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Abstract

Human–robot interaction (HRI) via voice command has significantly advanced in recent
years, with large Vision–Language–Action (VLA) models demonstrating particular promise
in human–robot voice interaction. However, these systems still struggle with environmen-
tal noise contamination during voice interaction and lack a specialized denoising network
for multi-speaker command isolation in an overlapping speech scenario. To overcome these
challenges, we introduce a method to enhance voice command-based HRI in noisy envi-
ronments, leveraging synthetic data and a self-supervised denoising network to enhance
its real-world applicability. Our approach focuses on improving self-supervised network
performance in denoising mixed-noise audio through training data scaling. Extensive
experiments show our method outperforms existing approaches in simulation and achieves
7.5% higher accuracy than the state-of-the-art method in noisy real-world environments,
enhancing voice-guided robot control.

Keywords: human–robot interaction; voice denoising; self-supervised learning; data synthesis

1. Introduction
In recent years, with the development of Vision–Language–Action (VLA) models [1–4]

facilitating significant advancements in robotic manipulation, there has been growing
interest in integrating action prompts and voice interaction. However, one of the most
critical and unresolved issues is ensuring effective command recognition in human–robot
interaction (HRI). Current VLA models often rely on voice encoders (e.g., LLama [5], T5 [6])
to understand task prompts during HRI in real-world applications, but may miss critical
instructions due to environmental noise [7]. This leads to the first research question: (1)
How can audio commands be stably transmitted in real-world interactive environments?

Regarding the first question, supervised training strategies [8,9] have emerged as
reliable tools for voice denoising during HRI. Nevertheless, this method requires collect-
ing multiple high-quality audio samples for training, a process that demands a carefully
controlled recording environment, resulting in both increased complexity and higher cost.
Thanks to previous works [10–12], researchers have employed self-supervised learning
to train models for generating voice sequences. Noise variation can also be estimated
from noisy audio datasets [13] through latent audio features [14], while Large-Language
Model (LLM) [15] enables audio-to-text conversion followed by semantic reasoning to
interpret distorted speech. However, many of these systems still struggle in real-world
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robotic applications, particularly in multi-scenario or multi-speaker environments. First,
existing voice datasets fail to adequately simulate ambient sound, particularly in cases of
overlapping human voice, limiting practical performance. Second, interactive audio ex-
hibits discrete properties, limiting the effectiveness of time-domain denoising for frequency
feature reconstruction. Finally, LLMs are prone to hallucinations, generating inaccurate or
unsafe responses that may produce erroneous robotic commands with potentially harmful
consequences. This leads to two further research questions: (2) How to scale training data
for enhanced real-world denoising capability? (3) How to effectively denoise audio for
real-world HRI applications?

Through answering questions (1) to (3), a self-supervised voice denoising approach is
proposed to enhance robotic audio command transmission quality in real-world applica-
tions, as illustrated in Figure 1. In contrast to previous work, our model employs realistic
synthetic data (i.e., multi-environment noise or overlapping voices) in self-supervised training
and integrates the convolution and attention network to extract key features from the audio
magnitude and phase information. The intuition behind our design is the integration of
scaling data and self-supervised denoising capabilities, where both training inputs and targets
are directly generated from noisy signals. The specialized denoising architecture with
regularized loss functions delivers results matching supervised training, providing reliable
audio for VLAs. A comprehensive comparison of the evaluation results shows that our
model outperforms state-of-the-art methods in simulation benchmarks and achieves a 7.5%
improvement in real-world manipulation tasks.

Figure 1. Three different tasks are executed by voice command. Their initial conditions are shown
in the first column. The robot starts from an arbitrary position (second column), recognizing voice
prompts in noisy environments and executing instruction actions (third and last column).

The contributions of this work are summarized below:

1. We propose training the denoising model with synthetic data, using data scaling to
enhance robustness in model application.

2. We present a self-supervised method using a convolutional network to denoise both
magnitude and phase components in the frequency domain.
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3. We demonstrate proof-of-concept of the proposed approach in both simulation and
hardware. For the benefit of the community, we will open-source part of the scaled
dataset at https://tinyurl.com/2ybfz3jt (accessed on 25 August 2025).

2. Related Work
Synthetic Data Application. Synthetic data can rapidly generate large-scale training

sets, enhancing the practicality of datasets [16–18]. Recent advances in voice synthesis
include generating various pulses, tones, and altered timbres [19–21]. In contrast, HRI
applications require interactive voice in diverse environments. Prior work using public
audio datasets for denoising model training often shows poor generalization in complex
real-world scenarios. In addition, collecting pure datasets requires significant expense.
Therefore, we aim to use audio synthesis to generate diverse datasets for model training,
covering voices in multiple scenarios.

Voice Denoising Network. Noise–Clean Training (NCT) [11,22–24], a common audio
denoising method, uses clean audio signals as training targets. However, it struggles to
handle variable environmental noise in real-world applications. Thus, noise-only train-
ing has recently gained wide attention [25,26]; the network can be trained with multiple
independent noisy voice signals using self-supervised methods. Xu [14] leverages silent
intervals in speech signal to isolate noise-only periods for time-varying noise estimation,
and studies like [10,11] demonstrate that voice denoising models can be built from datasets
containing diverse noise. Inspired by Noisy-to-Noisy, Wu [12] employs a complex-valued
network architecture for multi-dimensional audio denoising and [13] constructs mixed-
audio datasets combining robot ego-voice, fan noise, and concurrent human speech to
improve low-frequency noise suppression. However, these methods fail to process over-
lapping audio in multi-speaker environments, making it difficult to extract target signals
in interaction dialogues. In our work, we improve the model’s denoising capability for
unseen environments by synthesizing audio from diverse scenarios and expanding the
training dataset.

Voice Control in HRI. Voice can be used in HRI to deliver action instructions and
guide robot manipulation [27–31]. The development of LLMs [5,6,15] has led to significant
advancements in voice reasoning, particularly in environments requiring high adaptability
and generation. Lai [28] proposed a natural multimodal fusion-based HRI framework
(NMM-HRI) that combines voice commands and deictic postures, leveraging LLMs to gen-
erate robot action sequences. In [32], the PlanCollabNL framework combines LLMs with
task planning to generate robot action subgoals from abstract natural language goals. Build-
ing on the success of VLA models [2–4], voice interaction is gaining significant attention
for its ability to provide operational conditions and task requirements for robotic actions
through voice prompts. Most VLAs [2–4,33,34], treat the frozen-weight LLM as a policy
to generate action commands for robot operation. However, none of the works address
that audio distortion in noisy environments further reduces the LLM model’s instruction
recognition accuracy. In this work, we aim to use a self-supervised denoising algorithm to
optimize audio quality, enabling stable transmission of audio prompts to VLAs.

3. Preliminaries
3.1. Human–Robot Voice Interaction System

In the human–robot voice interaction scenario, we consider there are two equidistant
microphone arrays (i.e., simulating human binaural distribution) to capture the interactive
sound in the environment, as shown in Figure 2. This ensures recorded voice signals vary
randomly and nonlinearly over time. The interaction architecture uses the Z-transform to

https://tinyurl.com/2ybfz3jt
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convert signals to the time–frequency domain, with the collected signal M(z) composed of
the source sound T(z) and the mixing matrix A(z). The following equation holds:

M(z) = T(z) · A(z), (1)

A(z) =

[
1 a0z−d0

a1z−d1 1

]
, (2)

where di and ai denote the fractional delay in samples and the attenuation factor along the
indirect signal path, respectively, and i = 0, 1 represents the two recording microphones.
However, one challenge in voice denoising is that M(z) contains complex environmental
interference, and direct application of audio enhancement can easily distort the source
sound. It is valuable to separately denoise frequency-domain information (audio magnitude
or phase) to enable effective extraction of key semantic information from discontinuous
mixed-audio signals.

Figure 2. The process of blind source separation: contaminated speech picked up by multiple
microphones first, and then the human speech and background noise are separated.

3.2. Self-Supervised Denoising Strategy Foundation

A clean voice dataset for training models demands a huge amount of data; Noise2Noise
(N2N) [35] introduces a self-supervised optimization method to overcome the lack of clean
data. It uses pairs of independent noisy data m and n (which share the same ground-truth
s) for learning. Kashyap [11] proposed that symmetric noisy voice signals in the same
environment can also serve as training pairs. Equation (3) indicates the loss function in
denoising network fθ with respect to parameter θ.

arg min
θ

E∥ fθ(m)− n∥2
2. (3)

As reported in [36], denoising performance comparable to supervised training with
ground truth can be achieved by minimizing Equation (4) as follows:

arg min
θ

E∥ fθ(m)− s∥2
2. (4)
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Wu [12] proposed that an audio sub-sampler P can be used to transform the noisy
audio signal x into a training pair (p1, p2), i.e., ε = E(p2(n))− E(p1(n)), which can be
directly utilized to train the denoising network:

arg min
θ

E∥ fθ(p1(x))− p2(x)∥2
2. (5)

Given an ideal denoiser f ∗θ trained on clean data and defined by Equation (5), it
guarantees that the output of f ∗θ for noisy input x is the clean voice y, i.e., y = f ∗θ (x).
Therefore, the optimal network is as follows:

E{ f ∗0 (p1(x))− p2(x)− (p1( f ∗0 (x))− p2( f ∗0 (x)))}
= p1(y)−E{p2(x)} − (p1(y)− p2(y))

= p2(y)−E{p2(x)} = 0.

(6)

Neighbor2Neighbor (Ner2Ner) [37] indicates that a regularization term µ can address
the non-zero difference between p1(x) and p2(x) in θ. Inspired by [37], we add spectral
constraints to minimize the gap between the output and the target audio, while [38]
demonstrates that spectral structure optimization enhances the ability of the convolutional
network in voice enhancement. Hence, instead of directly optimizing Equation (5), a
constrained optimization problem incorporating Equation (6) and the spectral optimization
loss is considered:

E∥ fθ(p1(x))− p2(x)− (p1( fθ(x))− p2( fθ(x)))∥2
2

+ arg min
θ

E∥ fθ(p1(x))− p2(x)∥2
2

+ δE∥log(S( fθ(p1(x))))− log(S(s2(x)))∥2
2,

(7)

where S( fθ(p1(x))) represents the optimized audio spectrum, and S(s2(x)) represents the
target audio spectrum.

4. Methodology
Project Overview. The proposed framework comprises three main components:

(1) synthetic voice generation for training data expansion (Section 4.1); (2) a self-supervised
denoising framework for environmental noise suppression (Sections 4.2–4.5); (3) real-world
deployment of denoising model in human–robot interaction scenarios (Section 4.6). The
overall workflow of the approach is depicted in Figure 3.

Problem Formulation. The voice denoising model can endow a robot with the ability
to recognize commands in noisy and audio-overlapping environments. This enables the
robot to perform various tasks by leveraging a specific level of environmental perception.
Formally, our goal is to enhance the ability of the denoising model to extract and understand
conversational information in complex environments.

Model Architecture. As illustrated in Figure 4, a noisy voice signal x is passed through
a sub-sampler to generate a noisy training data pair (p1(x), p2(x)), sharing the same ground
truth. We transform p1(x) into STFT representations as input to the training network, and
design the encoding and decoding stages as a hierarchical symmetric U-shaped network.
The real and imaginary domains of the audio are denoised separately, with the loss between
fθ(p1(x)) and p2(x) being calculated to update network weights.
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Figure 3. Overview of HRI architecture. (a) presents the system framework, which is componentized
into three parts: (b) shows the data synthesis process, i.e., selecting two independent audio sources
(car sounds and human voices) and fusing them to generate street audio. (c) indicates voice command
denoising, and (d) demonstrates the robot executing actions based on interactive audio instructions.

Figure 4. Overall framework of the proposed self-supervised network. During encoding, the
network dynamically extracts multi-scale local and global features. The decoder then fuses these
features to reconstruct voice spectral features. S separates signal frequency spectrum; C connects real
and imaginary domains.

4.1. Voice Dataset Synthesis

To enhance adaptability to complex environments with noisy human voices, as shown
in Figure 3b, two training datasets are generated via audio synthesis, covering multiple
scenarios and overlapping voices:

• Multi-scenario dataset: To synthesize audio in a realistic voice dataset across various
environments, we employ PyDub (https://pydub.com/, (accessed on 25 August
2025)) to overlap diverse UrbanSound8K (US8K) [39] noise onto clean audio signals
from the Voice Bank dataset [40], which includes 28 speakers for training and 2 for
testing. The complete noisy speech sample is generated by truncating or repeating the
noise to cover the entire voice segment.

• Multi-speaker dataset: Using the same methodology as for generating the multi-
scenario dataset, we combine the TIMIT dataset [41], which contains recordings of
630 speaker utterances, with the Voice Bank dataset [40] to generate an audio dataset
of overlapping speaker voices. However, direct training on multi-speaker audio fails
to achieve effective noise reduction performance. Hence, we employ Kullback–Leibler
Divergence [42] to post-process the synthesized audio, thereby generating training
data that can be effectively utilized in real-world HRI scenarios (more details in
Appendix C).

https://pydub.com/
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4.2. Model Encoding and Decoding Stages

Voice Encoder. The encoding stage consists of four consecutive encoders for multi-
scale voice spectral feature extraction. Each encoder’s downsampling block contains
a complex convolution layer with a complex batch normalization layer (CBN) and a
multilayer perceptron (MLP). It employs a complex filter W = (A + iB). For a complex
vector h = c + id, it performs complex convolution via two independent real convolutions
formulated as W ∗ h = (A ∗ c− B ∗ d) + i(B ∗ c + A ∗ d).

Voice Decoder. The decoder and encoder are symmetric architectures. Each decoder’s
upsampling block contains a complex transposed convolution layer, followed by CBN and
nonlinear MLP [3]. The decoding stage focuses on reconstructing the spectrogram locally
and globally using voice features.

4.3. Self-Supervised Denoising Strategy

We illustrate the optimization function of the self-supervised strategy in Section 3.2,
which incorporates the audio spectrum constraint. To prove the feasibility of the optimiza-
tion problem, the function rationalization and solution existence of Equation (7) are analyzed.

Non-negativity of the Objective Function. For any θ, the squared Euclidean norm is
non-negative; since expectation is the integral of the objective function, each term of the
objective function is non-negative. We set

L1(θ) = E∥ fθ(p1(x))− p2(x)∥2
2,

L2(θ) = E∥ fθ(p1(x))− p2(x)− p1( fθ(x)) + p2( fθ(x))∥2
2,

L3(θ) = E∥log(S( fθ(p1(x))))− log(S(s2(x)))∥2
2.

(8)

Then, the function expectation is expressed as follows:
∫

x,y∥L1(θ)∥2
2 fX,Y(x, y) dxdy ≥ 0,∫

x,y∥L2(θ)∥2
2 fX,Y(x, y) dxdy ≥ 0,∫

x,y∥L3(θ)∥2
2 fX,Y(x, y) dxdy ≥ 0,

(9)

where fX,Y(x, y) represents the joint probability density function of two-dimensional ran-
dom variables x and y. The objective function L(θ) = L1(θ) + µL2(θ) + δL3(θ) ≥ 0, where
δ ≥ 0.

Existence of Solutions within the Parameter Space. The particular parameter space
Ω is assumed to be a compact set (bounded and closed) in Rn. Since fθ is continuous with
respect to θ (a differentiable function is continuous) and p1 and p2 are measurable functions,
by the property of the composition of continuous functions. There exist

g1(θ, x) = ∥ fθ(p1(x))− p2(x)∥2
2,

g2(θ, x) = ∥ fθ(p1(x))− p2(x)− p1( fθ(x)) + p2( fθ(x))∥2
2,

g3(θ, x) = ∥log(S( fθ(p1(x))))− log(S(s2(x)))∥2
2.

(10)

Suppose that fθ is bounded, i.e., there exist constants C1 and C2 such that | fθ(p1(x))| ≤
C1 and |p1( fθ(x))| ≤ C2 for all θ ∈ Ω.

It can be shown that there exist integrable functions M1(x) and M2(x) such that
|g1(θ, x)| ≤ M1(x) and |g2(θ, x)| ≤ M2(x). Since logarithmic operations exhibit continuity
within their respective domains, g3(θ, x) is continuous in θ, and there exists an integrable
function |g3(θ, x)| ≤ M3(x) for all θ ∈ Ω.

Hence, the expectations L1(θ), L2(θ), and L3(θ) are continuous in θ. Therefore,
L(θ) = L1(θ) + L2(θ) + δL3(θ) is continuous in θ. According to the Lebesgue dominated
convergence theorem [43], on the compact parameter space Ω, there always exists θ∗ ∈ Ω

such that L(θ∗) = minL(θ).
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4.4. Denoising Network

Conventional 2D convolution kernels with fixed geometries usually struggle to capture
detailed features in complex spectral data, particularly in sub-sampled voice signals. As
formulated in Equations (1) and (2), directly separating the target voice from the noisy
signal M(z) in the noisy environment is challenging.

To address this limitation, separating the real and imaginary components of the audio
spectrum enables the denoising model to optimize magnitude and phase independently.
Audio processing without component separation fails to establish a clear phase spectrogram
structure [44], which is essential for perceptual quality in voice denoising. Hence, we aim
to estimate the real and imaginary spectrograms of the target voice from the noisy signal
via complex spectral mapping, simultaneously capturing signal structure and preserving
phase information.

Therefore, our goal is to separately denoise the information in different dimensions
(real and imaginary) to enable more effective extraction of audio features. The denoising
network model π is composed of a convolutional multi-head attention architecture followed
by a ResNet module (shown in Figure 5). Taking the real part Xr and imaginary part Xi of
the voice spectral data as input, the model produces a complex-valued output Y defined as

Yr = π(Xr)− π(Xi), (11)

Yi = π(Xr) + π(Xi), (12)

where π(Xr) and π(Xi) represent the real and imaginary parts of the denoising model, and
Y = Yr + jYi denotes the model’s complex value output. This approach enables precise
processing and reconstruction of spectrogram amplitude and phase data, while preserving
voice contextual details. It improves the ability of robots to accurately understand key
instructions during interactions (more details in Section 4.6).

Figure 5. Detailed neural network architecture of the denoising module.
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4.5. Training Loss

Our primary objective is to satisfy the constraints of sub-sampled audio pairs by
solving the optimization function in Equation (7) for voice denoising. Hence, the loss
function consists of Lbasic and Lreg.

Basic Loss. We define the basic loss Lbasic [45] as a combination of the waveform loss
and an STFT loss to fit the target audio waveform:

Lbasic =
1

TF

T−1

∑
t=0

F−1

∑
f=0

(|Sr(t, f )|+ |Si(t, f )|

−|Ŝr(t, f )| − |Ŝi(t, f )|
)

+
1
N

N−1

∑
i=0

(ni − n̂i)
2,

(13)

where ni and n̂i denote the i-th sub-sampled audio pair and its denoised version, respec-
tively, with N being the total number of speech samples. Let S and Ŝ be the spectrograms
of the sub-sampled and its denoised version, respectively, where T represents the number
of frames and F represents the number of frequency bins.

Regularization Loss. We also need to consider the regularization loss discussed in
Section 3.2. The regularization loss Lreg, formulated as Lreg = Lreg1 + Lreg2, is defined
as follows:

Lreg1 =
∥∥ fθ(p1(x))− p2(x)−

(
p1( fθ(x))− p2( fθ(x))

)∥∥2
2, (14)

Lreg2 =
∥∥ log S( fθ(p1(x)))− log S(s2(x))

∥∥2
2. (15)

The total loss L is the sum of the basic loss and the regularization loss, as L =

Lbasic + Lreg1 + δLreg2. The performance of the model can be enhanced by adjusting the
value of the parameters δ (for more details see Section 5.3).

4.6. Human–Robot Voice Interaction System

In this work, voice recognition is established as a precondition for robot task execution
during HRI. As described in Section 4.4, the denoising model takes noisy speech x as
input and outputs audio y, which contains the task instructions for guiding robot action.
It enables the robot to more effectively identify key semantics in interaction by reducing
background noise and overlapping voices. Based on the action information (i.e., pick, grasp,
pull), the system executes various actions to interact with the environment. We develop an
interaction system that integrates voice recognition and action execution. The VLA model
is employed to generate robot action, with denoising voice serving as both the supporting
condition for language prompts and the prerequisite for action execution.

An example is shown in Algorithm 1. When the interaction command is “Grasp the
steel pipe and place it on the table behind”, the robot identifies the key semantics of the
task instruction in the voice:

• Grasp: target task action;
• Steel Pipe: target object;
• Table Behind: placing position.

This approach provides sufficient task instructions and action information. Addi-
tionally, it offers an efficient approach to verify whether the audio has been effectively
denoised. If the key semantic information within the denoised voice remains difficult
to discern, the robot will be unable to execute the task action. Meanwhile, to enhance
edge-case handling, we design action termination prompts (i.e., stop, no, wait). They can
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instantaneously terminate inference actions during HRI, prompting the robot to await
subsequent task instructions (see Section 5.5 for a detailed discussion of our test).

Algorithm 1 Human–robot voice interaction

Input: noisy voice
Output: robot action
ROBOTTASK(noisy_voice)

interaction_audio← Denoise(noisy_voice)
instruction← RecognizeVoice(interaction_audio)
action← VLAModel(instruction)
return RobotExecute(action)

5. Experiment
In Section 5.2, we compare the denoising ability and generalization results of our

method with previous self-supervised methods in simulation environments. The effective-
ness of each component is validated in Section 5.3. In Section 5.4, we present application
results of our method in real-world scenarios, including single-arm, dual-arm, and hu-
manoid robot tasks. The effectiveness of termination prompts is tested in Section 5.5,
demonstrating they can achieve closed-loop voice interaction control.

5.1. Experiment Setup

Dataset. Noisy signals from three distinct environments are used to evaluate algo-
rithm robustness under varied conditions. In addition to the synthetic dataset introduced
in Section 4.1, clean speech is augmented with white Gaussian noise to generate a synthetic
white-noise training dataset. The training set includes 6000 white-noise voices as Env1, ran-
domly selects 10,000 voices from the multi-scenario dataset as Env2, and takes 8000 voices
from the multi-speaker dataset as Env3.

Training Details. In the denoising model, most convolutional layers adopt a 3 × 3
kernel and a 2 × 2 stride, while the middle two layers in the encoder and decoder utilize a
2 × 1 stride. We employ an Adam optimizer with a learning rate of 0.001, and the complex-
valued voice spectrograms for model input are obtained via STFT with a 64 ms Hamming
window and 16 ms hop size. All experiments were conducted on a workstation equipped
with an Intel Core i9-14900K CPU and an NVIDIA RTX 4090 GPU for both data training
and evaluation.

5.2. Evaluation in Simulation

Metric. To evaluate the denoising effect quality, we use five metrics in the simulation
experiment [46–48]: signal-to-noise ratio (SNR), segmental signal-to-noise ratio (SSNR),
wide-band perceptual evaluation of speech quality (PESQ-WB), narrow-band perceptual
evaluation of speech quality (PESQ-NB), and short-term objective intelligibility (STOI).

Baselines. To comprehensively evaluate our model, comparisons are made with state-
of-the-art baselines in voice denoising and self-supervised learning, including NCT [11],
NNT [11], NerNT [10], and ONT [12]. These methods use noisy voice for model training
and testing in the Env1-Env3 datasets. For more details on the differences in the training
processes of the methods, see Appendix D.

Result. To ensure fair experimental evaluation, all baseline models are pre-trained
on the same synthetic datasets. Table 1 shows that our model has achieved notable im-
provements in different environments and outperformed other baselines. Moreover, it
has the ability to denoise in multi-speaker overlapping scenarios. This is because (1) the
scaling dataset enhances self-supervised denoising performance across diverse scenar-
ios and speaker backgrounds, and (2) the convolutional multi-head attention network
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improves feature extraction from discrete time–frequency representations (e.g., real and
imaginary components).

Table 1. Voice denoising evaluation with different methods.

Dataset Network SNR SSNR PESQ-NB PESQ-WB STOI

Env1

NCT 17.323± 3.488 4.047± 4.738 2.655± 0.428 1.891± 0.359 0.655± 0.18
NNT 16.937± 3.973 3.752± 4.918 2.597± 0.462 1.943± 0.375 0.645± 0.018
NerNT − − − − −
ONT 17.563± 2.596 8.389± 2.961 2.690± 0.347 1.878± 0.293 0.833± 0.066
ONT + rTSTM 18.137± 2.122 9.077± 2.437 2.643± 0.317 2.003± 0.282 0.839± 0.067
ONT + cTSTM 18.209± 2.095 9.088± 2.222 2.811± 0.288 1.997± 0.276 0.847± 0.09
Ours 18.671± 3.093 9.628± 3.002 2.961± 0.508 2.166± 0.326 0.864± 0.073

Env2

NCT 3.44± 3.457 −0.684± 3.767 1.773± 0.326 1.326± 0.190 0.52± 0.188
NNT 3.99± 5.451 −0.402± 5.084 2.147± 0.535 1.55± 0.372 0.593± 0.221
NerNT 3.537± 3.465 −1.336± 3.105 1.787± 0.26 1.249± 0.126 0.569± 0.177
ONT 5.64± 2.18 −0.28± 0.69 2.15± 0.189 1.76± 0.39 0.54± 0.56
ONT + rTSTM 5.71± 2.62 −0.23± 1.36 2.23± 0.27 1.83± 0.35 0.68± 0.27
ONT + cTSTM 5.86± 3.44 −0.15± 3.6 2.41± 0.304 1.97± 0.21 0.72± 0.019
Ours 6.029± 3.431 −0.074± 0.993 2.818± 0.556 2.123± 0.26 0.87± 0.23

Env3

NCT 3.75± 3.899 −1.915± 3.664 1.924± 0.313 1.37± 0.208 0.562± 0.201
NNT 4.428± 3.166 −1.824± 4.558 2.445± 0.481 1.77± 0.41 0.634± 0.199
NerNT 4.464± 3.858 −1.837± 3.714 2.321± 0.351 1.484± 0.256 0.651± 0.198
ONT 4.89± 1.62 −1.52± 2.45 2.58± 0.317 1.58± 0.273 0.662± 0.16
ONT + rTSTM 5.14± 2.63 −1.45± 2.36 2.61± 0.17 1.69± 0.31 0.674± 0.18
ONT + cTSTM 5.327± 3.309 −1.391± 4.22 2.65± 0.49 1.84± 0.324 0.69± 0.21
Ours 5.416± 1.232 −1.223± 2.458 2.727± 0.437 1.991± 0.189 0.712± 0.16

We validate the model’s effectiveness by comparing its denoising performance with
ONT [12] using a real-world utterance. Figure 6 presents the spectral changes before and
after model processing. As shown in Figure 6a, the original interactive voice is heavily
corrupted by noise, making it difficult to directly discern speech features (annotated in
red). From Figure 6b,c, it is evident that the proposed method achieves significantly better
performance in audio denoising. Figure 6c retains more command audio harmonics with
less distortion than Figure 6b, demonstrating our method’s superior performance in a
real-world scenario.

Generalization Evaluation. We evaluate the model’s generalization ability in unseen
scenarios and real-world multi-speaker voices. Table 2 presents the denoising results
of PESQ-NB and SNR under different scenario conditions, using training and testing
datasets sourced from Env2. The model is trained using interactive voices under industrial
noise (i.e., factory environment) and tested using interactive voices with street music (i.e.,
street environment). The results indicate that the model can successfully adapt to an
unseen scenario.

Table 2. Generalization evaluation of unseen scenarios.

Training Testing Network SNR PESQ-NB

Factory Street

NCT 3.645± 3.676 1.8± 0.46
NNT 3.948± 3.285 2.121± 0.467
NerNT 3.799± 3.293 2.114± 0.459
ONT 4.38± 2.31 2.33± 0.39
ONT + rTSTM 4.65± 2.35 2.58± 0.74
ONT + cTSTM 4.91± 2.46 2.73± 0.4
Ours 5.11± 4.825 2.92± 0.435
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(a) (b)

(c)

Figure 6. (a) displays the original noise signal spectrum. (b) illustrates the denoising output of the
ONT method, and (c) depicts the output of our proposed method. Audio denoising should preserve
the command audio signal (annotated in red) while eliminating background noise.

Table 3 presents the the PESQ-NB evaluation results for multi-speaker voices from
Env3, where k denotes the number of speakers. When k = 0 (signifying no overlapping
noise), we select three values (0, 1, 2) for the experiment. The presented method maintains
effective noise reduction as k increases, achieving the highest voice quality compared to
other methods.

Table 3. Generalization evaluation of multi-speaker voices.

Network k = 0 k = 1 k = 2

NCT 2.172± 0.367 1.924± 0.313 1.78± 0.269
NNT 2.583± 0.392 2.445± 0.481 2.17± 0.635
NerNT 2.56± 0.26 2.321± 0.351 2.13± 0.29
ONT 2.63± 0.16 2.58± 0.317 2.24± 0.439
ONT + rTSTM 2.68± 0.21 2.61± 0.17 2.29± 0.524
ONT + cTSTM 2.71± 0.23 2.65± 0.49 2.38± 0.15
Ours 2.802± 0.376 2.727± 0.437 2.41± 0.29

5.3. Ablation Study

Analysis of Regularization Loss. Here we analyze the sensitivity of the regularization
loss of the model optimization function in Equation (7). The SNR evaluation results are
shown in Table 4, with five values (0, 1, 2, 4, 10) selected for experiments. The results
demonstrate that model performance degrades when δ exceeds 2. This is because excessive
constraints induce critical information loss, thereby leading to a poorer denoising effect.
However, when δ is zero, the model fails to bridge the gap between the audio sub-sampler
and ground truth, causing training instability.
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Table 4. Ablation of regularization loss weights.

Noise δ = 0 δ = 1 δ = 2 δ = 4 δ = 10

Env1 2.832 2.961 2.879 2.793 2.524
Env2 2.783 2.818 2.837 2.774 2.328
Env3 2.673 2.727 2.711 2.668 2.192

Analysis of Network Module. Next, we analyze the sensitivity of different modules:
(a) spectrogram training without separating real and imaginary components (denoted as
Net-1), (b) feature extraction using convolutions without the attention module (denoted
as Net-2), and (c) feature extraction using only the attention module (denoted as Net-3).
Table 5 presents the denoising results, with the full model demonstrating the best perfor-
mance. Two key reasons are identified: (1) Decomposing voice into real and imaginary
parts can denoise time–frequency and phase simultaneously, enhancing information ex-
traction from discontinuous audio. (2) The convolutional attention module can effectively
suppress overlapping noise and extract critical voice features.

Table 5. Ablation of different network modules.

Dataset Network SNR SSNR PESQ-NB PESQ-WB STOI

Env1

Net-1 16.831 3.996 2.655 1.728 0.598
Net-2 18.274 7.811 2.864 1.921 0.816
Net-3 17.348 5.921 2.715 1.814 0.726
Ours 18.671 9.268 2.96 2.166 0.864

5.4. Evaluation in Real World

Hardware Setup. We perform real-world experiments using various robots: the Elite
robot arm (7 DOFs), the dual-arm UR robot (12 DOFs), and the Realman humanoid robot
(14 DOFs). All robotic arms are equipped with 1 DOF grippers, and external microphones
are used for voice interaction, as shown in Figure 7.

Figure 7. Robot setup and examples for real-world manipulation tasks. We validate the application
of our algorithm on different robotic tasks.

Tasks and Metric. As shown in Figure 7 (right), we designed different tasks to evaluate
model performance in real-world noisy scenarios, testing basic actions (e.g., pull, grasp,
wipe) through voice interaction. The robots would recognize critical information in noisy
interactive voice and execute instructed actions. The action success rate, calculated across
multiple experiments, served as the primary metric.
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Implementation Details. Figure 7 (left) shows the interactive environment. We de-
signed two experimental conditions to evaluate real-world model performance: (1) computer-
simulated urban music environments (https://pixabay.com/sound-effects/search/city/,
(accessed on 25 August 2025)), and (2) overlapping speech with interfering speakers during
voice interaction. The microphone collects interactive voice, and the noise meter measures
environmental noise. We consider 50–70 dB as normal noise and above 70 dB as high-
frequency noise (https://www.epa.gov/archive/epa/aboutepa/epa-identifies-nois
e-levels-affecting-health-and-welfare.html, (accessed on 25 August 2025)), and select
RRnoise [49], DeepFilterNet [50] , and ONT [12] as baselines with frozen weights to provide
the denoised audio containing action information to the robot.

Result. Table 6 presents the instruction recognition success rates of these strategies,
indicating that our model exhibits excellent generalization capabilities across various
scenarios and overlapping interactive voices with shorter response times. It achieves
notable improvements in noisy and overlapping environments, particularly under 70–80 dB
mixed-audio conditions, outperforming DeepFilterNet [50] and ONT [12] by 15% and 7.5% in
success rate, respectively. Moreover, it can recognize action information in a discrete noisy
voice, as shown in Figure 8. The enhanced performance is attributed to the use of training
data augmented with overlapping voices, improving denoising capability in multi-speaker
scenarios through accurate modeling of mixed-speech discontinuity.

Table 6. Voice denoising evaluation in real word.

Method
Urban Music (dB) Multi-Speaker (dB)

Avg Time (s)
50–70 70–80 50–70 70–80

RRnoise 0.91 0.87 0.78 0.67 4.2
DeepFilterNet 0.94 0.91 0.82 0.72 1.9
ONT 0.92 0.90 0.84 0.79 3.1
Llama-Omni 0.98 0.97 0.86 0.82 3.7
Ours 0.96 0.94 0.89 0.85 1.2

Figure 8. The results of multi-turn voice interaction tasks. Task instructions (red) and termination
prompts (blue) are used to guide and adjust robot actions through discrete dialogues.

https://pixabay.com/sound-effects/search/city/
https://www.epa.gov/archive/epa/aboutepa/epa-identifies-noise-levels-affecting-health-and-welfare.html
https://www.epa.gov/archive/epa/aboutepa/epa-identifies-noise-levels-affecting-health-and-welfare.html
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The proposed model is also compared with state-of-the-art LLMs. The result indicates
that Llama-Omni [15] handles ambient noise more effectively in a musical environment,
demonstrating stronger robustness. However, its performance declines significantly in a
multi-speaker scenario, whereas the proposed method achieves higher recognition suc-
cess rates under the tested conditions. The performance degradation may occur because
the multi-speaker conversational audio in its training data is out of distribution (OOD),
making it difficult for the reasoning chain to infer target instructions. Notably, our model
contains eight hundred thousand more parameters, which is relatively minor when com-
pared to an 8B-parameter LLM backbone [5], while achieving shorter inference time for
audio recognition.

5.5. Terminate Action Test

To verify the feasibility of interruptible interaction, we tested task-action changes
through termination prompts during the interaction, as shown in Figure 9. The robot first
executes the instruction “Pick the orange beside the apple”. At t = 7 s, the “Wait” interrupt
stops the action, and the robot returns to the initial pose. When t = 10 s, a new instruction
“Grasp the yellow cup handle and move to the white mat” initiates a new task. Termination
words and instructions allow us to adjust action information, achieving a closed-loop
HRI. Our mind is focused on improving the safety of the execution of actions through
interrupt words, allowing the model to handle execution actions in unseen environments in
a controlled manner.

Figure 9. Termination prompt application task. During initiation, the audio command “Pick the
orange beside the apple” is transmitted. Upon execution start, the current action is aborted via “wait”
(t = 7 s) and a new command is provided (t = 10 s). The UR arm moves to the new target object,
achieving closed-loop voice interaction control.

6. Conclusions
In this paper, we introduce a self-supervised strategy for voice denoising, enabling

effective HRI in unseen noisy real-world environments. Specifically, our method generates
multi-scenario noisy voice datasets through data synthesis, constructs an effective complex-
valued denoising network, and recognizes critical action information from discrete mixed
audio. With the rapid advancement of HRI, this study focuses on enhancing recognition
efficiency for action commands in noisy environments.
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Limitations. Due to hardware limitations, real-word tasks in a laboratory cannot fully
replicate outdoor environmental sounds, posing challenges for practical algorithm applica-
tion. Moreover, convolutional attention networks cannot effectively separate and transfer
speech attributes (e.g., content, pitch, timbre) [19], limiting style-preserving denoising. In
future research, we will adapt flow matching for discrete speech modeling and deploy it
on the kid-sized humanoid robot for outdoor validation.

Author Contributions: Conceptualization, M.L. and W.X.; methodology, M.L. and N.W.; software,
M.L.; validation, M.L. and W.X.; writing—original draft preparation, M.L. and W.X.; writing—review
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version of the manuscript.
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Appendix A. Method Overview
Figure A1 illustrates the overall framework of our method, which consists of the

following components:

Figure A1. Overview of method framework. (1) shows that in the real-world application, the
microphone collects environmental sound, which is processed by the denoising model to extract a
control command for robot execution. (2) presents synthetic data to generate model training dataset,
enhancing self-supervised denoising performance.

Data Scaling. Through synthetic data techniques, the original voice dataset is scaled
to encompass diverse real-world noise scenarios, enhancing denoising robustness. The
synthesis process and parameters are detailed in Appendices B and C. A subset of the
scaled dataset is open-sourced (https://tinyurl.com/2ybfz3jt, (accessed on 25 August
2025)) for community reproducibility.

Denoising Model. We employ a convolutional attention network with self-supervised
learning in the audio frequency domain to denoise robotic control commands, eliminating
environmental background noise and overlapping speech interference. The self-supervised
strategy and model architecture are detailed in Sections 3.2 and 4.3.

Action Execution. The denoised voice commands are processed by a fine-tuned VLA
model to execute robotic manipulation tasks. Task completion accuracy serves as the
primary metric for evaluating HRI performance. Implementation details and experimental
results are documented in Appendix E and Section 4.6.

https://tinyurl.com/2ybfz3jt
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Appendix B. Implementation Details of Audio Synthesis
The synthetic dataset is constructed by systematically mixing clean speech from

the Voice Bank corpus with noise samples from UrbanSound8K (8732 labeled urban
sounds across 10 categories, e.g., street music, car horn) and speech samples from TIMIT
(630 speakers with diverse phonetic variations). This two-stage mixing process generates
(1) a multi-scenario dataset with real-world diverse environmental noise, and (2) a multi-
speaker dataset with speech overlap from concurrent speakers. During the audio synthesis
process, our model accommodates single-channel audio clips of variable durations as input.
To construct the synthetic dataset, we employ the PyDub library. All input audio clips
are normalized to a uniform duration, which is determined by the temporal length of the
original clean speech samples from the Voice Bank corpus.

Subsequently, all audio clips are resampled to 48 kHz. A key parameter β (adjustable
from 0 to 20) is defined to control the signal-to-noise ratio. Higher β (e.g., 20) indicates
severe noise degradation, while lower β (e.g., 0) implies minimal noise interference. During
audio synthesis, β is randomly selected with systematic variation to generate samples
across multiple SNR conditions. This approach scales up the dataset with diverse noise-
contaminated scenarios. Finally, these resampled signals are processed through STFT to
generate complex-valued spectrograms with a 1024-point FFT, a 64 ms Hamming window,
and a 16 ms hop length.

However, we find that when β exceeds 15, the generated multi-speaker dataset exhibits
excessive noise levels, adversely affecting the denoising performance of self-supervised
models trained on this dataset. Consequently, we perform post-processing on the synthetic
data. Detailed procedures are documented in Appendix C.

Appendix C. Implementation Details of Multi-Speaker
Dataset Generation

As described in Section 4.1 and Appendix B, audio synthesis is employed to generate
multi-speaker scenarios for simulation training. However, the synthetic multi-speaker
dataset easily exhibits excessively low SNR, posing challenges to training denoising models
and hindering their application in real-world environments. Therefore, Kullback–Leibler
Divergence [42] is adopted as the objective function to post-process the synthesized multi-
speaker voice, improving the quality of the training data.

We assume that a demixing model T′(z) = M(z) · A−1(z) exists and construct an
optimized objective function D(P0, P1) using the unmixed time-domain signals t,

i:

Pi =
|t,

i(n)|
∥t,

i∥1
, (16)

D(P0, P1) = ∑
n
[P0(n) log(

P0(n)
P1(n)

) + P1(n) log(
P1(n)
P0(n)

)], (17)

where n denotes the number of collected samples. Pi(n) ≥ 0 for all n and ∑∞
n=0 Pi(n) = 1

for i = 0, 1 (simulate human binaural reception). By minimizing the objective function, a
synthetic multi-speaker dataset for audio denoising training is generated, which proves
instrumental for real-world HRI applications.

Appendix D. Implementation Details of the Training Strategy for
the Methods

We compared different training strategies of the methods. As shown in Table A1,
the analysis focuses on the following aspects: (1) whether to train with noisy voice only,
(2) whether to apply audio separation, and (3) whether to employ the convolutional multi-
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head attention module (CAM). The Voice Bank dataset [40] serves as the clean source, while
the training dataset is augmented with synthetic noisy data. All methods are trained for
500 epochs, with results shown in Tables 1–3.

Table A1. Comparison of different training strategies of the methods.

Methods w/o Clean Voice with Audio Separation with CAM

NCT × × ×
NNT ✓ × ×
NerNT ✓ × ×
ONT ✓ ✓ ×
Ours ✓ ✓ ✓

Appendix E. Real-World Deployment Details
Algorithm 1 illustrates the experimental deployment framework. After the denoising

model processes the interaction voice, SpeechRecognition (https://pypi.org/project/S
peechRecognition/, (accessed on 25 August 2025)) is employed to convert the audio into
text instructions for the robot, serving as the language input for the VLA model. We use a
VLA model [3] trained on robot action data (e.g., pull, grasp, wipe) to operate the robot. The
robot only moves correctly when the denoised audio captures clear key semantics from the
language prompt. Model inference is performed on an NVIDIA RTX 4090 GPU to control
UR and Elite robotic arms at 10 Hz. For the Realman humanoid robot, a 384-core NVIDIA
Volta GPU with 48 Tensor Cores serves as the action client in the control system, executing
tasks at 5 Hz. The denoising network completes inference in 0.4 s, while the VLA model
generates actions in about 1.6 s, keeping total processing time under 3 s.
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