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Abstract
Working capital mismanagement poses significant challenges to supply chain (SC) opera-
tions, threatening the stability and viability of businesses worldwide. One manifestation 
of this issue is the cash flow bullwhip (CFB) effect, which refers to the amplification of 
working capital variability relative to demand variability as it propagates upstream in 
the SC. Blockchain-enabled data sharing and decision trees trained on data generated by 
discrete-event simulation are potential yet unexplored solutions to address the CFB effect. 
This study fills this gap by investigating the effectiveness of blockchain-enabled data shar-
ing and the integration of discrete-event simulation with decision trees in mitigating the 
CFB effect. The analysis focuses on a three-echelon manufacturing-retail SC. However, 
the findings are applicable to other SC types that experience the CFB effect. Blockchain 
provides visibility into end-customer demand and working capital policies across SC tiers 
by enabling data sharing. The shared data serve as inputs into a discrete-event simulation 
model that generates dynamic scenarios to train decision trees. Findings demonstrate that 
demand forecasting based on end customers’ needs, facilitated by blockchain, significantly 
reduces the CFB effect. Additionally, combining this forecasting with uniformly applied, 
increasing cash collection policies across all SC members, also coordinated by blockchain, 
can prevent the CFB effect. Decision trees provide interpretable and actionable rules for 
setting working capital policies, highlighting the importance of regulating inventory poli-
cies at the middle echelon of the SC to prevent the CFB effect. This study offers manage-
rial recommendations to address the CFB effect in SCs.

Keywords  Simulation · Decision trees · Blockchain · Machine learning (ML) · Cash 
flow bullwhip effect
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1  Introduction

Working capital management refers to the efficient management of a company’s short-term 
assets and liabilities. Mismanagement of working capital has wreaked havoc on supply 
chains (SCs), paralyzing operations and threatening the survival of businesses worldwide 
(Bal & Pawlicka, 2021). High-profile bankruptcies, such as those of Converse in 2001, 
Toys “R” Us in 2017, and Esprit Belgie Retail in 2024, underscore the severe consequences 
of ineffective working capital management. These catastrophic events extend beyond the 
companies facing bankruptcy, affecting suppliers and customers within the SC (Gibilaro 
& Mattarocci, 2019). This highlights the crucial importance of viewing working capital 
management from a SC perspective rather than from the perspective of a single company 
(Badakhshan et al., 2022).

Effective working capital management in SCs involves the rigorous monitoring and anal-
ysis of inventory, cash, receivables, and payables within a network of interconnected enti-
ties engaged in the production, distribution, and sale of goods and services (Pei et al., 2023). 
This management serves as the lifeblood that keeps the entire SC ecosystem functioning 
smoothly, directly influencing an organization's ability to meet financial obligations, main-
tain liquidity, and sustain day-to-day operations (Badakhshan & Bahadori, 2024; Wuttke et 
al., 2013).

A significant obstacle to effective working capital management is the cash flow bull-
whip (CFB) effect, a phenomenon that amplifies working capital fluctuations as one moves 
upstream in the SC, leading to increased financial strain and risk for upstream members 
(Tangsucheeva & Prabhu, 2013). The CFB effect arises from a combination of operational, 
financial, and informational factors. Demand variability is identified as one of its primary 
causes. For instance, even a small shift in consumer demand, whether upward or downward, 
can trigger disproportionately large fluctuations in upstream orders, as each tier adjusts 
inventory levels to manage uncertainty. Additionally, asymmetric payment terms (where 
upstream suppliers experience immediate cash outflows but receive delayed payments from 
downstream partners), order batching practices, extended or uncertain lead times, and lim-
ited visibility into actual consumer demand collectively exacerbate the CFB effect (Lamza-
ouek et al., 2021).

The automotive sector provides a real-world illustration of the CFB effect. During the 
COVID-19 pandemic, as consumer demand rebounded unexpectedly in late 2020, automak-
ers rapidly increased replenishment orders. This sudden escalation forced Tier 1 and Tier 2 
suppliers to incur immediate expenses to restart production lines, procure raw materials, and 
rehire labor. However, delayed payments from automakers led to a rise in accounts receiv-
able for these upstream suppliers. As a result, they experienced amplified working capital 
volatility, exemplifying the CFB effect through disproportionate fluctuations in working 
capital relative to changes in demand (PwC, 2021).

Empirical studies further underscore the significance of this issue. For example, Drissi 
et al. (2023) analyzed data from 51 Moroccan fast-moving consumer goods companies, 
revealing that small and medium-sized enterprises (SMEs) experienced an average 43% 
increase in accounts receivable due to extended trade credit periods imposed by downstream 
SC partners. These disruptions intensified working capital variability relative to changes in 
demand, highlighting the presence of the CFB effect. Similarly, Patil and Prabhu (2024a), in 
their analysis of 763 U.S. public companies from 2010 to 2019, found that the CFB effect 
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impacted 37% of retailing, 43% of wholesaling, and 81% of manufacturing firms. Their 
findings emphasize that upstream SC members, who often experience delayed cash inflows 
and heightened liquidity constraints, are particularly vulnerable. This underscores the need 
for strategies that address the structural causes of the CFB effect across SC tiers.

Traditional approaches to addressing the CFB effect, such as demand forecasting, have 
often failed due to persistent data silos, limited visibility, and a lack of trust among par-
ticipants (Riahi et al., 2023). Data silos occur when different entities within a SC, such as 
suppliers, manufacturers, distributors, and retailers, fail to effectively share critical data 
(Alzoubi & Yanamandra, 2020). Each entity operates autonomously with its own objectives, 
priorities, and internal systems, creating barriers to data exchange (Kembro & Näslund, 
2014; Nurhayati et al., 2023). Technological disparities can contribute significantly to data 
silos; entities often utilize disparate Enterprise Resource Planning (ERP) systems or other 
technological platforms. These systems may employ different data formats, structures, or 
protocols, complicating the integration and exchange of data across the SC (Chen et al., 
2015; Tavana et al., 2020). This lack of effective data sharing results in fragmented land-
scapes where each participant only has a partial view of the overall SC operations (Khanuja 
& Jain, 2020).

Moreover, a lack of trust among participants exacerbates persistent data silos, as firms 
are often reluctant to share sensitive financial and operational data with their partners (Mül-
ler et al., 2020). This distrust undermines the effectiveness of traditional working capital 
strategies, such as demand forecasting, leading to decision-making based on incomplete, 
outdated, or inaccurate data. The reluctance to collaborate across organizational boundaries 
hinders coordinated responses and perpetuates inefficiencies throughout the SC (Gligor et 
al., 2019).

Blockchain technology offers a novel solution to the problems of data silos, limited vis-
ibility, and distrust among SC participants. Its decentralized architecture ensures that all SC 
members have access to the same data on product, order, and cash flows, thereby eliminat-
ing data silos (Wan et al., 2020; Xue et al., 2025). Blockchain maintains an immutable and 
cryptographically secured ledger, ensuring data integrity and authenticity while preventing 
unauthorized modifications (Dahal, 2023). This transparency reduces information asym-
metry, fosters trust among participants, and promotes accountability, making blockchain 
uniquely suited to overcoming the data silos, limited visibility, and distrust that hinder 
traditional approaches to working capital management. By enhancing trust and visibility 
simultaneously, blockchain enables more reliable demand forecasting and the coordinated 
execution of working capital policies across SC tiers (Gazzola et al., 2023).

Data shared through blockchain must be effectively utilized to mitigate the CFB effect in 
SCs. Accurately measuring the CFB effect is essential, and simulation modeling is widely 
used for assessing SC performance indicators, including the CFB, because it captures the 
dynamics of product, order, and cash flows (Jahani et al., 2023; Xu et al., 2024). However, 
simulation models mainly identify policies to mitigate the CFB effect through what-if anal-
ysis, which can become cumbersome when evaluating numerous scenarios (Badakhshan 
et al., 2024). Machine learning (ML) offers a means to analyze large datasets and extract 
meaningful patterns (Mehdiyev et al., 2024). This enables decision-makers to identify effec-
tive strategies to prevent the CFB effect. However, ML models require substantial volumes 
of data, which can be generated through simulation.
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Integrating simulation with decision trees enhances efforts to prevent the CFB effect in 
SCs. Simulation captures the complex dynamics of financial and operational flows within 
the SC, generating extensive data under a variety of policy and environmental conditions. 
This data is then used to train decision trees, which produce transparent, rule-based outputs. 
For example, a decision rule might state: “If the desired inventory at the middle echelon 
exceeds X, then reduce the desired work-in-progress at the lower and middle echelons to Y 
and Z, respectively, to avoid the CFB effect.” These if–then rules are directly interpretable 
by non-technical stakeholders, including supply chain managers, and offer clear, actionable 
guidance for adjusting inventory decisions, cash collection policies, and trade credit terms. 
By making ML outputs interpretable, this integration provides a practical decision-support 
framework that enables managers to implement targeted interventions to prevent the CFB 
effect.

Despite the significant potential of blockchain technology to mitigate the CFB effect in 
SCs, its application in this context remains largely unexplored. Existing studies on block-
chain for working capital management in SCs have primarily focused on enhancing trans-
parency, automating transactions via smart contracts, and improving security (e.g., Bhusari 
et al., 2023; Chen et al., 2024). Additionally, although there is a growing body of litera-
ture on the integration of simulation models with ML techniques for SC management (e.g., 
Badakhshan & Ball, 2024), their application to addressing the CFB effect remains limited.

To address these gaps, this study is guided by two research questions: (1) How can block-
chain-enabled data sharing contribute to mitigating the CFB effect and stabilizing financial 
flows in SCs? (2) How effective is the integration of simulation and machine learning tech-
niques in preventing the CFB effect in SCs? These questions aim to explore the potential of 
emerging digital technologies in enhancing transparency, coordination, and financial stabil-
ity across SC networks.

This research contributes by offering a transformative approach to managing cash flow 
in SCs, aligning with the broader trend of digitalization, and enhancing visibility and trans-
parency (Cui et al., 2023a; Dolgui & Ivanov, 2022; Iftikhar et al., 2024; Ivanov, 2021). The 
findings will provide valuable insights for both academic researchers and industry practitio-
ners focused on ensuring the financial stability of SCs.

This paper is structured as follows: Sect. 2 offers a comprehensive review of existing 
literature, identifying research gaps. In Sect. 3, the simulation modeling of the CFB effect 
in a multi-stage SC is described. Section 4 discusses the proposed Frameworks for address-
ing the CFB effect. Section 5 presents experimental results and provides recommendations 
for practitioners. Finally, Sect. 6 summarizes the findings and suggests directions for future 
research.

2  Literature review

This study covers three major research domains: the CFB effect, hybrid simulation-ML for 
supply SC management, and blockchain-based solutions for working capital management 
in SCs. Accordingly, the literature review is organized around these themes. These research 
strands are integrated to evaluate the effectiveness of hybrid simulation-ML, enabled by 
blockchain-based data sharing, in mitigating the CFB effect.
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2.1  CFB effect

The CFB effect refers to a phenomenon analogous to the traditional bullwhip effect observed 
in material flows, but it pertains specifically to cash flows. While the bullwhip effect cap-
tures the amplification of demand variability as it propagates upstream, resulting in inven-
tory and production inefficiencies, the CFB effect reflects the amplification of working 
capital volatility under similar conditions. It is also conceptually linked to the ripple effect, 
which describes the cascading impact of disruptions whether operational or financial across 
multiple tiers of a SC (Dolgui et al., 2020a, 2020b; Ivanov, 2020, 2025a).

Tangsucheeva and Prabhu (2013) defined the ratio of variability in the cash conversion 
cycle to variability in demand as an indicator of the CFB effect. They identified demand 
variability and lead time as the primary contributors to the CFB effect in an inventory sys-
tem utilizing the order-up-to replenishment policy. Goodarzi et al. (2017) further recognized 
rationing and shortage gaming as principal causes of the CFB effect in inventory systems 
employing the order-up-to replenishment policy. Chen et al. (2022) expanded on this by 
measuring the CFB effect in parallel SCs. Their results indicated that competition and mar-
ket share significantly impact the CFB effect. Sim and Prabhu (2022) investigated the influ-
ence of credit risk on the CFB effect, finding that considering credit risk increases the flow 
of cash from downstream to upstream in a SC, thereby alleviating the CFB effect.

The CFB effect results in inefficiencies such as inventory imbalance and financial strain 
on upstream SC members. Several studies have identified strategies to mitigate the CFB 
effect. For instance, Badakhshan et al. (2020) suggest reducing the CFB effect by determin-
ing the optimal inventory and financial decisions. Sim and Prabhu (2017) demonstrate that a 
SC microfinance scheme, where the manufacturer acts as the lender and the supplier as the 
borrower, can reduce the CFB effect. Lamzaouek et al. (2023) state that reliable SCs are at 
a lower risk of encountering the CFB effect because they can more effectively manage and 
predict cash flows, reducing the likelihood of significant variability in cash flow. Drissi et al. 
(2023) recommend enhancing collaboration among SC members and implementing internal 
control mechanisms for collecting receivables, paying payables, and managing inventory to 
reduce the CFB effect. Lamzaouek et al. (2021) highlight the role that digitalization can play 
in controlling the operational causes of the CFB effect, namely poor demand forecasting, 
price fluctuations, order batching, lead times, and rationing and shortage gaming.

Patil and Prabhu (2024a) argue that the formula presented by Tangsucheeva and Prabhu 
(2013) does not accurately measure the CFB effect, as it divides the variance of the cash 
conversion cycle, which is in time units, by the variance of demand, which is either in mon-
etary or product units. To address this shortcoming, they propose substituting the cash con-
version cycle with working capital in the formula presented by Tangsucheeva and Prabhu 
(2013). Therefore, in the new formulation, the CFB effect is defined as the ratio of variabil-
ity in working capital to variability in demand. Patil and Prabhu (2024b) employ the new 
formula to calculate the CFB effect for 786 companies over a 10-year period and verified its 
existence in real-world SCs.

While previous studies have explored strategies like optimizing inventory and finan-
cial decisions to address the CFB effect within SCs, none have specifically investigated 
blockchain-based solutions for reducing this effect. To address this gap, our research aims 
to assess the effectiveness of blockchain in mitigating the CFB effect. Additionally, no stud-
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ies have integrated simulation and ML to tackle the CFB effect in SCs. To fill this gap, we 
propose an approach that combines simulation and ML to address the CFB effect.

2.2  Hybrid simulation-ML for SC management

Hybrid simulation-ML refers to the integration of simulation models with ML techniques to 
address complex decision-making tasks in dynamic environments (Badakhshan et al., 2024; 
Brailsford et al., 2019). This approach has garnered significant attention in SC management 
for its ability to enhance decision-making and operational efficiency. By combining the 
strengths of simulation methods and ML algorithms, hybrid approaches offer dynamic and 
adaptive solutions to the complexities of SCs. Simulation models, such as discrete-event or 
agent-based simulations, capture the intricate interactions and behaviors within SCs, while 
ML leverages data-driven insights to optimize decision variables, predict demand patterns, 
and detect anomalies (Mustafee & Fakhimi, 2024). This literature review explores the grow-
ing body of work on hybrid simulation-ML applications in SC management, highlighting 
key contributions and gaps in existing research. The review categorizes the literature into 
three groups based on the three main ML techniques: supervised learning, unsupervised 
learning, and reinforcement learning.

The first group of studies integrated simulation with supervised learning methods to 
address SC problems. For instance, Le and Xuan-Thi-Thu (2024) combined the predictive 
capabilities of an artificial neural network (ANN) with the dynamic modeling capabilities 
of simulation to develop a comprehensive tool for analyzing and improving sustainable SC 
operations in the seafood industry. Zhang et al. (2024) coupled simulation modelling with 
an ANN to conduct pre-crisis performance assessment in a humanitarian SC. Similarly, 
Ogunsoto et al. (2025) employed simulated data to train an ANN for predicting production 
network recovery time following disruptions.

Yang et al. (2023) combined simulation with an ANN to identify process-switching strat-
egies that enable firms to promptly adjust their production lines in response to global SC 
disruptions. Similarly, Roozkhosh et al. (2023) and Liebenberg and Jarke (2023) used data 
generated by simulations to train ANNs, enhancing resilience and improving production 
scheduling in SCs, respectively. In another study, Gružauskas et al. (2019) applied an ANN 
to forecast demand and incorporated these predictions into a simulation model to reduce 
food waste. Additionally, Badakhshan and Ivanov (2025) and Badakhshan and Ball (2024) 
used simulation to train decision tree models for SC master planning and responsive work-
ing capital management, respectively, under disruption scenarios. Bodendorf et al. (2022) 
used data generated by discrete-event and Monte Carlo simulations to train a deep neural 
decision tree (DNDT), a supervised learning model that integrates neural networks with 
decision tree structures, to optimize operational decisions in automotive SCs. Sankaran 
et al. (2022) and Behnamfar et al. (2022) employed data from discrete-event and system 
dynamics simulations to train ANNs for forecasting dynamic behavior and supporting deci-
sion-making in complex SC networks under uncertainty.

The second group of studies integrated simulation with unsupervised learning methods 
to address SC problems. For example, Weihrauch et al. (2018) used simulation to assess the 
impact of disruptions identified through clustering analysis on SC performance. Wang et al. 
(2020) employed discrete-event and system dynamics simulation to generate data for prin-
cipal component analysis (PCA), which was then used to detect SC disruptions. Similarly, 

1 3



Annals of Operations Research

Jacobson et al. (2021) and Karimi-Mamaghan et al. (2020) combined simulation models 
with the K-means clustering algorithm to tackle SC configuration and production planning 
problems, respectively.

The third group of studies integrated simulation with reinforcement learning to address 
SC problems. For example, El Shar et al. (2022), Mehta and Yamparala (2014), and Wang et 
al. (2022) utilized simulation to facilitate the training of reinforcement learning models for 
inventory planning in SCs. Additionally, Gutierrez-Franco et al. (2021) developed a simu-
lation environment for a reinforcement learning agent to learn optimal routes in a vehicle 
route planning problem. Pouri (2025) developed a simulation environment for a reinforce-
ment learning agent focused on predictive maintenance. Clark and Kulkarni (2021) inte-
grated discrete-event, agent-based, and system dynamics simulations to train an RL agent 
for inventory planning. Similarly, Gros et al. (2020) combined discrete-event and Monte 
Carlo simulations to train an RL agent for production planning.

While previous studies have integrated simulation and ML techniques, including super-
vised, unsupervised, and reinforcement learning, to address various SC challenges such 
as demand forecasting, inventory optimization, and disruption recovery, these efforts have 
primarily focused on performance improvement using black-box models. Few studies have 
explored the use of interpretable machine learning methods in conjunction with simulation, 
and none have examined this integration in the context of preventing the CFB effect. This 
study fills these gaps by combining discrete-event simulation with decision trees to produce 
transparent, rule-based insights. The resulting framework supports financially informed 
decision-making by aligning operational policies with cash flow stability objectives across 
the supply chain.

2.3  Hybrid simulation for SC management

In recent years, researchers have increasingly adopted hybrid simulation, which involves 
integrating two or more modeling approaches such as discrete-event simulation (DES), 
agent-based simulation (ABS), and system dynamics (SD) to capture different aspects of 
SC dynamics (Kar et al., 2025). Hybrid simulation has been applied across various domains 
of SC management.

Hybrid simulation has been applied to manufacturing networks to evaluate long-
term performance and sustainability. Barbosa et al. (2023) presented a tri-method model 
(SD + DES + ABS) for an aerospace make-to-order chain, showing that greener configura-
tions can be assessed without sacrificing process detail. Complementing this, Ferreira et 
al. (2025) integrated DES material-flow blocks with ABS autonomous machines to test 
“Supply-Chain 4.0” levers, finding that smart factory investments reduce emissions without 
harming service levels. Kamal et al. (2025) coupled SD price dynamics with ABS farmer 
and trader agents in the global coffee chain, illustrating that fair-profit-sharing stabilizes 
prices and supports smallholders. Fani et al. (2022) employed a hybrid DES-ABS model 
to quantify how fashion-rental logistics and refurbishment cycles alter carbon footprints 
compared to traditional “buy-and-keep” models. Similarly, Farsi et al. (2019) developed a 
modular ABS-DES framework for a regulated cell and gene therapy manufacturing system, 
enabling scalable simulation of repeated production modules under stochastic and dynamic 
conditions. The developed model demonstrated high accuracy in performance estimation 
and supported resource planning under uncertainty.
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In the agri-food domain, Vempiliyath et al. (2021) built an ABS-DES framework for the 
Atlantic salmon SC, where autonomous farmer-agents interact with detailed fish-growth 
and processing processes. Harvest-scheduling experiments showed improved throughput 
and inventory balance, demonstrating how hybrid simulation bridges micro-level behavior 
and process-flow analysis.

Operational logistics networks have also benefited from hybrid simulation to optimize 
performance under complexity. Farhan et al. (2023) created a cloud-based ABS-DES yard 
model for Amazon fulfillment centers, enabling what-if experiments that reduce congestion 
and cut costs. Similarly, Gu and Kunk (2020) employed an ABS-DES model to optimize 
omnichannel retail operations, where agent-based modeling captures individual customer 
purchasing and delivery decisions, and discrete-event simulation handles fulfillment logis-
tics. Their model demonstrates the importance of integrating behavioral dynamics with 
logistical processes for effective strategy evaluation in modern retail SCs. Xu et al. (2021) 
integrated an ABS of additive-manufacturing decision-makers with a DES spare-parts flow 
for fighter jet maintenance, revealing that decentralized 3D printing cuts lead time and 
boosts readiness. Luevano and Barrientos (2022) combined DES order-processing blocks 
with courier and customer agents, showing how last-mile capacity bottlenecks erode e-com-
merce service levels.

Hybrid simulation has also emerged as a powerful analytical approach for modeling and 
stress-testing SC resilience to pandemic and other disruption shocks. Camur et al. (2023) 
developed a SD model to generate non-stationary, pandemic-driven demand signals that 
feed a DES representation of an end-to-end oxygen concentrator SC, enabling rapid evalu-
ation of capacity expansion and inventory policies under surge conditions. Mahachi et al. 
(2022) fed an SD pandemic-infection loop into an ABS semiconductor production network 
and showed that flexible capacity and higher safety stocks mitigate COVID-19-induced 
chip shortages.

Hybrid simulation has further proven valuable in humanitarian SCs, where multiple 
agencies and resource flows must be coordinated. Krejci (2015) proposed an ABS–DES 
framework that represents both the decision-making behaviors of humanitarian actors and 
the stochastic flow of relief goods, arguing that such a hybrid lens is essential for analyzing 
how coordination mechanisms affect long-term efficiency and effectiveness. Building on 
this foundation, Sharif et al. (2023) integrated an ABS of emergency-response actors with a 
SD model of societal dynamics to test post-earthquake relief strategies, finding that stronger 
inter-agency coordination accelerates infrastructure restoration and service delivery.

Collectively, these studies demonstrate the versatility of combining DES, ABS, and SD. 
By capturing multi-scale feedback, heterogeneous agent decisions, and detailed process 
dynamics in unified models, hybrid simulation delivers richer insights for designing resil-
ient, sustainable, and efficient SCs in an increasingly uncertain world.

Despite its growing adoption, hybrid simulation for SC analysis still inherits a well-
known limitation of simulation in general: insights depend on what-if experiments, which 
explore only a narrow set of scenarios (Badakhshan et al., 2024). Integrating simulation 
modeling with ML algorithms can address this shortcoming. In such an integrated frame-
work, the simulation generates large volumes of data, which ML algorithms can analyze to 
identify broader patterns and predictive rules. Explainable ML techniques, such as decision 
trees, are preferable because they produce transparent, rule-based insights that decision-
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makers can readily interpret (Puthanveettil Madathil et al., 2025). Accordingly, this study 
combines decision trees with simulation modeling to address the CFB effect in SCs.

2.4  Blockchain-based solutions for working capital management in SCs

Blockchain technology has gained considerable attention as a potential solution for enhanc-
ing working capital management in SCs. Several studies have explored the advantages and 
challenges associated with implementing blockchain-based solutions for managing working 
capital within SCs.

A primary advantage of blockchain technology is its capacity to enhance transparency 
and trust within SCs, which directly supports more effective working capital management. 
Natanelov et al. (2022) emphasize that blockchain's immutable record-keeping reduces 
fraud and dispute risks. Blockchain-driven platforms for SC working capital management, 
as explored by Chen et al. (2024), Chen et al. (2020), Guo et al. (2022), and Zuo et al. 
(2022) leverage blockchain's trust mechanisms to establish a reliable, transparent business 
environment. These platforms improve visibility and accountability, ultimately creating 
more efficient and secure processes in SC working capital management. In particular, the 
transparency provided by blockchain has led to innovative applications to minimize late 
payments in SCs, improving cash flow reliability and predictability (Luo et al., 2019; Scott 
et al., 2024; Yoon & Pishdad-Bozorgi, 2022).

Furthermore, blockchain enhances product traceability within SCs, increasing supplier 
accountability for quality issues. Cui et al. (2023b) examine blockchain’s role in SC qual-
ity contracting, demonstrating how the technology can identify sources of quality issues 
and enable firms to implement contingent payment systems based on quality metrics. This 
approach optimizes working capital allocation by linking cash flows to product quality.

Blockchain-based solutions also improve efficiency and security in SC working capital 
workflows. Studies by Pushpa et al. (2024), Choi (2023) and Bhusari et al. (2023) sug-
gest that blockchain-based working capital management outperforms traditional methods 
in terms of speed and security, while Chen et al. (2020) demonstrate how smart contracts 
facilitate partial automation of SC working capital processes. Wise et al. (2020) propose a 
blockchain-based approach that enables the derivative trade of mineral stockpiles through 
smart contracts, allowing for earlier access to working capital tied to underlying assets.

Blockchain can mitigate SC working capital risks by addressing information asymmetries 
that often lead to inefficient working capital allocation. Li et al. (2019) review limitations in 
traditional SC working capital risk management, suggesting that blockchain's transparency 
could address these challenges. Wang and Wang (2022) also highlight blockchain's role in 
optimizing risk control systems and reducing costs. Dahdal et al. (2020) notes blockchain's 
potential in managing cash flows and reducing counterparty risk, which is crucial for small 
and medium-sized enterprises (SMEs).

In times of systemic disruption, blockchain can support SC cash flow stability. For 
instance, Yang (2021) examines the impact of COVID-19 pandemic, including cash flow 
crises, and introduces blockchain-based approaches, such as accounts receivable financing, 
to alleviate cash flow challenges for SMEs. Hamledari and Fischer (2021) explore disrup-
tions in the construction industry, proposing blockchain-based crypto assets to synchronize 
product and payment flows, thereby improving integration and supporting working capital 
continuity during disruptions.
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Despite its potential benefits, implementing blockchain-based solutions for working 
capital management in SCs presents several challenges. Natanelov et al. (2022) highlight 
the need to ensure data privacy and security, integrate blockchain with existing systems, 
address scalability issues, navigate regulatory hurdles, and establish trust among SC par-
ticipants. Sangari et al. (2025) indicate that, although discussions primarily emphasize the 
technological drivers of blockchain adoption for working capital management, practitioners 
place greater importance on non-technological factors, including peer adoption and innova-
tion promotion.

Tsai (2023) and Bhusari et al. (2023) also caution about limited adoption and regulatory 
constraints, suggesting a cautious approach to the use of blockchain in SC working capital 
management. Additionally, the inherent complexity of blockchain and concerns about par-
ticipant readiness may further hinder its adoption (Bogucharskov et al., 2018). Hamledari 
and Fischer (2021) underscore the need for further investment in data-driven solutions to 
fully capitalize on blockchain's benefits, such as data accuracy and completeness.

While prior research has emphasized the advantages of blockchain, such as enhanced 
transparency and traceability in SC working capital management, there remains a notable 
gap in the literature regarding its potential to reduce the CFB effect within SCs. To bridge 
this gap, our study seeks to evaluate the effectiveness of blockchain-based solutions in miti-
gating the CFB effect. We adopt a blockchain framework that functions as a data-sharing 
infrastructure and enables the implementation of adaptive financial controls across the 
SC. These controls are informed by insights generated through simulation modeling and 
explainable ML techniques.

2.5  Summary of literature review

A review of the literature on the CFB effect, hybrid simulation-ML approaches for SC man-
agement, and blockchain-based solutions for working capital management in SCs reveals 
two key gaps: (1) the effectiveness of blockchain in mitigating the CFB effect in SCs has 
not been explored; (2) the effectiveness of integrated simulation-ML modeling in prevent-
ing the CFB effect in SCs has not been investigated. To address the first gap, we propose a 
blockchain framework and assess its impact on the CFB effect in SCs. To address the sec-
ond gap, we develop an integrated simulation-ML framework that combines discrete-event 
simulation (DES) and decision trees to identify working capital policies aimed at preventing 
the CFB effect. Notably, the simulation-ML framework leverages data sharing facilitated by 
the blockchain framework.

Table 1 presents an overview of existing research on the CFB effect, hybrid simulation-
ML in SC management, and blockchain-based solutions for working capital management in 
SCs. A key observation is that while some studies, such as Patil and Prabhu (2024a, 2024b), 
analyze the CFB effect across industries and discuss mitigation strategies, they do not pro-
vide methods to prevent this undesirable effect. Other studies, such as Badakhshan and Ball 
(2024) and Ogunsoto et al. (2025), employ hybrid simulation-ML techniques, yet focus on 
SC disruptions and resilience strategies rather than the financial instability caused by the 
CFB effect. Similarly, several studies including Chen et al. (2024) and Scott et al. (2024) 
explore blockchain applications in SC working capital management but do not address the 
CFB effect.
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References Study focus CFB effect 
addressed

Block-
chain-en-
abled data 
sharing

Hybrid 
simulation-ML

Relevance to our 
study

Patil and 
Prabhu 
(2024a)

Empirical analy-
sis of CFB effect 
across industries

✓ – – Demonstrates that 
CFB varies by 
industry but does not 
prevent the CFB effect

Patil and 
Prabhu 
(2024b)

Measuring CFB 
effect in SCs

✓ – – Analyzes mitigation 
strategies but does not 
prevent the CFB effect

Badakhshan 
and Ball 
(2024)

Hybrid simu-
lation-ML for 
SC disruption 
management

– – ✓ Integrate simulation 
and ML but do not ad-
dress the CFB effect

Le and 
Xuan-Thi-
Thu (2024)

Assessing sustain-
able SC opera-
tions in Vietnam’s 
seafood industry

– – ✓  Integrate simulation 
and ML but do not ad-
dress the CFB effect

Zhang et al. 
(2024)

Coupling simula-
tion and ML for 
predictive analyt-
ics in SCs

– – ✓  Integrate simulation 
and ML but do not ad-
dress the CFB effect

Pouri (2025) Coupling simula-
tion and ML to 
enhance mainte-
nance scheduling

– – ✓  Integrate simulation 
and ML but do not ad-
dress the CFB effect

Ogunsoto et 
al. (2025)

Digital sup-
ply chain twin 
framework for 
resilience and 
recovery

– – ✓  Integrate simulation 
and ML but do not ad-
dress the CFB effect

Sangari et al. 
(2025)

Blockchain 
adoption in SC 
working capital 
management

– ✓ – Examines blockchain 
adoption but does not 
address the CFB effect

Chen et al. 
(2024)

Blockchain’s 
impact on SC 
working capital 
management

– ✓ – Examines blockchain 
in SC working capital 
management but does 
not address the CFB 
effect

Scott et al. 
(2024)

Blockchain 
for payment 
automation

– ✓ – Uses blockchain for 
payment automation 
but does not address 
the CFB effect

Pushpa et al. 
(2024)

Blockchain inte-
gration into SC 
working capital 
management 
through IoT-based 
automation

– ✓ – Uses blockchain for 
financial transparency 
but does not address 
the CFB effect

Table 1  Summary of Literature review
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This study makes a novel contribution by integrating blockchain-enabled data sharing, 
decision trees, and DES to prevent the CFB effect in SCs. Unlike prior research, it presents 
a proactive solution that leverages blockchain for financial transparency and hybrid simula-
tion–decision trees for informed decision-making. This approach addresses a critical gap in 
the literature and offers a practical roadmap for mitigating financial instability in SCs.

3  SC simulation modeling

Conceptual modeling is the first step in developing a simulation model. The purpose of 
conceptual modeling is to define the structure and operation of the SC being analyzed. 
It is crucial for creating an abstract, high-level representation of the SC system, focusing 
on critical elements such as product flow, inventory management, and cash flow dynam-
ics (Robinson, 2020). Conceptual modeling involves simplifying the system to highlight 
its key components and interactions while omitting unnecessary details (Robinson, 2015). 
Effective conceptual modeling requires a clear understanding of how each component in the 
system interacts, which is vital for building a simulation model that accurately reflects real-
world dynamics (Gabriel et al., 2022). 

For this study, we analyze a three-echelon, single-product SC comprising a manufac-
turer, two distributors, and three retailers. The manufacturer delivers products to both dis-
tributors, with distributor 1 supplying retailers 1 and 2, and distributor 2 supplying retailer 3. 
This structure is represented in the network diagram (Fig. 1), which is a key part of the con-
ceptual model. The diagram visually represents the echelons and their interactions, where 
each node corresponds to a SC member (manufacturer, distributor, or retailer), and directed 
arrows between the nodes illustrate the flow of orders, products, and cash.

In addition to showing the relationships between echelons, the network diagram incor-
porates key operational parameters, such as lead times and production capacity. Shipments 
from the manufacturer to distributors and from distributors to retailers involve a one-week 
lead time, while customer pickups at retailers are instantaneous. The manufacturer can pro-
duce up to 50,000 units per week. Customer demand is uniformly distributed, with retailer 1 
receiving between 5000 and 10,000 units per week, retailer 2 between 4000 and 8000 units, 
and retailer 3 between 6000 and 12,000 units.

The network diagram also reflects the cash collection policy within the SC. Sales transac-
tions are a mix of cash and credit, with each SC member paying 10% of the order value in 

References Study focus CFB effect 
addressed

Block-
chain-en-
abled data 
sharing

Hybrid 
simulation-ML

Relevance to our 
study

This study Integrating 
simulation and 
decision trees 
via blockchain-
enabled data 
sharing to prevent 
the CFB effect 
in SCs

✓ ✓ ✓ Integrate simulation, 
decision trees, and 
blockchain to prevent 
the CFB effect, filling 
a key research gap

Table 1  (continued) 
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cash up front and the remaining 90% after a four-week trade credit period. Additionally, the 
diagram illustrates an Order-Up-To (OUT) inventory policy with a weekly review period. 
These elements form the basis for the next phase of the modeling process, where the sys-
tem's behavior will be simulated to evaluate the effects of various operational strategies.

Building on the conceptual model, the next step is model building, where a simulation 
model is developed to analyze and test the SC's performance. We use discrete event simula-
tion (DES) to simulate the dynamics of inventory management, demand fulfillment, and 
cash flow within the SC. During this stage, interactions defined in the conceptual model, 
such as order placement, are formalized in a simulation structure that tracks SC performance 
over time. DES is widely applied in SC studies due to its ability to capture complex interac-
tions and dependencies among SC entities (Dagkakis & Heavey, 2016; Ivanov, 2019). By 
simulating discrete SC events, DES provides insights into how various factors influence 
performance metrics and supports the evaluation of strategies to improve SC performance 
(Ivanov, 2017, 2025b; Tako & Robinson, 2012).

The DES model is built on the conceptual representation shown in Fig. 1, with each SC 
member's activities modeled as discrete events occurring over time. The three SC echelons 
follow a periodic review inventory policy with a weekly review period. Each SC member 
proceeds through the following steps in every period:

1.	 Deliveries from the previous period arrive after a one-week lead time and are added to 
the current stock, with storage capacity assumed to be unrestricted.

2.	 Available inventory is first allocated to satisfy downstream requests and to clear any 
pending backlogs.

3.	 Shipments are dispatched to the next echelon, inventory records are updated, and any 
unfulfilled demand is recorded as a new backlog.

4.	 The replenishment order for the upstream partner is determined using the order-up-to 
(OUT) policy described in Eq. (1).

Fig. 1  SC network diagram (Adapted from Badakhshan & Ivanov, 2025) 
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Each SC member determines its order quantity (O) to meet the anticipated demand from 
the next downstream node (D) and to correct any discrepancies between actual inventory 
and work-in-progress (WIP) levels and their respective desired values. The demand forecast 
is computed using a historical averaging method in which each SC member calculates the 
arithmetic mean of all past demand observations received from its immediate downstream 
partner. For example, retailers forecast future customer demand based on the average of 
previous customer orders, distributors use the average demand received from retailers, and 
the manufacturer relies on the average of aggregated distributor orders. This cumulative 
averaging method is particularly suitable under the assumption of stationary and uniformly 
distributed demand as it effectively smooths out random fluctuations over time.

To compute the inventory gap, the net inventory (NI), calculated as available stock minus 
any pending backorders (B), as expressed in Eq. (2), is compared with the target inventory 
(DI). The WIP gap is evaluated in the same way by taking the difference between the desired 
WIP and the current WIP, which accounts for items ordered from the supplier but not yet 
received. Because these discrepancies cannot be completely resolved in one review cycle, a 
smoothing approach is applied where the gap contributions are weighted by α and β. Larger 
values of α and β amplify the effect of the inventory and WIP gaps, respectively, on the 
resulting order decision.

	

Ot = Max(0, D + α (DI − NetIt)︸ ︷︷ ︸
Inventory gap

+β (DWIP − WIPt)︸ ︷︷ ︸
W IP gap

� (1)

	 NetIt = It − Bt� (2)

Upon placing an order, each SC member is required to make an advance payment (AP), as 
determined by Eq. (3), which is calculated by multiplying the upstream member’s cash col-
lection policy (UCP) by the total order value. The total order value is the product of the order 
quantity (O) and the price per item charged by the upstream member (P1). The remaining 
portion of the order value is recorded as a credit purchase (CP), as defined by Eq. (4), and is 
settled once the trade credit period agreed upon with the upstream partner expires. Simulta-
neously, each SC member receives an advance payment (AC) from its downstream partner, 
as calculated by Eq. (5), by multiplying its cash collection policy (CP) by the downstream 
member’s demand value. Any remaining balance of that demand is considered a credit sale 
(CS), as expressed in Eq. (6), which will be collected after the negotiated trade credit period 
(TCP) with the downstream partner.

	 AP t = UCP ∗ Ot ∗ P1� (3)

	 CP t = (1 − UCP ) ∗ Ot ∗ P1� (4)

	 ACt = CP ∗ Dt ∗ P � (5)

	 CSt = (1 − CP ) ∗ Dt ∗ P � (6)

The simulation model is developed using Simpy, a process-based discrete-event simulation 
library in Python, to examine CFB effect dynamics within the SC. By leveraging Simpy, 
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the model can replicate the sequence and timing of key SC operations, including inven-
tory replenishment, cash flow transactions, and demand fulfillment, allowing for a granular 
analysis of SC behavior.

To measure the CFB effect, we use the ratio of working capital (WCL) variability to 
demand (D) variability as defined by Patil and Prabhu (2024a) and formalized in Eq. (7). 
This metric is essential for assessing how demand fluctuations amplify throughout the SC, 
impacting the working capital required by each SC member. Using variability rather than a 
static metric captures both the magnitude and responsiveness of SC members' financial and 
operational resources to external changes, offering a comprehensive measure of the CFB 
effect.

Working capital, detailed in Eq.  (8), comprises inventory (I), cash (CH), receivables 
(R), and payables (P), each of which contributes to the SC member’s operational stability 
and demand fulfillment capabilities. This broad perspective on working capital allows the 
simulation to examine how each component fluctuates with demand variability, highlighting 
which factors most significantly impact working capital needs.

	
CFBt = V ar(WCL)

V ar(D) � (7)

	 WCLt = It + CHt + Rt − Pt� (8)

The simulation runs over a 52-week period (one fiscal year) with a 20-week warm-up period 
to ensure the system reaches a steady operational state before data collection begins, miti-
gating potential biases from initial conditions (Mahajan & Ingalls, 2004). This setup enables 
the model to track working capital fluctuations accurately while assessing SC strategies 
designed to mitigate the CFB effect. By adjusting parameters such as cash collection poli-
cies, the model provides insights into how different working capital strategies influence the 
extent of the CFB effect. Ultimately, this analysis aids in designing targeted interventions to 
enhance SC financial stability, aiming to keep CFB values below 1 for SC members amidst 
demand variability.

To support methodological clarity, Fig. 2 presents a simulation process flow diagram that 
illustrates the sequential steps involved in executing the model. The diagram outlines the 
configuration of key input parameters, the generation of stochastic demand from three cus-
tomers, inventory updates, order placement using the Order-Up-To (OUT) policy, execution 
of financial transactions, and the calculation of working capital and CFB values.

It also highlights verification and validation steps. For model verification, we employ 
simulation run monitoring and output data analysis techniques to ensure that the simulation 
behaves as expected and accurately represents the system under study (Manuj et al., 2009). 
This process includes monitoring the simulation runs to detect any discrepancies or anoma-
lies and analyzing the output data to ensure alignment with anticipated patterns. This proac-
tive approach helps to identify and resolve potential coding errors, logic flaws, or parameter 
inconsistencies that may affect model fidelity.

To validate the simulation results, we conduct 100 replications for each set of simulation 
parameters. This entails running the simulation multiple times with varying random seeds 
and input values to capture the inherent variability and randomness in the system (Sargent, 
2010). By comparing the results across these replications, we assess the consistency and 
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robustness of the simulation output. Any significant discrepancies among replication results 
are investigated to maintain model reliability and accuracy.

This thorough verification and validation approach strengthens the model’s credibility, 
ensuring it provides a sound basis for analyzing and testing SC strategies aimed at mitigat-
ing the CFB effect.

To complement the existing description of verification and validation procedures, Table 2 
presents a structured verification and validation matrix detailing the procedures applied to 
each major model component. The matrix specifies the relevant inputs and outputs, and 
delineates the techniques employed to verify correct implementation and to validate behav-
ioral accuracy.

4  Frameworks for improving SC transparency and addressing the CFB 
effect

This section introduces two key frameworks designed to improve SC operations. The first 
framework leverages blockchain technology to enhance transparency by providing visibility 
into order and cash flows. The second framework integrates simulation and ML to address 
the CFB effect. By simulating SC dynamics and generating decision rules, this framework 
aims to identify working capital policies that prevent the CFB effect. Notably, the simula-
tion-ML framework leverages data sharing facilitated by the blockchain framework.

4.1  Blockchain framework for enhanced SC transparency

Several blockchain frameworks such as Hyperledger Fabric (Androulaki et al., 2018) and 
Corda (Brown et al., 2016) have been developed for SC management. These frameworks 
provide foundational infrastructure for building distributed, permissioned networks that 

Fig. 2  Simulation process flow diagram
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enable secure, verifiable data exchange among SC participants. A range of enterprise-grade 
solutions have been implemented using these frameworks. For instance, IBM Food Trust, 
built on Hyperledger Fabric, has been deployed to improve traceability and food safety by 
enabling end-to-end visibility of product flows across the agri-food SC (Kamath, 2018). 
Similarly, TradeLens, also based on Fabric, was designed to streamline maritime logistics 
by digitizing shipping documents and enhancing data interoperability among carriers, ports, 
and customs authorities (Jovanovic et al., 2022). In the financial services domain, Corda has 
been used to develop platforms such as Marco Polo (Chaudhury et al., 2023) and Contour 
(Rijanto, 2021), which support digital trade finance by connecting banks and corporate cli-
ents to automate invoicing, payment commitments, and letter of credit issuance.

Model 
component

Inputs Outputs Verification 
method(s)

Validation 
method(s)

Customer 
demand 
generation

Demand 
distri-
bution 
parameters 
(uniform)

Weekly 
customer 
demand 
per retailer

Time series 
generation 
trace

Com-
parison with 
theoretical 
distribution

Order 
quantity 
calcula-
tion (OUT 
policy)

Inventory 
gap, WIP 
gap, D, 
α, β

Order 
quan-
tity per SC 
member 
per week

Bound-
ary checks, 
logical rule 
consistency

Output 
consistency 
with known 
inventory 
dynamics

Inventory 
update

Order 
quantities, 
deliver-
ies, initial 
inventory

Updated 
inven-
tory/WIP 
levels per 
member

Mass balance 
and negative 
inventory tests

Consistency 
with ex-
pected WIP 
flow under 
stable input

Working 
capital 
calculation

Inventory, 
receiv-
ables, 
payables, 
cash

Weekly 
working 
capital 
values

Formula con-
sistency with 
accounting 
rules

Comparison 
with bench-
mark case 
outputs

CFB ratio 
computa-
tion

Working 
capital, 
demand

CFB val-
ues per SC 
member

Code logic 
checks

Checks for 
CFB pattern 
consistency 
across runs

Payment 
and credit 
execution

Trade 
credit 
param-
eters, cash 
payment 
policy

Cash flow 
position 
after 
payments

Time align-
ment in 
transaction 
logging

Tracing cash 
flow updates 
over time 
in sample 
scenarios

Multi-run 
replication 
logic

Random 
seed, 
number of 
replications

Distribu-
tion of 
CFB and 
working 
capital 
statistics

Consistent 
seed initial-
ization and 
replication 
control

Conver-
gence test-
ing across 
replications

Output 
analysis 
and insight 
generation

Output 
data 
from all 
replications

Validated 
interpreta-
tions of 
trends and 
anomalies

Output format 
and unit 
consistency

Scenario-
based trend 
evaluation 
and sensitiv-
ity checks

Table 2  Simulation model verifi-
cation and validation matrix
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Despite these advancements, the existing blockchain-based SC management solutions 
primarily focus on traceability, regulatory compliance, and transactional efficiency, with 
an emphasis on improving visibility and reducing manual reconciliation. However, they 
largely overlook the CFB effect. In contrast, our proposed framework targets the mitigation 
of the CFB effect by enabling real-time sharing of operational and financial indicators (e.g., 
inventory levels, WIP levels, trade credit terms). This approach not only enhances transpar-
ency but also supports adaptive coordination of cash flow and inventory policies, offering a 
novel contribution to blockchain-enabled working capital management in SCs.

From a ledger architecture perspective, blockchain frameworks typically adopt either a 
global or channelized (local) model (Taherdoost, 2022). Frameworks such as VeChainThor 
use a global ledger, granting all participants access to a common ledger. While this promotes 
transparency and immutability, it raises concerns about confidentiality, competitive sensi-
tivity, and data governance, particularly in SCs handling proprietary information (Chang 
et al., 2020). In contrast, Hyperledger Fabric employs a channelized architecture, sharing 
data only within predefined subgroups. This enhances privacy but introduces coordination 
complexity, data silos, and fragmented analytics, hindering end-to-end visibility (Abang et 
al., 2024).

To address these limitations, our framework adopts a hybrid ledger architecture that bal-
ances privacy with selective transparency (Alkhateeb et al., 2022). Built on a unified per-
missioned network, it enforces fine-grained access control and cryptographic safeguards 
to regulate data visibility. Shared data includes working capital policy parameters such as 
inventory levels, work-in- WIP levels, and trade credit terms as well as customer demand 
information which is critical for synchronized planning and forecasting. These data ele-
ments are accessible to authorized members, while sensitive financial data such as unit costs 
and profit margins remains restricted to bilateral or consortium-level access. This design 
enables stakeholders to collaborate on mitigating the CFB effect by exchanging relevant 
operational and financial indicators without exposing sensitive information across the entire 
network.

Building on this, the proposed blockchain framework supplies shared ledger data to an 
integrated simulation and ML framework which dynamically adjusts trade credit periods, 
cash collection policies, and inventory control parameters based on evolving conditions. This 
data-driven mechanism aims to mitigate the CFB effect in the SC and represents an innova-
tive application of blockchain technology in the domain of working capital management.

The proposed framework leverages a permissioned blockchain to securely share critical 
data within the studied SC, which includes one manufacturer, two distributors, and three 
retailers. The use of a permissioned blockchain ensures that only authorized participants can 
access and modify the shared data, thereby enhancing both security and privacy (Thanthar-
ate & Thantharate, 2023). Figure 3 shows the sequence of steps in the proposed blockchain 
framework designed to enhance SC transparency.

4.1.1  Identity verification by Certificate Authority

In the first step, each participant’s identity and role within the SC are verified through a Cer-
tificate Authority (CA) which issues digital certificates to authenticate the nodes. The CA 
plays a critical role in establishing trust within the network by ensuring that only legitimate 
SC members can participate. This mechanism prevents unauthorized access and ensures that 
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all data transactions are traceable and verifiable (Centobelli et al., 2022). The CA must be 
trusted by all SC members. In the proposed blockchain framework, an independent third-
party CA is selected to manage the issuance and validation of digital certificates.

An independent third-party CA provides neutrality, ensuring that no single participant 
within the SC holds disproportionate influence over the network's security infrastructure. 
This impartiality is critical for maintaining trust among all members, as each participant can 
be confident that the CA operates without bias or favoritism (Durach et al., 2021). This neu-
trality fosters trust among SC members and mitigates conflicts of interest within the network 
(Alsadi et al., 2023). Moreover, third-party CAs possess specialized expertise in digital 
identity verification and cybersecurity, ensuring robust processes for issuing and manag-
ing digital certificates (Dos Santos et al., 2021). Compliance with regulatory requirements, 
facilitated by the CA's expertise, ensures alignment with legal mandates such as GDPR, 
enhancing overall security and regulatory compliance (Sunny et al., 2020). By outsourcing 
certificate management to an independent third-party CA, SC members can optimize opera-
tional efficiency and focus on core business activities (Chang et al., 2020). This approach 
enables scalable security solutions while reducing the burden of managing complex security 
processes internally.

4.1.2  Establishment of decentralized network and data sharing

In the second step, the SC network is established to facilitate data sharing among its mem-
bers. In this blockchain-enabled ecosystem, each SC participant functions as a node within 
the network, creating a decentralized and collaborative environment where data integrity 
and transparency are prioritized. The manufacturer, distributors, and retailers share data 
on their desired inventory levels, desired work-in-progress (WIP) levels, inventory propor-
tional controllers, WIP proportional controllers, cash collection policies, and trade credit 

Fig. 3  Blockchain framework for enhanced SC transparency
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periods, promoting transparency and collaboration throughout the SC. Additionally, retail-
ers share customer demand data, enriching the collective understanding of market dynamics 
that is essential for accurate demand forecasting across the SC.

4.1.3  Transaction initiation and validation

Following the establishment of the decentralized network and data sharing infrastructure 
within the blockchain-enabled ecosystem for the SC, the subsequent step involves trans-
action initiation and validation. In this phase, SC participants use the decentralized net-
work to initiate transactions by submitting various types of data, such as desired inventory 
levels, which are then recorded on the blockchain ledger. These transactions serve as the 
mechanism through which data are exchanged between participants in the SC ecosystem. 
Upon submission, the transactions undergo a validation process to ensure their integrity 
and compliance with network rules. This validation typically occurs through a consensus 
mechanism, where network nodes collectively verify the validity of transactions before they 
are added to the blockchain.

In the proposed blockchain framework for SC, the Reputation-Based Proof of Coopera-
tion (RPoC) consensus mechanism is employed to ensure secure, efficient, and trustwor-
thy validation of transactions among known participants. RPoC is specifically designed for 
permissioned blockchain networks composed of identified and vetted entities such as the 
manufacturer, distributors, and retailers in the studied SC (Sarfaraz et al., 2023). Unlike 
traditional consensus mechanisms that rely on computational power (e.g., Proof of Work) or 
strict fault-tolerance protocols (e.g., PBFT), RPoC leverages a reputation system that evalu-
ates participants based on their historical behavior, cooperation level, and compliance with 
network protocols (de Oliveira et al., 2020).

This consensus mechanism offers several advantages aligned with the operational and 
financial needs of the SC. First, it enhances scalability and transaction throughput by limit-
ing consensus participation to high-reputation nodes, reducing communication overhead 
while maintaining trust (Hussain et al., 2025; Zhou et al., 2025). Second, by encouraging 
cooperative behavior, RPoC supports the collaborative nature of SC processes, particularly 
in contexts involving real-time sharing of sensitive operational and financial data (Li et al., 
2020). Third, RPoC is energy-efficient, avoiding the computational intensity of PoW-based 
systems and making it a sustainable solution for enterprise environments (Aluko & Kolonin, 
2021). Finally, its design ensures network resilience and data integrity, as the consensus 
is achieved through a trust-weighted process rather than equal node voting, reducing the 
risk posed by dishonest actors (Bao et al., 2023). Given these attributes, RPoC is particu-
larly well-suited to the goals of the proposed blockchain framework, which seeks to enable 
secure, transparent, and adaptive coordination in working capital management and mitigate 
the CFB effect in SCs.

4.1.4  Data recording and auditing

Following transaction initiation and validation in the proposed blockchain framework for 
the SC, the subsequent step is data recording and auditing. In this phase, validated transac-
tions are cryptographically secured and appended to the blockchain ledger in a sequential, 
immutable manner, ensuring the integrity of the chain (Politou et al., 2019). All network 
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nodes update their copies of the distributed ledger to maintain synchronization and consis-
tency across the network. Continuous verification processes check the cryptographic hashes 
to detect and prevent any tampering attempts, while compliance and reporting mechanisms 
provide transparent and auditable records of all transactions, facilitating regulatory adher-
ence (Akanfe et al., 2024). This process ensures that all transactions are transparent, tamper-
proof, and traceable, thereby establishing a trusted record of events within the SC ecosystem.

4.1.5  Data analysis and decision making

Following data recording and auditing in the blockchain framework for the SC, the subse-
quent step involves data analysis and decision-making. This phase focuses on leveraging 
securely recorded and audited data to derive actionable insights and improve SC operations 
(Dolgui et al., 2020a, 2020b). The transparent and reliable data provided by the blockchain 
framework fosters collaborative decision-making among SC partners, enabling alignment 
of strategies and achievement of shared objectives (Rejeb et al., 2021). For instance, SC 
members may continuously monitor CFB values across the chain and refine working capital 
policies accordingly to mitigate the CFB effect.

4.2  Integrated simulation and decision trees framework for addressing CFB effect

To address the CFB effect, combining simulation with decision trees offers a promising 
approach to improving decision-making. In this study, we propose an integrated simulation-
decision trees framework, as shown in Fig. 4. Data shared through the blockchain is input 
into the simulation model, which mirrors the physical SC by capturing the dynamics of 
product, order, and cash flows. The simulation generates data on working capital policies 
and their corresponding average CFB values for the SC, which is then used by the decision 
tree model. The decision tree model, in turn, provides decision rules for establishing work-
ing capital policies, enabling decision-makers to identify policies that eliminate the CFB 
effect in the SC.

Fig. 4  Integrated simulation and decision trees framework
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4.2.1  Inherent versus post-hoc Interpretability

ML interpretability methods fall into two categories: inherently interpretable models and 
post-hoc explanation techniques (Rudin, 2019). Inherently interpretable models, such as 
decision trees are self-explanatory by design. Their internal decision structure can be directly 
examined to understand the rationale behind each prediction. Post-hoc explainability tools, 
including SHAP (Lundberg & Lee, 2017) and LIME (Ribeiro et al., 2016) approximate the 
behavior of complex black-box models (e.g., ensembles or neural networks) by generating 
local surrogate explanations.

We adopted decision trees for three main reasons. First, they offer global interpretability, 
meaning that the entire decision logic can be directly inspected from input to output. This 
property is essential in SC contexts, where transparency defined as the ability for stakehold-
ers to understand how and why a decision is made is critical for operational trust and policy 
auditability (Bhargavi et al., 2025).

In contrast, post-hoc explainability methods such as SHAP and LIME provide only local 
approximations of complex model behavior. While these tools are valuable for interpreting 
black-box models, they can suffer from fidelity issues. That is, the explanations they gener-
ate may not accurately reflect the model’s true internal reasoning (Slack et al., 2020). Such 
discrepancies can lead to misleading interpretations, particularly in high-stakes domains 
like SC management. In our setting, where both interpretability and transparency must align 
with actual model behavior, decision trees offer a more appropriate and reliable solution.

Second, computational efficiency was essential for our deployment scenario. Post-hoc 
methods introduce non-trivial inference overheads and additional layers of abstraction, 
making them less suitable for low-latency, resource-constrained applications (Arya et al., 
2019). Third, decision trees present logic in the form of explicit rule paths which are gener-
ally easier to interpret than attribution-based explanations that require interpreting abstract 
statistical outputs (Lipton, 2018). These considerations led us to select decision trees as a 
practical balance between interpretability, efficiency, and predictive performance for identi-
fying policies that prevent the CFB effect in SCs.

5  Results and discussion

In this section, we first examine the existence of the CFB effect in the SC by running the 
simulation model described in Sect. 3, with the results presented in Sect. 5.1. We then assess 
the effectiveness of the blockchain framework illustrated in Fig. 3 in mitigating the CFB 
effect, with findings reported in Sects. 5.2 through 5.6. In Sect. 5.7, we evaluate the inte-
grated simulation–ML framework shown in Fig. 4, analyzing its effectiveness in preventing 
the CFB effect in the SC. Finally, in Sect. 5.8, we present both theoretical and practical 
perspectives.

5.1  Scenario 0. No data sharing

We run the simulation model for 52 weeks. The input parameters are set as follows: The 
proportional controllers for inventory and WIP (α and β) for all SC members are set to 0.5, 
consistent with previous literature (e.g., Aslam & Ng, 2016). The desired inventory and WIP 
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levels for retailers are defined based on the peak customer demand, for instance, 8000 units 
for retailer 2. For distributors and the manufacturer, these desired levels are set at 1.5 times 
the peak demand. Sensitivity analysis with factors ranging from 1 to 1.5 times the maximum 
demand indicated that values below 1.5 lead to insufficient inventory across SC members, 
limiting their ability to meet downstream demand and reducing the service level below the 
95% target.

This setup serves as a baseline scenario, showing CFB values for SC members without 
data sharing through blockchain. We then compare the impact of blockchain-enabled data 
sharing on CFB values against this baseline.

Figure 5 illustrates the working capital and CFB values for different SC members. Work-
ing capital increases as we move upstream in the SC because upstream members hold higher 
inventory levels than their downstream counterparts.

All three retailers exhibit CFB values below 1, demonstrating that fluctuations in their 
working capital are not magnified relative to variations in customer demand. In contrast, the 
average CFB values for distributor 1, distributor 2, and the manufacturer exceed 1, suggest-
ing that these upstream members experience amplified cash flow oscillations. This pattern 
confirms the presence of the CFB effect in upstream SC members, with the highest intensity 
observed at the manufacturer.

To assess the impact of different lead times on CFB values of SC members, we vary 
lead times between SC members from 1 to 4 weeks. Table 3 reports the results, showing 
that all SC members experience rising CFB values as lead times increase. The retailers’ 
values, though starting below 1, eventually rise to values above 1, indicating the presence 

Fig. 5  Experiment results. No data sharing scenario
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of the CFB effect. The primary driver behind this result is that longer lead times amplify 
inventory variability, which in turn magnifies working-capital variability relative to demand 
variability.

In the following scenarios, SC members utilize the blockchain framework presented in 
Fig. 2 and described in Sect. 4.1 to share data on end customers' demands, desired inven-
tory levels, desired work-in-progress (WIP) levels, inventory proportional controllers, WIP 
proportional controllers, cash collection policies, and trade credit periods.

5.2  Scenario 1. Forecasting using end customers’ demands

Blockchain-enabled data sharing ensures that each party within the SC has access to the 
same set of data. Consequently, they can generate forecasts directly from end customers’ 
demands rather than relying on demand received from immediate downstream members. 
Figure 6 illustrates the impact of forecasting using end customers’ demands by SC members 
on working capital and CFB values across various SC members.

There is no significant reduction in the working capital levels for retailers because, simi-
lar to Scenario 0, their demand forecasts are based on actual customer demand. However, 
noticeable reductions in working capital occur for the manufacturer and distributors. For 
instance, in this scenario, the average working capital of the manufacturer is 644, whereas 
it is 685 in Scenario 0. This reduction is attributed to distributors and the manufacturer 
using customer demand in their forecasts instead of the demand received from retailers and 
distributors, respectively.

Consistent with Scenario 0, all retailers exhibit CFB values below 1, reflecting that their 
working capital is effectively managed in relation to fluctuations in customer demand. 
Upstream in the SC, we observe a reduction in CFB values compared to Scenario 0. For 
instance, the average CFB value for the manufacturer decreases from 5.4 in Scenario 0 to 
2.3 in the current scenario.

The impact of forecasting using end customers’ demands on CFB reduction is more 
pronounced for upstream SC members due to increased demand distortion. The reduction in 
CFB values for the manufacturer and distributors demonstrates the effectiveness of forecast-
ing using end customers’ demands in mitigating the CFB effect, leading to more stable and 
efficient working capital management across the SC.

5.3  Scenario 2. Increasing cash collection policies for upstream members

In this scenario, SC members with an average CFB value greater than 1, namely the manu-
facturer and distributors, request a proportional increase to their cash collection policy. For 

Average CFB Lead time (L)
L = 1 L = 2 L = 3 L = 4

Retailer 1 0.55 0.86 1.22 1.46
Retailer 2 0.83 1.05 1.39 1.53
Retailer 3 0.86 1.14 1.35 1.69
Distributor 1 1.62 1.94 2.27 2.95
Distributor 2 1.83 2.16 2.48 3.11
Manufacturer 5.41 5.62 5.87 6.34

Table 3  Average CFB values 
for SC members under different 
lead times
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example, a member with an average CFB value of 5 requests a five-fold increase to its 
cash collection policy. This adjustment in the cash collection policy must be approved and 
recorded on the blockchain.

In Scenario 0, the average CFB values for distributor 1, distributor 2, and the manufac-
turer are 1.6, 1.8, and 5.4, respectively. Consequently, distributor 1, distributor 2, and the 
manufacturer request a 1.6-fold, 1.8-fold, and 5.4-fold increase to their original cash collec-
tion policy of 0.1.

Figure 7 illustrates the impact of increasing cash collection policies for the manufacturer 
and distributors on working capital and CFB values across various SC members. There is 
no significant change in the average working capital levels for retailers because their cash 
collection policies remain unchanged at 0.1. However, there is a noticeable reduction in the 
average working capital for the manufacturer, which increases its cash collection policy. 
Compared to Scenario 0, the average working capital for the manufacturer reduces by 25% 
in this scenario, from 685 to 511.

Although distributors 1 and 2 increased their cash collection policies, their average work-
ing capital levels increased. This result arises because the effects of the 1.6 and 1.8-fold 
increases for distributors 1 and 2, respectively, were negated by the manufacturer's substan-
tial 5.4-fold increase in its cash collection policy.

Regarding the CFB values, the manufacturer experiences a decrease compared to Sce-
nario 0, indicating an improvement. However, the CFB values for distributors 1 and 2 
increases. This outcome shows that while Scenario 2 helps reduce the CFB for the manufac-

Fig. 6  Experiment results. Forecasting using end customers’ demands scenario
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turer, it does not achieve an overall reduction in CFB values for all SC members. Instead, it 
merely transfers the CFB burden from the manufacturer to the distributors.

5.4  Scenario 3. Uniformly increasing cash collection policies for all SC members

In this scenario, the average CFB within the SC network is measured, and a proportional 
increase in the cash collection policies of all SC members is proposed via the blockchain. 
In Scenario 0, the average CFB for SC members, including manufacturers, distributors, and 
retailers, is 2.2. Therefore, a 2.2-fold increase to the original cash collection policies of 0.1 
is requested, resulting in a cash collection policy of 0.22 for all SC members.

Figure 8 illustrates the impact of uniformly increasing cash collection policies for all 
SC members on working capital and CFB values across various SC members. There is no 
significant change in the working capital levels for retailers and distributors, as the cash col-
lection policy increases by these members are offset by the cash collection policy increases 
by their upstream SC members. However, the average working capital for the manufacturer, 
which did not face a cash collection policy increase from its suppliers, reduces by 6% in this 
scenario compared to Scenario 0, decreasing from 690 to 651. This occurs because increas-
ing the cash collection policy reduces the receivables of the manufacturer while its payables 
remain unchanged, consequently decreasing its average working capital. With a cash col-
lection policy of 0.22, the average receivables for the manufacturer are 432, compared to 
694 in Scenario 0.

Fig. 7  Experiment results. Increasing cash collection policies for upstream members scenario
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CFB values for retailers remain below 1, indicating the absence of a CFB effect at the 
retail level. Moreover, CFB values at distributors and manufacturers reduce compared to 
Scenario 0. For instance, the average CFB value for the manufacturer dropped from 5.4 in 
Scenario 0 to 3.4 in this scenario. This demonstrates that a uniformly increasing cash collec-
tion policies for all SC members leads to a reduction in CFB values for all SC members. In 
contrast, as shown in Scenario 2, increasing cash collection policies for only manufacturers 
and distributors merely transfers the CFB burden from the manufacturer to the distributors.

5.5  Scenario 4. Forecasting using end customers’ demands and uniformly 
increasing cash collection policies for all SC members

This scenario integrates scenarios 1 and 3. SC members utilize end customers’ demands for 
forecasting and propose a 2.2-fold increase in the original cash collection policies, from 0.1 
to 0.22, for all SC members. The 2.2-fold increase reflects the average CFB value across all 
SC members.

Figure 9 illustrates the impact of forecasting using end customers’ demands and uni-
formly increasing cash collection policies for all SC members on working capital and CFB 
values across various SC members. There is no significant change in the average work-
ing capital levels for retailers, as retailers' demand forecasts are based on actual customer 
demand even in the absence of data sharing. Moreover, the cash collection policy increases 
by retailers are offset by the cash collection policy increases by their upstream SC mem-

Fig. 8  Experiment results. Uniformly increasing cash collection policies for all SC members scenario
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bers, i.e., distributors. However, the average working capital levels for distributors and 
the manufacturer decrease as they use customer demand in their forecasts instead of the 
demand received from retailers and distributors, respectively. Additionally, the manufac-
turer increases its cash collection policy but does not face a cash collection policy increase 
from its suppliers. The average working capital levels of distributor 1, distributor 2, and 
the manufacturer reduce by 13%, 7%, and 12%, respectively, in this scenario compared to 
scenario 0.

CFB values for all SC members remain below 1, indicating the absence of the CFB 
effect in the SC. The reduction in CFB values is significant for upstream SC members. For 
instance, the average CFB value for the manufacturer dropped from 5.4 in Scenario 0 to 
0.65 in this scenario. This demonstrates that forecasting using end customers’ demands and 
uniformly increasing cash collection policies for all SC members eliminate the CFB effect 
in the SC.

5.6  Sensitivity analysis

The results of scenario 3 indicate that increasing the cash collection policies of all SC mem-
bers by a factor equal to the average CFB for SC members reduces the CFB effect. How-
ever, this strategy does not eradicate the CFB effect. In this section, we conduct sensitivity 
analysis on the cash collection policy to explore the impact of further increases on the 

Fig. 9  Experiment results. Forecasting using end customers’ demands and uniformly increasing cash col-
lection policies for all SC members scenario
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CFB effect. We incrementally increase the factor multiplying cash collection policies for SC 
members by 0.1, starting from the average CFB of the SC (i.e., 2.2), to investigate potential 
thresholds associated with eliminating the CFB effect. Table 4 presents the results of the 
sensitivity analysis. In scenarios 0, 1, 2, and 3, distributors and the manufacturer experience 
CFB values greater than 1. Therefore, the average CFB values for these members are used 
as indicators of the CFB effect.

5.6.1  Scenario 5. Uniformly increasing cash collection policies for all SC members by 
2.6-fold

In this scenario, a 2.6-fold increase in the original cash collection policies, from 0.1 to 0.26, 
is proposed for all SC members. The reason for choosing the 2.6-fold increase is that at this 
threshold, the CFB value for the manufacturer drops below 2, as illustrated in Table 1.

Figure 10 illustrates the impact of this increase on working capital and CFB values across 
the SC. Similar to scenario 3, there is no significant change in the working capital levels 
for retailers and distributors, as the cash collection policy increases by these members are 
offset by the cash collection policy increases by their upstream SC members. However, the 
average working capital for the manufacturer, which did not face a cash collection policy 
increase from its suppliers, decreased by 4% in this scenario compared to Scenario 3, reduc-
ing from 651 to 623. This reduction occurs because increasing the cash collection policy 
reduces the receivables of the manufacturer while its payables remain unchanged, leading 
to a decrease in the average working capital of the manufacturer. The average receivables 
for the manufacturer with a cash collection policy of 0.26 is 410, whereas in scenario 3, the 
average receivables for the manufacturer is 432.

Similar to scenario 3, the average CFB values for retailers remain below 1, indicating 
the absence of a CFB effect at the retail level. Moreover, the average CFB value for the 
manufacturer decreases compared to Scenario 3. Specifically, the average CFB value for 

Factor multiplier for 
cash collection policy

Average CFB 
for distributor 1

Average CFB 
for distributor 2

Average 
CFB for 
manu-
facturer

2.2 1.08 1.54 3.40
2.3 1.02 0.96 2.83
2.4 1.19 1.06 2.60
2.5 1.39 0.83 2.02
2.6 1.15 1.12 1.47
2.7 1.39 0.76 1.88
2.8 1.14 0.78 1.86
2.9 1.57 0.88 1.54
3 1.19 1.12 1.58
3.1 1.20 1.05 1.30
3.2 1.40 1.06 1.41
3.3 1.56 1.07 1.42
3.4 0.94 0.86 1.37
3.5 1.21 0.63 1.32
3.6 1.24 0.69 1.10
3.7 0.87 0.82 0.95

Table 4  Impact of increasing 
cash collection policies for 
upstream SC members
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the manufacturer drops from 3.4 in Scenario 3 to 1.47 in this scenario, while there is no 
considerable change in the CFB values for the distributors.

5.6.2  Scenario 6. Uniformly increasing cash collection policies for all SC members by 
3.7-fold

In this scenario, a 3.7-fold increase in the original cash collection policies of 0.1 is requested 
for all SC members. The reason for choosing the 3.7-fold increase is that at this threshold, 
the CFB value for the manufacturer drops below 1, as illustrated in Table 3.

Figure 11 illustrates the impact of this increase on working capital and CFB values across 
the SC. Similar to scenario 5, there is no significant change in the working capital levels for 
retailers and distributors, as the cash collection policy increases by these members are offset 
by the cash collection policy increases by their upstream SC members. However, the average 
working capital for the manufacturer, which did not face a cash collection policy increase 
from its suppliers, decreased by 8% in this scenario compared to scenario 5, decreasing from 
623 to 575. This reduction occurs because increasing the cash collection policy reduces the 
receivables of the manufacturer while its payables remain unchanged, leading to a decrease 
in the average working capital of the manufacturer. The average receivables for the manu-
facturer in this scenario is 374, while in scenario 5, the average receivables for the manu-
facturer is 410.

Fig. 10  Experiment results. 2.6-fold increase in the original cash collection policies scenario
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Similar to scenario 5, the average CFB values for retailers remain below 1, indicating 
the absence of a CFB effect at the retail level. Moreover, the average CFB value for the 
manufacturer decreases compared to scenario 5. Specifically, the average CFB value for the 
manufacturer drops from 1.47 in scenario 5 to 0.95 in this scenario. Although, the average 
CFB values for the distributors dropped below 1 in this scenario. We cannot claim that this 
was caused by the cash collection policy of 0.37, as this also occurs in previous cash collec-
tion policies. For instance, the average CFB value for distributor 2 is below 1 with a cash 
collection policy of 0.23. Similarly, the average CFB value for distributor 1 falls below 1 
with a cash collection policy of 0.34.

It is important to note that the results reported in Sects. 5.1–5.6 are derived under the 
assumption of unlimited storage capacity. This assumption was adopted to isolate the influ-
ence of policy parameters on CFB behavior and to simplify model complexity. However, 
it introduces a limitation that may affect the simulation outcomes. Finite storage capacity 
can influence working capital dynamics in multiple ways. On one hand, storage constraints 
may lead to stockouts, which could amplify fluctuations in cash flows and increase the 
observed CFB effect. On the other hand, SC members may rationally adjust their ordering 
policies to remain within capacity limits, resulting in leaner inventories and reduced holding 
costs, which could dampen cash flow variability. Therefore, the net effect of finite storage 
constraints on cash flow behavior is context-dependent and warrants further investigation.

Fig. 11  Experiment results. 3.7-fold increase in the original cash collection policies scenario
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5.7  Integrating simulation and ML

In this section, we apply the framework outlined in Fig. 4 and described in Sect. 4.2 to 
derive decision rules for working capital management. The data shared through the block-
chain is inputted into the simulation model, which is then run for 10,000 weeks to generate 
data on working capital policies and their corresponding average CFB values for the SC. 
We classify the average CFB value into two classes: (1) no CFB effect, defined as an aver-
age CFB value less than or equal to 1; and (2) CFB effect, where the average CFB value is 
greater than 1.

We determine the class of the average CFB value using: (1) demands from customers 
and SC members (3) inventory policies of SC members, including desired inventory, desired 
work-in-progress (WIP), inventory proportional controller (α), and WIP proportional con-
troller (β); and (4) cash collection policies and trade credit periods for all SC members.

To obtain the decision rules on working capital management, we employ the CN2 rule 
induction and C4.5 algorithms. The CN2 rule induction algorithm is specifically designed 
for generating rules from a set of examples and excels in producing human-readable rules 
that facilitate better understanding and interpretation of the data (Kumar & Kumar, 2022). It 
identifies the most significant patterns and relationships within the dataset, which can help 
decision-makers make informed choices regarding working capital policies. On the other 
hand, the C4.5 algorithm constructs a decision tree based on information gain, allowing 
us to visualize the decision-making process and understand how different factors influence 
working capital management (Cherfi et al., 2018). By leveraging these two algorithms, we 
can generate robust decision rules that enhance our ability to manage working capital effec-
tively and prevent the CFB effect in the SC.

We use the tenfold cross-validation method to validate the results. This approach ran-
domly divides the dataset into 10 subsets, using 9 for training and knowledge extraction, 
and repeats the process 10 times. It then reports the average result called accuracy, which 
represents the performance of the ML algorithm (Badakhshan et al., 2022). We measured 
the accuracy for different sizes of the training dataset, ranging from 700 to 10,000 examples. 
The accuracy improves with an increase in the number of examples. However, it stabilizes 
within a narrow range of 85% to 88% after 1,000 examples for the C4.5 algorithm. The 
accuracy for the CN2 rule induction algorithm is higher than that of the C4.5 algorithm 
and ranges from 89 to 93%. The slight variability is mainly due to the randomness of the 
selected examples in the cross-validation process. Overall, the C4.5 and CN2 rule induction 
algorithms effectively capture the factors impacting the average CFB values in the SC.

5.7.1  Insights from the C4.5 algorithm

The C4.5 algorithm derives 132 decision rules from 1500 examples. For illustration, Table 5 
presents some of these rules, each followed by the number of examples correctly classi-
fied out of the total examples meeting the conditions of that rule. These 132 rules form a 
complex decision tree. To improve clarity, Fig. 12 presents a simplified version of the tree, 
highlighting the branches generated from the seven control factors, with the class of average 
CFB value displayed at the bottom of each branch.

A key insight from the decision tree is the hierarchy of factor relevance. The tree iden-
tifies distributor 2's desired inventory as the most significant control factor, followed by 
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distributor 1's and the manufacturer’s desired WIP levels. This suggests that the inventory 
replenishment policies of upstream SC echelons have a substantial impact on the aver-
age CFB value for the SC. Other important factors include the manufacturer's inventory 
proportional controller (αm), retailer 1's desired WIP (R1DWIP), and distributor 2's WIP 
proportional controller (βd2). Interestingly, cash collection (CCP) and trade credit (TCP) 
controllers rank much lower, indicating that the average CFB value for the SC is more heav-
ily influenced by inventory decisions than by cash flow decisions.

Table 5  Extract of the decision rules generated by the C4.5 algorithm
Rule If Then Rule 

accuracy
1 D2DI < 18 and D1DWIP < 27 and αm < 0.5 and R3DWIP < 18 No CFB 

effect
38/38

2 D2DI < 18 and D1DWIP < 27 and αm < 0.5 and R3DWIP ≥ 18 and R2D-
WIP ≥ 10 and R1DWIP < 15

No CFB 
effect

12/12

3 D2DI < 18 and D1DWIP < 27 and αm < 0.5 and R3DWIP ≥ 18 and R2D-
WIP ≥ 10 and R1DWIP ≥ 15 and βm ≥ 0.5

No CFB 
effect

6/6

4 D2DI < 18 and D1DWIP < 27 and αm ≥ 0.5 and βd2 < 0.5 No CFB 
effect

39/52

5 D2DI < 18 and D1DWIP < 27 and αm ≥ 0.5 and βd2 < 0.5 and MDI ≥ 45 
and MDWIP ≥ 45

No CFB 
effect

17/17

6 D2DI < 18 and D1DWIP < 27 and αm ≥ 0.5 and βd2 < 0.5 and MDI < 45 
and R1DWIP ≥ 15 and MDI ≥ 45

CFB effect 4/4

7 D2DI < 18 and D1DWIP ≥ 27 and R1DWIP < 15 and αr1 < 0.5 and R3D-
WIP ≥ 18 and βd1 ≥ 0.5 and βr1 < 0.5

CFB effect 6/6

8 D2DI < 18 and D1DWIP ≥ 27 and R1DWIP < 15 and αr1 ≥ 0.5 and 
αd1 ≥ 0.5

CFB effect 4/4

9 D2DI < 18 and D1DWIP ≥ 27 and R1DWIP < 15 and αr1 < 0.5 and R3D-
WIP < 18 and CCP < 0.5

No CFB 
effect

8/8

10 D2DI < 18 and D1DWIP ≥ 27 and R1DWIP < 15 and αr1 < 0.5 and R3D-
WIP < 18 and CCP > 0.5

CFB effect 5/5

…
64 D2DI ≥ 18 and MDWIP < 45 and R1DWIP ≥ 15 and αd2 ≥ 0.5 and αm ≥ 0.5 No CFB 

effect
19/19

65 D2DI ≥ 18 and MDWIP ≥ 45 and βd2 < 0.5 and αr1 < 0.5 and R1DI ≥ 15 No CFB 
effect

25/26

66 D2DI ≥ 18 and MDWIP ≥ 45 and βd2 ≥ 0.5 and R1DWIP ≥ 15 and βr2 ≥ 0.5 CFB effect 7/7
…
131 D2DI ≥ 18 and MDWIP ≥ 45 and βd2 ≥ 0.5 and R3DWIP ≥ 18 and 

D1DI < 27
No CFB 
effect

9/9

132 D2DI ≥ 18 and MDWIP ≥ 45 and βd2 ≥ 0.5 and R3DWIP ≥ 18 and 
D1DI < 27

CFB effect 4/4

Lower echelon controllers: R3DWIP: retailer 3 desired WIP; R2DWIP: retailer 2 desired WIP; R1DWIP: 
retailer 1 desired WIP; βr1: retailer 1 WIP proportional controller; αr1: retailer 1 inventory proportional 
controller; R1DI: retailer 1 desired inventory; CCP: cash collection policy; βr2: retailer 2 WIP proportional 
controller; TCP: trade credit period
Middle echelon controllers: D2DI: distributor 2 desired inventory; D1DWIP: distributor 1 desired 
WIP; βd2: distributor 2 WIP proportional controller; βd1: distributor 1 WIP proportional controller; αd1: 
distributor 1 inventory proportional controller; αd2: distributor 2 inventory proportional controller; D1DI: 
distributor 1 desired inventory
Upper echelon controllers: αm: manufacturer inventory proportional controller; βm: manufacturer WIP 
proportional controller; MDI: manufacturer desired inventory; MDWIP: manufacturer desired WIP
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Additionally, the decision tree helps decision-makers understand the cause-effect rela-
tionships between attribute values and their corresponding CFB class. For instance, Rule I 
highlights that when D2DI < 18 and D1DWIP < 27, the CFB effect can be avoided even if 
αm ≥ 0.5, indicating that regulating desired inventory and WIP levels at the middle echelon 
(i.e., distributors) is key to preventing the CFB effect. This is because lower desired inven-
tory and WIP values at the middle echelon lead to reduced demand at the upper echelon, 
resulting in lower production at the manufacturer level. On the other hand, Rule II indicates 
that when D2DI ≥ 18, MDWIP and R1DWIP should be set below 45 and 15, respectively, to 
avoid the CFB effect in the SC. This demonstrates that high desired inventory at the middle 
echelon must be offset by lower inventory levels at both the upper and lower echelons to 
prevent the CFB effect. Similarly, Rule III shows that when D2DI ≥ 18 and MDWIP ≥ 45, 
representing 1.5 times customer 3 demand and 1.5 times total customer demand, respec-
tively, βd2 should be set below 0.5 to avoid the CFB effect. This suggests that increasing the 
desired inventory and WIP levels for the middle and upper echelons should be counterbal-
anced by reducing the WIP proportional controller for the upper echelon to prevent the CFB 
effect.

5.7.2  Insights from the CN2 rule induction algorithm

The CN2 rule induction algorithm generates 147 decision rules from 1,500 examples. For 
illustration, Table 6 presents some of these rules, each followed by a probability, which 
indicates the likelihood that the rule correctly classifies an instance into a specific class.

Rule 1 generated by the CN2 rule induction algorithm indicates that, to avoid the CFB 
effect, D2DI, D1DWIP, and R3DWIP should be set to values below 1.5 times customer 
demand. Additionally, αm should remain below 0.5 to prevent the CFB effect. This insight 
aligns with findings from the C4.5 algorithm. Rule 2 recommends setting D2DI and R3DWIP 
below 1.5 times customer demand and αr3 below 0.5 to avoid CFB effect. Additionally, TCL 
should be kept under 2.5 weeks to prevent the CFB effect.

Rules 3 and 4 from the CN2 rule induction algorithm reveal that overstocking in the mid-
dle echelon (i.e., D1DWIP ≥ 27 and D2DWIP ≥ 18) and aggressive strategies for bridging 

Fig. 12  Simplified decision tree produced by the C4.5 algorithm
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inventory and WIP gaps (i.e., αr1, αr2, βd2, βm ≥ 0.5) across all SC echelons lead to the CFB 
effect. To counterbalance the aggressiveness of the manufacturer and retailer 1 in bridging 
the inventory gaps, Rule 73 suggests setting D2DI below 18 and αd1 below 0.5. This mirrors 
Rule I from the C4.5 algorithm, which emphasizes the critical role of inventory policies at 
the middle echelon (i.e., distributors) in preventing the CFB effect.

To enhance the interpretability and practical relevance of the decision rules extracted 
using interpretable ML algorithms (C4.5 and CN2), Table 7 presents a policy rule matrix. 
This matrix consolidates the recommended actions for preventing the CFB effect under 
various conditions, along with their anticipated impacts on cash flow dynamics. It offers a 
structured and transparent reference for stakeholders aiming to align inventory and credit 
control policies with cash flow stability objectives in SCs.

5.8  Theoretical and practical perspectives

The simulation outcomes from scenarios 1–6 along with the decision rules obtained from 
the C4.5 and CN2 rule induction algorithms offer novel theoretical and managerial insights. 
Table 8 compiles the major theoretical implications and the corresponding managerial 
recommendations.

The first insight is that forecasting using end customers’ demands reduces the CFB effect, 
especially for upstream SC members experiencing higher demand distortion. This implies 
that SC members should prioritize sharing data on inventory levels, work-in-progress 
(WIP), and customer demand to reduce the CFB effect. This insight extends the existing 
body of knowledge on the CFB effect (e.g., Badakhshan et al., 2020; Goodarzi et al., 2017; 
Patil & Prabhu, 2024b).

The second insight reveals that increasing cash collection policies specifically for SC 
members with a CFB value greater than 1 does not lead to an overall reduction in CFB val-
ues across all SC members. Instead, this approach merely shifts the CFB burden from one 
echelon within the SC to another. Consequently, our recommendation is to avoid selectively 
increasing cash collection policies for only certain SC members. Instead, consider increas-
ing the cash collection policies for all SC members collectively.

Thirdly, increasing cash collection policies for all SC members based on the average 
CFB value within the network results in a reduction in CFB values throughout the SC. 

Rule If Then Probabil-
ity (rule 
accuracy)

1 D2DI < 18 and D1DWIP < 27 and 
αm < 0.5 and R3DWIP < 18

No CFB 
effect

0.98

2 D2DI < 18 and αr3 < 0.5 and TCP < 2.5 
and R3DWIP < 18

No CFB 
effect

0.96

3 βm ≥ 0.5 and D1DWIP ≥ 27 and 
βd2 ≥ 0.5 and αr2 ≥ 0.5

CFB 
effect

0.90

4 βm ≥ 0.5 and D1DWIP ≥ 27 and 
D2DWIP ≥ 18 and αr1 ≥ 0.5

CFB 
effect

0.89

…
73 D2DI < 18 and αr1 ≥ 0.5 and αd1 < 0.5 

and βm ≥ 0.5
No CFB 
effect

0.86

…

Table 6  Extract of the decision 
rules generated by the CN2 rule 
induction algorithm
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Therefore, we recommend implementing a uniform increase in cash collection policies for 
all SC members based on the average CFB value within the network.

Insights 2 and 3 align with studies emphasizing the need for integrated SC strategies to 
improve overall efficiency and effectiveness, rather than localized adjustments (Fahimnia 
et al., 2015; Ivanov & Dolgui, 2021, 2025; Lee & Billington, 1992; Dolgui et al., 2025; 
Ivanov, 2025c).

The fourth insight derived from our analysis is that forecasting using end customers’ 
demands, combined with uniformly increasing cash collection policies for all SC members, 
eliminates the CFB effect within the SC. This dual approach addresses both the data asym-
metry and the coordination gaps that exacerbate the CFB effect. Based on this finding, we 
recommend implementing a synchronized strategy that involves both forecasting based on 
end customers’ demands and uniformly increasing cash collection policies across all SC 
members to eradicate the CFB effect. This insight extends the existing body of knowledge 
on the CFB effect (e.g., Drissi et al., 2023; Lamzaouek et al., 2023; Sim & Prabhu, 2017).

The fifth insight underscores that the most upstream member of a SC experiences the 
greatest benefits from enhanced cash collection policies across all SC participants due to 
not facing cash collection policy increases from their suppliers. Consequently, it is advis-
able to uniformly elevate cash collection policies for all members of the SC by employing 

Rule Conditions Recommended Action Impact on CFB
R1 Upper echelon: 

αm ≥ 0.5; Middle 
echelon employs 
high desired in-
ventory or WIP

Set middle echelon 
desired inventory and 
WIP to < 1.5 × demand

Mitigates 
amplifica-
tion caused 
by upstream 
aggressiveness

R2 Lower echelon: 
αr1 ≥ 0.5; Middle 
echelon employs 
high desired 
inventory

Set middle echelon 
inventory proportional 
controller (αd1) to < 0.5

Balances policy 
tension be-
tween upstream 
and down-
stream nodes

R3 Middle echelon 
overstocking 
(≥ 1.5x)

Lower desired WIP at 
upper and lower ech-
elons to offset middle 
overstocking

Avoids system-
level inventory 
saturation and 
cash flow 
distortion

R4 TCP ≥ 2.5 weeks; 
Overstock-
ing at lower & 
middle echelons; 
αr1 ≥ 0.5

Set TCP < 2.5 weeks, 
lower middle DI and 
lower echelon WIP; 
αr1 < 0.5

Prevents the 
CFB effect trig-
gered by credit 
and inventory 
imbalances

R5 Lower echelon: 
αr1 ≥ 0.5 AND 
Upper echelon: 
βm ≥ 0.5

Lower desired inven-
tory at the middle 
echelon and set middle 
echelon inventory 
proportional controller 
(αd1) to < 0.5

Dampens 
amplification 
caused by 
downstream 
and upstream 
aggressiveness

R6 Upper echelon 
overstocking: 
(MDI ≥ 45 AND 
MDWIP ≥ 45)

Lower desired inven-
tory at the lower and 
middle echelons and 
set lower and middle 
echelon inventory 
proportional controllers 
(αr1, αd1) to < 0.5

Mitigates vola-
tility induced 
by aggressive 
policies at 
upper echelon

Table 7  Policy rule matrix 
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Source Theoretical implications Managerial recommendations
Scenario 1 Forecasting using end customers’ de-

mands reduces the CFB effect, especially 
for upstream SC members experiencing 
higher demand distortion

Forecast using end customers’ demands to 
reduce the CFB effect and stabilize working 
capital for SC members

Scenario 2 Increasing cash collection policies for SC 
members with a CFB value greater than 
1 does not achieve an overall reduction in 
CFB values for all SC members. Instead, 
it merely transfers the CFB burden from 
one echelon to another echelon

Refrain from increasing cash collection poli-
cies for selected but not all SC members

Scenario 3 Increasing cash collection policies for all 
SC members based on the average CFB 
value within the network results in a re-
duction in CFB values throughout the SC

Implement a uniform increase in cash collec-
tion policies for all SC members based on the 
average CFB value within the network

Scenario 4 Forecasting using end customers’ de-
mands alongside a simultaneous increase 
in cash collection policies for all SC 
members eliminates CFB effect in the SC

Forecast using end customers’ demands and 
uniformly increase cash collection policies for 
all SC members

Scenario 5 The most upstream member of the SC 
benefits the most from the increase 
in cash collection policies for all SC 
members

Increase cash collection policies uniformly 
for all SC members by a factor multiplier that 
reduces the CFB value for the most upstream 
SC member to your desired level

Scenario 6 Uniformly increasing cash collection 
policies for all SC members beyond an 
identifiable threshold eradicates the CFB 
effect in the SC

Perform sensitivity analysis on cash collection 
policy to identify the threshold factor multi-
plier that eradicates the CFB effect in the SC

C4.5 and 
CN2 rule 
induction 
algorithms

Regulating inventory policies at the 
middle echelon (i.e., distributors) is key 
to preventing the CFB effect in the SC

Set the desired inventory and WIP levels at the 
middle echelon to below 1.5 times customer 
demand if the upper echelon employs an 
aggressive policy to bridge the inventory gap 
(i.e., αm ≥ 0.5)
Set the desired inventory at the middle echelon 
to below 1.5 times customer demand, and ex-
ercise caution when establishing the inventory 
proportional controller (i.e., αd1 < 0.5) if the 
lower echelon employs an aggressive policy to 
bridge the inventory gap (i.e., αr1 ≥ 0.5)
Exercise caution in setting the WIP propor-
tional controller at the middle echelon (i.e., 
βd2 < 0.5) if the desired inventory and WIP 
levels at the middle and upper echelons are set 
equal to or above 1.5 times customer demand

C4.5 and 
CN2 rule 
induction 
algorithms

Avoiding overstocking at the lower and 
middle echelons, along with exercising 
caution in bridging the inventory gap 
at the upper echelon, prevents the CFB 
effect in the SC

Set the desired inventory and WIP levels for 
the lower and middle echelons to below 1.5 
times the customer demand, and the inventory 
proportional controller for the upper echelon 
to below 0.5

C4.5 
algorithm

Overstocking at the middle echelon 
should be offset by lowering inventory 
levels at both the upper and lower ech-
elons to prevent the CFB effect in the SC

Set the desired WIP levels for the lower and 
upper echelons to below 1.5 times customer 
demand if the desired inventory for the middle 
echelon is set equal to or above 1.5 times 
customer demand

Table 8  Theoretical and practical perspectives obtained from scenarios 1–6, C4.5 and CN2 rule induction 
algorithms
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a multiplier that mitigates the CFB value for the most upstream SC member to a predefined 
threshold. This approach aligns with studies emphasizing the critical importance of main-
taining the financial health of upstream SC members, as their financial instability could 
jeopardize the overall viability of the SC (Badakhshan & Ball, 2023; Ivanov, 2024; Kroes 
& Manikas, 2014).

The sixth insight is that uniformly increasing cash collection policies for all SC members 
beyond an identifiable threshold eradicates the CFB effect in the SC. This implies that it is 
feasible to eliminate the CFB effect even without forecasting using end customers’ demands 
by SC members. We recommend conducting sensitivity analysis on cash collection policy to 
identify the threshold factor multiplier that eradicates the CFB effect in the SC. This insight 
extends the literature on CFB effect in line with previous studies that highlight the reluc-
tance for data sharing among SC members (Hannibal et al., 2022; Inderfurth et al., 2013; 
Mahmud et al., 2021). It should be noted that if SC customers do not accept the collection 
policy that eliminates the CFB effect in the SC, cash collection policies should be uniformly 
increased for all SC members to reduce the CFB value for the most upstream member to a 
desired level, as derived from insight 5.

The seventh insight reveals that the CFB effect can be avoided by regulating inventory 
policies at the middle echelon. This suggests that even if the upper echelon employs an 
aggressive policy to bridge the inventory gap (i.e., αm ≥ 0.5), as shown by rule I in Fig. 11, 
the middle echelon can still prevent the CFB effect in the SC by setting the desired inven-
tory and WIP levels to below 1.5 times customer demand. Similarly, if the lower echelon 
employs an aggressive policy to bridge the inventory gap (i.e., αr1 ≥ 0.5), as shown by rule 
73 in Table 3, the middle echelon can prevent the CFB effect by setting the desired inventory 
to below 1.5 times customer demand and by exercising caution when establishing the inven-
tory proportional controller (i.e., αd1 < 0.5). In the same way, as shown by rule III in Fig. 11, 
if the desired inventory and WIP levels at the middle and upper echelons are set equal to or 
above 1.5 times customer demand, the middle echelon can still prevent the CFB effect by 
exercising caution in setting the WIP proportional controller (i.e., βd2 < 0.5).

The eighth insight derived from rule 1 in Table 3 demonstrates that avoiding overstock-
ing at the lower and middle echelons (i.e., D2DI, R3DWIP < 18 and D1DWIP < 27), along 
with exercising caution in bridging the inventory gap at the upper echelon (i.e., αm < 0.5), 
prevents the CFB effect in the SC. The C4.5 algorithm generated a similar rule as shown 
in Fig. 11. Therefore, we recommend setting the desired inventory and WIP levels for the 
lower and middle echelons to below 1.5 times customer demand and keeping the inventory 
proportional controller for the upper echelon below 0.5.

These insights underscore a critical trade-off in inventory management at the middle 
echelon. Overstocking creates buffers that enhance service levels and reduce stockouts, but 
it also ties up capital and increases working capital variability, thereby fueling the CFB 

Source Theoretical implications Managerial recommendations
CN2 rule 
induction 
algorithm

Regulating trade credit period and avoid-
ing overstocking at the lower and middle 
echelons, along with exercising caution 
in bridging the inventory gap at the lower 
echelon, prevents the CFB effect in the 
SC

Set the trade credit period to below 2.5 weeks, 
the desired inventory for the middle echelon 
and the desired WIP for the lower echelon to 
below 1.5 times customer demand, and the 
inventory proportional controller for the lower 
echelon to below 0.5

Table 8  (continued) 
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effect. Understocking, on the other hand, reduces capital tied up in inventory and improves 
cash flow stability but raises the risk of SC disruptions due to unmet demand. Therefore, 
striking an appropriate balance, guided by empirical rules generated through decision trees, 
is essential for maintaining SC resilience while minimizing financial volatility.

The ninth insight obtained from rule II in Fig. 11 shows that overstocking at the middle 
echelon should be offset by lowering inventory levels at both the upper and lower echelons 
to prevent the CFB effect. Therefore, we suggest setting the desired WIP levels for the lower 
and upper echelons to below 1.5 times customer demand if the desired inventory for the 
middle echelon is set equal to or above 1.5 times customer demand.

The tenth and final insight obtained from rule 2 in Table 3 indicates that regulating trade 
credit period (TCP) and avoiding overstocking at the lower and middle echelons, along 
with exercising caution in bridging the inventory gap at the lower echelon, prevents the 
CFB effect in the SC. consequently, we recommend setting the trade credit period to below 
2.5 weeks, the desired inventory for the middle echelon and the desired WIP for the lower 
echelon to below 1.5 times customer demand, and the inventory proportional controller for 
the lower echelon to below 0.5.

Importantly, the trade credit period interacts with inventory policies and payment terms 
by influencing the timing of cash flows across the supply chain. Shorter trade credit periods 
improve liquidity for upstream members by accelerating receivables but may restrict the 
ability of downstream partners to maintain sufficient inventory levels, particularly in capi-
tal-constrained environments. This constraint can elevate the risk of understocking and ser-
vice level deterioration. Conversely, longer trade credit periods alleviate financial pressure 
on downstream members, enabling more flexible inventory strategies, but may heighten 
working capital variability for upstream firms. Therefore, a carefully balanced trade credit 
policy is critical.

While our findings support shorter trade credit periods to prevent the CFB effect, we 
acknowledge that excessively short credit terms could strain supplier–buyer relationships 
or affect liquidity in certain industries. For example, in the apparel industry, companies 
often rely on extended credit terms to manage seasonal demand fluctuations and working 
capital requirements (Aloina et al., 2019). Similarly, in agribusiness, long production lead 
times and regulatory delays can necessitate extended payment windows to sustain opera-
tions (Detthamrong & Chansanam, 2023). Hence, trade credit policies must be tailored to 
industry-specific financial dynamics and supply chain characteristics.

Insights seven to ten extend the existing body of knowledge on strategies to avoid CFB 
effect in the SC (e.g., Badakhshan et al., 2020; Lamzaouek et al., 2023; Sim & Prabhu, 
2017).

The insights presented in this study highlight the critical role of digital coordination (Iva-
nov, 2025d) in preventing the CFB effect. However, these strategies introduce operational 
and financial trade-offs that must be carefully managed. For instance, uniformly increasing 
cash collection policies across all SC members can reduce overall cash flow variability but 
may also impose liquidity constraints on financially weaker downstream partners, poten-
tially resulting in service-level failures or customer attrition in price-sensitive industries. 
Similarly, forecasting based on end-customer demand enhances informational accuracy 
but depends on robust data-sharing infrastructures, which may be absent or infeasible in 
practice.
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Furthermore, policies such as reducing desired inventory levels and tightening propor-
tional control parameters improve cash flow stability but may elevate the risk of stockouts, 
replenishment delays, and service degradation. Conversely, maintaining high inventory to 
protect against demand uncertainty increases working capital variability, exacerbating the 
CFB effect. These tensions are particularly pronounced at the middle echelon, which serves 
as a coordination buffer between upstream and downstream actors. As shown in the rule-
based analysis, middle-echelon policies must strike a balance between responsiveness to 
partners’ aggressive replenishment behaviors and internal efficiency goals. Similarly, while 
shorter trade credit periods enhance upstream liquidity, they can restrict the financial flex-
ibility of downstream members, especially in capital-constrained environments. Therefore, 
the design and implementation of CFB prevention strategies should be context-sensitive and 
account for trade-offs between financial resilience and operational robustness.

6  Conclusion

This study bridges a gap in the literature concerning the effectiveness of blockchain-enabled 
data sharing and the integration of simulation with ML in preventing the CFB effect. While 
previous studies (e.g., Patil & Prabhu, 2024a, 2024b) analyze the CFB effect across indus-
tries and discuss mitigation strategies, they do not propose concrete methods to prevent this 
undesirable phenomenon. Similarly, although there is growing interest in applying hybrid 
simulation-ML models and blockchain technology to SC problems (e.g., Ogunsoto et al., 
2025; Scott et al., 2024), there is a lack of studies that specifically examine the effectiveness 
of blockchain-enabled data sharing or the integration of simulation and ML in addressing 
the CFB effect.

Our study first examines the impact of data sharing using blockchain on the CFB effect. 
We employed discrete-event simulation to evaluate the CFB effect in a no-data-sharing 
scenario (Scenario 0) and in six blockchain-enabled data-sharing scenarios (Scenarios 1–6). 
Scenario 0 revealed the existence of the CFB effect in the SC. Key findings indicate that 
forecasting based on end-customer demands reduces the CFB effect. Conversely, increas-
ing cash collection policies for SC members with a CFB value greater than 1, approved via 
the blockchain, does not result in an overall reduction of CFB values for all SC members. 
Instead, it merely shifts the burden from one echelon to another. Therefore, we recom-
mend implementing a uniform increase in cash collection policies for all SC members, 
based on the average CFB value within the network, to reduce the CFB effect. Furthermore, 
combining end-customer demand forecasting with a simultaneous increase in cash collec-
tion policies for all SC members eliminates the CFB effect. Sensitivity analysis reveals 
that uniformly increasing cash collection policies for all SC members beyond a specific 
threshold eradicates the CFB effect, as seen in Scenario 6. We recommend identifying and 
implementing this threshold as the standard collection policy for all SC members. If SC cus-
tomers cannot accept this threshold, cash collection policies should be uniformly increased 
to reduce the CFB value for the most upstream member to the desired level, as demonstrated 
in Scenario 5.

Next, we assess the effectiveness of integrating simulation with decision trees, enabled 
by blockchain-shared data. Decision trees provide valuable insights, emphasizing the role of 
inventory policies at the middle echelon of the SC in preventing the CFB effect. Specifically, 
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avoiding overstocking and exercising caution when bridging inventory gaps at the middle 
echelon helps prevent the CFB effect. Additionally, regulating trade credit period and bal-
ancing inventory levels across the SC help avoid the risk of the CFB effect.

Several limitations exist in this research. Firstly, the study focuses on the CFB effect in 
the absence of SC disruptions. Future studies could explore the dynamics of the CFB effect 
under disrupted conditions. Secondly, while this research integrates discrete-event simula-
tion with decision trees, future work could incorporate other ML techniques to eliminate the 
CFB effect in SCs. In particular, combining high-performing black-box models with post-
hoc explainability techniques such as SHAP or LIME represents a promising direction for 
balancing predictive performance with interpretability. Thirdly, the study overlooks uncer-
tainties that affect working capital components and consequently the CFB effect. Future 
research could investigate how uncertainties such as fluctuations in economic conditions 
influence the dynamics of the CFB effect. Fourthly, this research assumes unlimited stor-
age capacity to isolate the impact of digital interventions. Future research could extend the 
model by incorporating storage constraints, thereby assessing their effect on working capital 
variability and the CFB effect. Fifthly, although this study demonstrates the effectiveness 
of blockchain technology and two AI methods, simulation and ML, in mitigating the CFB 
effect, future research could explore the potential of other Industry 4.0 technologies such as 
Digital Twins for eliminating the CFB effect. Lastly, our model relies on a demand forecast-
ing approach based on historical averages. Future research could explore the use of alterna-
tive forecasting techniques such as ARIMA models or neural networks particularly under 
conditions of non-stationary or seasonal demand to assess whether improved forecasting 
accuracy enhances system robustness and mitigates the CFB effect.
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