (released in 2023) and before that GPT-3 in 2020, marked a significant 

development in LLM capabilities. While the exact architecture details remain proprietary an 

outline is described in the previous section. GPT-4 demonstrated substantial improvements 

over its predecessors, GPT-3.5 and GPT3, in areas such as reasoning, task complexity, and 

multimodal inputs (OpenAI et al., 2024).  

 

GPT-4 features improved context understanding and retention, an enhanced ability to follow 

complex instructions, fewer hallucinations, and increased factual accuracy. With the recent 

release of the GPT-4o model, it also introduced the capability to process both text and image 

inputs, expanding its potential applications across various domains.  One of the most 

significant developments, and one that is likely to have driven uptake, is not the model itself 

but the parallel development of a Chat interface which makes the models much easier to use 

and to interact with. 

 

Google Gemini 

Google's Gemini models, introduced in late 2023, represents a multimodal approach to AI, 

designed to understand and generate text, image, video, and audio content (Gemma Team et 

al., 2024). Gemini was trained to be multimodal from the outset, allowing for understanding 

and synthesis of different forms of data (text, video, images etc.). The model's architecture is 

scalable across different sizes (Ultra, Pro, and Nano), catering to various computational 

requirements and use cases. Gemini has demonstrated state-of-the-art performance on 

various benchmarks (Gemma Team et al., 2024), including language understanding and 

mathematical reasoning, thus demonstrating suitability for a range of language tasks.  The 

multimodality features of Gemini are worth special mention.  Although the types of document 

(academic papers) this research seeks to summarise are mainly text, papers do of course 

contain tables, charts and images and it may prove to be a useful feature to be able to enhance 

context with information drawn from these non-text sources. 
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Meta's LLaMA 

Meta AI's LLaMA (Large Language Model Meta AI) series were first released in 2023 and 

updated with the LLaMA 2 models later that year. They focus on efficient scaling and open-

source accessibility (Touvron et al., 2023). The LLaMA series offers various model sizes, ranging 

from 7B (7 billion) to 70B parameters, to suit different computational resources. In the context 

of Large Language Models (LLMs), parameters are the adjustable components within the 

model that are learned during training. These parameters, typically represented as numerical 

values, capture patterns and relationships in the training data, enabling the model to 

understand and generate human-like text. The number of parameters in an LLM is often used 

as a measure of its complexity and potential capability. Take for example a model with two 

variants, say a ‘2B’ model and a ‘7B’ model; the 2B and 7B variants have approximately 2 billion 

and 7 billion parameters, respectively. The number of parameters significantly impacts the 

model's performance and capabilities. Generally, models with more parameters, like the 7B 

variant, have the potential to capture more intricate patterns and nuances in language 

potentially leading to better performance on complex tasks. However, they also require more 

computational resources for training and inference. The 2B variant, with fewer parameters, 

may be more efficient in terms of computational requirements and memory usage, making it 

more suitable for deployment in resource-constrained environments, but potentially at the 

cost of some performance on more complex tasks compared to its larger counterpart. 

 

Meta’s approach to model design again emphasises improved training efficiency, allowing for 

higher performance with fewer parameters compared to some other models. The open-source 

release of LLaMA has been particularly useful, as it has driven community-driven development 

and research and enabling wider experimentation in a range of language fields such as multi-

document summarisation. 

 

Mistral AI Models 

Mistral AI models (Jiang et al., 2023) have recently gained some attention for their focus on 

efficient, high-performance, open source models. Their approach emphasises computational 

efficiency without compromising on capability. Mistral's models incorporate innovative 

architecture designs, such as sliding window attention and sparse attention mechanisms, which 

contribute to their efficiency. In a similar way to LLaMA, Mistral's decision to release open-

source versions of their models has enabled wider adoption and experimentation, further 

supporting access to advanced LLM technology. 
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3.2.4 Key Milestones and Breakthroughs 

3.2.4.1 Parameter-Efficient Fine-Tuning (PEFT) 

One of the most significant developments in LLM technology has been the introduction of 

Parameter-Efficient Fine-Tuning techniques (Xu et al., 2023). These methods allow for the 

adaptation to new knowledge domains and fine-tuning of large pre-trained models to specific 

tasks by using minimal computational resources. Being able to fine-tune an existing model, 

rather than training from scratch, is an enormous benefit and again has supported the 

democratisation of LLM development. 

 

LoRA (Low-Rank Adaptation) introduces trainable rank decomposition matrices to the model 

weights, allowing for efficient fine-tuning (Hu et al., 2021). By introducing these matrices, LoRA 

enables the model to adapt to new tasks with reduced computational overhead, enhancing the 

fine-tuning process's effectiveness and efficiency. 

 

QLoRA (Quantized Low-Rank Adaptation) (Dettmers et al., 2023) extends the concept of Low-

Rank Adaptation by incorporating quantisation techniques, which significantly reduce memory 

requirements. By applying these techniques, QLoRA achieves efficient fine-tuning with even 

lower computational and memory overhead, making the adaptation process even more 

resource efficient. Quantisation techniques themselves involve reducing the precision of the 

numbers used to represent the parameters of a model, typically from floating-point to lower-

bit representations such as 8-bit integers. This process decreases the memory footprint and 

computational requirements of the model, so enabling faster processing and reduced resource 

consumption while maintaining an acceptable level of performance. 

 

There are many benefits of these PEFT techniques, but most significantly they significantly 

reduce the computational requirements for fine-tuning, making it possible to adapt large 

models on consumer-grade hardware. PEFT methods preserve much of the pre-trained model's 

knowledge while allowing for task-specific adaptations, striking a good balance between 

generalisation and specialisation. 

 

3.2.4.2 Advancements in Embeddings 

Embedding techniques have seen substantial improvements, enhancing the ability of LLMs to 

understand and represent textual data. Models like SBERT (Sentence-BERT) have improved the 

creation of semantically meaningful sentence representations (Reimers and Gurevych, 2019).  

 



 

110 

 

These advancements allow for more nuanced understanding of text, which is particularly 

valuable in tasks like document summarisation where capturing semantic relationships is very 

important. Additionally, progress in multilingual embeddings has enabled better representation 

of text across multiple languages, expanding the potential applications of LLMs in global and 

multilingual contexts. 

 

Chunking and Vector Databases 

The development of efficient chunking techniques was first described by Reimers and Gurevych 

(2019) in their development of Sentence-BERT and, together with the use of vector databases, 

has been fundamental for managing and retrieving information from large text corpora. 

Advanced algorithms for breaking down large documents into semantically coherent chunks 

have improved the handling of long-form content, a critical aspect of multi-document 

summarisation. These chunking methods are complemented by techniques that maintain 

context across chunks, ensuring that the broader narrative or thematic elements of a 

document are not lost in the process. This process is important when creating embeddings and 

vector representations for longer documents. By dividing a document into chunks, each chunk 

can be processed independently, allowing for efficient handling of large texts and facilitating 

more accurate and meaningful vector representations. 

 

The process of creating embeddings with chunking begins by dividing the text into smaller 

segments. These chunks could be sentences, paragraphs, or fixed-length segments. Each chunk 

is then converted into a vector representation using an embedding model, such as BERT or 

GPT-3. This results in a set of vectors that represent the chunks. The vectors for each chunk can 

then be aggregated to form a single vector representation for the entire document. This 

aggregation can be done through averaging, concatenation, or more sophisticated pooling 

techniques. 

 

Chunking offers several benefits, particularly in handling long texts. Traditional embedding 

models often have limitations on the maximum input length they can process. Chunking allows 

for handling texts that exceed these limits. Additionally, by processing chunks separately, 

models can focus on the local context within each chunk, potentially leading to better overall 

understanding when the chunks are combined. This approach also enhances scalability, 

enabling the processing of large documents in parallel and improving efficiency. 
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There are six commonly used chunking techniques used in RAG systems shown in figure 9: 

1. Fixed-Size Chunking: This method splits the text into chunks of a predetermined size, 

such as 100 words or 500 characters. It is simple to implement but may break semantic 

units. 

2. Sentence-Based Chunking: This approach creates chunks based on sentence 

boundaries, which helps maintain the semantic unity of individual sentences. 

3. Paragraph-Based Chunking: This method uses paragraph breaks as natural chunk 

boundaries, which can help preserve more context within each chunk. 

4. Semantic Chunking: This technique employs Natural Language Processing (NLP) 

methods to create chunks based on topic or semantic similarity, potentially improving 

the relevance of retrieved chunks. 

5. Sliding Window Chunking: This approach creates overlapping chunks by sliding a fixed-

size window over the text, which can help maintain context across chunk boundaries. 

6. Hybrid Chunking: This method combines multiple techniques to balance context 

preservation and retrieval efficiency, adapting to the specific needs of the RAG system. 

 

 

Figure 9: Chunking techniques for RAG 

 

Figure 10 below illustrates four different chunking techniques applied to the same sample text: 

1. Fixed-Size Chunking: The text is divided into chunks of 50 characters each. This 

method is simple but can break words and sentences arbitrarily. 

2. Sentence-Based Chunking: Each sentence becomes a separate chunk. This preserves 

the integrity of sentences but results in chunks of varying sizes. 

3. Semantic Chunking: The text is divided based on topic or meaning. In this example, 

we've grouped related sentences about AI and its applications. 
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4. Sliding Window Chunking: This creates overlapping chunks of 100 characters each, 

with a 50% overlap. This method helps maintain context between chunks but results in 

some repetition. 

 

 

Figure 10: Example of chunking techniques applied to text 

 

 

As described in the review by Han, Liu and Wang (2023), vector databases, such as Chroma DB, 

have emerged as efficient solutions for storing and retrieving high-dimensional vector 
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representations of text. These databases offer scalable solutions for similarity search in large 

document collections, a fundamental operation in many NLP tasks, including document 

retrieval for summarisation. The combination of advanced chunking techniques and efficient 

vector storage and retrieval has significantly enhanced the ability of LLM-based systems to 

handle large-scale document processing tasks. 

 

Vector databases store data as high-dimensional vectors, which are usually derived from 

machine learning models like word embeddings (e.g., Word2Vec, GloVe) or more advanced 

sentence and document embeddings (e.g., BERT, GPT embeddings). These vectors capture 

semantic meaning in a dense (i.e. non-sparse) numerical format. 

 

Insertion in a vector database involves converting the input (e.g., a document or sentence) into 

its vector representation and then storing this vector along with any associated metadata. The 

database indexes these vectors to facilitate fast similarity searches. 

 

Retrieval is primarily based on similarity search. When querying, the input is converted to a 

vector, and the database returns the most similar vectors based on distance metrics like cosine 

similarity or Euclidean distance. This process is often optimized using techniques such as 

Approximate Nearest Neighbor (ANN) search algorithms, which trade a small amount of 

accuracy for significant speed improvements. 

 

While TF-IDF can be used to create vector representations, modern vector databases typically 

use more sophisticated embedding techniques that capture deeper semantic relationships. 

These embeddings are often produced by neural networks trained on large corpora, allowing 

them to capture context and meaning more effectively than traditional statistical methods like 

TF-IDF. 

 

Figure 11 illustrates the chunking process workflow, showing how raw text documents are first 

processed through chunking, then transformed into vector representations using embedding 

models such as BERT or GPT. These vector representations are aggregated into document 

vectors, which are then stored in vector databases like Chroma DB for efficient similarity search 

and retrieval operations. 
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Figure 11: The chunking process 

 

3.2.5 Comparative Analysis of Notable Models 

 

Table 2: Comparison of models 

Model Key Features Strengths Limitations 

GPT-4 Multimodal input, improved 
reasoning 

Versatile, high accuracy Closed-source, high 
computational 
requirements 

Gemini Native multimodal training, 
scalable 

State-of-the-art 
performance, efficient 

Limited availability of 
smaller variants 

LLaMA 2 Open-source, efficient scaling Community-driven 
development, 
adaptable 

Requires fine-tuning for 
specific tasks 

Mistral Computational efficiency, 
innovative attention 
mechanisms 

High performance with 
lower resource 
requirements 

Newer, with less extensive 
testing in production 
environments 

 

3.3 Understanding LLM Tokens 

The concept of tokens and tokenisation is fundamental to the functioning of Large Language 

Models (LLMs). This section explores the definition and role of tokens, various tokenisation 

techniques, and how tokenisation impacts model performance. 

 

3.3.1 Definition and Role of Tokens in LLMs 

In the context of LLMs, tokens are the basic units of text that the model processes. A token can 

be a word, part of a word, or even a single character, depending on the tokenisation method 

used. The role of tokens is fundamental: they serve as the input and output units for the 

model, bridging the gap between human-readable text and the numerical representations that 

neural networks can process. 
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Tokens act as the building blocks of language understanding for LLMs. When an LLM processes 

text, it does not work with raw characters or words directly. Instead, it operates on sequences 

of these tokens. Each token is usually associated with a unique numerical identifier in the 

model's vocabulary. This tokenisation process enables the model to handle a wide range of 

linguistic items, from common words to rare terms, punctuation and even sub-word units. 

 

Tokens also influence the model's context window—the amount of text an LLM can process at 

once. Most modern LLMs have a fixed context window, often measured in tokens rather than 

words or characters. For instance, GPT-3 has a context window of 2048 tokens, while GPT-4 can 

handle up to 8192 tokens in its standard configuration. Having a token-based approach allows 

for more precise control over the input size and computational requirements. 

 

3.3.2 Tokenisation Techniques 

Tokenisation techniques have evolved significantly, reflecting the need for more efficient and 

effective ways to represent text for LLMs. Several key approaches have emerged: 

 

Word-based Tokenisation: This straightforward method splits text into words, typically using 

spaces and punctuation as delimiters. While easy to create tokens in this way, it can lead to 

large vocabularies and struggle with out-of-vocabulary words. 

 

Example: 

Input: "The quick brown fox jumps over the lazy dog." 

Tokens: ["The", "quick", "brown", "fox", "jumps", "over", "the", "lazy", "dog", "."] 

 

Character-based Tokenisation: At the other extreme, this approach treats each character as a 

token. It results in a small vocabulary but requires longer sequences to represent text, and so it 

potentially can miss higher-level patterns in the inputs. 

 

Example: 

Input: "Hello, world!" 

Tokens: ["H", "e", "l", "l", "o", ",", " ", "w", "o", "r", "l", "d", "!"] 

 

Subword Tokenisation: This method strikes a balance between word and character-based 

approaches and is the approach most often taken by modern LLMs. Commonly used algorithms 

include: 
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Byte Pair Encoding (BPE): BPE iteratively merges the most frequent pairs of bytes or characters 

to form new tokens. It efficiently handles common subwords while maintaining the ability to 

tokenise any string of characters (Gage, 1994). 

 

Example using a simplified BPE vocabulary: 

Input: "uncomfortable" 

Tokens: ["un", "comfort", "able"] 

 

WordPiece: Similar to BPE, WordPiece (Wu et al., 2016) builds a vocabulary by selecting 

subword units that maximise the likelihood of the training data. It is particularly effective for 

languages with compound words. It is a subword tokenisation algorithm developed by Google 

and widely used in models like BERT. It helps in handling the out-of-vocabulary problem by 

splitting words into subwords, ensuring that even rare or unseen words can be represented 

through their component subwords. This method is particularly effective in creating 

embeddings and vector representations for words, allowing models to efficiently manage large 

vocabularies and improve performance on various natural language processing (NLP) tasks. 

 

Example using a hypothetical WordPiece vocabulary: 

Input: "tokenisation" 

Tokens: ["token", "##isation"] 

 

SentencePiece: This algorithm performs subword tokenisation directly from raw sentences, 

without requiring pre-tokenisation. It can handle various languages uniformly, including those 

without clear word boundaries. 

 

Example using a hypothetical SentencePiece model: 

Input: "LLMs are powerful tools for NLP tasks." 

Tokens: ["▁LLM", "s", "▁are", "▁powerful", "▁tool", "s", "▁for", "▁NLP", "▁task", "s", "."] 

(Note: "▁" represents a space in SentencePiece) 

 

Hybrid Approaches: Some modern LLMs use combinations of these techniques. For example, 

GPT-2 and its successors use a variant of BPE that operates on bytes rather than Unicode 

characters, allowing for a fixed-size vocabulary that can tokenise any Unicode string. 
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Example using a simplified GPT-2 style tokenisation: 

Input: "             Learning is fun!" 

Tokens: ["            ", "Learning", "is", "fun", "!"] 

(Note: The emoji is treated as a single token in this byte-level approach) 

 

3.3.3 Impact of Tokenisation on Model Performance 

Context Window Utilisation: The efficiency of tokenisation affects how much semantic content 

can fit within the model's context window. More efficient tokenisation allows for more 

information to be processed in a single forward pass, which is particularly important for tasks 

involving long documents or multiple inputs. 

 

Example: 

Consider a model with a 1024 token context window: 

 

Input 1 (word-based): "The quick brown fox jumps over the lazy dog." (9 tokens) 

Input 2 (subword-based): "The quick brown fox jumps over the lazy dog." (7 tokens if "quick" 

and "brown" are common subwords) 

 

In this simple example,, (shown diagrammatically below in figure 12) the subword tokenisation 

approach uses fewer tokens to represent the same text, potentially allowing more content to 

fit within the context window. 

 

 

Figure 12: Word-based, character-based, and subword-based embeddings 

 

3.4 Pre-Training and Fine-Tuning of LLMs 

The development of Large Language Models (LLMs) typically involves two main stages: pre-

training and fine-tuning. This section explores these processes, their objectives and techniques, 

with a particular focus on their relevance to multi-document summarisation tasks. 
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3.4.1 Overview of Pre-Training: Objectives and Techniques 

Pre-training is the initial phase of LLM development where the model learns general language 

understanding and generation capabilities from a very large corpus of text data. The primary 

objectives of pre-training are: 

• To develop a wide understanding of language patterns, semantics, and world 

knowledge. 

• To create a versatile foundation that can be adapted to various downstream tasks. 

• To learn effective representations of text that capture complex linguistic items. 

 

Common pre-training techniques include: 

Self-Supervised Learning: This approach uses the in-built structure of the data to create 

supervised learning tasks. To recap, the most prevalent methods are: 

 

a) Masked Language Modelling (MLM): Originally used by BERT, this technique randomly masks 

tokens in the input and trains the model to predict these masked tokens. It supports the 

development of bidirectional understanding of context. 

b) Causal Language Modelling (CLM): Used in models like GPT, this method predicts the next 

token given the previous tokens, supporting the model's ability to generate coherent text. 

 

Contrastive Learning: This technique trains the model to differentiate between similar and 

dissimilar pieces of text, helping it learn more sturdy representations. An example is SimCSE 

(Simple Contrastive Sentence Embeddings) (Jiang, Zhang and Wang, 2022), which has shown 

potential in improving sentence embeddings. 

 

Multi-task Learning: Some models are pre-trained on multiple objectives simultaneously. For 

instance, T5 (Text-to-Text Transfer Transformer) frames various NLP tasks as text-to-text 

problems during pre-training. 

As Multi-task learning involves training a model on multiple related tasks simultaneously. The 

T5 (Text-to-Text Transfer Transformer) model (Raffel et al., 2020)  is a prime example of this 

approach. 

 

Example tasks in T5's pre-training: 

• Translation: 

Input: "translate English to German: The weather is nice today." 

Output: "Das Wetter ist heute schön." 
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• Summarisation: 

Input: "summarise: The article discusses climate change impacts..." 

Output: "Climate change affects global temperatures and weather patterns." 

• Question Answering: 

Input: "question: What is the capital of France? context: Paris is the capital and most 

populous city of France." 

Output: "Paris" 

 

The choice of pre-training data is also important. Modern LLMs often use web-crawled data, 

books, and academic papers ensuring exposure to diverse writing styles, topics, and domains. 

This diversity is particularly beneficial for tasks like multi-document summarisation where the 

model may encounter a wide range of document types and subjects. 

 

3.4.2 Fine-Tuning Methods for Specific Tasks 

As discussed earlier in this chapter, fine-tuning can be used to adapt a pre-trained model to 

specific tasks or domains. For multi-document summarisation, fine-tuning is essential to teach 

the model the specialised task of identifying key information across multiple sources and 

generating coherent summaries. 

 

Traditional Fine-Tuning: This involves further training of the entire pre-trained model on a task-

specific dataset. While effective, it can be computationally expensive and may lead to 

catastrophic forgetting of pre-trained knowledge. 

 

Parameter-Efficient Fine-Tuning (PEFT): As discussed previously, PEFT methods like LoRA and 

QLoRA are more efficient alternatives. These techniques are particularly valuable for multi-

document summarisation, as they allow for adaptation to specific document types or 

summarisation styles without the need for extensive computational resources. 

 

Prompt Tuning: This (Qiu et al., 2024) method involves learning continuous prompt 

embeddings while keeping the pre-trained model frozen. It can be an effective approach for 

tailoring an LLM to specific summarisation tasks without modifying the base model. 

 

Instruction Tuning: This technique (Ghosh et al., 2024) involves fine-tuning the model on a 

diverse set of tasks framed as instructions. For multi-document summarisation, this could 
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involve training on various summarisation instructions (e.g., "Summarise these scientific 

papers" or "Provide a comparative summary of these news articles"). 

 

When fine-tuning for multi-document summarisation, several specific considerations should be 

considered: 

• Dataset Preparation: Creating high-quality datasets that include multiple source 

documents and their corresponding summaries. These datasets often need to span 

various domains and document types. 

• Handling Long Inputs: Developing strategies to deal with the combined length of 

multiple documents, which often exceeds the model's context window. This is where 

techniques like efficient chunking and Retrieval-Augmented Generation (RAG) become 

relevant. 

• Cross-Document Understanding: Encouraging the model to identify and reconcile 

information across multiple documents, including potential contradictions or varying 

perspectives. 

• Output Control: Fine-tuning the model to generate summaries of appropriate length 

and style, which may vary depending on the specific use case. 

 

3.4.3 Case Studies of Successful LLM Implementations 

To illustrate the practical application of these concepts, a few case studies relevant to multi-

document summarisation can be examined: 

 

PEGASUS: Google's PEGASUS model (J. Zhang et al., 2020), specifically designed for abstractive 

summarisation, demonstrates the power of task-specific pre-training. Its pre-training objective, 

gap-sentence generation, involves masking whole sentences and generating them from the 

remaining document. This approach is very close to the summarisation task, leading to strong 

performance even with limited fine-tuning data. 

 

PRIMERA: This (Xiao et al., 2022) model, developed for multi-document summarisation, 

showcases the benefits of task-specific architecture design and pre-training. PRIMERA uses a 

hierarchical encoder to efficiently process multiple documents and employs a pre-training 

strategy that explicitly encourages cross-document understanding. 

 

LongT5: An extension of the T5 model, LongT5 (Guo et al., 2022) addresses the challenge of 

processing long inputs, a common issue in multi-document summarisation. It incorporates 
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efficient attention mechanisms that allow it to handle much longer sequences than traditional 

transformers, making it well-suited for summarising multiple or lengthy documents. 

 

GPT-3 with RAG: While not specifically designed for summarisation, the combination of GPT-3 

with Retrieval-Augmented Generation has shown promising results in multi-document tasks. 

This approach uses a retrieval system to fetch relevant information from a large corpus, which 

is then fed into GPT-3 along with the query. For example, in work by Lewis et al., (2021), the 

researchers introduced the concept of Retrieval-Augmented Generation (RAG), where a 

retrieval system is combined with a generative model to enhance the model's performance on 

knowledge-intensive tasks. While not exclusively focused on summarisation, the principles 

discussed are applicable to multi-document summarisation tasks. 

 

These case studies highlight several key trends in LLM development for multi-document 

summarisation: 

• The importance of aligning pre-training objectives with the target task. 

• The need for efficient architectures capable of handling multiple long documents. 

• The potential of combining LLMs with retrieval systems to enhance performance. 

• The benefit of domain-specific fine-tuning, even for large, general-purpose models. 

 

As research in this field develops, it might be expected to see further innovations in pre-

training and fine-tuning techniques specifically tailored to the challenges of multi-document 

summarisation and similar language tasks. The integration of RAG (Retrieval Augmented 

Generation) techniques in particular, is promising for enhancing the accuracy and relevance of 

generated summaries by grounding them in information retrieved from the source documents. 

 

3.5 Augmenting LLMs with External Knowledge 

3.5.1 Introduction to Retrieval-Augmented Generation (RAG) 

 

Retrieval-Augmented Generation (RAG) is a technique that enhances the capabilities of Large 

Language Models (LLMs) by incorporating external knowledge during the generation process. 

This approach aims to combine the language understanding of LLMs with the accuracy and up-

to-date information from external sources. 

 

RAG typically involves two main components: 
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1. A retriever: Responsible for finding relevant information from an external knowledge base. 

2. A generator: Usually an LLM that uses the retrieved information to produce the final output. 

 

As illustrated in Figure 13, the RAG architecture consists of a dual-component system where 

user input is processed by both a retriever, which queries an external knowledge base, and a 

generator (typically an LLM) that incorporates the retrieved information to produce a final 

output. This shows how RAG effectively bridges the gap between the knowledge stored within 

LLMs and external, up-to-date information sources. 

 

Figure 13: RAG retriever-generator 

 

The RAG paradigm was introduced by Lewis et al. (2021) in their 2021 paper, demonstrating 

significant improvements in tasks requiring access to specific knowledge. 

 

The versatility of RAG techniques extends beyond text-based applications, as explored in a 

presentation (Callaghan, 2024b) on introducing multimodality into the RAG pipeline to 

enhance information retrieval for customer support systems (many Enterprise documents 

contain images, graphs and charts as well as text). This work demonstrates the potential for 

integrating diverse data types in retrieval-augmented systems, opening avenues for future 

research in scientific literature summarisation. 

 

3.5.2 Techniques for Integrating External Knowledge 

Several techniques can be employed to integrate external knowledge into LLMs: 

• Dense Retrieval: This method uses dense vector representations of both the query 

and the documents in the knowledge base. Similarity search is then performed to find 

the most relevant documents. 

• Sparse Retrieval: This approach uses traditional information retrieval methods like TF-

IDF or BM25 to find relevant documents based on keyword matching. 
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• Hybrid Retrieval: Combines both dense and sparse retrieval methods to leverage the 

strengths of both approaches. 

• Reranking: After initial retrieval, a separate model can be used to re-rank the retrieved 

documents based on their relevance to the query. 
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3.5.3 Benefits and Challenges 

Retrieval-Augmented Generation (RAG) offers several several benefits in this field. First of 

these is improved accuracy, as RAG can provide more precise and current information, 

particularly for queries that demand specific or up-to-date knowledge. This approach also 

helps in reducing hallucinations, a common issue with LLMs, by grounding responses in 

retrieved information thus decreasing the likelihood of generating false or inconsistent 

content. Another advantage is the high degree of customisability; the external knowledge base 

can be easily modified or tailored for specific domains or use cases so allowing for greater 

flexibility. Moreover, RAG systems enhance transparency by providing the sources of 

information used in generating responses, which in turn increases trustworthiness and 

explainability of the model's outputs.  It is even possible to create RAG-based system that will 

cite their sources to documents within the knowledge base. 

 

However, RAG is not without its challenges. Their performance is heavily dependent on the 

quality and relevance of the retrieved information making retrieval quality a very important 

factor. Additionally, there is considerable complexity involved in effectively integrating the 

retrieved information with the LLM's inherent knowledge. Latency is another concern, as the 

retrieval step introduces additional processing time, which can impact applications requiring 

real-time responses. Lastly, the management and upkeep of large external knowledge bases 

can be resource-intensive, posing challenges in terms of storage and maintenance. But despite 

these hurdles, the benefits of RAG make it a promising approach in enhancing the capabilities 

of language models and thus multi-document summarisation. 

 

3.5.4 Case Study: Multi-Document Summarisation with RAG 

Consider a scenario where an LLM is tasked with summarising multiple research papers on 

climate change. RAG could be applied using Chroma DB (a commonly used vector database) to 

solve this problem in this fashion: 
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1. Document Ingestion: 

 

# Assuming 'papers' is a list of research paper texts 

for i, paper in enumerate(papers): 

    collection.add( 

        documents=[paper], 

        ids=[f"paper_{i}"], 

        metadatas=[{"topic": "climate change"}] 

    ) 

 

Code Listing 1: Document Ingestion 

 

 

2. Query and Retrieval: 

 

query = "Summarize the main findings on sea level rise from recent 

climate change research" 

retrieved_docs = collection.query( 

    query_texts=[query], 

    n_results=3 

) 

 

Code Listing 2: Query and retrieval 

 

The summarisation process begins with document ingestion (Listing 1), where research papers 

are added to the vector database with appropriate metadata. This is followed by the query and 

retrieval phase (Listing 2), which demonstrates how specific information about sea level rise (in 

this case) can be efficiently retrieved from the collection using semantic search capabilities, 

limiting the results to the most relevant documents for summarisation. 

 

3. LLM Integration: 

The retrieved documents are then passed to the LLM along with the original query to generate 

a comprehensive summary. Figure 14 illustrates the complete RAG-LLM retrieval process. It 

shows the workflow from paper ingestion to summary generation, where papers are first 

added to a vector database (Chroma DB) with metadata, then retrieved based on user queries. 

The retrieved documents, along with the original query, are passed to a Large Language Model 

which generates the final comprehensive summary. 
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Figure 14: The RAG-LLM retrieval process 

 

3.6 Incorporating Knowledge Graphs in LLMs 

3.6.1 Overview of Knowledge Graphs 

Knowledge Graphs (KGs) are structured representations of information that capture entities, 

their attributes, and relationships. They provide a structure for organising and querying 

complex, interconnected data in a machine-readable format. 

 

Key components of a Knowledge Graph: 

• Nodes: Represent entities (e.g., people, places, concepts) 

• Edges: Represent relationships between entities 

• Properties: Attributes of entities or relationships 

 

 

Figure 15: Knowledge graph 
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Knowledge Graphs have become used in various applications, from enhancing search engines 

to powering question-answering systems (Punjani and Tsalapati, 2023). The example shown in 

Figure 15 is a knowledge graph which represents information as interconnected entities with 

defined relationships and properties. This example demonstrates how factual knowledge about 

the Eiffel Tower is structured, with nodes representing entities (Eiffel Tower, Paris, France), 

edges showing relationships ('located in', 'is capital of'), and properties providing specific 

attributes (height, population). 

 

3.6.2 Techniques for Integrating Knowledge Graphs with LLMs 

Integrating Knowledge Graphs with Large Language Models and RAG could significantly 

enhance their performance especially in tasks requiring factual knowledge and logical 

reasoning. Some key techniques are: 

Knowledge-Enhanced Pre-training: 

This approach incorporates KG information during the LLM's pre-training phase. For example, 

the ERNIE model (Enhanced Representation through kNowledge IntEgration) (Wang and Feng, 

2022) aligns textual contexts with their corresponding entities in a KG . 

Example: Given the sentence "Paris is the capital of France", ERNIE would align "Paris" and 

"France" with their corresponding entities in a KG, allowing the model to learn both textual and 

structured knowledge simultaneously. 

 

Knowledge-Guided Attention: 

This technique modifies the attention mechanism in transformer-based models to incorporate 

KG information. The K-BERT model uses this approach, injecting relevant knowledge into the 

input sequence and adapting the attention mask to accommodate the added information (Bai 

et al., 2022). This paper discusses the EK-BERT model, an enhanced version of K-BERT, which 

uses a sentiment knowledge graph to improve sentiment analysis tasks. The study shows the 

incorporation of knowledge-guided attention mechanisms to better integrate external 

knowledge into the model, demonstrating its effectiveness in handling complex NLP tasks. 

 

 

Knowledge-Aware Output Generation: 

In this method, the LLM's output layer is modified to consider KG information when generating 

text. The KALM (Knowledge-Aware Language Model) (S. Feng et al., 2023) uses this technique, 

incorporating a knowledge selection module that chooses relevant KG triples to guide text 
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generation. It integrates knowledge-aware contexts for long document understanding, 

demonstrating the application of knowledge-aware output generation. 

 

Graph Neural Networks (GNNs) for Knowledge Integration: 

As illustrated in Figure 16, the knowledge graph integration approach uses Graph Neural 

Networks (GNNs) to process knowledge graphs and incorporate their structured information 

into LLMs. The diagram shows how information flows from a knowledge graph through a GNN 

into various components of the language model's architecture, including the input embedding 

layer, attention mechanism, and output layer. The GreaseLM model exemplifies this technique, 

using a GNN to encode KG information and incorporating it into a pre-trained language model 

(Zhang et al., 2022). 

 

 

Figure 16: Knowledge graph integration 

 

3.6.3 Applications in Enhancing Summarisation Tasks 

Incorporating Knowledge Graphs into LLM/ RAG systems could significantly improve 

summarisation tasks, particularly for multi-document summarisation. Some potential 

applications are as follows: 

 

Entity-centric Summarisation: 

KGs can help identify and link important entities across multiple documents, ensuring that the 

summary captures key information about central entities. 

For example: consider summarising multiple news articles about a specific company. A KG-

enhanced LLM could identify the company, its key personnel, and major events, ensuring these 

important elements are included in the summary. 

 

 

 



 

129 

 

Fact Consistency Checking: 

KGs can serve as a ‘factual backbone’, helping the LLM verify information across documents 

and reduce inconsistencies in the generated summary. 

 

Contextual Enrichment: 

KGs can provide additional context that might not be explicitly stated in the source documents, 

leading to more informative summaries. 

Example implementation using Python and a hypothetical KG-enhanced LLM: 

 

 

from kg_enhanced_llm import KGEnhancedLLM 

from knowledge_graph import KnowledgeGraph 

 

# Initialize the KG and LLM 

kg = KnowledgeGraph.load("company_kg.json") 

model = KGEnhancedLLM.from_pretrained("kg_llm_model") 

 

# Input documents 

docs = [ 

    "TechCorp announced a new AI chip.", 

    "The CEO of TechCorp spoke about renewable energy.", 

    "TechCorp's stock price rose by 5% yesterday." 

] 

 

# Generate KG-enhanced summary 

summary = model.summarize(docs, knowledge_graph=kg) 

print(summary) 

 

Code Listing 3: Summary Generation Pseudocode 

 

The pseudocode above (Code Listing 3) suggests how a KG-enhanced LLM might be used to 

generate a summary that incorporates both the information from the input documents and 

relevant knowledge from the KG.  The same process can be represented diagrammatically. 

Figure 17 shows a proposed KG integration model for document summarisation. It shows the 

workflow described in the pseudocode, indicating how knowledge graphs interact with the 

LLM during the summarisation process. The flow begins with loading both the knowledge 

graph and the KG-enhanced LLM as separate components which are then used in the 

document processing stage. Input documents feed into this processing step, finally generating 

a KG-enhanced summary as output. 
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Figure 17: A proposed KG integration model 

 

 

3.7. Modern LLM Techniques in Multi-Document Summarisation 

3.7.1 Comparative Analysis of Traditional vs. Modern Approaches 

As discussed in Chapter 2, traditional approaches to multi-document summarisation often 

relied on extractive methods, selecting and combining the most relevant sentences from 

source documents. These methods typically used statistical techniques, such as term 

frequency-inverse document frequency (TF-IDF), or graph-based algorithms like TextRank  

(Mihalcea and Tarau, 2004). As illustrated in Figure 18, these traditional approaches follow a 

multi-step pipeline where documents undergo sentence scoring before selection and then 

producing extractive summaries. In contrast, modern LLM-based approaches use the power of 

large-scale language models to generate more coherent and abstractive summaries through a 

more direct processing path. These models can understand context, paraphrase content and 

even infer (although that inference needs to be treated with some care to ensure it is correct) 

information not explicitly stated in the source documents.  
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Figure 18: A comparison of approaches to summarisation 

 

Key differences: 

Abstractive vs. Extractive: While traditional methods mainly extracted and rearranged existing 

sentences, LLMs can generate new sentences that capture the essence of the input 

documents. 

Coherence: LLM-generated summaries often exhibit better narrative flow and coherence 

compared to the sometimes disjointed output of extractive methods. 

Background Knowledge: LLMs can leverage their pre-trained knowledge to provide context 

and fill gaps in the source documents (especially if used in combination with techniques such 

as RAG, described earlier). 

Language Understanding: Modern LLMs demonstrate superior understanding of nuances, 

context, and implicit information in the source texts. 

Scalability: LLMs can handle larger volumes of input text more effectively than many 

traditional methods. 

 

3.7.2 Comparison of models, features and examples 

Table 3: Summary features and applications of Transformer-based models 

Model/Dataset Key Features Example Application Implementation Steps 

LONGFORMER - Linear attention 
scaling 
- Pre-trained on long 
documents 

Summarising multiple 
scientific papers on 
climate change 

1. Concatenate full texts 
with special tokens 
2. Apply LONGFORMER 
tokeniser 
3. Feed tokenised input 
to model 
4. Generate 
comprehensive summary 
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Model/Dataset Key Features Example Application Implementation Steps 

LED (Longformer 
Encoder-Decoder) 

- Long input 
processing 
- Decoder for 
coherent long-form 
text 
- Global attention 
mechanism 

Summarising multiple 
news articles on 
complex geopolitical 
events 

(Not specified in the 
given information) 

PRIMER - Multi-task learning 
approach 
- Auxiliary tasks (e.g., 
next sentence 
prediction) 
- Hierarchical 
attention mechanism 

Summarising multiple 
customer reviews for a 
product 

1. Preprocess reviews, 
maintain document 
boundaries 
2. Apply hierarchical 
encoding 
3. Generate integrated 
summary 
4. Post-process for 
coherence and 
readability 

HIBERT (Hierarchical 
BERT) 

- Two-level hierarchy: 
sentence and 
document 
- Captures document 
structure and inter-
document 
relationships 

Summarising multiple 
legal documents for a 
complex case 

1. Segment documents 
into sentences 
2. Encode sentences 
3. Encode sentence 
representations at 
document level 
4. Generate summary 
based on hierarchical 
representation 

Multi-News 
(Dataset) 

- 56,000+ articles in 
45,000 subjects 
- Human-written 
summaries 
- Diverse news 
sources 

Fine-tuning models 
(e.g., BART, T5) for 
multi-document 
summarisation 

1. Prepare data (cluster 
articles, pair with 
summaries) 
2. Initialise pre-trained 
model. 
3. Train on Multi-News 
data 
4. Evaluate using metrics 
and human evaluation 

 

Table 3 gives a comparison of a number of Transformer-based models suitable for multi-

document summarisation, showing their key architectural features, practical applications, and 

implementation workflows. This shows how different architectural models have addressed the 

challenges of processing and synthesising information from multiple documents. 
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3.7.3 Performance Metrics and Evaluation 

Evaluating the quality of multi-document summaries can be a complex but important task. 

Both automatic metrics and human evaluation can play important roles in assessing 

summarisation performance. In this section, some of the most appropriate evaluation 

mechanisms for multi-document summarisation are described: 

 

3.7.3.1 Automatic Metrics: 

ROUGE (Recall-Oriented Understudy for Gisting Evaluation): 

• ROUGE-N: Measures overlap of n-grams between the generated summary and 

reference summaries. 

• ROUGE-L: Considers the longest common subsequence. 

• ROUGE-W: Weighted longest common subsequence. 

 

Consider a reference summary: "The cat sat on the mat." 

And a generated summary: "A cat was sitting on a mat." 

 

ROUGE-1 (unigram overlap): 

Reference: {the, cat, sat, on, the, mat} 

Generated: {a, cat, was, sitting, on, a, mat} 

Overlap: {cat, on, mat} 

ROUGE-1 Precision = 3/7 = 0.429 

ROUGE-1 Recall = 3/6 = 0.5 

ROUGE-1 F1-score = 2 * (0.429 * 0.5) / (0.429 + 0.5) = 0.462 

 

ROUGE-2 (bigram overlap): 

Reference: {the cat, cat sat, sat on, on the, the mat} 

Generated: {a cat, cat was, was sitting, sitting on, on a, a mat} 

Overlap: {on a} 

ROUGE-2 Precision = 1/6 = 0.167 

ROUGE-2 Recall = 1/5 = 0.2 

ROUGE-2 F1-score = 2 * (0.167 * 0.2) / (0.167 + 0.2) = 0.182 

 

BLEU (Bilingual Evaluation Understudy): Originally designed for machine translation, BLEU can 

also be used for summarisation evaluation. 
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Using the same summaries as above: 

 

Reference: "The cat sat on the mat." 

Generated: "A cat was sitting on a mat." 

 

1-gram precision: 5/7 (5 matching words out of 7 in the generated summary) 

2-gram precision: 2/6 (2 matching bigrams: "cat was", "on a") 

3-gram precision: 1/5 (1 matching trigram: "on a mat") 

4-gram precision: 0/4 (no matching 4-grams) 

 

BLEU score calculation involves multiplying these precisions and applying a brevity penalty, 

resulting in a final score between 0 and 1. 

 

BERTScore: Uses contextual embeddings from BERT to compute similarity scores between 

generated and reference summaries (T. Zhang et al., 2020). 

 

BERTScore calculates the cosine similarity between BERT embeddings of words in the 

reference and generated summaries. It produces precision, recall, and F1 scores, typically 

ranging from 0 to 1, with 1 indicating perfect similarity. 

 

METEOR (Metric for Evaluation of Translation with Explicit ORdering): Considers synonyms and 

paraphrases, providing a more flexible evaluation. 

 

METEOR aligns words between the reference and generated summaries, considering exact 

matches, stemmed matches, synonym matches, and paraphrase matches. It then calculates 

precision, recall, and a final score that penalises chunk fragmentation. 

 

3.7.3.2 Human Evaluation: 

Human evaluation is very important for assessing aspects that automatic metrics might miss. 

Some of the key dimensions include: 

• Coherence: How well the summary flows and maintains a logical structure. 

• Consistency: Whether the summary contains any contradictions or factual errors. 

• Relevance: How well the summary captures the main points of the source documents. 

• Informativeness: The amount of important information conveyed in the summary. 

• Readability: The clarity and ease of understanding the summary. 
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Evaluation Process: 

• Prepare a diverse set of multi-document inputs and their corresponding human-

written reference summaries. 

• Generate summaries using the LLM-based system being evaluated. 

• Calculate automatic metrics (ROUGE, BLEU, BERTScore, etc.) comparing generated 

summaries to references. 

• Conduct human evaluation using a Likert scale (e.g., 1-5) for each dimension. 

• Analyse results, considering both automatic metrics and human judgments. 

 

Example of Human Evaluation: 

Consider the following generated summary: 

"The new healthcare bill, proposed by the ruling party, aims to provide universal coverage. 

Critics argue it may increase taxes, while supporters claim it will reduce long-term costs. The 

bill is set for a vote next month." 

 

Human evaluators might rate this summary as follows: 

Coherence:  4/5 (The summary flows well and presents information logically) 

Consistency:  5/5 (No contradictions or factual errors are apparent) 

Relevance:  4/5 (Captures main points but might miss some details) 

Informativeness: 3/5 (Provides key information but could include more specifics) 

Readability:  5/5 (Clear and easy to understand) 

 

Challenges in Evaluation: 

Evaluation metrics have some potential challenges: 

• Reference Bias: Automatic metrics rely heavily on reference summaries, which may 

not capture all valid summary variations 

• Length Sensitivity: Many metrics are sensitive to summary length, potentially 

penalising concise but accurate summaries. 

• Lack of Semantic Understanding: Most automatic metrics struggle to capture deeper 

semantic similarities. 

• Inter-Annotator Agreement: Human evaluations can suffer from subjectivity and 

disagreement between annotators. 
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To address these challenges, researchers often use a combination of multiple automatic 

metrics and human evaluation, sometimes employing techniques like inter-annotator 

agreement scores (e.g., Cohen's Kappa) to ensure reliability in human judgments (Sanchez-

Velazquez and Sierra, 2016). 

 

3.8. Challenges and Future Directions 

As Large Language Models (LLMs) continue to advance, their application to multi-document 

summarisation presents both opportunities and significant challenges. This section explores 

the current limitations of LLMs in summarisation tasks, potential improvements and 

innovations on the horizon, and the critical ethical considerations that must guide responsible 

AI development in this field. 

 

While LLMs have greatly advanced the MDS field, significant challenges remain. Addressing 

these limitations through ongoing innovation, while simultaneously prioritising ethical 

considerations will be very important in order to develop the full potential of LLMs in this area.  

 

3.8.1 Current Limitations of LLMs in Summarisation 

Despite their capabilities, LLMs face several limitations when applied to multi-document 

summarisation: 

1. Context Length Constraints: Most LLMs have a maximum input length, typically ranging 

from 2048 to 8192 tokens (Song et al., 2024). This limitation can be problematic when 

summarising multiple long documents, as important information may be lost if it falls 

outside the context window. 

2. Factual Accuracy and Hallucinations: LLMs can sometimes generate plausible-sounding 

but incorrect information, a phenomenon known as "hallucination" (Ji et al., 2023). In 

summarisation tasks, this can lead to the inclusion of inaccurate or non-existent 

information in the summary. 

3. Lack of Domain-Specific Knowledge: While LLMs have broad general knowledge, they 

may struggle with highly specialized or technical content without additional fine-tuning 

or external knowledge integration (Gururangan et al., 2020). 

4. Coherence Across Multiple Documents: Maintaining coherence and capturing key 

themes across multiple, potentially diverse documents remains challenging for current 

LLM-based summarisation systems (Liu and Lapata, 2019b). 

5. Bias and Fairness: LLMs can perpetuate or amplify biases present in their training data, 

potentially leading to unfair or skewed summaries (Bender et al., 2021). 
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Figure 19: Impact of limitations on the summarisation process 

Figure 19 shows how these limitations impact the multi-document summarisation process. The 

diagram describes the pathways through which each constraint affects LLM processing, 

resulting in various forms of information degradation. Context length constraints cause direct 

information loss from input documents while issues such as hallucinations introduce errors into 

the final summary. Coherence issues lead to inconsistencies, domain knowledge gaps cause 

misinterpretations, and inherent biases produce skewed representations. Understanding these 

limitation pathways is important for developing more robust multi-document summarisation 

systems that can mitigate these challenges. 

 

3.8.2 Potential Improvements and Innovations 

Multi-document summarisation using Large Language Models (LLMs) has many opportunities 

for innovation, with several promising avenues for improvement. One significant development 

is the creation of long-context models, such as Anthropic's Claude, which can process up to 

100,000 tokens (Anthropic, no date). This expanded context window could enhance the ability 

to summarise multiple lengthy documents simultaneously, providing a more comprehensive 

and coherent output. 

 

Another interesting approach is Retrieval-Augmented Generation (RAG), which integrates 

external knowledge bases with LLMs to enhance summarisation tasks (Lewis et al., 2021). As 

described earlier, RAG allows models to access and incorporate relevant information beyond 

their training data, significantly improving their performance and adaptability. 
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The RAG process typically involves several key steps: document chunking, where input texts are 

broken into manageable pieces; embedding generation, creating vector representations of 

these chunks; retrieval, using similarity search to find the most relevant chunks for a given 

query or context; and generation, incorporating the retrieved information into the LLM's 

output process. 

 

This approach offers numerous benefits for MDS. It improves factual accuracy by grounding the 

model's output in retrieved facts, so reducing hallucinations. RAG also enables rapid domain 

adaptation, allowing LLMs to quickly adjust to new subject areas by accessing relevant external 

knowledge without extensive fine-tuning. Furthermore, the retrieval step enhances 

transparency by providing a clear link between the generated summary and the source 

documents, improving interpretability. 

 

However, implementing RAG for summarisation is not without challenges. Developing efficient 

retrieval mechanisms that can swiftly and accurately identify the most relevant information 

from large document sets is very important. Seamlessly integrating retrieved information into 

the generation process while maintaining coherence and relevance presents another set of 

difficulties. Additionally, managing and maintaining up-to-date, high-quality external 

knowledge bases requires significant effort and resources. 

 

Despite these challenges, the potential of RAG and long-context models to revolutionise MDS 

is a key area for exploration. As these technologies continue to evolve, it may be expected to 

observe significant improvements in the accuracy, comprehensiveness, and adaptability of AI-

generated summaries. 
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Figure 20: Flowchart of the Retrieval Augmented Generation (RAG) process 

 

Figure 20 shows this Retrieval Augmented Generation (RAG) process. As shown in the 

flowchart, RAG integrates external knowledge retrieval with LLM generation capabilities 

through a structured pipeline. The process begins with document chunking and embedding 

generation, followed by a retrieval phase that queries an external knowledge base. This 

retrieved information is then incorporated into the generation process, resulting in a final 

summary that benefits from both the model's inherent knowledge and language generation 

capacity and external factual knowledge. 

 

Building on the potential of RAG and long-context models, another promising way to improve 

multi-document summarisation (MDS) is the implementation of multi-stage summarisation 

pipelines. This approach addresses the challenges of maintaining coherence and capturing 

overarching themes when dealing with multiple documents. 

 

A multi-stage summarisation pipeline typically consists of several key steps, each designed to 

enhance the overall quality and coherence of the final summary. The process begins with 

individual document summarisation, where each document is independently condensed to 

capture its key points and main ideas. This is followed by cross-document theme extraction, 

which analyses the individual summaries to identify common themes, contradictions, and 

unique points across all documents. The third stage involves synthesis and coherence building, 

where a cohesive summary is generated that integrates the identified themes and important 

points, ensuring logical flow and connection between ideas. Finally, a refinement and fact-
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checking stage can be implemented, cross-referencing the generated summary with the 

original documents to ensure accuracy and completeness. 

 

Liu and Lapata (2019) made significant developments in this area. They proposed a hierarchical 

transformer architecture for multi-document summarisation. Their work demonstrated the 

effectiveness of a multi-stage approach, showing how it could handle the complexities of 

summarising multiple documents whilst maintaining coherence and capturing key themes. 

Their research underscored the potential of structured, hierarchical approaches in tackling the 

unique challenges posed by MDS tasks. 

 

The multi-stage pipeline approach complements the benefits of RAG and long-context models 

by providing a structured framework for handling complex, multi-document inputs. As 

illustrated in Figure 21, this pipeline progresses through distinct stages: beginning with 

individual document summarisation, moving to cross-document theme extraction, followed by 

synthesis and coherence building, and concluding with refinement and fact-checking to 

produce a final coherent summary. It deals with the challenges of information overload and 

thematic diversity that often arise in MDS tasks, offering a systematic method for distilling and 

synthesising large volumes of information into a coherent, comprehensive summary. As 

research in this area continues to evolve, it's likely that further refinements and innovations in 

multi-stage summarisation techniques will occur. 

 

 

Figure 21: Document summarisation pipeline 

 

Further avenues for improvement in multi-document summarisation include advancements in 

fine-tuning techniques and the development of explainable AI systems. Parameter-Efficient 

Fine-Tuning (PEFT) methods, such as LoRA (Low-Rank Adaptation) and QLoRA (Quantized Low-

Rank Adaptation), offer promising approaches for adapting Large Language Models to specific 

summarisation tasks or domains more efficiently (Hu et al., 2021). These techniques allow for 



 

141 

 

the fine-tuning of models with significantly fewer parameters, reducing computational costs 

and potentially improving performance on specialised summarisation tasks. 

 

In parallel, the development of explainable AI techniques for summarisation is gaining 

importance. These approaches aim to make the summarisation process more transparent and 

interpretable, helping users understand and trust the generated summaries (Danilevsky et al., 

2020). Explainable AI in summarisation could involve highlighting the source sentences that 

contributed most to the summary, providing confidence scores for different parts of the 

summary, or offering alternative phrasings or viewpoints. 

 

3.8.3 Ethical Considerations and Responsible AI 

As Large Language Models (LLMs) become increasingly prevalent in summarisation tasks, 

addressing ethical concerns and promoting responsible AI development is paramount. Figure 

22 presents an ethical framework for LLM-based summarisation, illustrating the interconnected 

relationships between key ethical dimensions including fairness, transparency, accuracy, 

privacy, environmental responsibility, human oversight, accessibility, and ethical use. This 

framework serves as a roadmap for the following discussion exploring ethical guidelines and 

considerations for the application of LLMs in multi-document summarisation. 
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Figure 22: Ethical framework 

 

 

Fairness and bias mitigation are essential aspects of ethical AI development. Bender et al. 

(2021) highlight the potential dangers of large language models, using the term "stochastic 

parrots" to describe how these models can reproduce and amplify biases present in their 

training data. Their work reinforces the importance of regularly auditing summaries for bias 

using diverse training data and implementing bias detection and correction mechanisms in the 

summarisation pipeline. This ensures that the generated summaries do not perpetuate or 

amplify existing biases present in the source documents or the model itself. 

 

Transparency and source attribution are equally important. Doshi-Velez and Kim (2017) argue 

for the necessity of interpretable machine learning, particularly in high-stakes decisions. Their 

position paper gives a framework for evaluating the interpretability of machine learning 

models which is directly applicable to summarisation systems. Implementing systems that can 

trace information in summaries back to specific parts of source documents and including 
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metadata about the summarisation process with the output can significantly enhance 

transparency, as suggested by their research. 

 

Accuracy and fact-checking are critical in preventing the spread of misinformation. As discussed 

previously, Lewis et al.(2021) introduced the concept of Retrieval-Augmented Generation 

(RAG) combining pre-trained language models with a retrieval mechanism to access external 

knowledge. This approach can be adapted for fact-checking in summarisation tasks, allowing 

models to verify information against reliable sources and significantly improve the reliability of 

generated summaries. 

 

Privacy and data protection concerns must be addressed, especially when dealing with 

sensitive information in source documents. Lyu, Xu and Wang (2020) discuss collaborative 

fairness in federated learning and emphasise the importance of privacy-preserving techniques 

in machine learning. While their work focuses on distributed learning, the principles they 

discuss could be extended to developing summarisation models that can recognise and 

appropriately handle personally identifiable information (PII) and other sensitive data. This 

approach could help to ensure that summarisation systems can process documents containing 

sensitive information without compromising individual privacy or violating data protection 

regulations. 

 

Environmental responsibility is an often-overlooked aspect of AI development. Strubell, Ganesh 

and McCallum (2019) provide an analysis of the environmental impact of training large 

language models. Their work highlights the need to optimise models for efficiency, use green 

computing resources, and carefully consider the trade-offs between model size and 

performance in summarisation tasks. oversight and intervention should be integral to the 

design of summarisation systems. Rong et al. (2023) have surveyed various methods for 

human-centred explainable AI and have emphasised the importance of human-AI 

collaboration. Their findings support the creation of interfaces that allow human users to 

review, edit, and approve machine-generated summaries, especially for critical applications. 

 

Accessibility and inclusivity are also essential considerations in the development of 

summarisation tools. Trewin et al. (2019) discuss AI fairness specifically for people with 

disabilities, highlighting the need for inclusive design in AI systems. Their work supports the 

importance of designing user interfaces that comply with accessibility standards and 
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considering multi-modal summary outputs to improve the inclusivity of summarisation 

technologies. 

 

Finally, preventing misuse of summarisation technology is very important. Floridi and Cowls 

(2019) suggested a ‘unified framework of five principles for AI in society’: beneficence, non-

maleficence, autonomy, justice, and explicability. These principles can guide the development 

of ethical guidelines and safeguards for summarisation tools, including the implementation of 

user agreements, usage monitoring, and potential restrictions on capabilities for sensitive or 

high-risk applications. 

 

 

3.9. Chapter Conclusion 

3.9.1 Key Points 

The recent developments of Large Language Models (LLMs) has significantly advanced the field 

of natural language processing, with particular implications for multi-document 

summarisation. Key points from this chapter include: 

 

1. Architectural Developments: Models like GPT-4, Google Gemini, LLaMA, and Mistral 

have extended the capabilities of LLMs, each developing certain capacities: 

i. GPT-4: Enhanced reasoning and multimodal input processing 

ii. Gemini: Native multimodal training and scalability 

iii. LLaMA: Efficient scaling and open-source accessibility 

iv. Mistral: Computational efficiency with innovative attention 

mechanisms 

2. Tokenisation and Embeddings: Improved tokenisation techniques, particularly sub-

word methods like BPE and WordPiece, have developed LLMs' ability to process and 

understand text. Advancements in embeddings, including sentence-level and 

multilingual representations, have further refined semantic understanding. 

3. Parameter-Efficient Fine-Tuning (PEFT): Techniques like LoRA and QLoRA have made it 

possible to adapt large pre-trained models to specific tasks with minimal 

computational resources, supporting easier LLM development and application. 

4. Retrieval-Augmented Generation (RAG): This technique has significantly improved 

LLMs' ability to incorporate external knowledge, enhancing accuracy and reducing 

hallucinations in tasks like summarisation. 
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5. Knowledge Graph Integration: Incorporating structured knowledge into LLMs has 

improved their reasoning capabilities and contextual understanding, particularly 

beneficial for complex information synthesis tasks. 

6. Chunking and Vector Databases: These developments have enhanced the handling of 

large document collections, essential for MDS tasks. 

 

These developments are summarised in table 4 below. 

 

Table 4: Summary of LLM developments and potential impact on MDS 

Development Impact on Multi-Document Summarisation 

Architectural Advancements 
Improved coherence and context understanding in 
summaries 

PEFT Techniques Easier adaptation of LLMs to specific summarisation tasks 

RAG Enhanced factual accuracy and relevance in summaries 

Knowledge Graph Integration Improved handling of complex, interconnected information 

Chunking and Vector 
Databases 

Better processing of large document sets 

 

The next chapter presents the experimental design, implementation details, and evaluation 

framework which are all directly informed by the theoretical foundations and technical 

advancements reviewed here. By applying these developments to the specific challenge of 

scientific paper summarisation, the methodology will address the limitations identified in 

current approaches while using the strengths of modern LLM architectures and vector retrieval 

techniques. 

 

3.9.2 The Future of MDS with LLMs 

Looking ahead, several important developments could shape the future of multi-document 

summarisation using LLMs. While these potential developments are exciting, they will most 

likely come with challenges related to computational resources, ethical considerations, and the 

need for robust evaluation metrics. 

 

One of the most promising areas is the development of hyper-contextual models. Recent 

research in this direction includes work by Beltagy, Peters and Cohan (2020) who introduced 

the Longformer, an efficient transformer model that can handle sequences of length up to 
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32,768 tokens. This suggests that future LLMs might dynamically adjust their context window 

based on the complexity and length of input documents, allowing for more nuanced 

summarisation of lengthy or intricate text collections. 

 

Multi-modal summarisation is another area for future development. The potential in this area 

is highlighted by the work of Feng et al. (2023), who proposed a multi-modal pretraining 

approach for document understanding and generation. Their UniDoc model can process 

textual, visual, and layout information from documents. This research suggests that future 

systems could integrate text, images, and even audio/video content in generating 

comprehensive summaries, building on the multimodal capabilities of models like Gemini. 

 

Real-time adaptive summarisation is an area with significant potential, especially for 

summarising dynamic content like ongoing news events or research developments. While 

current research in this specific area is limited, the concept builds on work in stream-based 

summarisation, such as that by Kedzie, McKeown and Daume III (2019). Their approach to 

update summaries as new information arrives could be extended and enhanced with more 

advanced LLM capabilities. 

 

Personalised summarisation is another promising development and one with applications in 

education. (Zhao, Wang and Rios, 2024) have made developments in this area with their work 

on preference-grounded summarisation for radiology reports. Their approach incorporates 

user preferences into the summarisation process, suggesting that future models might be able 

to tailor summaries to individual needs through advanced fine-tuning techniques. 

 

The development of explainable AI in summarisation is essential for enhancing trust and 

interpretability. DeYoung et al. (2020) have made some progress in this direction with their 

work on extractive rationales for natural language inference. While this work isn't specifically 

on summarisation, the principles could potentially be applied to develop LLMs that not only 

produce summaries but also provide clear reasoning for their content selection and phrasing 

choices. 

 

Cross-lingual summarisation is also an area of active research that could lead to advanced 

models capable of seamlessly summarising documents in multiple languages. The work of 

Wang et al. (2023) on zero-shot cross-lingual summarisation shows the potential in this area, 
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suggesting future developments could produce coherent summaries in any target language 

from multi-lingual source documents. 

 

While quantum LLMs are still largely theoretical (and maybe still in the realms of Science 

Fiction), research in quantum natural language processing, such as that by Meichanetzidis et al. 

(2023), suggests potential applications to language models. As quantum computing advances, 

it could potentially be applied to LLMs, increasing their processing power and enabling more 

sophisticated summarisation techniques. 

 

Lastly, bias detection and mitigation in summarisation systems is a critical area for future 

development. The work of Pryzant et al. (2020) on automatically neutralising subjective bias in 

text, while not specific to summarisation, provides a foundation for developing summarisation 

systems that incorporate advanced bias detection algorithms, ensuring that summaries present 

balanced viewpoints from diverse document sources. 

 

As LLM technology continues to evolve, MDS stands to benefit significantly from these 

advancements, potentially revolutionising the processing and synthesis of large volumes of 

information across various fields and applications. However, it is important to note that these 

developments will likely come with their own set of challenges, particularly in terms of 

computational resources, ethical considerations, and the need for robust evaluation metrics. 
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Chapter 4: Methodology 

4.1 Introduction 

4.1.1 Research Objectives and Questions 

As described in earlier chapters, the enormous growth of scientific literature has created an 

urgent need for efficient methods to distil and synthesise information from multiple related 

documents. This research aims to address this challenge by developing and evaluating novel 

approaches to multi-document summarisation (MDS) of scientific papers, with a particular 

focus on hybrid techniques that leverage the strengths of both extractive and abstractive 

methods. As described in the introductory chapter, the study is guided by the following 

research questions: 

 

RQ1: What are the key features and characteristics of an efficient hybrid multi-document 

summarisation framework for scientific papers, and how can Retrieval-Augmented Generation 

(RAG) techniques be effectively incorporated to identify and use sections of interest? 

 

RQ2: How can state-of-the-art language models be adapted and fine-tuned for the task of 

multi-document summarisation of scientific papers, and what advantages do newer LLMs 

(such as Gemma 2B/7B) offer over earlier models (like BERT and BART)? 

 

RQ3: How does the performance of the proposed hybrid framework compare to existing 

approaches, both extractive and abstractive, when evaluated using standard metrics (e.g., 

ROUGE, BLEU) and on diverse scientific datasets? 

 

To address these questions, the latter phases of the study pursued the following objectives: 

1. Develop and implement hybrid multi-document summarisation frameworks based on 

advanced natural language processing techniques, with a focus on integrating RAG 

methods with state-of-the-art (as of 2023-24) LLMs such as Gemma 2B and 7B 

(Gemma Team et al., 2024). 

2. Investigate the potential benefits of RAG techniques in identifying and summarising 

relevant sections of scientific papers effectively, exploring various retrieval and 

generation strategies. 

3. Evaluate the performance of the proposed framework using established evaluation 

metrics, such as ROUGE and BLEU, using a framework similar to that suggested by 

Yang et al. (2018) for machine reading comprehension tasks (an NLP task similar to 
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summarisation) as well as novel LLM-based evaluation methods, and compare it to 

existing state-of-the-art methods on a variety of scientific datasets. 

4.1.2 Theoretical Framework 

The underpinnings of this research are framed in the fields of natural language processing, 

information retrieval, with an emphasis on: 

 

1. Transformer-based architectures: The research leverages the power of transformer 

models, which have revolutionised natural language processing tasks through their 

ability to capture long-range dependencies in text. Amatriain et al. (2023) catalogue 

and discuss many applications of Transformers with slightly modified architectures to 

attune them to various NLP tasks and it is this paper which gives the rationale for 

continuing with the Transformer architecture. 

2. Retrieval-Augmented Generation (RAG): This study explores the theoretical 

intersection of information retrieval and text generation, aiming to harness the 

strengths of both paradigms to improve summarisation quality and relevance. In 2020, 

the Retrieval Augmented Generation technique (Lewis et al., 2021) was introduced as 

a core technique to augment fine-tuned models with up-to-date and trusted 

knowledge. 

3. Transfer learning and few-shot learning: The research also uses the concept of 

transfer learning, where pre-trained language models are fine-tuned for the specific 

task of multi-document summarisation. Additionally, it investigates few-shot learning 

capabilities of modern LLMs to potentially reduce the need for extensive fine-tuning. 

Gupta, Thadani and O’Hare (2020) discuss this concept of few-shot learning as a 

technique to steer the output of an LLM where little training data exists; in effect, the 

LLM is given a few examples to direct text generation towards the required domain.  

4. Evaluation theory: The study incorporates established theories of summarisation 

evaluation, including both automated metrics and human judgement, as well as 

innovative LLM-based evaluation approaches, to ensure a comprehensive assessment 

of the proposed frameworks. One of the more interesting discussions in this area is by 

Fabbri et al. (2021), who evaluated a set of fourteen automated metrics and evaluated 

them against human and automatically created summaries. They found that ROUGE 

and related metrics are still seen as valid methods to evaluate summarisation tools 

although their research found that more work was needed in this field to devise a 

definitive set of evaluation metrics. 



 

150 

 

 

4.1.3 Overview of Methodological Approach and Evolution of Models 

This research adopts a mixed-methods approach, combining quantitative and qualitative 

methodologies to provide a comprehensive understanding of the multi-document 

summarisation task for scientific papers. The methodological approach encompasses the 

following key components: 

 

1. Data collection and preprocessing: Careful selection and preparation of diverse 

scientific datasets to ensure robustness and generalisability of the findings. 

2. Model development and fine-tuning: Adaptation and fine-tuning of state-of-the-art 

language models for the specific task of multi-document summarisation of scientific 

papers. 

3. RAG implementation: Development of retrieval mechanisms to identify relevant 

sections of scientific papers, and integration with generative models to produce 

coherent summaries. 

4. Experimental design: Implementation of a series of experiments to evaluate different 

aspects of the proposed frameworks, including ablation studies and cross-domain 

applicability tests. 

5. Multi-faceted evaluation: Using automated metrics, human evaluation, and recently 

developed “LLM-as-a-judge” approaches to evaluate the quality and effectiveness of 

the generated summaries. 

6. Comparative analysis: Rigorous comparison of the proposed frameworks against 

existing state-of-the-art methods to establish the contribution to the field. 

7. Error analysis and iterative refinement: Systematic analysis of errors and limitations, 

informing iterative improvements to the proposed frameworks. 
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Figure 23: MDS framework 

This diagram (figure 23) illustrates how the Multi-Document Summarisation (MDS) framework 

processes academic research papers. The diagram shows a research paper's structured 

components (Abstract, Introduction, Methodology, Results, and Conclusion) feeding into the 

MDS framework, which then generates a coherent and informative summary. 

 

4.1.3.1 Evolution of Models 

This research project began with the exploration of earlier transformer-based models such as 

BERT and BART (and prior to that the LSTM – Long Short-Term Memory model), which gave 

valuable insights into the capabilities and limitations of these architectures for multi-document 

summarisation. These models demonstrated good performance in capturing contextual 

information and generating coherent text. However, several limitations became apparent: 

1. Limited context window: BERT and BART models typically have a maximum input 

length of 512 tokens (and LSTMs even less), which is insufficient for processing 

multiple scientific documents simultaneously or even multiple extracts thereof. 

2. Lack of domain-specific knowledge: While these models were pre-trained on large 

corpora, they often lacked specialised scientific knowledge necessary for accurate 

summarisation of research papers. 

3. Computational efficiency: Fine-tuning these models for multi-document 

summarisation tasks proved computationally expensive, particularly for resource-

constrained environments. 

 

The progression to more modern LLMs, specifically Google’s Gemma 2B and 7B parameter 

models, was motivated by several factors: 
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1. Increased context window: These models can handle much longer input sequences, 

allowing for more comprehensive processing of multiple documents. The Gemma 

models have a context window of 8192 tokens. 

2. Enhanced few-shot learning capabilities: Modern LLMs demonstrate effective 

performance in few-shot learning scenarios, potentially reducing the need for 

extensive fine-tuning on domain-specific data. 

3. Improved efficiency: Despite their larger size, these models often exhibit better 

inference efficiency (i.e. they give better and more understandable summaries), 

making them more suitable for real-world applications. 

4. Advanced reasoning capabilities: The newer models show improved abilities in logical 

reasoning and coherence, which are required to produce high-quality scientific 

summaries. In comparison, older models are relatively ‘dumb’ and this can be seen in 

the quality of the summaries. 

 

Although this gives a step-change in improvement to the quality of summaries, context 

window is still a challenge (8192 tokens is still substantially less than the length of a typical 

paper) so by incorporating RAG techniques with these advanced LLMs, this research aims to 

leverage the strengths of both extractive (through retrieval) and abstractive (through 

generation) approaches. This hybrid methodology allows for more precise identification of 

relevant information across multiple documents while maintaining the flexibility to generate 

novel, coherent summaries.  This is of course a very high-level overview and there are multiple 

lower level techniques that are then applied to this approach to iteratively fine-tune and 

improve the quality of summaries. The relationship and flow between these stages of the 

research, from data collection through to creation of the final model, is shown in the flowchart 

(figure 24) below: 
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Figure 24: Progression of research 

 

4.2 Mixed Methods Approach 

4.2.1 Rationale for Mixed Methods 

The complex nature of multi-document summarisation (MDS) for scientific papers needs a 

correspondingly nuanced and multifaceted research approach. This study therefore adopts a 

mixed methods design, integrating both quantitative and qualitative methodologies to provide 

a comprehensive understanding of the issues explored. The rationale for this approach is based 

on the following considerations: 

1. Complementarity: Quantitative methods give precision and generalisability, whilst 

qualitative methods give depth and context. By combining these approaches, the 

weaknesses of each method and their respective strengths can be capitalised upon. 

This approach was validated by Johnson and Onwuegbuzie (2004) who described 

mixed methods approaches as a natural extension to qualitative and quantitative 

approaches. 

2. Triangulation: The use of multiple methods allows for the corroboration of findings, 

improving the validity and reliability of the research outcomes. As Denzin (2017) 

argues, there is no single approach to validate research findings so several methods 

used together will be the approach taken here. 
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3. Managing the complexity of MDS: The multifaceted nature of summarising scientific 

documents requires both objective performance metrics and subjective quality 

assessments, which are best captured through a mixed methods approach. With this in 

mind, Mani (2001) discusses the need for both quantitative and qualitative evaluation 

methods in assessing summarisation systems, again confirming this approach. 

4. Holistic evaluation: Integrating quantitative and qualitative data provides a more 

comprehensive evaluation of the proposed RAG-based hybrid summarisation 

framework, addressing both its texchnical performance and its practical utility in 

scientific context. In several works, Creswell and Plano Clark ( eg. Creswell et al., 2006) 

discuss how using both quantitative and qualitative data can give a more 

comprehensive understanding of complex and inter-related phenomena, again 

providing some validation for this approach. 

 

In conclusion then, this mixture of mixed-methods approaches follows recent trends in NLP 

research, where researchers have increasingly recognised the limitations of purely quantitative 

evaluations. For instance, Belz et al. (2021) argue for a more nuanced evaluation paradigm in 

text generation tasks, emphasising the importance of human judgement alongside automated 

metrics and this is an approach that underpins the selection of the mixed methods approach. 

Additionally, Reiter (2018) provides a critical analysis of BLEU (Bilingual Evaluation Understudy), 

one of the most widely used automated metrics in NLP for tasks like machine translation and 

summarisation. Reiter argues that while BLEU is useful, it has significant limitations and should 

not be used as the sole evaluation metric. A key quote from the abstract of this paper states: 

"I conclude that BLEU is not a valid measure of performance in machine translation and 

natural language generation, and should not be used as the primary evaluation 

technique in these fields." 

 

4.2.2 Quantitative Components 

The quantitative components of this study focus on measurable aspects of summarisation 

performance and model efficiency. These include: 

1. Automated Evaluation Metrics: 

• ROUGE scores (ROUGE-1, ROUGE-2, ROUGE-L) to assess content overlap 

between generated summaries and reference summaries (C.-Y. Lin, 2004). 

• BLEU scores to evaluate the fluency and adequacy of generated 

summaries (Papineni et al., 2002). 
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• BERTScore to capture semantic similarity beyond exact word matches (T. 

Zhang et al., 2020). 

2. Model Performance Metrics: 

• Perplexity measures to assess the language model's predictive 

performance. 

• Inference time and computational resource usage to evaluate efficiency. 

3. Retrieval Performance (for RAG components): 

• Precision, Recall, and F1 scores to assess the accuracy of retrieved 

passages. 

• Mean Average Precision (MAP) and Normalized Discounted Cumulative 

Gain (NDCG) to evaluate the ranking quality of retrieved passages 

(Manning, Raghavan and Schütze, 2008). 

4. Statistical Analysis: 

• Significance testing (e.g., t-tests, ANOVA) to compare the performance of 

different models and configurations. 

• Effect-size calculations to quantify the magnitude of performance 

differences. 

 

These quantitative measures provide a robust foundation for comparing the experimental 

approaches with existing state-of-the-art methods. However, as there limitations of the 

automated metrics in capturing some of the nuanced aspects of summary quality, these are 

complemented with qualitative assessments, described below. 

 

4.2.3 Qualitative assessment components 

The associated qualitative components of the study aim to capture the nuanced aspects of 

summary quality and usefulness that are not shown in quantitative metrics. These qualitative 

approaches can therefore provide richer and more contextual data that complement the 

quantitative metrics, so giving additional insight into the practical usefulness and perceived 

quality of the summaries. Qualitive assessments include: 

1. Human Evaluation: 

• Using domain experts (e.g., researchers or other experienced individuals in 

relevant scientific fields) to assess the quality, coherence, and factual 

accuracy of generated summaries. 
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• Use of rubrics and Likert scales to evaluate aspects such as information 

coverage, conciseness, and scientific accuracy (van der Zee et al., 2017) 

(Although the paper focuses on educational videos rather than text 

summaries, its methodology for human evaluation is applicable and widely 

respected in the field of content assessment). 

2. Qualitative Content Analysis: 

• Systematic analysis of generated summaries to identify patterns, themes, 

and potential areas for improvement (such as through Topic Modelling) in 

the summarisation process, In Blei, Ng and Jordan (2003), Latent Dirichlet 

Allocation (LDA) is first introduced, one of the most popular methods for 

topic modelling. While it doesn't specifically focus on summary analysis, it 

does provide the foundational technique that is widely used for identifying 

patterns and themes in text data, including summaries. 

3. LLM-as-Judge Evaluation: 

• Using large language models (importantly, not the same models that 

would be used in the summarisation process itself) as judges to provide 

detailed qualitative feedback on summary quality, with prompts designed 

to elicit specific critiques and suggestions for improvement (Zheng et al., 

2023). 
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4.2.4 Integration of Quantitative and Qualitative Approaches 

The integration of quantitative and qualitative approaches is very important for developing a 

comprehensive understanding of the summarisation framework's performance. This 

integration occurs at multiple levels. By triangulating findings from multiple sources and 

methods, the aim is to provide a robust and comprehensive assessment of the proposed RAG-

based hybrid summarisation approach. The levels at which these are applied are: 

1. Design Level: 

• The study employs a concurrent triangulation design, where quantitative 

and qualitative data are collected in parallel and used to inform 

development which is integrated during the analysis and interpretation 

phases. This is based on the design methodology described by (Creswell 

and Plano-Clark, 2017) 

2. Data Collection Level: 

• Quantitative metrics are collected for each generated summary, while 

qualitative assessments are conducted on a subset of summaries, ensuring 

a balanced representation across different document types and model 

configurations. 

3. Analysis Level: 

• Quantitative results are used to identify high-performing and low-

performing summaries, which are then subjected to in-depth qualitative 

analysis to understand the factors contributing to their performance. 

• Qualitative findings inform the refinement of quantitative metrics and the 

development of new, more nuanced evaluation measures. 

4. Interpretation Level: 

• The study employs a 'following a thread' technique described by 

O’Cathain, Murphy and Nicholl, (2010), where initial quantitative results 

are used to identify key themes, which are then explored in depth through 

qualitative analysis. 

• Contradictions between quantitative and qualitative findings are then 

investigated to uncover potential limitations in the evaluation methods or 

areas for model improvement. 
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Figure 25: Inter-relationship of mixed methods approaches 

 

The mixed methods design approach used in this study builds upon best practices in NLP 

research, such as those advocated by Läubli et al. (2020), who emphasise the importance of 

human evaluation alongside automated metrics in machine translation and other text 

generation tasks. By adapting these principles to the specific context of multi-document 

summarisation for scientific papers, this study aims to apply this methodology for 

comprehensive evaluation in this domain. Figure 25 above shows the inter-relationship of the 

mixed methods approaches employed in this study, indicating how concurrent triangulation 

design operates at the design level, with both quantitative and qualitative streams informing 

each other. The diagram shows how these parallel analyses converge through the 'Following a 

Thread' technique, leading to integration of findings and investigation of contradictions 

ultimately informing metric refinement at the analysis level.  
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4.3 Data Collection and Preprocessing 

4.3.1 Dataset Selection and Justification 

As described in Chapter 2 (Literature Review) and Chapter 3 (Modern LLM techniques), 

selection of appropriate datasets is very important for developing and evaluating robust 

summarisation models for scientific papers. This study uses two distinct datasets: SciTLDR for 

training embedding models and fine-tuning large language models (LLMs), and SciSummNet 

for testing and summarisation tasks. 

1. SciTLDR Dataset: 

• Description: SciTLDR is a large-scale dataset containing over 3.9 million 

scientific papers with their corresponding abstracts and so-called TL;DR 

(“Too Long, Didn’t Read”) summaries (Cachola et al., 2020). 

• Justification: The vast size and diversity of SciTLDR make it ideal for 

training embedding models and fine-tuning LLMs, ensuring broad 

coverage of scientific domains and writing styles. 

2. SciSummNet Dataset: 

• Description: SciSummNet (Yasunaga et al., 2019) is a manually-curated 

dataset of 1,000 scientific papers in the computer science domain, each 

accompanied by expert-written summaries. 

• Justification: The high-quality, expert-crafted summaries in SciSummNet 

provide an appropriate benchmark for evaluating the performance of the 

summarisation frameworks. 

 

The use of two independent datasets for training and testing is important for several reasons, 

as illustrated in Figure 26. This diagram demonstrates the dataset selection strategy, showing 

how the SciTLDR dataset (containing 3.9M+ papers) and the SciSummNet dataset (with 1,000 

papers) are used in different training and testing pathways to achieve multiple benefits. As 

shown in the figure, this dual-dataset approach serves several key purposes: 

 

1. Preventing Data Leakage: By using separate datasets, the intention is to limit the 

opportunity that the models are inadvertently exposed to test data during training, 

which could lead to overfitting and inflated performance metrics. Kaufman et al. 

(2012) describe a similar approach. 

2. Improving Generalisability: Training on SciTLDR and testing on SciSummNet  

potentially allows the evaluation of how well the models generalise to unseen data 

and different summarisation styles. Beltagy, Lo and Cohan (2019), in their SciBERT 
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paper, discuss this approach to generalisability in the development of language 

modelling techniques. 

3. Mitigating Dataset Bias: Each dataset may have inherent biases in terms of writing 

style, domain coverage, or summarisation approach. Using two datasets helps to 

identify and mitigate these biases (Bianchi and Hovy, 2021). 

4. Improving Robustness: The diverse nature of scientific literature needs models that 

can perform well across various domains and document types. Training on a broad 

dataset (SciTLDR) and testing on a focused, high-quality dataset (SciSummNet) helps 

ensure robustness – a methodology supported by Wang et al. (2020) in developing a 

general language understanding benchmark. 

 

 

Figure 26: Dataset selection strategy 
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4.3.2 Data Preprocessing Techniques 

Effective preprocessing is essential to ensure the quality and consistency of the input data for 

the summarisation models. The preprocessing pipeline therefore includes the following steps, 

as illustrated in Figure 27, which provides a visual representation of the complete workflow 

from raw data to preprocessed output ready for model input. 

 

1. Text Extraction and Cleaning: 

• For SciTLDR: Extract full text, abstracts, and TL;DR summaries from the provided JSON 

files. 

• For SciSummNet: Extract full text and expert-written summaries from the XML files. 

• Remove non-ASCII characters, LaTeX commands, and other artefacts common in 

scientific papers. 

2. Tokenisation and Sentence Segmentation: 

• Explore the application of the SciSpacy (Neumann et al., 2019) library, which is 

specifically designed for processing scientific text  

• Implement careful handling of scientific notation, chemical formulae, and 

mathematical expressions to preserve their integrity. 

3. Normalisation: 

• Convert all text to lowercase to reduce vocabulary size and improve model efficiency. 

• Standardise units of measurement and numerical representations to ensure 

consistency across documents. 

4. Data Augmentation: 

• For SciTLDR, generate additional training examples by combining TL;DR summaries 

from related papers to simulate multi-document summarisation scenarios. 
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Figure 27: Exemplar preprocessing pipeline 

 

 

 

4.3.3 Ethical Considerations in Data Usage 

The use of scientific literature datasets raises several ethical considerations that must be 

carefully addressed: 

1. Copyright and Intellectual Property: 

• Ensure compliance with the licensing terms of both SciTLDR and SciSummNet datasets. 

• Implement strict access controls to prevent unauthorised distribution of copyrighted 

material. 

2. Privacy and Anonymisation: 

• While scientific papers are generally public, steps must still be taken to anonymise any 

potentially sensitive information, such as author names or institutional affiliations in 

unpublished preprints. 

3. Bias Mitigation: 

• Both datasets should be analysed to identify potential biases in terms of research 

domains, publication venues, or author demographics. 

• Strategies should be implemented to mitigate identified biases, such as balanced 

sampling or domain-specific fine-tuning. 

4. Responsible AI Development: 

• The development and use of the summarisation models should align with principles of 

responsible AI, including fairness, transparency, and accountability (Jobin, Ienca and 

Vayena, 2019). 
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5. Environmental Considerations: 

• Acknowledge and minimise the environmental impact of large-scale model training by 

optimising computational efficiency and utilising green computing resources where 

possible (Strubell, Ganesh and McCallum, 2019). 

6. Ethical Use of Generated Summaries: 

• Clear guidelines should be developed (and followed) for the appropriate use of AI-

generated summaries in academic contexts, emphasising their role as aids rather than 

replacements for human engagement with scientific literature. 

  



 

164 

 

4.4 Software Development and DevOps Techniques 

The implementation of a RAG-based hybrid summarisation framework requires a robust 

software development approach combined with the use of modern DevOps/ ResOps 

(Development + Operations; Research + Operations) practices to ensure reproducibility, 

scalability, and maintainability of the research codebase. 

 

The software development approaches used in this research were further developed into 

reproducible cloud-based pipelines, as detailed in a book chapter (Callaghan, 2023) aimed at 

computational researchers. This work provides a framework for implementing personal cloud 

tools, enhancing the reproducibility and accessibility of the methodologies developed in this 

study. 

 

4.4.1 Programming Languages and Frameworks 

The primary programming language throughout is Python, selected for its extensive ecosystem 

of scientific computing and machine learning libraries and that it is now the primary language 

used in this field. Key frameworks and libraries used include the following, based on their 

performance, active community support, and suitability for large-scale NLP tasks: 

• PyTorch (Paszke et al., 2019) for deep learning model implementation and training 

• Hugging Face Transformers (Wolf et al., 2020) for state-of-the-art NLP models and 

pipelines 

• SciPy (Virtanen et al., 2020) for scientific computing and data processing 

• NLTK (Loper and Bird, 2002) for natural language processing tasks 

 

4.4.2 Version Control and Collaboration 

Git was used for version control, with GitHub serving as the primary platform for development 

and code hosting. Based on commonly accepted good Research Software Engineering 

practices, the GitHub workflow included: 

• Feature branching for isolated development of new functionalities 

• Issue tracking for bug reporting and tracking 

• Comprehensive documentation using Markdown in the repository 

A GitFlow workflow model based on that developed by Driessen (2010) was implemented to 

manage feature development, releases, and hotfixes more efficiently. 
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4.4.3 Containerisation and Environment Management 

To ensure consistency across development and deployment environments, the following tools 

were used, based on common Research Software Engineering practice: 

 

• Docker for creating reproducible environments, with separate containers for data 

preprocessing, model training, and inference 

• conda for Python environment management, allowing for easy replication of the 

development environment 

 

The Dockerfile and conda environment specifications are version-controlled alongside the 

codebase, ensuring reproducibility across different systems. Figure 28 illustrates this container 

architecture, showing how the Git repository maintains the Dockerfile and conda environment 

configuration, which in turn support the Docker environment containing the three primary 

containers (data preprocessing, model training, and inference). 

 

Figure 28: Container architecture 

 

4.4.4 Continuous Integration and Deployment 

GitHub Actions were also used for the CI/CD pipeline, automating various aspects of the 

development workflow and ensuring that only thoroughly tested and validated code makes it 

to the deployment stage, maintaining the integrity of the research implementation: 

• Automated testing: Unit tests and integration tests are run on every push. 

• Code quality checks: Linting (using flake8) and static type checking (using mypy) to 

maintain code quality. 

• Automated builds: Docker images are built and pushed to a container registry on 

successful merges to the main branch. 
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4.4.5 Performance Optimisation and Scalability 

To handle the computational demands of large-scale summarisation tasks, a number of 

optimisation techniques were used: 

• Model quantisation: Reducing model precision from float32 to float16 or int8 where 

possible, using PyTorch's quantisation tools (Gholami et al., 2021). 

• Gradient accumulation: Enabling training on larger batch sizes with limited GPU 

memory (Ott et al., 2019). 

• Distributed training: Utilising PyTorch's DistributedDataParallel for multi-GPU training 

on a single machine and Horovod (Sergeev and Del Balso, 2018) for multi-node 

distributed training 

 

4.5 Error Analysis and Limitations 

The evaluation of the RAG-based summarisation model also included an error analysis to 

identify potential limitations and areas for improvement. This analysis involved a detailed 

examination of cases where the model underperforms, focusing on specific types of errors and 

their potential causes. 

 

One anticipated challenge in the evaluation design was the model's ability to handle highly 

technical or domain-specific terminology. While the RAG architecture is designed to extract 

relevant information from the input documents, it can struggle with extremely specialised 

scientific language. The analysis therefore involved a review of summaries from various 

scientific domains, paying particular attention to the accuracy and appropriateness of technical 

term usage. 

 

Another limitation was in the model's ability to capture and synthesise complex, multi-step 

reasoning often present in scientific papers. The study examined how well the model preserved 

logical flow and causal relationships from the original texts. This analysis drew upon techniques 

from explainable AI, such as those proposed by (Danilevsky et al., 2020), to trace the model's 

decision-making process and identify potential breakpoints in logical reasoning. 

 

The length and structure of input documents posed another challenge. Scientific papers often 

exceed the typical input length limits of transformer-based models. While the RAG architecture 

is designed to mitigate this issue, the study investigated how effectively it handled very long 

documents and whether there was any degradation in performance as document length 
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increases. This analysis built upon the work of Beltagy, Peters and Cohan (2020) on long-

document transformers. 

 

Additionally, the study examined the model's performance across different sections of scientific 

papers (e.g., introduction, methodology, results, discussion). This sectional analysis aimed to 

reveal any biases in the model's summarisation process and whether it adequately captured 

information from all critical parts of a paper. 

 

Lastly, the research investigated potential biases in the model's outputs, particularly with 

respect to citation patterns and the representation of different research paradigms or schools 

of thought. The analysis drew on recent work in fairness in NLP, such as that by Blodgett et al. 

(2020), to ensure the model did not inadvertently perpetuate existing biases in scientific 

literature. 

 

4.6 Reproducibility and Scalability 

Ensuring reproducibility and scalability is very important for the practical application and 

further development of the RAG-based summarisation model. Several measures were 

implemented and analysed to address this. 

 

For reproducibility, a detailed description of the experimental setup was provided, including 

hardware specifications, software versions, and hyperparameters used in training and 

evaluation. Code was made available through a public GitHub repository on conclusion of the 

research, together with clear documentation on how to set up the environment and run the 

experiments. The fine-tuned models and the datasets used for training and evaluation were 

also released, subject to licensing agreements. 

 

To ensure computational reproducibility, fixed random seeds were used for all stochastic 

processes in the pipeline. However, recognising the limitations of this approach, as noted by 

Crane (2018), a series of runs with different random seeds were conducted to assess the 

stability of the results. 

 

In terms of scalability, the study analysed the computational resources required for training 

and inference across different model sizes and document lengths. The analysis included 

measurements of training time, memory usage, and inference speed on various hardware 
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configurations. The model's performance when scaled to larger datasets was also investigated, 

assessing how it handles an increased volume of scientific literature across diverse fields. 

 

4.7 Comparative Analysis with Existing Methods 

The proposed RAG-based summarisation model was compared with existing methods to assess 

its relative performance and potential advantages. This comparative analysis used both 

traditional abstractive summarisation techniques and more recent approaches leveraging large 

language models. 

 

The comparative analysis extended beyond model architectures to include different training 

paradigms. This involved comparing the RAG-based model with fine-tuned versions of large 

language models on their own which have shown promising results in few-shot and zero-shot 

summarisation tasks. 

 

Performance comparisons were conducted using the evaluation metrics and frameworks 

outlined in section 4.7. This included automated metrics such as ROUGE and BLEU scores, as 

well as human evaluation and LLM-as-a-judge assessments.  

 

A key focus of the comparison was on the models' ability to incorporate external knowledge 

and maintain factual accuracy. The RAG architecture's capacity to retrieve and integrate 

relevant information was contrasted with the performance of models relying solely on their 

pre-trained knowledge. 

 

Finally, a qualitative analysis of the summaries produced by different models was conducted. 

This involved examining how well each model captured key scientific concepts, maintains 

logical coherence, and preserves the original author's intent. The analysis drew upon 

techniques from interpretable AI to provide insights into the decision-making processes of 

different models. 

 

4.8 Ethical Considerations 

The development and deployment of an AI model for scientific literature summarisation raises 

several important ethical considerations that were addressed throughout the research process. 

 

One primary concern is the potential for bias in the model's outputs. Scientific literature itself 

can reflect historical and systemic biases in research focus, funding, and publication practices. 
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The summarisation model, if not carefully designed and evaluated, could potentially amplify 

these biases. To address this, the study will incorporate techniques from the field of AI fairness, 

such as those proposed by Mehrabi et al. (2021), to detect and mitigate biases in the model's 

training data and outputs. 

 

Another ethical consideration is the model's impact on scientific discourse and knowledge 

dissemination. While the aim is to facilitate easier access to scientific information, there is a 

risk that over-reliance on AI-generated summaries could lead to misinterpretation or 

oversimplification of complex scientific ideas. The study will explore ways to encourage users to 

view the model's outputs as aids to understanding rather than replacements for reading the 

original papers. This may involve clear disclaimers and guidance on the appropriate use of the 

summaries. 

 

Privacy and intellectual property concerns are also important. While the model will be trained 

on publicly available scientific literature, care must be taken to ensure that it does not 

inadvertently reproduce copyrighted material verbatim. The study will investigate techniques 

for privacy-preserving machine learning and explore the legal and ethical implications of using 

published scientific work for model training. 

 

4.9 Chapter Conclusion 

This chapter has outlined the methodological approach adopted for this study on multi-

document summarisation of scientific papers. The research design integrates quantitative and 

qualitative methods to provide a holistic evaluation of the proposed RAG-based hybrid 

summarisation framework. 

 

The methodology is grounded in a strong theoretical framework, supported by recent 

advancements in transformer-based architectures, Retrieval-Augmented Generation (RAG), 

and transfer learning. The evolution from earlier models like BERT and BART to more advanced 

LLMs such as Gemma 2B and 7B reflects the rapid progress in the field and the need for 

approaches that can handle the complexity of scientific literature. 

 

The mixed methods approach combines rigorous quantitative metrics (including ROUGE, BLEU, 

and BERTScore) with in-depth qualitative assessments, including human evaluation and LLM-

as-Judge techniques. This multi-faceted evaluation strategy aims to capture both the technical 

performance and practical utility of the summarisation framework. 
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Data collection and preprocessing have been considered, with the selection of SciTLDR and 

SciSummNet datasets providing an appropriate foundation for training and evaluation. The 

preprocessing pipeline ensures data quality and consistency, while ethical considerations have 

also been addressed to ensure responsible use of the literature. 
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Chapter 5: Description of experimental structure 

5.1 Introduction 

This chapter gives an overview of the experimental component of the study. Chapters 6,7 and 8 

present an account of the experiments conducted to develop and evaluate a Retrieval-

Augmented Generation (RAG) based hybrid summarisation framework for scientific papers. 

Building upon the theoretical foundations and methodological approaches outlined in Chapters 

3 and 4, this experimental phase aims to test and refine the proposed summarisation 

techniques. 

 

The rationale for employing a RAG-based approach, as explained in Chapter 3, lies in its 

potential to combine the strengths of both extractive and abstractive summarisation methods. 

By using external knowledge retrieval alongside the generative capabilities of Large Language 

Models (LLMs), RAG offers a promising solution to the challenges of multi-document 

summarisation in the scientific domain. This approach addresses key limitations of traditional 

methods, such as maintaining factual accuracy, handling domain-specific terminology, and 

synthesising information across multiple documents. 

 

Following the methodology detailed in Chapter 4, the experimental design adopts a systematic, 

multi-stage approach. It begins with a thorough evaluation and fine-tuning of embedding 

models, essential for effective information retrieval. This is followed by an exploration of 

various chunking strategies, essential for managing the often lengthy and complex structure of 

scientific papers. The core of the experiments involves the evaluation and fine-tuning of state-

of-the-art LLMs, specifically the Gemma 2B and 7B models, for the task of scientific paper 

summarisation. 

 

The implementation and testing of the complete RAG pipeline form the end-point of the 

experimental work. This involves integrating optimised retriever and generator components, 

followed by end-to-end evaluations. To gain deeper insights into the effectiveness of the 

approach, ablation studies and comparative analyses against baseline methods are conducted. 

 

Throughout these experiments, a range of evaluation metrics are used, including automated 

measures such as ROUGE, BLEU, and BERTScore, as well as human evaluation and the recent 

LLM-as-judge approach. This multi-faceted evaluation strategy intends to assure a thorough 

assessment of summary quality, coherence, and relevance. 
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The experiments described in this chapter are designed validate the effectiveness of the RAG-

based approach and also to further explore the boundaries of what is possible in multi-

document summarisation of scientific literature. By systematically exploring various 

components and configurations, the aim is to provide valuable insights into the strengths and 

limitations of this approach, potentially informing future research in the field. 

In the following sections, each phase of the plan will be described, presenting methodologies, 

results, and analyses that collectively contribute to improve understanding of effective 

scientific paper summarisation using these techniques. 
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5.2 Experimental Plan for RAG-based Hybrid Summarisation 

 

Figure 29: Experimental plan flowchart 

 

The experimental plan for evaluating the RAG-based hybrid summarisation approach follows a 

systematic methodology, as illustrated in Figure 30. This flowchart outlines the five main 

experimental phases, each designed to evaluate specific aspects of the summarisation system. 

The workflow begins with parallel evaluations for key components: embedding model 

assessment (1), chunking strategy comparison (2), and LLM evaluation (3). These three 

elements feed into the RAG pipeline development (4), where the retriever and generator 

components are integrated.  
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This integration phase brings together the previous evaluations to create a cohesive system 

that itself undergoes end-to-end evaluation. 

Following the integration, ablation studies and comparative analyses are conducted (5) to 

understand the contribution of each component to overall performance. This includes 

component ablation, baseline comparison, and cross-domain testing to assess how well the 

pipeline can be generalised. The final stages of the experimental plan cover error analysis, 

iterative refinement, efficiency benchmarking and scalability testing.  

Chapter 6 covers model evaluation & fine-tuning, chunking evaluation, LLM evaluation, PEFT 

and RAG pipeline implementation and testing. 

Chapter 7 covers the evaluation methods including the human study and LLM-as-a-judge. 

Chapter 8 covers the final pipeline results and evaluation 

 

5.3 Retrieval-Augmented Generation (RAG) Pipeline 

The Retrieval-Augmented Generation (RAG) pipeline forms the basis of the approach to multi-

document summarisation of scientific papers in this study. This section describes the 

architecture and methodologies employed in the RAG implementation, demonstrating the 

rationale behind key design decisions and the techniques used to optimise performance. 

 

 

Figure 30: High-Level RAG pipeline 
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At its core, the RAG pipeline shown in figure 29 above comprises two primary components: a 

retrieval mechanism and a generative language model. The retrieval component is responsible 

for identifying and extracting relevant information from the corpus of documents, whilst the 

generative model synthesises this information into coherent, informative summaries. This 

hybrid approach leverages the strengths of both extractive and abstractive summarisation 

techniques, potentially overcoming the limitations of each when used in isolation. 

 

The first critical step in the RAG pipeline involves the creation and fine-tuning of embeddings. 

Various embedding techniques were experimented with, including those based on 

transformers such as BERT (Devlin et al., 2018) and more recent models like RoBERTa (Liu et al., 

2019). The choice of embedding model is very important, as it directly impacts the quality of 

retrieval and, consequently, the overall summarisation performance. The fine-tuning process 

focused on adapting these embeddings to the specific language and structure of scientific 

papers, with particular attention paid to domain-specific terminology and concepts. 

 

An interesting dichotomy emerged during experimentation with embeddings: the trade-off 

between using full-document embeddings versus embeddings of only the abstract and 

conclusion sections. Full-document embeddings provide a comprehensive representation of 

the paper's content but at the cost of increased computational overhead and potential noise. 

Conversely, abstract and conclusion embeddings offer a more concise representation, 

potentially capturing the essence of the paper more efficiently. This research explored this 

trade-off in depth, evaluating the impact on retrieval accuracy and summarisation quality. 

 

The chunking strategy employed in the RAG pipeline proved to be another critical factor 

influencing performance. Various approaches to segmenting documents were investigated, 

ranging from simple fixed-length chunks to more sophisticated methods that consider semantic 

boundaries and section overlaps. The optimal chunking strategy needed to balance granularity 

of information with the context window limitations of the chosen language model. A hybrid 

approach, combining sentence-level segmentation with semantic consideration, was found to 

yield promising results. 

 

The front-end language model, serving as the generative component of the RAG pipeline, was 

fine-tuned to adapt it to the task of scientific summarisation. This process involved careful 

selection of training data, comprising high-quality summaries of scientific papers, and the 

implementation of techniques such as few-shot learning and prompt engineering. The 
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intention was to improve the ability of the model to generate accurate, coherent, and 

contextually relevant summaries based on the retrieved information. 

 

Throughout the development of the RAG pipeline, careful consideration was given to the 

interplay between its components. The retrieval mechanism's output directly influences the 

quality of the generated summaries, requiring an iterative approach to optimisation. This 

involved continuous refinement of embedding techniques, retrieval algorithms, and the 

generative model's parameters to achieve optimal performance in the context of scientific 

multi-document summarisation. 

 

5.4 Experimental Design 

The experimental design for this study was designed to carefully evaluate the proposed RAG-

based MDS  framework for scientific papers, focusing on comparisons with state-of-the-art 

abstractive techniques. This section describes the approach taken to measure the 

performance, robustness, and generalisability of the developed models. 

 

To establish a meaningful comparison, a set of baseline models was selected from recent 

abstractive summarisation approaches. These included sequence-to-sequence models such as 

BART (Lewis et al., 2020), T5 (Raffel et al., 2020), and PEGASUS (J. Zhang et al., 2020). These 

models were chosen because of their strong performance in general summarisation tasks and 

their potential for adaptation to scientific document summarisation. Each baseline model was 

fine-tuned on scientific literature to ensure a fair comparison with the proposed RAG-based 

approach. 

 

The proposed models and their variations form the core of the experimental design. The 

primary model utilises the RAG architecture with Gemma 2B and 7B as the generative 

component, fine-tuned on scientific literature. Variations of this model were developed to 

explore different aspects of the summarisation task. These include models with varying 

retrieval mechanisms (e.g., dense vs. sparse retrieval), different embedding strategies (full-

document vs. abstract/conclusion), and alternative chunking methods. Each variation was 

designed to test specific hypotheses about the efficacy of different components within the RAG 

pipeline. 

 

Ablation studies were conducted to isolate the impact of individual components and 

techniques within the proposed framework. These studies systematically removed or altered 
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specific elements of the model, such as the retrieval mechanism, the fine-tuning process, or 

the chunking strategy. By comparing the performance of these ablated (removed) models 

against the full model, it was possible to quantify the contribution of each component to the 

overall summarisation quality. Ablation studies can be thought of as a controlled "component 

removal" analysis - similar to how scientists might remove a specific gene to understand its 

function, researchers remove specific parts of an AI system to measure how critical each part is 

to the final results. This approach not only provided insights into the model's workings but also 

guided further optimisation efforts. 

 

To assess the generalisability of the proposed framework, cross-domain applicability tests were 

performed. These tests involved applying the models, which were primarily trained on one 

scientific domain (e.g., computer science), to datasets from other scientific fields such as 

biology, physics, or social sciences. The PubMed and arXiv datasets (Cohan et al., 2018) were 

particularly useful for this purpose, offering a diverse range of scientific literature. This cross-

domain evaluation aimed to show the model's ability to adapt to different scientific 

vocabularies and writing styles, potentially a significant factor in developing a versatile 

scientific summarisation tool. 

 

Throughout the experimental process, rigorous controls were implemented to ensure the 

validity and reliability of the results. This included the use of sampling techniques to create 

balanced test sets, cross-validation procedures to mitigate the impact of overfitting, and the 

application of statistical tests to determine the significance of observed performance 

differences between the proposed RAG-based model and the baseline models. 

The experimental design also incorporated a time-series dimension to assess the model's 

performance on newly published scientific papers. This was achieved by creating a ‘holdout’ 

set of recent publications not included in the training data, allowing for the evaluation of the 

model's ability to summarise cutting-edge research effectively. This aspect was particularly 

important in comparing the RAG-based approach with traditional abstractive models, as it 

highlighted the potential advantages of retrieval-based methods in handling new information. 
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5.5 Evaluation Frameworks 

The evaluation of the proposed RAG-based summarisation model and its comparison with 

baseline abstractive techniques needs a multi-faceted approach. This section describes the 

planned implementation of various evaluation frameworks to be used in this study. 

 

5.5.1: Automated Metrics 

The initial evaluation will use automated metrics, primarily ROUGE (C.-Y. Lin, 2004)and BLEU 

(Papineni et al., 2002) scores. These metrics are chosen for their widespread use in 

summarisation tasks, allowing for comparability with previous studies. ROUGE-1, ROUGE-2, 

and ROUGE-L were be calculated to assess unigram, bigram, and longest common subsequence 

overlap, respectively. BLEU scores will provide an additional perspective on the generated 

summary quality. 

 

In addition to these standard metrics, the evaluation will incorporate more recent automated 

measures. BERTScore (T. Zhang et al., 2020) will be used to capture semantic similarity 

between generated and reference summaries, addressing some limitations of n-gram based 

metrics. Additionally, the SUPERT metric (Gao, Zhao and Eger, 2020) will be explored, as it does 

not require reference summaries, making it particularly suitable for evaluating scientific paper 

summarisation where gold standard summaries might not always be available.  

 

5.5.2: Evaluation 

While automated metrics provide quantitative insights, human evaluation is essential for 

assessing the qualitative aspects of the summaries. A group of 15 participants, consisting of 

students and researchers from various scientific disciplines, will be used for this task. The 

evaluation process is designed as a comparative assessment where participants will be 

presented with summaries from the proposed RAG model and baseline abstractive models, 

alongside the original scientific papers. 

 

Participants were asked to rate the summaries on a 5-point Likert scale across several 

dimensions: accuracy, coherence, relevance, and overall quality. To mitigate potential biases, 

the source of each summary was anonymised, and the presentation order was randomised. 

The evaluation tasks were conducted through a custom-built web interface (in Microsoft 

Forms), allowing participants to comfortably read and assess the summaries. 
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5.5.3: LLM-as-a-Judge Evaluation 

To complement human evaluation and provide a scalable assessment method, an LLM-as-a-

judge (Zheng et al., 2023) approach was implemented. GPT-4 was selected as the judge model 

due to its advanced language understanding capabilities. The model was fine-tuned on a 

dataset of expert-evaluated scientific summaries to align its judgments with domain-specific 

criteria. 

 

The evaluation criteria for the judge LLM mirrored those used in the human evaluation, with 

additional focus on scientific accuracy and the preservation of key findings from the original 

papers. Carefully developed prompts were used to get nuanced judgments from the model. 

These prompts included instructions to assess the summary's coverage of main research 

questions, methodologies, results, and conclusions. 

 

To ensure consistency and reliability, each summary was evaluated multiple times with slight 

variations in the prompts. The final scores were then aggregated from these multiple 

evaluations, providing a more robust assessment. 
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Chapter 6: Experiments and results – model, chunking and LLM 

6.1 Embedding model evaluation and fine-tuning 

6.1.1 Baseline Embedding Model Evaluation 

The purpose of this round of experiments was to determine the most effective pre-trained 

embedding model.  This section compares and contrasts various embedding models, both in 

their base forms and after fine-tuning on the SciTLDR dataset. The models under investigation 

are SciBERT, RoBERTa, and SPECTER. 

 

The section is structured as follows: the experimental setup, including the dataset, 

preprocessing steps, and evaluation metrics; the results of the base models; a discussion of the 

performance of the fine-tuned models. The section concludes with an in-depth analysis and 

comparison of all models, with a clear recommendation for the most suitable embedding 

model for the final RAG embeddings task. 

 

6.1.2 Dataset 

The SciTLDR dataset was used for this part of the study. This dataset comprises scientific papers 

along with their corresponding summaries, making it ideal for training and evaluating models 

in scientific literature summarisation. The dataset was split into training, validation, and test 

sets using a 80:10:10 ratio (a standard split irrespective of the downstream NLP task). 

 

6.1.3 Preprocessing 

Text preprocessing was performed using the spaCy library. The preprocessing steps included: 

• Tokenisation 

• Lemmatisation 

• Removal of stop words and punctuation; case normalisation 

This preprocessing pipeline was applied consistently across all experiments to ensure fair 

comparisons between models. 

 

6.1.4 Embedding Models 

Three base embedding models were selected for evaluation (all base models were accessed 

through the Huggingface hub with reference models from the original developer): 
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• SciBERT: A BERT model trained on scientific text, which was expected to perform well 

due to its domain-specific training. 

• RoBERTa: A robustly optimised BERT model, known for its strong performance across 

various NLP tasks. 

• SPECTER: A model specifically designed for document representation. 

Each of these models was evaluated in its base form and after fine-tuning on the SciTLDR 

dataset. 

 

6.1.5 Evaluation Metrics 

To assess the quality of the embeddings produced by each model, two primary metrics were 

employed: 

 

• Average Cosine Similarity: This metric measures the overall similarity between 

embeddings in the dataset. Higher values indicate that the model produces more 

similar embeddings across different documents. 

• Silhouette Score: This metric evaluates the quality of clustering that can be achieved 

using the embeddings. 

 

Average Cosine Similarity is used in the RAG pipeline context when: 

• comparing embedding models (eg. BERT vs. RoBERTa) 

• evaluating different embedding strategies (eg. Full document cs. Abstract/ conclusion 

only) 

• assessing how well the embeddings capture domain-specific scientific language 

 

High average cosine similarity between documents that should be semantically related (e.g., 

papers on the same topic) indicates good embedding quality, while appropriate dissimilarity 

between unrelated papers shows the embedding model can differentiate between distinct 

topics. 

 

Figure 31 below shows typical average cosine similarity scores across different embedding 

strategies in the RAG pipeline. RoBERTa embeddings consistently outperform BERT, with the 

highest performance achieved when using only abstract and conclusion sections (0.64) rather 

than full documents. 
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Figure 31: Average Cosine Similarity 

 

6.1.6 Methodology for Embedding Creation and Testing 

1. Dataset Preparation: 

• Load the SciTLDR dataset using the Hugging Face datasets library. 

• Split the dataset into train, validation, and test sets (80:10:10 ratio). 

2. Text Preprocessing: 

• Utilise spaCy library for preprocessing. 

• Apply the following steps to each document: 

a. Tokenisation 

b. Lemmatisation 

c. Removal of stop words and punctuation 

• Combine processed tokens back into a single string. 

3. Embedding Generation: 

• For each model (SciBERT, RoBERTa, SPECTER): 

a. Load the pre-trained model and tokeniser from Hugging Face. 

b. Tokenise the preprocessed text using the model-specific tokeniser. 

c. Generate embeddings by passing tokenised input through the model. 

d. Extract the [CLS] token embedding (first token) as the document 

representation. 
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4. Evaluation Metrics Calculation: 

• Average Cosine Similarity: 

a. Compute pairwise cosine similarities between all document embeddings. 

b. Calculate the mean of these similarities. 

• Silhouette Score: 

a. Apply K-means clustering to the embeddings (k=5). 

b. Compute the silhouette score using scikit-learn. 

5. Visualisation: 

• Dimensionality Reduction: 

a. Apply t-SNE to reduce embeddings to 2D. 

b. Apply UMAP to reduce embeddings to 2D. 

• Create scatter plots of the reduced embeddings. 

6. Sampling for Efficiency: 

• If the dataset is large, randomly sample a subset (e.g., 1000 documents) for 

evaluation to manage computational resources. 

 

Pseudocode for the main evaluation process: 

 

function evaluate_model(model, tokenizer, dataset): 
    embeddings = [] 
    for document in dataset: 
        preprocessed_text = preprocess(document) 
        tokens = tokenizer.encode(preprocessed_text, truncation=True, max_length=512) 
        with no_grad(): 
            outputs = model(tokens) 
        embedding = outputs.last_hidden_state[0]  # CLS token 
        embeddings.append(embedding) 
     
    avg_cosine_sim = calculate_average_cosine_similarity(embeddings) 
    silhouette_score = calculate_silhouette_score(embeddings) 
     
    return avg_cosine_sim, silhouette_score 
 
for model_name in [SciBERT, RoBERTa, SPECTER]: 
    model, tokenizer = load_model_and_tokenizer(model_name) 
    results = evaluate_model(model, tokenizer, dataset) 
    print(f"Results for {model_name}: {results}") 
 

Code Listing 4: Pseudocode for main evaluation 

 
Code Listing 4 (above) shows the pseudocode for the main evaluation process, which assesses 

different embedding models. The evaluate_model function takes a model, tokenizer, and 

dataset as inputs, then processes each document to generate embeddings. Key steps include 
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text preprocessing, tokenization with a 512-token limit, and extraction of the final hidden state 

from the CLS token, which represents the document embedding. The code calculates two 

evaluation metrics: average cosine similarity, which measures semantic closeness between 

related documents, and silhouette score, which evaluates the clustering quality of the 

embeddings. The lower section of the pseudocode shows how the evaluation function is 

applied across multiple models (SciBERT, RoBERTa, and SPECTER) 

 

6.1.7 Fine-tuning Methodology 

1. Prepare Fine-tuning Dataset: 

a. Use the SciTLDR training set. 

b. Create input-output pairs: (source text, target summary). 

2. Model Configuration: 

a. Load the pre-trained model and tokeniser. 

b. Add a classification head on top of the base model for the summarisation task. 

3. Fine-tuning Process: 

a. Objective: Minimise the cross-entropy loss between predicted and actual 

summaries. 

b. Hyperparameters: 

i. Learning rate: 2e-5 (common for transformer fine-tuning) 

ii. Batch size: 16 

iii. Initial number of epochs: 3-5 (monitor validation loss to prevent 

overfitting) 

c. Optimiser: AdamW with weight decay 

d. Learning rate scheduler: Linear decay 

4. Training Loop: 

a. For each epoch: 

i. Shuffle the training data 

ii. For each batch: 

1. Tokenise input texts and summaries 

2. Forward pass through the model 

3. Compute loss 

4. Backpropagate and update model parameters 

b. Evaluate on validation set 

c. Save model if validation performance improves 

5. Post Fine-tuning: 
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a. Select the best model based on validation performance. 

b. Evaluate the fine-tuned model using the same process as the base models. 
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Pseudocode for fine-tuning process: 

 

 

function fine_tune_model(model, tokenizer, train_data, val_data): 
    model.add_classification_head() 
    optimizer = AdamW(model.parameters(), lr=2e-5) 
    scheduler = get_linear_schedule_with_warmup(optimizer, num_epochs) 
     
    for epoch in range(num_epochs): 
        model.train() 
        for batch in train_data: 
            inputs = tokenizer(batch['source'], truncation=True, padding=True) 
            labels = tokenizer(batch['target'], truncation=True, padding=True) 
             
            outputs = model(**inputs, labels=labels) 
            loss = outputs.loss 
             
            loss.backward() 
            optimizer.step() 
            scheduler.step() 
            optimizer.zero_grad() 
         
        model.eval() 
        validate(model, val_data) 
     
    return model 
 
for model_name in [SciBERT, RoBERTa, SPECTER]: 
    base_model, tokenizer = load_model_and_tokenizer(model_name) 
    fine_tuned_model = fine_tune_model(base_model, tokenizer, train_data, val_data) 
    results = evaluate_model(fine_tuned_model, tokenizer, test_data) 
    print(f"Fine-tuned results for {model_name}: {results}") 
 

Code Listing 5: Fine-tuning process pseudocode 

Code Listing 5 shows the fine-tuning process for adapting pre-trained language models to the 

summarisation task. The pseudocode defines a fine_tune_model function that adds a 

classification head to the base model, configures an AdamW optimiser with a low learning rate 

(2e-5), and implements a linear learning rate schedule with warmup. The training loop then 

processes batches of source-target pairs, calculates loss, and performs backpropagation while 

managing the learning rate schedule. The lower section of the code shows how the fine-tuning 

approach is then applied to multiple candidate models (SciBERT, RoBERTa, and SPECTER), with 

performance evaluation on test data after fine-tuning. 

 

6.1.8 Results: Base Models 

The performance of the base models was evaluated using the metrics described in Section 

5.2.1.5. Table 5 presents the results for each base model. 
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Table 5: Performance of Base Embedding Models 

Model    Average Cosine Similarity Silhouette Score 

SciBERT 0.7845  0.0259 

RoBERTa 0.9981  0.0380 

SPECTER 0.7231 0.0412 

 

SciBERT, despite its scientific domain pre-training, showed moderate performance with an 

average cosine similarity of 0.7845 and a low silhouette score of 0.0259. This suggests that 

while SciBERT captures some domain-specific features, it struggles to clearly differentiate 

between different scientific documents. 

 

RoBERTa demonstrated an exceptionally high average cosine similarity of 0.9981, indicating 

that it produces very similar embeddings for almost all documents in the dataset. However, its 

silhouette score of 0.0380, while slightly higher than SciBERT's, remains low. This suggests that 

RoBERTa's embeddings, while consistent, do not effectively separate different types of scientific 

documents. 

 

SPECTER showed the lowest average cosine similarity at 0.7231, but the highest silhouette 

score of 0.0412 among the base models. This indicates that SPECTER's embeddings, while less 

similar overall, provide slightly better separation between different types of documents. 

 

6.1.9 Results: Fine-tuned Models 

Each base model was fine-tuned on the SciTLDR dataset to adapt it more specifically to the task 

of scientific literature summarisation. Table 6 shows the results for the fine-tuned models. 

 

Table 6: Performance of Fine-tuned Embedding Models 

Model Average Cosine Similarity Silhouette Score 

SciBERT (tuned) 0.7102 0.0578 

RoBERTa (tuned) 0.8945 0.0623 

SPECTER (tuned) 0.6987 0.0735 

 

Fine-tuning led to improvements across all models, particularly in terms of silhouette scores. 

SciBERT showed a decrease in average cosine similarity to 0.7102 but an increase in silhouette 

score to 0.0578, indicating improved differentiation between document types. 
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RoBERTa's average cosine similarity decreased to 0.8945 after fine-tuning, while its silhouette 

score increased to 0.0623. This suggests that fine-tuning helped RoBERTa to capture more 

nuanced differences between scientific documents. 

 

SPECTER demonstrated the most significant improvement after fine-tuning, with the lowest 

average cosine similarity of 0.6987 and the highest silhouette score of 0.0735. This indicates 

that SPECTER, when adapted to the specific task, provides the best separation between 

different types of scientific documents. 

 

6.1.10 Analysis and Recommendation 

The experimental results reveal a number of insights: 

 

Domain-specific pre-training, as seen in SciBERT, provides a good starting point but does not 

necessarily lead to the best performance for specific tasks within the domain. 

General language models like RoBERTa can produce highly consistent embeddings but may 

struggle to capture fine-grained differences between scientific documents without task-specific 

fine-tuning. 

Models specifically designed for document representation, such as SPECTER, show the most 

promise, especially after fine-tuning. 

Fine-tuning consistently improves the models' ability to differentiate between different types 

of scientific documents, as evidenced by the increased silhouette scores across all models. 

Based on these findings, the following recommendation is made: 

 

The fine-tuned SPECTER model is the most suitable choice for embedding scientific documents 

in the context of this RAG-based summarisation system. It demonstrates the best balance 

between producing distinguishable embeddings (lowest average cosine similarity) and creating 

well-defined clusters (highest silhouette score). This suggests that the fine-tuned SPECTER 

model will be most effective in retrieving relevant documents and generating accurate 

summaries. 

 

However, it is important to note that while SPECTER shows the best performance among the 

evaluated models, the overall low silhouette scores across all models indicate that there is still 

room for improvement in embedding scientific documents. It is, however, an acceptable 

starting point to inform development of the next steps in the RAG system. 
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6.2 Chunking Strategy Evaluation 

This section presents the results of the investigation into various chunking strategies and their 

impact on the performance of the RAG pipeline. Four different chunking techniques were 

assessed (as described in section 3.2.4.2: fixed-size chunking, sentence-based chunking, 

paragraph-based chunking, and sliding window chunking. 

 

It is important to note that SPECTER is designed as a document embedding model, and here it 

is being adapted it to work with chunks as if each chunk were a small "document". This 

approach necessitates careful consideration of chunk size to ensure it remains within 

SPECTER's context window while preserving meaningful semantic content. 

 

Methodology 

A subset of 200 papers from the SciSummNet dataset was used for this part of the evaluation. 

Each chunking strategy was applied to the full text of these papers, and the resulting chunks 

were used in the retrieval phase of the RAG pipeline. The quality of the retrieved chunks was 

then evaluated using relevance scores and their impact on the final summary quality noted. 

 
Results: 
Results of each of the chunking strategies are as follows, shown in table 7: 
 
 
Table 7: Chunking strategies compared 

Chunking 
Strategy 

Avg. 
Chunk Size 
(tokens) 

Retrieval 
Precision@5 

ROUGE-L 
Score 

Processing 
Time (s) 

SPECTER 
Compatibility 

Fixed-size (500 
tokens) 

500 0.72 0.41 45 High 

Sentence-based 387 0.79 0.44 62 Medium 

Paragraph-
based 

612 0.81 0.46 58 Medium 

Sliding Window 
(750 tokens, 
250 overlap) 

750 0.84 0.47 73 High 

Semantic 
Chunking 

685 0.87 0.49 95 Very High 
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Analysis: 
 
Fixed-size chunking provided a baseline performance and high compatibility with SPECTER due 

to consistent chunk size, but often broke coherent ideas across chunk boundaries. 

Sentence-based chunking improved performance over fixed-size chunking, maintaining 

sentence integrity. However, variable chunk sizes posed challenges for optimal SPECTER 

embedding generation. 

Paragraph-based chunking showed significant improvements in retrieval precision and 

summary quality. It balanced semantic coherence with reasonable compatibility with SPECTER. 

The sliding window approach with overlap demonstrated excellent performance across 

metrics. The consistent chunk size ensured high compatibility with SPECTER, while the overlap 

helped maintain context across chunk boundaries. 

Semantic chunking, which aims to create chunks based on semantic coherence, showed the 

best performance in terms of retrieval precision and ROUGE-L score. It provided chunks that 

aligned well with SPECTER's document-level design. However, this came at a significant 

computational cost, with the longest processing time among all strategies. 

 
Impact on RAG Pipeline and SPECTER Integration: 

The choice of chunking strategy significantly influenced both the quality of retrieved 

information and the effectiveness of SPECTER embeddings. While semantic chunking provided 

the best performance, its computational overhead (it takes much longer to generate chunks) is 

a significant consideration, especially for large-scale applications. 

The sliding window approach offered a good balance between performance and efficiency. Its 

consistent chunk size aligns well with SPECTER's document-level design, while the overlap 

helps maintain semantic coherence between chunks. 

Semantic chunking, despite its better performance, presents challenges in terms of 

computational efficiency. The process of identifying semantically coherent chunks is more 

complex and time-consuming than fixed-size or sliding window approaches. Additionally, the 

variable chunk sizes produced by semantic chunking may require additional processing to 

optimise them for SPECTER's input requirements. 

 

Based on these results and considering the trade-off between performance and computational 

efficiency, the sliding window chunking strategy with a 750-token window and 250-token 

overlap was implemented in the final RAG pipeline. This decision balances high-quality 
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retrieval and summarisation with efficient processing and optimal compatibility with the 

SPECTER embedding model. 

 

 

6.3 LLM evaluation 

This section gives an extended evaluation of Large Language Models (LLMs) for the task of 

scientific literature summarisation for their eventual inclusion as part of a RAG summarisation 

pipeline, following their creation and fine-tuning in the previous sections. The evaluation is 

conducted in two phases: first, assessing the off-the-shelf performance of these models, and 

second, exploring the impact of fine-tuning (as conducted in the previous sections) on their 

summarisation capabilities. 

 

The investigation begins with an evaluation of the base Gemma models on summarisation 

tasks using the SciSummNet dataset, a benchmark collection of scientific papers and their 

corresponding summaries. This initial assessment uses a range of metrics including ROUGE, 

BLEU, and BERTScore to quantify the quality of generated summaries. Additionally, a human 

evaluation component is incorporated to capture qualitative aspects that automated metrics 

may not fully assess. 

 

Following the baseline evaluation, the experimentation moves on to fine-tuning the Gemma 

models on the SciTLDR dataset, which is specifically designed for scientific literature 

summarisation. This phase explores various fine-tuning strategies, including full fine-tuning and 

parameter-efficient techniques such as QLoRA, LoRA, and prefix tuning (as described in earlier 

chapters). The aim is to optimise the models' performance while considering computational 

efficiency and the risk of overfitting. 

 

The section concludes with a comparative analysis of the off-the-shelf and fine-tuned models, 

giving results and recommendations for the most effective LLM approach to RAG-based 

scientific summarisation. This will aim to provide insights into the capabilities of current LLMs 

in this area and the potential benefits of task-specific fine-tuning for similar downstream NLP 

tasks. 

 

6.3.1 Off-the-shelf LLM Evaluation 

The evaluation focuses on two variants of the Gemma model: Gemma 2B and Gemma 7B. 

These models, developed by Google, are part of a new generation of open-source large 
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language models. The numbers '2B' and '7B' refer to the approximate number of parameters in 

each model, with 2B indicating 2 billion parameters and 7B indicating 7 billion parameters. 

Generally, models with more parameters have the potential for greater language 

understanding and generation capabilities, but they also require more computational resources 

to run and train. 

 

The evaluation begins with the preparation of the SciSummNet dataset, which contains 

scientific papers paired with their summaries. Each paper in the dataset is processed through 

both Gemma models to generate summaries. The generated summaries are then compared 

against the reference summaries using a set of established metrics: ROUGE, BLEU, and 

BERTScore. 

 

The evaluation utilises three variants of ROUGE: 

1. ROUGE-1: Measures the overlap of unigrams (individual words) between the generated 

and reference summaries. 

2. ROUGE-2: Measures the overlap of bigrams (two-word sequences) between the 

summaries. 

3. ROUGE-L: Measures the longest common subsequence between the generated and 

reference summaries. 

 

The ROUGE scores are calculated as follows as shown in Code Listing 6: 

 

function calculate_ROUGE(generated_summary, reference_summary): 
rouge1 = compute_overlap(unigrams(generated_summary), unigrams(reference_summary)) 
 
rouge2 = compute_overlap(bigrams(generated_summary), bigrams(reference_summary)) 
 
rougeL = compute_longest_common_subsequence(generated_summary, reference_summary) 
 

    return rouge1, rouge2, rougeL 
 

Code Listing 6: Pseudocode function to calculate ROUGE score 

The calculate_ROUGE function computes three variants: ROUGE-1 (unigram overlap), 

ROUGE-2 (bigram overlap), and ROUGE-L (longest common subsequence). These metrics 

quantify the lexical similarity between generated and reference summaries with higher scores 

showing better alignment in word usage and sequence patterns. 

 

The BLEU score is calculated as follows as shown in Code Listing 7: 
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function calculate_BLEU(generated_summary, reference_summary): 
    n_gram_precisions = [] 
    for n in range(1, 5):  # Typically uses up to 4-grams 

n_gram_precision = compute_precision(n_grams(generated_summary, n),          
n_grams(reference_summary, n)) 

         n_gram_precisions.append(n_gram_precision) 
     

bleu_score = geometric_mean(n_gram_precisions) * brevity_penalty(generated_summary, 
reference_summary) 

     
return bleu_score 

 

Code Listing 7: Pseudocode function to calculate BLEU score 

The calculate_BLEU function evaluates summary quality by measuring n-gram precision. It 

calculates precision for n-grams of lengths 1 through 4, combines them using geometric mean, 

and applies a brevity penalty for short summaries. BLEU primarily assesses the precision aspect 

of summarisation, penalising outputs that are too concise compared to references. 

 

BERTScore is a more recent metric that uses contextual embeddings from pre-trained language 

models to compute the similarity between generated and reference texts. It provides separate 

precision, recall, and F1 scores. The calculation process can be represented as pseudocode as 

shown in Code Listing 8: 

 

 

function calculate_BERTScore(generated_summary, reference_summary): 
    generated_embeddings = BERT_encode(generated_summary) 
    reference_embeddings = BERT_encode(reference_summary) 
     
    precision = max_similarity(generated_embeddings, reference_embeddings) 
    recall = max_similarity(reference_embeddings, generated_embeddings) 
    f1 = harmonic_mean(precision, recall) 
     
    return precision, recall, f1 
 

Code Listing 8: Pseudocode function to calculate BERTScore 

The calculate_BERTScore function encodes both summaries into semantic representations 

and calculates similarity at the token level. The function returns precision, recall, and F1 scores 

based on maximum similarity between token embeddings 
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In addition to these automated metrics, a human evaluation was conducted to capture 

qualitative aspects of the summaries that may not be reflected in the quantitative metrics. The 

human evaluation involved raters assessing the summaries on criteria such as coherence, 

relevance, and factual accuracy. The detailed results and methodology of the human 

evaluation can be found in Appendix 2. 

 

It is important to note that the papers in the SciSummNet dataset are relatively short 

compared to full scientific articles typically found in journals. To account for this and to explore 

the models' performance on different input lengths, the evaluation was conducted in two 

scenarios: using the full papers and using only the introduction and conclusion sections. 

The evaluation process was carried out for both Gemma 2B and Gemma 7B models on a subset 

of 1000 randomly selected papers from the SciSummNet dataset to ensure computational 

feasibility while maintaining statistical significance. 

 

 

Table 8: Off-the-shelf Performance of Gemma Models on SciSummNet 

Model Input ROUGE-1 ROUGE-2 ROUGE-L BLEU BERTScore (F1) 

Gemma 2B Full Paper 0.3824 0.1562 0.3501 0.1987 0.8654 

Gemma 2B Intro/Concl 0.3801 0.1543 0.3489 0.1972 0.8631 

Gemma 7B Full Paper 0.4103 0.1789 0.3842 0.2245 0.8912 

Gemma 7B Intro/Concl 0.3987 0.1701 0.3756 0.2189 0.8873 

 

The results shown in table 8 indicate several interesting findings: 

• The Gemma 7B model consistently outperforms the Gemma 2B model across all 

metrics and input scenarios, suggesting that the increased model size contributes to 

better summarisation performance. 

• For the Gemma 2B model, the performance difference between using the full paper 

and only the introduction/conclusion is minimal. The slight variation (less than 1% 

across metrics) suggests that the 2B model may not effectively utilise the additional 

information present in the full paper. 

• The Gemma 7B model shows a more noticeable improvement when given the full 

paper compared to just the introduction and conclusion. This indicates that the larger 

model is better able to process and synthesise information from longer inputs. 
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Despite the improvements seen with the 7B model, the difference in performance is not 

drastically large. The Gemma 2B model still provides reasonably good summaries, especially 

considering its smaller size and reduced computational requirements. 

 

The human evaluation results, detailed in Appendix 1, generally align with the automated 

metrics. Raters indicated a slight preference for summaries generated by the Gemma 7B model 

in terms of coherence and factual accuracy, particularly when the model was given the full 

paper as input. However, both models were found to produce summaries of acceptable quality 

for many scientific papers, regardless of input length. 

These findings have some feed-forward implications for practical applications: 

• For scenarios where computational resources are limited or where processing speed is 

crucial (for example on mobile devices, or even on local laptops of desktops without 

accelerator/ GPU hardware), the Gemma 2B model offers a good balance between 

performance and efficiency. Its ability to generate comparable summaries from both 

full papers and abbreviated versions (introduction/conclusion) makes it quite versatile 

for different use cases. 

• In situations where maximum performance is desired and computational resources are 

available, the Gemma 7B model provides better results, especially when processing 

full papers. This makes it more suitable for comprehensive literature reviews or in-

depth analysis of scientific articles. 

• The relatively small performance gap between using full papers and only 

introduction/conclusion sections suggests that for quick summarisation tasks or when 

dealing with large volumes of papers, focusing on key sections might be an 

appropriate strategy to save processing time without significantly compromising 

summary quality. 

 

6.4 Parameter-Efficient Fine-Tuning (PEFT) for Gemma Models 

This section describes the approach to fine-tuning the Gemma models, with a particular focus 

on Parameter-Efficient Fine-Tuning (PEFT) techniques, specifically LoRA (Low-Rank Adaptation) 

and QLoRA (Quantized Low-Rank Adaptation). These methods were investigated to optimise 

the fine-tuning process for both the 2B and 7B Gemma models, so addressing the challenges of 

computational efficiency and performance. 
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6.4.1 LoRA and QLoRA Overview 

LoRA works by adding trainable rank decomposition matrices to each layer of the transformer, 

allowing for efficient adaptation of the model with significantly fewer trainable parameters. 

QLoRA extends this by applying quantization to the base model parameters, further reducing 

memory requirements. 

 

6.4.2 Computational Requirements 

The computational demands for fine-tuning varied significantly between the 2B and 7B models: 

• Gemma 2B: Successfully fine-tuned on a Google Colab notebook with a single NVIDIA 

A100 GPU. 

• Gemma 7B: Required a dedicated Google Cloud VM instance with 2 NVIDIA A100 GPUs 

due to its larger size and memory requirements. 

 

This difference in computational needs underscores the importance of efficient fine-tuning 

techniques, especially for larger models. 

 

6.4.3 Hyperparameters and Fine-Tuning Process 

As previously described, the SciTLDR dataset was used for fine-tuning (with hyperparameters 

as shown below in table 9) which provides scientific paper summaries ideal for this 

summarisation task. The dataset was pre-processed to create input-output pairs of full text and 

corresponding summaries. 

 

Table 9: Key hyperparameters for LoRA/QLoRA fine-tuning 

Hyperparameter Gemma 2B Gemma 7B 

Learning rate 1e-4 5e-5 

Batch size 4 2 

LoRA rank 8 16 

LoRA alpha 16 32 

LoRA dropout 0.05 0.1 

Weight decay 0.01 0.01 

Warmup steps 100 200 
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Hyperparameter Gemma 2B Gemma 7B 

Max steps 1000 2000 

 

For QLoRA,  4-bit quantization was used for the base model parameters. Code Listing 9 shows 

how 4-bit quantization is applied to the base model parameters. It shows the configuration of 

key LoRA hyperparameters (rank=16, alpha=32, dropout=0.1) as specified in Table 9, and 

outlines the process of preparing scientific text samples from SciTLDR for training. 

 

 

from transformers import AutoTokenizer, AutoModelForCausalLM 
from peft import prepare_model_for_kbit_training, LoraConfig, get_peft_model 
 
# Load tokenizer and model 
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b") 
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", load_in_4bit=True) 
 
# Prepare model for QLoRA 
model = prepare_model_for_kbit_training(model) 
 
# Configure LoRA 
lora_config = LoraConfig( 
    r=16, 
    lora_alpha=32, 
    lora_dropout=0.1, 
    bias="none", 
    task_type="CAUSAL_LM" 
) 
 
# Apply LoRA 
model = get_peft_model(model, lora_config) 
 
# Prepare a sample from SciTLDR 
input_text = "Title: Deep Learning in Neural Networks: An Overview\n\nFull Text: Deep Learning ..." 
target_summary = "This paper provides a broad overview of deep learning in neural networks ..." 
 
# Tokenize input 
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=1024) 
targets = tokenizer(target_summary, return_tensors="pt", truncation=True, max_length=128) 
 
# Fine-tuning loop (simplified) 
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) 
model.train() 
 
for epoch in range(num_epochs): 
    outputs = model(**inputs, labels=targets["input_ids"]) 
    loss = outputs.loss 
    loss.backward() 
    optimizer.step() 
    optimizer.zero_grad() 
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Code Listing 9: pseudocode for data preparation and model setup for Gemma 7B using QLoRA 

 

6.4.4 Challenges and Observations 

1. Memory Management: Even with QLoRA, the 7B model required careful memory 

management. Gradient accumulation was used to simulate larger batch sizes. 

2. Training Time: The 7B model took approximately 3 times longer to fine-tune compared 

to the 2B model, even with additional GPU resources. 

3. Performance vs Efficiency Trade-off: While the 7B model generally outperformed the 

2B model in summarisation quality, the difference was not always proportional to the 

increase in computational resources required. 

4. Quantization Effects: QLoRA's 4-bit quantization allowed for fine-tuning of the 7B 

model on limited GPU resources but introduced a small degradation in performance 

compared to full-precision fine-tuning. 

 

6.4.5 Conclusion 

The use of LoRA and QLoRA techniques was important to enable the fine-tuning of both 

Gemma models, especially the 7B variant. These methods facilitated adaptation of the models 

to this specific summarisation task while managing computational constraints. The trade-offs 

between model size, performance, and computational requirements show the importance of 

choosing the right model and fine-tuning approach based on available resources and specific 

application needs. 

 

6.4.6 Impact of Hyperparameter Choices on Fine-tuning and Model Performance 

The selection of the fine-tuning hyperparameters significantly influenced both the fine-tuning 

process and the final performance of the models on the summarisation task. A set of 

experiments were run to attempt to understand these impacts: 

1. Learning Rate: 

• For Gemma 2B, learning rates of 1e-3, 1e-4, and 1e-5 were used. 

• For Gemma 7B, learning rates of 1e-4, 5e-5, and 1e-5. 
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Results: 

 

Table 10: Hyper-parameter learning rates 

Model Learning Rate ROUGE-L Training Stability 

Gemma 2B 1e-3 0.38 Unstable 

Gemma 2B 1e-4 0.42 Stable 

Gemma 2B 1e-5 0.40 Stable, slower convergence 

Gemma 7B 1e-4 0.43 Slightly unstable 

Gemma 7B 5e-5 0.45 Stable 

Gemma 7B 1e-5 0.44 Stable, slower convergence 

 

Analysis: As shown in table 10, higher learning rates led to faster convergence but risked 

instability, especially for the larger 7B model. The optimal rates (1e-4 for 2B and 5e-5 for 7B) 

balanced speed and stability. 

2. LoRA Rank: 

Ranks of 4, 8, 16, and 32 were tested for both models. 

 

Table 11: LoRA rank evaluation 

Model LoRA Rank ROUGE-L Parameter Efficiency 

Gemma 2B 4 0.39 Very High 

Gemma 2B 8 0.42 High 

Gemma 2B 16 0.43 Moderate 

Gemma 2B 32 0.43 Low 

Gemma 7B 4 0.41 Very High 

Gemma 7B 8 0.43 High 

Gemma 7B 16 0.45 Moderate 

Gemma 7B 32 0.46 Low 
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Analysis: As table 11 shows, higher ranks tended to improve performance but at the cost of 

parameter efficiency. The gains diminished beyond rank 16, especially for the 2B model. 

 

3. Batch Size and Gradient Accumulation: 

Due to memory constraints, gradient accumulation was used to simulate larger batch 

sizes. 

 

Table 12: Batch size evaluation 

Model Effective Batch Size ROUGE-L Training Time (relative) 

Gemma 2B 4 0.41 1x 

Gemma 2B 8 (4x2 accum.) 0.42 1.2x 

Gemma 2B 16 (4x4 accum.) 0.42 1.5x 

Gemma 7B 2 0.43 1x 

Gemma 7B 4 (2x2 accum.) 0.45 1.3x 

Gemma 7B 8 (2x4 accum.) 0.45 1.7x 

 

Analysis: As table 12 shows, larger effective batch sizes improved performance, especially for 

the 7B model, but increased training time. The gains flattened off at larger batch sizes. 

 

4. LoRA Dropout: 

Dropout rates of 0.0, 0.05, 0.1, and 0.2 were tested. 
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Table 13: LoRA dropout rates 

Model LoRA Dropout ROUGE-L Generalisation 

Gemma 2B 0.0 0.41 Poor 

Gemma 2B 0.05 0.42 Good 

Gemma 2B 0.1 0.42 Good 

Gemma 2B 0.2 0.40 Moderate 

Gemma 7B 0.0 0.43 Poor 

Gemma 7B 0.05 0.44 Good 

Gemma 7B 0.1 0.45 Very Good 

Gemma 7B 0.2 0.44 Good 

 

Analysis: The impact of dropout rates are shown in table 13 above. A moderate dropout 

appeared to improved generalisation, particularly for the 7B model. No dropout led to 

overfitting, while too high dropout hindered learning. 

 

Key Findings: 

1. The 7B model consistently outperformed the 2B model but required more careful 

hyperparameter tuning to achieve stable training. 

2. LoRA rank had a significant impact on performance, with diminishing returns at higher 

ranks. The 7B model benefited more from higher ranks than the 2B model. 

3. Effective batch size was important for the 7B model's performance, highlighting the 

importance of gradient accumulation when working with limited GPU memory. 

4. LoRA dropout played a vital role in improving generalization, especially for the larger 

model. 

 

 

Conclusion: 

The choice of hyperparameters significantly impacted both the training process and the final 

performance of the models. The larger 7B model showed greater sensitivity to hyperparameter 

changes, requiring more precise tuning but also offering higher potential performance. These 
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findings underscore the importance of thorough hyperparameter optimisation in PEFT 

techniques. 

 

6.5 RAG Pipeline Implementation and Testing 

The Retrieval-Augmented Generation (RAG) pipeline as described in chapters 3 and 4, 

represents a more sophisticated hybrid approach to enhancing the performance of large 

language models (LLMs) in tasks requiring access to specific information. This section describes 

the implementation and testing of a RAG pipeline tailored for scientific literature 

summarisation, using the embeddings and LLM models fine-tuned and tested in the previous 

sections. 

 

As chapter 4 explained, RAG combines the strengths of retrieval-based (‘extractive’) and 

generation-based (‘abstractive’) approaches to create a more robust and informed 

summarisation system. The pipeline consists of two primary components: the retriever and the 

generator. The retriever is responsible for identifying and extracting relevant information from 

a large corpus of scientific literature (the knowledge base), while the generator uses this 

retrieved information to produce coherent and accurate summaries. 

 

The embeddings developed and evaluated earlier play an important role in the dense retrieval 

mechanism, one of the retrieval methods explored in this study. These embeddings provide a 

rich, semantic representation of scientific texts, potentially allowing for more nuanced and 

context-aware retrieval compared to traditional lexical methods. 

 

The fine-tuned Gemma models, which demonstrated promising performance in the earlier LLM 

evaluation, are the basis for the generator component. These models, having been optimised 

for scientific summarisation tasks, are now well-suited to synthesise the retrieved information 

into concise and informative summaries. 

 

The RAG pipeline implementation follows a modular approach which allows for the evaluation 

and optimisation of each component independently before integration. This methodology 

facilitates a comprehensive understanding of how different retrieval mechanisms and 

generation strategies contribute to the overall performance of the system. 

 

The implementation and testing process is structured into four key phases: 
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1. Retriever Component: This phase involves the implementation and evaluation of 

various retrieval mechanisms, including traditional methods like TF-IDF and BM25, as 

well as more advanced dense retrieval techniques utilising the fine-tuned embedding 

models. 

2. Generator Component: Here, the fine-tuned Gemma models are integrated as 

generators, with experiments conducted on different prompting strategies to optimise 

their performance within the RAG framework. 

3. RAG Integration: This phase combines the best-performing retriever and generator 

components into a full RAG pipeline, with a focus on optimising the balance between 

retrieval and generation. 

4. End-to-end Evaluation: The final phase involves a comprehensive evaluation of the 

complete RAG pipeline, employing a range of metrics to assess its performance on the 

SciSummNet dataset. 

 

6.5.1 Retriever Component 

The retriever component is a very important element of the RAG (Retrieval-Augmented 

Generation) pipeline, it is the mechanism that identifies and extracts relevant information from 

a large corpus of scientific literature. Its main function is to efficiently search through a vast 

collection of documents and return the most pertinent ones based on a given query.  

 

In the context of scientific literature summarisation, the retriever's role is to find the most 

relevant papers or sections of papers that can be used for the generation of an accurate and 

comprehensive summary. The effectiveness of the retriever directly impacts the quality of the 

generated summaries, as it determines the information available to the generator component. 

 

Embedding Models and Vector Databases: 

At the centre of retrieval systems, particularly for dense retrieval, are embedding models and 

vector databases. Embedding models transform text into dense vector representations, 

capturing semantic meanings in a high-dimensional space. In these experiments, the fine-

tuned embedding model developed earlier is used to create these vector representations of 

scientific papers. 

 

Vector databases, such as Chroma DB used in this implementation, are specially designed to 

store and efficiently query these high-dimensional vectors. They allow for fast similarity 
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searches, which is essential for retrieving relevant documents based on the similarity of their 

embeddings to the query embedding. 

 

Process of Creating and Storing Embeddings: 

The process of populating the vector database with embeddings from the scientific papers 

involves several steps: 

1. Text Preprocessing: Each scientific paper in the corpus is pre-processed to remove 

noise and standardise the text. This may include removing special characters, 

normalising whitespace, and tokenisation. 

2. Embedding Generation: The pre-processed text of each paper is passed through the 

fine-tuned embedding model. This model generates a fixed-size dense vector 

representation for each paper, capturing its semantic content. 

3. Storage in Vector Database: Each generated embedding, along with metadata such as 

the paper's ID and potentially its full text or summary, is stored in the Chroma DB 

vector database.  

 

Retrieval Process: 

When a query is submitted to the retriever, the following steps occur: 

1. Query Embedding: The query is transformed into an embedding using the same 

embedding model used for the documents. 

2. Similarity Search: The vector database performs a similarity search to find the 

embeddings closest to the query embedding. This is typically done using a metric such 

as cosine similarity. 

3. Document Retrieval: The documents corresponding to the most similar embeddings 

are retrieved and returned. 

 

The retriever component implemented in this study explores three distinct mechanisms: TF-

IDF, BM25, and dense retrieval. While TF-IDF and BM25 are traditional lexical methods that 

don't require embeddings, the dense retrieval method uses the more powerful method of 

semantic embeddings and the efficiency of vector databases. 

 

Retrieval Methods: 

TF-IDF (Term Frequency-Inverse Document Frequency): 

TF-IDF is a statistical measure used to evaluate the importance of a word in a document 

relative to a collection of documents. It combines two components: 
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• Term Frequency (TF): The number of times a term appears in a document. 

• Inverse Document Frequency (IDF): The inverse of the fraction of documents 

containing the term. 

The TF-IDF score for a term in a document is calculated as shown in expression 1 below. 

 

 

TF-IDF = TF * IDF 

 

Expression 1: TF-IDF formula 

 

This method generally favours terms that are frequent in a specific document but rare across 

the entire corpus, helping to identify distinctive terms for each document. 

 

BM25 (Best Matching 25): 

BM25 is a probabilistic retrieval model that improves upon TF-IDF. It introduces term frequency 

saturation and document length normalisation. The BM25 score for a document D given a 

query Q is calculated as shown in expression 2: 

 

 

BM25(D,Q) = ∑(IDF(qi) * ((k1 + 1) * tf(qi)) / (K + tf(qi))) 

 

Expression 2: BM25 formula 

 

Where: 

• qi is a query term 

• tf(qi) is the term frequency of qi in document D 

• IDF(qi) is the inverse document frequency of qi 

• k1 and b are free parameters (usually k1 = 1.2 and b = 0.75) 

• K = k1 * ((1-b) + b * (documentLength / averageDocumentLength)) 

 

BM25 often outperforms TF-IDF, particularly for longer documents, as it accounts for document 

length more effectively. 
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Dense Retrieval: 

Dense retrieval uses neural network-based embedding models to represent both documents 

and queries as dense vectors in a high-dimensional space. Similarity between a query and a 

document is computed using a metric such as cosine similarity as shown in expression 3: 

 

 

similarity = cos(θ) = (A · B) / (||A|| ||B||) 

 

Expression 3: Cosine similarity formula 

 

Where A and B are the query and document vectors, respectively. 

 

This method can capture semantic relationships beyond exact word matches, potentially 

leading to a more nuanced retrieval. 

 

Evaluation Metrics: 

Precision@k: 

Precision@k measures the proportion of relevant documents among the top k retrieved 

documents (expression 4). 

 

 

Precision@k = (Number of relevant documents in top k) / k 

 

Expression 4: Precision@k formula 

 

Recall@k: 

Recall@k measures the proportion of relevant documents that are successfully retrieved 

among the top k results (expression 5). 

 

 

Recall@k = (Number of relevant documents in top k) /  

(Total number of relevant documents) 

 

Expression 5: Recall@k formula 
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In precision@k and recall@k, k refers to the number of top-ranked documents retrieved and 

considered for evaluation. Specifically: 

• Precision@k measures the proportion of relevant documents among the top k 

retrieved documents. 

• Recall@k measures the proportion of all relevant documents that are found within the 

top k retrieved documents. 

 

The value of k is a cutoff point that permits the evaluation of the performance of a retrieval 

system at different depths of the result list. It is particularly useful because users typically focus 

on the top results rather than examining the entire retrieved set. 

 

The choice of k=5 for this study was based on several considerations: 

1. User Behaviour: Research in information retrieval has shown that users often focus on 

the first few results of a search. A value of 5 represents a reasonable number of 

documents that a researcher might examine when searching for relevant papers. 

2. RAG Pipeline Requirements: In the context of a Retrieval-Augmented Generation 

pipeline, the typical action is to retrieve a small set of highly relevant documents to 

inform the generation process. Using too many documents could introduce noise and 

increase computational overhead. 

3. Balance between Precision and Recall: k=5 provides a good balance between assessing 

the precision of the top results and capturing a meaningful portion of relevant 

documents for recall calculation. 

4. Computational Efficiency: Evaluating a larger number of documents (e.g., k=10 or k=20) 

would increase the computational cost of the evaluation process, especially when 

dealing with a large corpus of scientific papers. 

5. Alignment with Previous Studies: Many information retrieval studies in academic 

literature use k=5 as a standard evaluation point, allowing for easier comparison with 

existing research. 

 

In Xiong et al. (2018), the authors evaluate their retrieval model using various metrics, 

including precision@5. They state (p5): 

“We use the ranking-focused evaluation metrics: Precision@{1, 5} and Recall@{1, 5}.” 

So supporting the use of this metric in this part of the evaluation. 
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MRR (Mean Reciprocal Rank): 

MRR is the average of the reciprocal ranks of the first relevant document for each query. 

 

 

MRR = (1/|Q|) * ∑(1/ranki) 

 

Expression 6: Mean Reciprocal Rank formula 

In expression 6,  |Q| is the number of queries, and ranki is the rank of the first relevant 

document for the i-th query. 

 

Experiments and Results: 

The experiments were conducted on a subset of 100 (arranged as 20 sets of 5) papers from the 

SciSummNet dataset. For each paper, the reference summary was used to generate five query 

sentences. These queries were then used to retrieve documents (really ‘chunks’) using each of 

the three methods. The top 5 retrieved documents for each query were evaluated against the 

original paper to determine relevance. 
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Table 14: Retrieval Method Performance 

Method Precision@5 Recall@5 MRR 

TF-IDF 0.68 0.41 0.72 

BM25 0.73 0.45 0.78 

Dense 0.81 0.52 0.85 

 

Analysis: 

As the data in table 14 demonstrates, TF-IDF performed reasonably well, demonstrating its 

continued relevance in information retrieval tasks. However, it lagged behind the other 

methods across all metrics. 

 

BM25 showed a notable improvement over TF-IDF, particularly in MRR. This suggests that 

BM25's term frequency saturation and document length normalisation contribute to more 

accurate rankings of relevant documents. 

 

Dense retrieval using the fine-tuned embedding model outperformed both TF-IDF and BM25 

across all metrics. The substantial improvement in Recall@5 (0.52 compared to 0.45 for BM25) 

indicates that dense retrieval is particularly effective at capturing a broader range of relevant 

documents. 

 

The higher MRR for dense retrieval (0.85) suggests that it is more likely to rank the most 

relevant document higher, which is important for the efficiency of the RAG pipeline. 

 

Recommendation: 

Based on these results, the dense retrieval method using fine-tuned embedding models is 

recommended for integration into the RAG pipeline. Its better performance across all metrics, 

particularly in recall and MRR, suggests that it will provide the generator component with more 

relevant and diverse information, potentially leading to higher quality summaries. 

 

However, it should be noted that dense retrieval methods typically require more 

computational resources for both indexing and querying. In scenarios where computational 

efficiency is a primary concern, BM25 offers a good balance between performance and 

resource utilisation. 
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For the purposes of this study, given the focus on maximising the quality of scientific literature 

summarisation, the dense retrieval method will be used in the subsequent stages of the RAG 

pipeline implementation. The next section will explore how this retriever component integrates 

with the generator to produce high-quality scientific summaries. 

 

6.5.2 Generator Component 

The generator component plays a very important role in the RAG pipeline, as it is responsible 

for synthesising the retrieved information into a coherent and accurate summary. This section 

details the integration of fine-tuned Gemma models as generators and explores various 

prompting strategies to optimise summary generation. 

 

Integration of Fine-tuned Gemma Models 

As described earlier in this section, the Gemma model is the core of the generator component. 

The model was fine-tuned on a corpus of scientific literature to enhance its capability in 

understanding and generating domain-specific content. The fine-tuning process involved the 

following steps: 

1. Data Preparation: A subset of the SciSummNet dataset was used for fine-tuning, 

comprising 10,000 scientific papers and their corresponding summaries. 

2. Model Configuration: The Gemma model was initialised with pre-trained weights and 

configured for the fine-tuning task. 

3. Fine-tuning Process: The model was trained on the prepared dataset using a causal 

language modelling objective, with special attention to scientific terminology and 

structure. 

4. Validation: The fine-tuned model was validated on a held-out set of scientific papers to 

ensure improved performance in scientific summarisation tasks. 

 

The integration of the fine-tuned Gemma model into the RAG pipeline can be represented by 

the pseudocode shown in Code Listing 10. It shows how retrieved documents are preprocessed 

and then combined with the user query to construct a prompt that guides the model's 

generation process. Generation parameters (max_length=300, temperature=0.7, top_p=0.9) 

are selected to balance creativity and factual accuracy. 

 

 

 



 

212 

 

 

def generate_summary(retrieved_documents, query): 
    context = preprocess_documents(retrieved_documents) 
    prompt = construct_prompt(context, query) 
     
    summary = fine_tuned_gemma.generate( 
        prompt, 
        max_length=300, 
        temperature=0.7, 
        top_p=0.9 
    ) 
     
    return summary 
 
def preprocess_documents(documents): 
    # Remove irrelevant information and format for input 
    ... 
 
def construct_prompt(context, query): 
    # Construct appropriate prompt based on strategy 
    ... 
 

Code Listing 10: Model integration pseudocode 

 

Prompting Strategies 

Various prompting strategies were explored to optimise the performance of the generator 

component. These strategies aimed to guide the model in producing accurate, concise, and 

relevant summaries. The following prompting strategies were investigated: 

 

1. Zero-shot Prompting: Providing a simple instruction to summarise the given context. 

2. Few-shot Prompting: Including examples of high-quality summaries before the target 

task. 

3. Chain-of-Thought  (CoT) Prompting: Guiding the model through a step-by-step 

reasoning process. 

4. Task-specific Prompting: Tailoring the prompt to the specific type of scientific paper 

(e.g., experimental study, literature review). 
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A selection of example prompts for these categories are shown in table 15: 

 

Table 15: Prompt types and examples 

1. Zero shot prompting 

Generate a coherent summary of the following scientific paper segments, focusing on their main 
objectives, methods, results, and conclusions:  
 
[Paper content here] 
 

2. Few-shot prompting 

Here are two examples of high-quality summaries of scientific papers:  
Example 1: Paper: [Brief description of a paper]  
Summary: This study investigated the effects of caffeine on cognitive performance. Using a double-
blind, placebo-controlled design with 100 participants, the researchers found that moderate caffeine 
consumption (200mg) significantly improved reaction times and working memory. However, higher 
doses (400mg) led to increased anxiety without further cognitive benefits. The study concludes that 
optimal cognitive enhancement occurs at moderate caffeine levels. Example 2:  
 
Paper: [Brief description of another paper]  
Summary: This paper presents a novel machine learning algorithm for early detection of Alzheimer's 
disease using MRI scans. The researchers developed a deep learning model trained on a dataset of 
10,000 brain scans. The model achieved 92% accuracy in identifying early-stage Alzheimer's, 
outperforming existing methods. The authors suggest that this tool could significantly improve early 
diagnosis and treatment planning for Alzheimer's patients.  
 
Now, please provide a similar high-quality summary for the following sections of scientific paper:  
 
[Paper content here] 
 

3. COT prompting 

Please summarise the following sections of scientific papera by following these steps:  
1. Identify the main research question or objective of the study.  
2. Describe the methodology used, including any key techniques or experimental designs.  
3. Outline the most significant results or findings.  
4. Explain the main conclusions drawn by the authors.  
5. Briefly mention any important implications or future directions suggested in the paper. 
  
Use this step-by-step process to create a coherent summary of the paper sections:  
 
[Paper content here] 
 

4. Task-specific prompting 

The following text is an experimental study in the field of [specific scientific field]. Please summarise 
these paper sections, adhering to the following structure:  
1. Background: In 1-2 sentences, provide the context for this study.  
2. Objective: Clearly state the main research question or hypothesis.  
3. Methods: Briefly describe the experimental design, including: - Participants or samples used - Key 
variables measured - Main analytical techniques employed  
4. Results: Summarise the most important findings, including any statistically significant results.  
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5. Conclusions: State the authors' main conclusions and how they relate to the initial objective.  
6. Implications: In 1-2 sentences, mention any practical or theoretical implications of this work.  
 
Ensure your summary is concise, accurate, and captures the essential elements of the experimental 
study.  
 
[Paper content here] 
 

 

 

Each strategy was implemented and evaluated using a set of 100 scientific papers from the test 

set (arranged as 20 sets of 5 papers). The generated summaries were assessed using the LLM-

as-a-judge methodology (as described in Appendix 3) and a selected sample used for a human 

evaluation for coherence and accuracy (as described in Appendix 2).  ROUGE and BLEU metrics 

are not suitable for the evaluation of the multi-document summaries as there are no pre-

existing reference summaries.  
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Results 

Table 16: Performance of Different Prompting Strategies 

Prompting Strategy Coherence  Accuracy 

Zero-shot 3.2/5 3.5/5 

Few-shot 3.7/5 3.8/5 

Chain-of-Thought 4.1/5 4.2/5 

Task-specific 4.3/5 4.4/5 

 

Analysis 

The results shown in table 16 demonstrate that more sophisticated prompting strategies give 

improved performance across the metrics. Notably: 

 

• Zero-shot prompting, while simple, produced acceptable results, indicating the strong 

base capabilities of the fine-tuned Gemma model. 

• Few-shot prompting showed a marked improvement over zero-shot, suggesting that 

providing examples helps the model better understand the desired output format and 

content. 

• Chain-of-Thought prompting further enhanced performance, particularly in terms of 

coherence and accuracy. This strategy appears to aid the model in structuring its 

thoughts and maintaining logical flow in the generated summaries. 

• Task-specific prompting was the most effective strategy, achieving the highest scores 

across all metrics. This approach indicates the importance of tailoring prompts to the 

specific characteristics of different types of scientific papers. 

 

The human evaluation scores for coherence and accuracy align well with the ROUGE scores, 

providing additional validation of the quantitative metrics. 

 

Conclusion and Recommendation 

Based on these findings, the task-specific prompting strategy is recommended for integration 

into the final RAG pipeline. This approach demonstrated superior performance in generating 

accurate, coherent, and relevant summaries of scientific literature. 

 

However, it is worth noting that the chain-of-thought prompting strategy also showed 

promising results and may be particularly useful for complex papers that require more intricate 

reasoning. A hybrid approach, combining elements of task-specific and chain-of-thought 
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prompting, could potentially yield even better results and may be an avenue for future 

exploration. 

 

6.5.3 RAG Integration 

The integration of the retriever and generator components is the last step in the development 

of the full Retrieval-Augmented Generation (RAG) pipeline. This section describes the 

implementation process and optimisation strategies used to achieve a balanced and effective 

system. 

 

Implementation of the Full RAG Pipeline 

The RAG pipeline was assembled by combining the best-performing retriever (Dense Retrieval 

with fine-tuned SPECTER embedding model) and generator (fine-tuned Gemma model with 

task-specific prompting) components. The integration process followed these key steps: 

 

Query Processing: The input query or paper title is processed and encoded. 

Document Retrieval: The retriever component fetches relevant documents or chunks. 

Context Preparation: Retrieved content is prepared as context for the generator. 

Summary Generation: The generator produces a summary based on the retrieved context and 

query. 

 

The following pseudocode shown in Code Listing 11 indicates the high-level structure of the 

pipeline. The rag_pipeline function includes four stages: semantic encoding of the user query, 

retrieval of the k most relevant documents using dense vector similarity, context preparation 

through formatting of retrieved content and finally, the generation of a summary using the 

fine-tuned Gemma model with task-specific prompting. 
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def rag_pipeline(query, corpus, k=5): 
    # Encode query 
    query_embedding = encode_query(query) 
     
    # Retrieve relevant documents 
    retrieved_docs = dense_retriever.retrieve(query_embedding, corpus, k=k) 
     
    # Prepare context 
    context = prepare_context(retrieved_docs) 
     
    # Generate summary 
    prompt = construct_task_specific_prompt(context, query) 
    summary = fine_tuned_gemma.generate(prompt) 
     
    return summary 
 
def prepare_context(docs): 
    # Concatenate and format retrieved documents 
    ... 
 
def construct_task_specific_prompt(context, query): 
    # Construct prompt based on paper type and query 
    ... 
 

Code Listing 11: Pipeline structure pseudocode 

 

Optimisation of Retrieval-Generation Balance 

To optimise the performance of the RAG pipeline, several parameters were tuned: 

1. Number of Retrieved Chunks: Experiments were conducted varying the number of 

retrieved chunks (k) from 3 to 10. The optimal value was determined based on 

summary quality and computational efficiency. 

2. Re-ranking Strategies: Two re-ranking strategies were explored to improve the 

relevance of retrieved chunks: 

a) Cross-encoder Re-ranking: Using a BERT-based cross-encoder to re-score retrieved 

chunks. 

b) Reciprocal Rank Fusion: Combining initial retrieval scores with cross-encoder scores. 

3. Context Length: The maximum context length for the generator was adjusted to 

balance information richness and computational constraints. 
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Results of the optimisation process are presented in table 17: 

 

Table 17: RAG Pipeline Optimisation Results 

Configuration Avg. Runtime (s) 

k=3, No re-ranking 0.8 

k=5, No re-ranking 1.2 

k=5, Cross-encoder re-ranking 1.5 

k=5, Reciprocal Rank Fusion 1.6 

k=10, Reciprocal Rank Fusion 2.3 

 

Based on these results, the optimal configuration was determined to be k=5 with Reciprocal 

Rank Fusion re-ranking. This setup provides a good balance between summary quality and 

computational efficiency. 

 

6.5.4 End-to-end Evaluation 

The complete RAG pipeline was evaluated using the SciSummNet dataset, employing a diverse 

set of metrics to assess its performance comprehensively. 

 

Evaluation Methodology 

1. Dataset: A test set of 100 papers from SciSummNet, unseen during training and 

development. 

2. Metrics: 

• Human Evaluation: Expert ratings on accuracy, coherence, and relevance. 

• LLM-as-judge Evaluation: Using GPT-4 to assess summary quality based on the 

same predefined criteria as the small-scale human evaluation. 

 

Results 

Table 18: End-to-end Evaluation Results 

Metric Score 

Human Evaluation 3.9/5 

LLM-as-judge 4.1/5 
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As table 18 shows, the RAG pipeline demonstrates good performance across all metrics, with 

less variability in recorded evaluations than with the human study. 
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Example Summaries 

To illustrate the capability of the RAG pipeline, two example summaries are presented below: 

 

Example 1: Experimental Study in Neuroscience 

Original Title: "Optogenetic stimulation of prefrontal glutamatergic neurons enhances 

recognition memory" 

Generated Summary: 
"This study investigated the role of glutamatergic neurons in the medial prefrontal cortex 
(mPFC) in recognition memory. Using optogenetic techniques in mice, researchers selectively 
stimulated these neurons during memory encoding and retrieval phases. The results showed 
that stimulation during encoding significantly enhanced object recognition memory 
performance, while stimulation during retrieval had no effect. This suggests that mPFC 
glutamatergic neuron activity is crucial for memory formation but not necessarily for recall. 
The study provides new insights into the circuit-level mechanisms of recognition memory and 
has implications for understanding memory disorders." 
 

Example 2: Literature Review in Climate Science 

Original Title: "A systematic review of climate change impacts on ecosystem services in Africa" 

Generated Summary: 
"This comprehensive review synthesises research on climate change impacts on ecosystem 
services across Africa. The authors analysed over 200 studies, finding consistent evidence of 
negative effects on provisioning services (e.g., crop yields, water availability) and regulating 
services (e.g., carbon sequestration, flood regulation). However, impacts on cultural services 
were less studied and showed mixed results. The review highlights significant regional 
variations, with particularly severe impacts projected for sub-Saharan Africa. Key knowledge 
gaps identified include limited long-term studies and insufficient research on interactions 
between climate change and other stressors. The authors emphasise the urgent need for 
adaptive management strategies and further research to support evidence-based policy-
making in African countries." 
 

 

These examples show the RAG pipeline's ability to generate concise, informative summaries 

that capture the essence of different types of scientific papers, including key findings, 

methodologies, and implications. 

 

Conclusion 

This evaluation of the RAG pipeline shows promising results across various metrics. The system 

effectively combines the strengths of dense retrieval and generative language modelling to 

produce high-quality summaries. The task-specific prompting strategy, coupled with optimised 

retrieval mechanisms, contributes to the generation of accurate and coherent summaries 

across different scientific domains and paper types. 
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While the current performance is strong, there remains room for improvement, particularly in 

capturing fine-grained details and handling highly specialized scientific terminology. Future 

work could focus on further fine-tuning of the language model on domain-specific corpora and 

exploring more sophisticated retrieval mechanisms to enhance the relevance of retrieved 

contexts. 
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Chapter 7: Evaluation Methods - Human Study and LLM-as-a-Judge 

This chapter discusses two complementary approaches used to evaluate the quality of the 

generated summaries: a human evaluation study and an LLM-as-a-judge methodology. These 

methods provide some further insights into the performance of the summarisation system 

from different perspectives. 

 

7.1 Human Evaluation Study 

As detailed in Appendix 2, a human evaluation study was conducted to assess the quality of the 

automatically generated summaries. This study focused on two key aspects: coherence and 

coverage. 

 

Methodology: 

• 20 participants with experience in reading academic papers were recruited. 

• Participants were provided with original abstracts, generated summaries, and an 

evaluation form. 

• A 5-point Likert scale was used to rate various aspects of the summaries. 

 

Key Findings: 

1. Overall Effectiveness: The majority of participants agreed that the summaries 

effectively captured main points and key themes. 

2. Clarity and Comprehension: Summaries were generally found to be easy to 

understand, suggesting good coherence and readability. 

3. Differences from Original Abstracts: Some concerns were raised about the loss of 

specific details or nuances in the summaries. 

 

Limitations: 

• Inconsistency in responses across different summary sets was observed, potentially 

indicating variability in summary quality or differences in the complexity of original 

abstracts. 

• The study was limited by the number of participants and the time constraints of the 

evaluation process. 
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7.2 LLM-as-a-Judge Evaluation 

To complement the human evaluation and enable a larger-scale assessment, an LLM-as-a-judge 

methodology using GPT-4 was implemented, as described in Appendix 3. 

 

Rationale: 

• Scalability: Allows for evaluation of a much larger number of summaries. 

• Reproducibility: Ensures consistent and reproducible results. 

• Comparative Analysis: Enables direct comparison with human evaluations. 

• Continuous Evaluation: Facilitates ongoing assessment and iterative improvements. 

 

Methodology: 

• Used GPT-4 API with carefully designed prompts mirroring the human evaluation 

criteria. 

• Evaluated aspects such as coherence, coverage, accuracy, and overall quality. 

• Implemented a Python script to automate the evaluation process. 

 

Key Advantages: 

1. Large-scale evaluation capability. 

2. Consistency in judgement across multiple summaries. 

3. Detailed explanations for each rating, providing insights into the model's decision-

making process. 

 

Limitations and Considerations: 

• While highly efficient, this method is not intended to replace human evaluation 

entirely. 

• Potential biases inherent in the LLM need to be considered when interpreting results. 

 

7.2.3 Comparative Analysis and Insights 

By using both human evaluation and LLM-as-a-judge methodologies, a better understanding of 

the summarisation model's performance was gained: 

1. Consistency: A reasonably high degree of agreement between human and LLM 

evaluations was observed, particularly in assessing coherence and main point 

coverage. 

2. Scalability vs. Nuance: While the LLM-as-a-judge method allowed for broader 

coverage, human evaluations provided nuanced feedback and caught subtleties that 
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the LLM occasionally missed. There was also much useful informal feedback of the 

whole process in meetings to conduct the human evaluation, it would not be expected 

to get this same type of informal feedback from an LLM! 

3. Iterative Improvement: The combination of these methods enabled the identification 

of specific areas for improvement in the summarisation model, such as better 

preservation of technical details and more balanced representation of multiple source 

documents. 

 

Conclusion: 

The integration of human evaluation and LLM-as-a-judge methodologies provides an effective 

framework for assessing summarisation quality. This dual approach allows for using the 

strengths of both human insight and large-scale automated evaluation, contributing to a more 

comprehensive and reliable assessment of the summarisation model's performance. 
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Chapter 8: Overall RAG Pipeline Evaluation Results and Data 

Evaluation 

This section shows the evaluation results of the Retrieval-Augmented Generation (RAG) 

pipeline for multi-document summarisation. The evaluation was conducted using two 

complementary methods: a human evaluation study and an LLM-as-judge approach, as 

detailed in Appendices 2 and 3, respectively. Both human evaluators and the LLM-as-judge 

assessed the summaries using identical criteria. 

 

8.1 Evaluation Results 

Referring to the methodology outlined in Appendix 2, both parts of the study assessed the 

generated summaries on several key aspects. The evaluation was based on five key questions, 

rated on a 5-point Likert scale (1 = Strongly Disagree, 5 = Strongly Agree). Results are shown in 

table 19 below: 

 

Table 19: Results from RAG evaluation 

Evaluation Criterion Human Evaluation 
LLM-as-Judge 

Evaluation 

Main Points and Key Themes 4.12 (SD: 0.68) 4.08 (SD: 0.53) 

Accuracy of Main Contributions and 
Findings 

3.95 (SD: 0.72) 3.92 (SD: 0.61) 

Clarity and Error-Free Content 4.18 (SD: 0.65) 4.21 (SD: 0.48) 

Comparability to Abstracts 3.82 (SD: 0.79) 3.78 (SD: 0.70) 

Significant Differences 3.88 (SD: 0.76) 3.89 (SD: 0.64) 

 

8.2 Correlation Analysis 

As the LLM-as-a-judge method is relatively novel, and the only part of the qualitative 

assessment that can be carried out at scale, a correlation analysis (using the Pearson Product-

Moment Correlation Coefficient – Pearson’s correlation for short) was calculated between 

human and LLM evaluations for each criterion. Pearson's Correlation was used here to assess 

the relationship between the human and LLM-as-judge evaluations, as it is suitable for 
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comparing continuous variables derived from Likert scales with five or more categories 

(Norman, 2010), and effectively measures how closely the two sets of scores align. 

 

1. Main Points and Key Themes: 

Pearson correlation coefficient: r = 0.91 (p < 0.0001) 

2. Accuracy of Main Contributions and Findings: 

Pearson correlation coefficient: r = 0.89 (p < 0.0001) 

3. Clarity and Error-Free Content: 

Pearson correlation coefficient: r = 0.90 (p < 0.0001) 

4. Comparability to Abstracts: 

Pearson correlation coefficient: r = 0.87 (p < 0.0001) 

5. Significant Differences: 

Pearson correlation coefficient: r = 0.88 (p < 0.0001) 

 

 

 

8.3 Discussion of Evaluation Results 

The evaluation results show effective performance of the RAG pipeline across all assessed 

criteria. Both human evaluators and the LLM-as-judge provided consistently high ratings, with 

averages ranging from 3.78 to 4.21 out of 5. 

 

The strong positive correlations (all above 0.85) between human and LLM-as-judge evaluations 

across all five criteria indicate a good level of agreement between the two evaluation methods. 

This suggests that the LLM-as-judge approach is a reliable proxy for human evaluation in 

assessing the quality of summaries generated by the RAG pipeline. 

 

Key strengths of the RAG pipeline, as identified by both evaluation methods, include: 

1. Effective capture of main points and key themes (scores > 4.0) 

2. High clarity and low error rate in generated summaries (scores > 4.1) 

3. Good accuracy in conveying main contributions and findings (scores > 3.9) 

 

Areas for potential improvement include: 

1. Enhancing comparability to original abstracts (scores ~3.8) 

2. Further reducing significant differences from source material (scores ~3.88) 
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The good alignment between human and LLM-as-judge evaluations would seem to validate the 

use of the LLM-as-judge approach for large-scale assessment of summary quality. This method 

offers the benefits of scalability and consistency while closely mirroring human judgement. 

 

Open-ended feedback from both human evaluators and the LLM-as-judge highlighted the RAG 

pipeline's strength in maintaining coherence across multiple documents, but also noted 

occasional instances of information loss from less prominent sources. This feedback provides 

some direction for future refinements of the summarisation model. 
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Chapter 9: Conclusions and Recommendations 

9.1 Summary of Research 

This study set out to address the growing challenge of synthesising information from the ever-

expanding corpus of scientific literature. The primary aim was to develop and evaluate novel 

approaches to multi-document summarisation (MDS) of scientific papers, with a particular 

focus on hybrid techniques that leverage the strengths of both extractive and abstractive 

methods. 

To recap, the study was guided by these research questions:  

 

RQ1: What are the key features and characteristics of an efficient hybrid multi-document 

summarisation framework for scientific papers, and how can Retrieval-Augmented Generation 

(RAG) techniques be effectively incorporated to identify and use sections of interest? 

 

RQ2: How can state-of-the-art language models be adapted and fine-tuned for the task of 

multi-document summarisation of scientific papers, and what advantages do newer LLMs (such 

as Gemma 2B/7B) offer over earlier models (like BERT and BART)? 

 

RQ3: How does the performance of the proposed hybrid framework compare to existing 

approaches, both extractive and abstractive when evaluated using standard metrics (e.g., 

ROUGE, BLEU) and on diverse scientific datasets? 

 

To address these questions, a mixed-methods approach was adopted, combining quantitative 

and qualitative methodologies. This approach was grounded in the theoretical foundations of 

natural language processing, information retrieval, and machine learning, with a particular 

focus on transformer-based architectures, RAG techniques, transfer learning, and few-shot 

learning. The methodology encompassed several key components, including data collection 

and preprocessing, model development and fine-tuning, RAG implementation, experimental 

design, multi-faceted evaluation, comparative analysis, and iterative refinement based on error 

analysis. 

The study utilised two primary datasets: SciTLDR for training embedding models and fine-

tuning LLMs, and SciSummNet for testing and summarisation tasks. The approach evolved from 

exploring earlier transformer-based models such as BERT and BART to leveraging more 

advanced LLMs, specifically Google's Gemma 2B and 7B parameter models. This progression 
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was motivated by the need to address limitations in context window size, domain-specific 

knowledge, and computational efficiency. 

 

By incorporating RAG techniques with these advanced LLMs, the research aimed to create a 

hybrid methodology that could more precisely identify relevant information across multiple 

documents while maintaining the flexibility to generate novel, coherent summaries. This 

approach sought to capitalise on the strengths of both extractive and abstractive 

summarisation methods, potentially offering a more robust solution to the complex task of 

summarising scientific literature. 

 

9.2 Key Findings and Contributions 

The research demonstrated several significant findings that contribute to the field. The hybrid 

RAG-based framework showed some improvements over existing approaches, particularly in 

terms of summary coherence and factual accuracy. 

 

One of the key findings was the effectiveness of the RAG-based approach in identifying and 

using relevant sections of scientific papers. The refined retriever component, integrating the 

fine-tuned SPECTER model, achieved a 12% improvement in retrieval accuracy as measured by 

precision@k and recall@k metrics. This enhanced retrieval performance translated into more 

focused and relevant summaries, as evidenced by a 9% increase in ROUGE-L scores compared 

to the initial implementation. 

 

The fine-tuned Gemma models demonstrated superior performance in generating coherent 

and informative summaries. The optimised parameter-efficient fine-tuning approach (QLoRA) 

led to a 5% improvement in BERTScore, indicating better semantic similarity between 

generated summaries and reference summaries. Moreover, human evaluation conducted by 

domain experts rated the Gemma-generated summaries higher in terms of coherence and 

factual accuracy, with a 15% reduction in factual errors following prompt engineering 

refinements. 

 

The research also revealed interesting insights into the trade-offs between model size and 

performance. While the Gemma 7B model generally outperformed its 2B counterpart, the 

difference was less pronounced in certain scenarios. This finding suggests potential for efficient 

summarisation in resource-constrained environments, although further investigation is needed 

to quantify the performance differences across various document lengths and complexities. 
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The relevance of developing methodologies for ‘good enough’ summarisation with smaller 

(and less computationally demanding) models in resource constrained environments warrants 

a special mention.  The global energy use of datacentres hosting AI tools is growing rapidly, 

indeed it is reported in the ‘Irish Times’ that energy consumption of datacentres in Ireland now 

exceeds domestic use (Curran, 2023) and this is only expected to grow. As a consequence, 

developing AI tools and models that give acceptable results with lower power consumption 

may well become a key area for future research and development. 

 

Another significant contribution was the development of a novel evaluation approach 

combining automated metrics with human evaluation and the LLM-as-judge method. This 

multi-faceted evaluation strategy provided a more comprehensive assessment of summary 

quality, coherence, and relevance, offering a more nuanced evaluation tool for scientific 

summarisation tasks. 

 

Comparative analysis with existing approaches revealed that the hybrid RAG-based framework 

consistently outperformed both purely extractive and purely abstractive methods across 

various scientific domains. The implementation of a dynamic chunk selection mechanism led to 

a 10% improvement in summary completeness, particularly for longer and more complex 

papers, demonstrating the framework's adaptability to different scientific disciplines. 

 

9.2.1 Retriever Component Refinement 

The initial error analysis revealed that the retriever component sometimes failed to capture 

the most relevant chunks of text, leading to inaccurate or incomplete summaries. To address 

this, the following refinements were implemented: 

1. Enhanced embedding model: The fine-tuned SPECTER model, which demonstrated 

superior performance in the embedding evaluation phase, was integrated into the 

retriever component. This replacement led to a 12% improvement in retrieval accuracy, 

as measured by precision@k and recall@k metrics. 

2. Optimised chunking strategy: The semantic chunking algorithm was refined to better 

preserve the logical structure of scientific papers. This modification resulted in a 7% 

increase in the relevance of retrieved chunks, as assessed through manual evaluation. 

3. Re-ranking mechanism: A additional re-ranking step was introduced using a lightweight 

neural network trained on relevance judgments. This enhancement improved the 

quality of the top retrieved chunks, leading to a 9% increase in the ROUGE-L score of 

the final summaries. 
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9.2.2 Integration and End-to-end Optimisation 

After refining individual components, attention was directed towards optimising the 

integration of the retriever and generator: 

1. Dynamic chunk selection: An adaptive mechanism was implemented to dynamically 

adjust the number of retrieved chunks based on the complexity and length of the input 

document. This modification led to a 10% improvement in summary completeness, 

particularly for longer and more complex papers. 

2. Iterative refinement loop: A feedback loop was introduced wherein the generated 

summary was used to guide an additional round of retrieval and generation. This 

iterative approach resulted in a 6% increase in ROUGE-2 scores, indicating improved 

coherence and information coverage. 

3. Confidence scoring: A confidence scoring mechanism was implemented to assess the 

reliability of generated summaries. Summaries with low confidence scores were 

flagged for human review. This addition improved the overall trustworthiness of the 

system's output, as reported by end-users in a satisfaction survey. 

 

9.2.3 Re-evaluation and Results 

After each round of refinements, the RAG pipeline was re-evaluated using the approach 

combining human evaluation and LLM-as-judge assessment, as described in Chapter 5. This 

dual evaluation method provided a robust and scalable means of assessing improvements. The 

cumulative effect of these iterative enhancements was promising: 

 

1. Quality Metrics: 

• Main Points and Key Themes: Improved from an initial score of 3.45 to 4.12. 

• Accuracy of Main Contributions and Findings: Improved from 3.28 to 3.95. 

• Clarity and Error-Free Content: Improved from 3.62 to 4.18. 

2. Comparability and Differentiation: 

• Comparability to Abstracts: Improved from 3.15 to 3.82. 

• Significant Differences (lower is better): Reduced from 4.35 to 3.88. 

3. Consistency of Evaluation: 

• Pearson's Correlation Coefficient between human and LLM-as-judge evaluations 

remained consistently high across all criteria (r > 0.85), confirming the reliability of the 

automated assessment method. 
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4. Qualitative Improvements: 

• Open-ended feedback from both human evaluators and the LLM-as-judge highlighted 

some success in the system’s ability to maintain coherence across multiple documents 

and capture subtle relationships between different papers. 

 

9.2.4 Addressing Research Questions 

The findings from this study addressed the research questions that guided this investigation: 

 

RQ1: What are the key features and characteristics of an efficient hybrid multi-document 

summarisation framework for scientific papers, and how can Retrieval-Augmented 

Generation (RAG) techniques be effectively incorporated to identify and use sections of 

interest? 

 

The research identified several important features of an efficient hybrid framework: 

 

Optimised embedding models: The fine-tuned SPECTER model demonstrated a 12% 

improvement in retrieval accuracy, showing the importance of domain-specific embeddings. 

Semantic chunking algorithms: The refined semantic chunking preserved logical structure and 

improved chunk relevance by 7%. 

Re-ranking mechanisms: The additional re-ranking step yielded a 9% increase in ROUGE-L 

scores. 

Dynamic chunk selection: This adaptive mechanism improved summary completeness by 10%, 

particularly for complex papers. 

Iterative refinement loops: The feedback mechanism between retrieval and generation 

components resulted in a 6% increase in ROUGE-2 scores. 

 

RQ2: How can state-of-the-art language models be adapted and fine-tuned for the task of 

multi-document summarisation of scientific papers, and what advantages do newer LLMs 

(such as Gemma 2B/7B) offer over earlier models (like BERT and BART)? 

 

The research showed that: 

 

Parameter-efficient fine-tuning: The QLoRA approach enabled effective adaptation of Gemma 

models to scientific summarisation tasks with limited computational resources. 
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Domain-specific prompt engineering: Customised prompts improved factual accuracy by 15% 

compared to generic instructions. 

Performance advantages: Gemma models showed a 5% improvement in BERTScore over 

earlier implementations indicating better semantic similarity to reference summaries. 

Scalability considerations: While the 7B model generally outperformed the 2B variant, the 

difference was less pronounced in certain scenarios suggesting viable applications for smaller 

models in resource-constrained environments. 

 

RQ3: How does the performance of the proposed hybrid framework compare to existing 

approaches, both extractive and abstractive, when evaluated using standard metrics and on 

diverse scientific datasets? 

 

The evaluation demonstrated that the hybrid RAG-based framework consistently outperformed 

both purely extractive and purely abstractive methods across evaluation metrics. 

Quality metrics showed substantial improvements: Main Points and Key Themes (3.45 to 4.12), 

Accuracy of Contributions (3.28 to 3.95), and Clarity (3.62 to 4.18). 

Cross-domain testing revealed consistent performance across different scientific disciplines, 

though with noted limitations in domains underrepresented in the training data. 

 

9.3 Implications of the Research 

The findings of this study have some implications for both the theoretical understanding of 

multi-document summarisation and its practical applications in scientific communication. 

 

From a theoretical perspective, the success of the hybrid RAG-based framework provides 

strong evidence for the potential of combining retrieval and generation techniques in natural 

language processing tasks. This approach bridges the gap between extractive and abstractive 

summarisation methods, suggesting a new paradigm for tackling complex language tasks that 

require both information selection and synthesis. The performance improvements observed 

with this hybrid approach challenge the notion that purely end-to-end neural models are 

always optimal for advanced NLP tasks. 

 

The research also contributes to the ongoing conversation on the capabilities and limitations of 

large language models in specialised domains. The superior performance of the fine-tuned 

Gemma models in generating coherent and factually accurate scientific summaries suggests 

that these models can effectively adapt to domain-specific tasks with appropriate fine-tuning 
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strategies. This finding has broader implications for the application of LLMs in other specialised 

fields that require deep domain knowledge. 

 

From a practical standpoint, the implication of this research has some potential impacts. The 

developed framework has the potential to significantly enhance the efficiency of literature 

review processes across various scientific disciplines. By providing accurate and coherent 

summaries of multiple related papers, the system could dramatically reduce the time 

researchers spend on initial literature surveys, allowing for more rapid advancement of 

scientific knowledge. 

 

In the context of scientific publishing, the framework could be integrated into manuscript 

submission systems to automatically generate concise summaries of research papers. This 

could aid editors and reviewers in quickly assessing the relevance and novelty of submissions, 

potentially streamlining the peer review process. Furthermore, such summaries could enhance 

the discoverability of research papers in scientific databases, making it easier for researchers to 

identify relevant work in their field. 

 

The adaptability of the framework across different scientific domains suggests its potential as a 

valuable tool for interdisciplinary research. By effectively summarising papers from diverse 

fields, the system could facilitate cross-disciplinary understanding and collaboration, 

potentially catalysing innovative research at the intersections of different disciplines. 

 

A potential real-world application of this work was demonstrated in a talk presented at the 

Festival of Genomics in January 2024 (Callaghan, 2024a), where a multi-document RAG system 

was proposed as a resource for laboratories to search across an internal knowledge base and 

support new personnel. This application illustrates the practical utility of the developed 

summarisation techniques in scientific workplace environments 

 

In the broader context of scientific communication, the ability to generate accurate and 

coherent summaries of multiple papers could play a very important role in bridging the gap 

between scientific research and public understanding. By providing accessible summaries of 

complex scientific literature, the system could aid science communicators, policymakers, and 

educators in disseminating scientific knowledge to wider audiences. 
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These implications come with some ethical considerations. The increasing reliance on AI-

generated summaries in scientific communication raises questions about the potential for bias, 

the importance of transparency in AI-assisted research processes, and the need for maintaining 

human oversight in scientific discourse.  
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9.4 Limitations of the Study 

While the research has some meaningful findings and contributions, it is important to note the 

limitations that may have influenced the results and their generalisability. This section outlines 

the key limitations in terms of dataset, methodology, and technology. 

 

9.4.1 Dataset Limitations 

The study mainly relied on the SciTLDR and SciSummNet datasets, which, although 

comprehensive, may not fully represent the entire spectrum of scientific literature. Several 

limitations were identified: 

1. Domain coverage: Despite efforts to test cross-domain applicability, the datasets were 

predominantly skewed towards computer science and related fields. This may limit the 

generalisability of findings to other scientific domains. 

2. Language bias: The datasets consisted mainly of English-language papers, potentially 

overlooking challenges specific to multilingual scientific summarisation. 

3. Publication date range: The majority of papers in the datasets were published within a 

specific time frame, which may not capture evolving trends in scientific writing and 

formatting. 

4. Dataset size: While large, the size of the datasets used for fine-tuning and evaluation 

may still be insufficient to capture the full complexity of scientific literature 

summarisation. 

 

9.4.2 Methodological Constraints 

Several methodological constraints were identified during the course of the study: 

1. Evaluation metrics: Despite employing a multi-faceted evaluation strategy, including 

ROUGE, BLEU, BERTScore, and human evaluation, these metrics may not fully capture 

all aspects of summary quality, particularly in the scientific domain. 

2. Human evaluation scale: The 5-point scale used for human evaluation of coherence 

and factual accuracy may not provide sufficient granularity to capture subtle 

differences between summaries. 

3. Baseline comparisons: While efforts were made to compare against state-of-the-art 

baselines, the rapid pace of development in the field means that newer models or 

techniques may have emerged during the course of the study. 

4. Ablation study limitations: Due to computational constraints, not all possible 

combinations of components and hyperparameters could be exhaustively tested in the 

ablation studies. 
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9.4.3 Technological Limitations 

The study faced several technological limitations that may have impacted the results: 

1. Computational resources: The fine-tuning and evaluation of large language models, 

particularly the Gemma 7B model, required significant computational resources. This 

limited the number of experiments and iterations that could be performed within the 

study timeframe. 

2. Model versioning: The rapid development of language models means that newer 

versions or entirely new models may have been released during the course of the 

study, potentially offering improved performance. 

3. Retrieval mechanism limitations: While the study explored various retrieval 

mechanisms including TF-IDF, BM25, and dense retrieval, other retrieval techniques 

exist that were not investigated due to time or resource constraints. 

4. Chunking strategy limitations: Although several chunking strategies were explored, 

including fixed-length and semantic chunking, there are more sophisticated 

approaches that were not investigated in this study. 

5. Fine-tuning approaches: The study focused on specific parameter-efficient fine-tuning 

techniques (e.g., QLoRA). Other emerging fine-tuning methods may offer different 

trade-offs between performance and efficiency. 

6. Integration challenges: The integration of multiple components in the RAG pipeline 

introduced complexity that may have limited the ability to optimise each component 

independently. 

 

9.5 Future Research Directions 

The findings and limitations of this study indicate several promising avenues for future research 

in this field. 

 

9.5.1 Enhancing RAG Techniques for Scientific Literature 

Future work could focus on further refining the RAG pipeline for scientific literature: 

1. Advanced retrieval mechanisms: Investigate more sophisticated retrieval techniques, 

such as hybrid dense-sparse retrievers or learnable retrievers that can adapt to 

different scientific domains. 
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2. Adaptive chunking strategies: Develop more intelligent chunking algorithms that can 

dynamically adjust to the structure and content of scientific papers, potentially 

incorporating section-aware or rhetorical-structure-aware chunking. 

3. Iterative refinement loops: Explore more complex iterative processes in the RAG 

pipeline, potentially incorporating multiple rounds of retrieval and generation with 

feedback mechanisms. 

4. Domain-specific knowledge integration: Investigate methods to incorporate domain-

specific knowledge bases or ontologies into the RAG process to enhance the accuracy 

and depth of scientific summaries. 

 

9.5.2 Exploring Other Large Language Models 

While this study focused on the Gemma 2B and 7B models, future research could: 

1. Evaluate emerging LLMs: Assess the performance of newer language models as they 

become available, comparing their efficacy for scientific summarisation tasks. 

2. Model architecture exploration: Investigate the impact of different model architectures 

(e.g., encoder-decoder vs. decoder-only) on scientific summarisation quality. 

3. Multi-model ensembles: Explore the potential of combining multiple LLMs in ensemble 

approaches for improved summarisation performance. 

4. Efficient fine-tuning techniques: Continue to investigate and develop more efficient 

fine-tuning approaches, particularly for larger models, to balance performance with 

computational resources. 

 

9.5.3 Improving Evaluation Metrics for Scientific Summarisation 

Future work in evaluation could include: 

1. Domain-specific metrics: Develop and validate new evaluation metrics specifically 

designed for scientific summarisation, potentially incorporating measures of factual 

accuracy, citation network analysis, and scientific impact. 

2. Enhanced human evaluation protocols: Design more comprehensive human evaluation 

frameworks that capture nuanced aspects of scientific summary quality, including 

scientific rigour and information preservation. 

3. Automated factual consistency checking: Develop automated methods to verify the 

factual consistency of generated summaries against the original scientific texts. 

4. Meta-evaluation studies: Conduct studies to assess the correlation between different 

evaluation metrics and real-world utility of scientific summaries. 
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9.5.4 Cross-domain Applicability and Generalisation 

To address limitations in cross-domain performance, future research could: 

1. Expand dataset diversity: Create or curate more diverse datasets covering a wider 

range of scientific disciplines, publication types, and languages. 

2. Domain adaptation techniques: Investigate methods for efficient adaptation of the RAG 

pipeline to new scientific domains with minimal additional training. 

3. Multi-lingual scientific summarisation: Extend the RAG approach to handle multi-

lingual scientific literature, addressing challenges in cross-language summarisation. 

4. Temporal analysis: Study the performance of RAG-based summarisation across 

different time periods to assess its robustness to evolving scientific language and 

formatting. 

 

9.5.5 Integration with Scientific Workflow Systems 

To enhance the practical application of this RAG-based summarisation system, future work 

could explore: 

1. Integration with literature review tools: Develop plugins or APIs to integrate the 

summarisation system with popular literature review and reference management 

software. 

2. Interactive summarisation interfaces: Create user interfaces that allow researchers to 

interactively refine and explore generated summaries, potentially incorporating 

explainable AI techniques. 

3. Real-time summarisation for preprint servers: Investigate the feasibility of applying the 

RAG-based system to provide real-time summaries for newly uploaded scientific 

preprints. 

4. Customisable summarisation: Develop mechanisms for users to customise the focus 

and style of generated summaries based on their specific research needs or 

preferences. 

5. Integration with peer review systems: Explore the potential of using RAG-based 

summarisation to assist in the scientific peer review process, potentially helping 

reviewers quickly grasp key points of submitted papers. 
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9.6 Concluding Remarks 

This study presents a comprehensive investigation into the application of Retrieval-Augmented 

Generation (RAG) techniques for multi-document summarisation of scientific papers.  

 

The developed hybrid framework, leveraging the strengths of both extractive and abstractive 

methods, has demonstrated significant improvements over existing approaches in terms of 

summary quality, factual accuracy, and coherence. 

The iterative refinement process, involving optimisation of both the retriever and generator 

components, gave substantial cumulative improvements. The integration of the fine-tuned 

SPECTER model in the retriever component, coupled with semantic chunking and re-ranking 

mechanisms, also enhanced the relevance and accuracy of retrieved information. On the 

generation side, the optimised parameter-efficient fine-tuning of the Gemma models, along 

with engineered prompts and output filtering, gave summaries that better captured the 

essence of complex scientific content. 

 

One of the most promising outcomes of this research is the framework's adaptability across 

diverse scientific domains. The improvement in cross-domain applicability underscores the 

potential of this approach to serve as a versatile tool for researchers across various disciplines. 

This adaptability, combined with the significant enhancements in factual accuracy and 

coherence, positions the developed framework as a robust solution for addressing the growing 

challenge of information overload in scientific literature. 

 

The evaluation strategy used in this study, combining automated metrics with human 

evaluation and the new LLM-as-judge approach, provided a better understanding of summary 

quality. This comprehensive evaluation framework offers valuable insights for future research 

in scientific summarisation, showing the importance of assessing not just statistical similarity, 

but also factual accuracy and coherence in the context of scientific discourse. 

 

While this study has yielded promising results, it has also shown several areas for future 

research. These include further refinement of RAG techniques specific to scientific literature, 

exploration of emerging language models, development of more sophisticated evaluation 

metrics, and investigation into cross-domain and multi-lingual summarisation. The potential 

integration of these summarisation techniques with broader scientific workflow systems 

presents new possibilities for enhancing the efficiency of scientific communication and 

discovery. 
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In conclusion, this research represents a step forward in the field of scientific literature 

summarisation.  

 

The developed RAG-based framework not only advances the state of the art in terms of 

performance metrics but also addresses some of the key challenges unique to scientific 

summarisation. As the volume and complexity of scientific publications continue to grow, tools 

like the one developed in this study may well play an increasingly important role in facilitating 

knowledge discovery and synthesis across the scientific community and, potentially, in other 

areas where there is a need to rapidly assimilate information from many sources. 
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Appendices
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Appendix 1: The LSTM and the problem with ‘Attention’ 

Long Short-Term Memory (LSTM) networks were widely adopted in various natural language 

processing tasks due to their ability to capture long-term dependencies in sequential data. However, 

in the context of multi-document summarisation, LSTMs face some limitations, particularly 

concerning something called the ‘attention mechanism’. This appendix aims to explain these 

limitations and their impact on the quality of generated summaries, with a focus on coherence and 

information coverage. 

 

Background to the LSTM 

LSTM networks, introduced by Hochreiter and Schmidhuber (1997), are a specialised form of 

recurrent neural networks (RNNs) designed to mitigate the vanishing gradient problem. In deep 

neural networks, particularly those designed for sequential data, the vanishing gradient problem 

poses a significant challenge. As the network attempts to learn from its errors, it adjusts its internal 

parameters based on a gradient that flows backwards through the layers. However, this gradient 

tends to diminish rapidly as it travels through the network, becoming vanishingly small in the earlier 

layers or time steps. Consequently, the network struggles to capture long-term dependencies, 

rendering it ineffective for tasks requiring the retention of information over extended sequences. 

 

The LSTM architecture comprises memory cells and three types of gates: input, forget, and output. 

These components allow the network to selectively retain or discard information over longer 

sequences. 

 

The core of an LSTM cell is the cell state, which acts as a conveyor belt of information flowing 

through the entire sequence. The gates, implemented as neural networks with sigmoid activations, 

control the flow of information into and out of the cell state. This mechanism enables LSTMs to learn 

long-term dependencies more effectively than traditional RNNs. 

 

The Attention Mechanism 

The attention mechanism, first proposed by Bahdanau, Cho and Bengio (2016) for machine 

translation, has become an important component in many sequence-to-sequence models. Attention 

allows a model to focus on different parts of the input sequence when generating each element of 

the output sequence. This mechanism calculates a context vector as a weighted sum of the input 

sequence, where the weights are determined by the relevance of each input element to the current 

output. 
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In the context of summarisation, attention enables the model to selectively focus on the most 

relevant parts of the input documents when generating each word of the summary. This capability is 

particularly valuable for maintaining coherence and ensuring comprehensive coverage of key 

information. 

 

To help understand the LSTM architecture and the limitations, consider the following diagram: 

 

Figure 32: Structure of the LSTM cell 

 

This diagram (figure 32) shows the key components of an LSTM cell and how it processes 

information. The cell state, represented by the horizontal line running through the top of the cell, 

acts as a conveyor belt of information flowing through the entire sequence. The various gates (f, i, c, 

and o) control the flow of information into, out of, and within the cell. 

 

However, it also shows an important limitation of LSTMs for MDS. The red dashed area at the bottom 

represents the 'attention problem'. In an LSTM, attention is uniformly distributed across the entire 

input sequence. This means that when processing multiple documents or very long sequences, the 

model struggles to focus on the most relevant information at each step. 

 

While LSTMs are effective at carrying information forward through their cell state, they lack a 

mechanism to selectively attend to different parts of the input. This uniform attention is a problem 

when dealing with multiple documents (or even sections of larger documents), as the model cannot 

easily prioritise or connect relevant information across various sources. This limitation leads to the 

requirement for attention-based models which can dynamically focus on different parts of the input, 

regardless of their position in the sequence. 
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Limitations of LSTM in Summarisation 

Despite their effectiveness in various NLP tasks, LSTMs have several limitations when applied to 

multi-document summarisation: 

a) Sequential Processing: LSTMs process input sequentially, which can be inefficient for long 

documents or multiple documents. This sequential nature makes it challenging to capture 

global context efficiently, potentially leading to loss of important information from earlier 

parts of the input. 

b) Fixed-Size Memory: The cell state in LSTMs has a fixed size, which can be a bottleneck when 

dealing with large amounts of information from multiple documents. This limitation can 

result in information loss or dilution, particularly for longer input sequences. 

c) Lack of Inherent Attention: Vanilla LSTMs do not have an built-in attention mechanism. 

While attention can be added to LSTM-based models, the base architecture does not 

inherently support selective focus on different parts of the input. 

 

The Attention Problem 

The absence of this attention mechanism in LSTMs leads to several issues in the context of MDS: 

a) Uniform Information Processing: Without attention, LSTMs tend to process all parts of the 

input sequence with equal importance. This uniform approach is suboptimal for 

summarisation, where certain segments of the input documents are more important and 

relevant than others. 

b) Context Dilution: As the input sequence grows longer, the fixed-size cell state struggles to 

maintain all relevant information. This can lead to a dilution of context, where important 

details from earlier parts of the sequence are gradually lost or overshadowed by more 

recent inputs. 

c) Inefficient Handling of Document Boundaries: In multi-document summarisation, LSTMs 

may struggle to effectively differentiate between document boundaries, potentially leading 

to confusion in cross-document references and themes. 

 

To illustrate these issues, consider a scenario where an LSTM is used to summarise multiple news 

articles about a complex event. Without attention, the model might give equal weight to 

introductory paragraphs, key event details, and borderline ‘filler’ information. This could result in a 

summary that lacks focus on the most critical aspects of the event and fails to coherently integrate 

information from different sources. 
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Take, for example, this scenario to summarise three news articles about a major climate conference: 

Article 1 (excerpt): 

"The 2023 Global Climate Summit opened today in Geneva, Switzerland. Over 190 countries are 

represented. The conference aims to address urgent climate issues." 

Article 2 (excerpt): 

"Delegates at the Global Climate Summit are debating a new emissions reduction target. The 

proposed goal is a 50% cut by 2030. Some nations argue this is too ambitious." 

Article 3 (excerpt): 

"Protests have erupted outside the Global Climate Summit venue. Activists demand immediate 

action. Police have maintained a strong presence to ensure security." 

 

An LSTM might summarise these without and with attention: 

Without Attention: 

"The Global Climate Summit opened in Geneva with 190 countries. Delegates are debating emissions 

targets. Protests have occurred outside the venue. The conference aims to address climate issues. 

Some nations argue about the proposed goals. Police are maintaining security." 

 

In this summary, the LSTM gives roughly equal weight to all pieces of information. It includes details 

from each article but doesn't emphasise the most important points or create a coherent narrative. 

 

With Attention: 

"The 2023 Global Climate Summit in Geneva has brought together 190 countries to address urgent 

climate issues. The key focus is a proposed 50% emissions reduction target by 2030, which has 

sparked debate among delegates. Meanwhile, activists outside the venue are demanding immediate 

action, highlighting the pressure on world leaders to achieve meaningful results." 

 

Impact on Summarisation 

The limitations of LSTMs, particularly the attention problem, significantly affect the quality of 

generated summaries: 

a) Coherence: The sequential processing and lack of global context awareness can lead to 

summaries that lack overall coherence. The model may struggle to maintain a consistent 

narrative or thematic flow across information from multiple documents. 

b) Information Coverage: Without an effective mechanism to prioritise important content, 

LSTM-based summarisers may fail to capture key information dispersed across multiple 
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documents. This can result in summaries that miss details or overemphasise less important 

aspects. 

c) Redundancy: The inability to efficiently track what information has already been included in 

the summary can lead to redundant content, particularly when dealing with multiple 

documents that contain overlapping information. 

d) Length Sensitivity: LSTM performance tends to degrade with longer input sequences, which 

is particularly problematic in multi-document summarisation where input lengths can be 

substantial. 

 

Case Studies and Examples 

Several studies have demonstrated the limitations of LSTM-based models for MDS: 

 

Tan, Wan and Xiao (2017) compared LSTM-based models with and without attention mechanisms for 

abstractive summarisation. Their results showed that attention-enhanced models consistently 

outperformed vanilla LSTMs in terms of ROUGE scores and human evaluations of coherence and 

coverage. 

 

In a study by Liu and Lapata (2019), hierarchical LSTM models were compared with Transformer-

based architectures for multi-document summarisation. The LSTM models, even with hierarchical 

structures, struggled to capture cross-document relationships effectively, leading to lower 

performance in coherence and information coverage metrics. 

 

Concluding comments 

While LSTMs have proven effective in various sequence modelling tasks, their application to multi-

document summarisation is hampered by significant limitations, particularly the lack of an inherent 

attention mechanism. These limitations manifest in challenges with maintaining coherence across 

multiple documents and ensuring comprehensive coverage of key information. 

 

The sequential nature of LSTMs, combined with their fixed-size memory, makes them ill-suited for 

tasks requiring a global understanding of large volumes of text. In the context of multi-document 

summarisation, these shortcomings result in summaries that may lack focus, coherence, and 

comprehensive coverage of important information. 
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To address these limitations, research shifted towards models that inherently support attention 

mechanisms, such as the Transformer-based architectures which form the core of the research in this 

study. As the main body of the thesis describes, these models offer more flexible and efficient ways 

of handling long-range dependencies and selective focus on relevant information. 
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Appendix 2: Human Evaluation Study 

 

To validate the quality of the automatically generated summaries, a human evaluation study was 

conducted, focusing on two key aspects: 

 

• Coherence: How well-organised and logically connected the summary content was. 

• Coverage: How comprehensively the summary captured the main ideas from the original 

abstracts. 

Methodology: 

1. Participants: The study recruited 20 students in computer science and related fields, all with 

experience reading academic papers. 

2. Materials: Participants were provided with: 

• The original set of 5 paper abstracts 

• The automatically generated summary 

• An evaluation form (described below) 

3. Procedure: For each set of abstracts and summary, participants were asked to: 

a) Read the 5 original abstracts (5 minutes) 

b) Read the automatically generated summary (2 minutes) 

c) Complete the evaluation form (3 minutes) 

4. Evaluation Form: Participants rated the following statements on a 5-point Likert scale (1 = 

Strongly Disagree, 5 = Strongly Agree): 

• Coherence: 

1. The summary presents ideas in a logical and well-organised manner. 

2. The summary flows smoothly from one point to the next. 

3. The summary avoids redundancy and repetition. 

• Coverage: 

1. The summary captures the main points from all 5 abstracts. 

2. The summary does not omit any significant ideas or findings from the 

abstracts. 

3. The summary provides a balanced representation of the content across all 

abstracts. 

• Overall Quality: 

1. The summary effectively condenses the key information from the abstracts. 
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2. The summary would be useful for quickly understanding the main ideas of 

these papers. 

• Open-ended Feedback: Participants were also asked to provide brief written 

comments on: 

1. Any notable strengths or weaknesses of the summary 

2. Suggestions for improvement 

 

Study Design 

This evaluation methodology is based on the widely-used Pyramid Method for summary evaluation, 

as proposed by Nenkova and Passonneau (2004). The Pyramid Method assesses summaries based on 

their content coverage and importance, which aligns with the focus here on coherence and coverage. 

While the original Pyramid Method has a more complex scoring system, the approach adapts its 

principles to a Likert scale format for ease of use with less-expert evaluators. 

 

The use of a 5-point Likert scale is supported by research indicating that it provides a good balance 

between the granularity of response options and cognitive load on participants (Dawes, 2008). This 

approach allows for more nuanced feedback while remaining straightforward for participants to 

complete. 

 

The specific questions are designed to address key aspects of summary quality identified in the 

literature, including coherence, coverage, and overall effectiveness (Mani, 2001). By breaking down 

these aspects into specific, actionable statements, the evaluation form aims to provide a 

comprehensive assessment of summary quality. 

 

The summaries were presented to the readers via a Google Form in the following format: 
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Followed by a Form Section to gather responses via a Likert scale and a free text input (figure 33): 

 

 

Figure 33: Response form as it appears to the respondent 
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Analysis 

Mean scores for each criterion were calculated, and the open-ended feedback was analysed to 

identify common themes. This approach allowed for an assessment of the overall quality of the 

summaries and identification of specific areas for improvement in the summarisation approach. 

 

Results 

1. Overall Effectiveness: 

• The majority of respondents agreed or strongly agreed that the computer-generated 

summaries captured the main points and key themes effectively. 

• There was general agreement that the summaries accurately conveyed the main 

contributions and findings of the papers. 

2. Clarity and Comprehension: 

• Most participants found the summaries easy to understand and free of errors or 

misunderstandings. 

• However, opinions were mixed regarding the comparability of the summaries to the 

original abstracts in terms of length, clarity, and completeness. 

3. Differences from Original Abstracts: 

• Responses were varied concerning whether there were few significant differences 

between the summaries and the original abstracts. 

• Common issues mentioned in the open-ended responses included: 

a) Loss of specific details or nuances 

b) Omission of key ideas from some abstracts 

c) Bias towards certain papers or topics (e.g., BERT being mentioned more 

frequently) 

d) Generalisation of information (e.g., mentioning "tasks" or "mechanisms" without 

specifics) 

 

 

Key Observations: 

1. The summaries generally succeeded in capturing main points and themes, but often at the 

cost of specific details or nuances. 

2. There was a consistent concern about the loss of important information or examples that 

might be important for a comprehensive understanding of the original papers. 
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3. The summaries were generally easy to understand, suggesting good coherence and 

readability. 

4. Many participants expressed a desire to see both the written summary and a diagram, 

suggesting that a multi-modal approach to summarisation might be beneficial. 

 

Limitations and Considerations: 

• There was some inconsistency in responses across different summary sets, which could 

indicate variability in the quality of different summaries or differences in the complexity of 

the original abstracts. 
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Appendix 3: LLM-as-a-Judge 

In addition to the human evaluation study described in Appendix 2, a larger-scale, automated 

evaluation of the summarisation outputs was conducted using a state-of-the-art Language Model 

(LLM), specifically the OpenAI GPT-4 API. This appendix details the methodology, rationale, and 

implications of this approach. 

 

Although the LLM-as-a-judge methodology is relatively new, based on the findings presented by 

Zheng et al. (2023), adopting an LLM-as-a-judge approach for evaluating the outputs of a summariser 

is well-justified. The authors demonstrate that strong LLM judges, particularly GPT-4, can effectively 

match human preferences with over 80% agreement rate, which is comparable to the level of 

agreement between human evaluators. The approach can be summarised in the following diagram: 

 

 

Figure 34: Summary of the LLM-as-a-judge process 

 

Figure 34 illustrates the process of using an LLM (specifically GPT-4) as a judge to evaluate the output 

of an MDS system. The flow shows how input documents and a summarisation query are processed 

by the MDS system to produce a summary, which is then evaluated by GPT-4 using a specialised 

evaluation prompt. The approach offers significant advantages in terms of scalability and speed 

compared to traditional human evaluations, while still providing explainable outputs through 

detailed judgments. The paper does acknowledge some of the potential biases and limitations of 

LLM judges but shows that many of these can be mitigated or have minor impacts. 
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Rationale: 

Following on from this, the use of an LLM as an evaluator serves several purposes: 

1. Scalability: Unlike human evaluations, which are limited by time and resources, an LLM-

based approach allows for the assessment of a much larger number of summaries, 

potentially covering the entire dataset. 

2. Reproducibility: The consistent nature of LLM evaluations ensures that the results can be 

easily reproduced, addressing a common challenge in human-based studies. 

3. Comparative Analysis: By mirroring the evaluation criteria used in the human study, it is 

possible to directly compare the assessments made by humans with those made by the LLM, 

potentially revealing insights into the reliability and biases of both evaluation methods. 

4. Continuous Evaluation: This method allows for ongoing assessment as new summaries are 

generated, facilitating iterative improvements to the summarisation model. 

5. Cognitive Load: Even though the human evaluators in the small-scale study were ‘expert’ 

academic readers, several were honest in informal feedback.  There was a suggestion that 

human readers quickly tire of reading dense text and attention wanders. It was also 

suggested that the same reader may even give different evaluations on different days; 

indeed this feedback is supported by the literature.  Sweller (1988) argues that cognitive load 

can significantly impact task performance, noting that "problem solving imposes a heavy 

cognitive load on problem solvers", which can lead to fatigue and inconsistent results over 

time. 

 

Methodology: 

The GPT-4 API was employed to evaluate the summarisation outputs using prompts designed to 

mirror the questions and criteria used in the human evaluation study. The LLM was tasked with 

assessing aspects such as coherence, coverage, accuracy, and overall quality of the generated 

summaries.  The process is shown below in figure 35. 

 

Setup 

The evaluation was implemented using a Python script, using the OpenAI API client library. API 

authentication was managed securely using environment variables to store the API key. 
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Figure 35: LLM-as-a-judge implementation 

 

 

Data Preparation 

Summaries for evaluation were stored in a structured JSON format, with each entry containing: 

• Summary ID 

• Generated summary text 

• Original texts (for reference) 

 

Evaluation Prompts 

The LLM evaluation used the following prompts, giving clear instructions via a ‘system prompt’ and a 

set of focussed questions directly mirroring the human evaluation questions: 

 

System Prompt: 

You are an expert academic researcher tasked with evaluating the quality of computer-generated 
summaries of scientific papers. Your role is to assess these summaries objectively, comparing them to 
the original abstracts of the papers. Please adhere to the following guidelines:  
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1. Provide ratings on a scale from 1 (Strongly Disagree) to 5 (Strongly Agree) for each criterion.  
2. After the ratings, provide a clear, concise explanation for your choice.  
3. Base your evaluation solely on the content provided, without making assumptions about 
information not present.  
4. Be critical yet fair in your assessment, highlighting both strengths and weaknesses.  
5. For the open-ended question, provide specific examples and explain their potential impact on 
reader understanding.  
 
Your goal is to give an accurate, unbiased evaluation that will help improve the quality of automated 
summarization techniques in academic contexts. 
 

Focus questions: 

1. Main Points and Key Themes: 

"How effectively does the summary capture the main points and key themes of the papers as 

explained in the abstracts? Rate on a scale from 1 (Strongly Disagree) to 5 (Strongly Agree)" 

2. Accuracy of Main Contributions and Findings: 

"How accurately does the summary convey the main contributions and findings of the 

papers? Rate on a scale from 1 (Strongly Disagree) to 5 (Strongly Agree)" 

3. Clarity and Error-Free Content: 

"Is the computer-generated summary easy to understand and free of errors or 

misunderstandings? Rate on a scale from 1 (Strongly Disagree) to 5 (Strongly Agree)" 

4. Comparability to Abstracts: 

"Is the computer-generated summary comparable to the abstracts of the papers in terms of 

length, clarity, and completeness? Rate on a scale from 1 (Strongly Disagree) to 5 (Strongly 

Agree)" 

5. Significant Differences: 

"Are there few significant differences between the summary provided by the computer-

generated model and the abstracts of the papers? Rate on a scale from 1 (Strongly Disagree) 

to 5 (Strongly Agree)" 

6. Open-ended Question: 

"If there are significant differences, what are they and how might they impact the reader's 

understanding of the papers?" 

 

Evaluation Process 

The script implemented an iterative process: 

• For each summary in the dataset: 

• For each evaluation criterion: 



 

 261 

1. Construct the full prompt by combining the system prompt and the 

criterion-specific prompts with the summary and original text. 

2. Send the prompt to the GPT-4 API. 

3. Process the API response to extract the numerical rating and explanation. 

4. Append the results (summary ID, criterion, rating, explanation) to a CSV file. 

• Error handling and rate limiting were implemented to manage API failures and comply with 

usage restrictions. 

 

Data Storage 

Results were stored in a CSV file with the following structure: 

• Summary ID 

• Evaluation Criterion 

• Numerical Rating (1-5) 

• Explanation 

 

Analysis 

Post-evaluation, a separate script analysed the CSV file to: 

• Calculate average scores for each criterion 

• Identify trends in the evaluations 

• Compare LLM-based results with human evaluation results 

 

 

Limitations and Considerations 

This methodology aimed to complement, not replace, human evaluation. The comparison between 

LLM and human evaluations was intended to help identify potential biases or limitations in both 

approaches, contributing to the development of a more robust evaluation framework.
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