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Abstract 

 
The long-term operation of wind turbines (WTs) leads to multi-scale surface defects that critically compromise 

operational reliability. Drone-based defect detection offers a viable approach for real-time assessment of WT 

operational status. However, the current deployment of UAV-based detection systems struggles to simultaneously 

achieve both sensitivity and positioning accuracy for such multi-scale defects. To address this limitation, we propose 

a novel Defect Marginal-aware and Multi-scale Collaborative Attention Network (DMCA-Net). First, we propose a 

Defect Marginal Detail Transfer backbone (DMDT) to enhance edge information in shallow features, which can be 

fused with multi-scale features. Second, a Triple-layer Anchor Attention Feature Selection and Fusion Pyramid 

Network (TAAFSFPN) is introduced to optimize channel-space interactions, which can dynamically balance local 

details and global features, thereby improving defect localization accuracy. In addition, a Histogram-based 

Synergistic Attention Head encoder (HSAH) is designed to detect small object defects by co-optimizing frequency-

domain split-box attention and cross-box attention to enhance the feature intensity of small object defects. Finally, 

the Normalized Wasserstein Distance–Inner Distance–IoU (NWD-InnerDIoU) loss is introduced to enhance model 

generalization and mitigate severe data imbalance, effectively reducing performance fluctuations resulting from 

interactions among multi-scale targets. Experimental results demonstrate that DMCA-Net achieves state-of-the-art 

performance with 83.1% mAP50, representing a 3.1% improvement over baseline, while maintaining real-time 

detection capability at 81.3 FPS on the WT defect dataset. Especially, it outperforms commonly used detection 

models in terms of detection performance. 

 

Keywords: Fusion pyramid, Real-time detection, Wind Turbine, Edge information, Defect Detection 

 

1. Introduction 
Under the dual pressures of global fossil energy 

scarcity and climate change, human civilization is 

transitioning from "black" to "green" energy. As core 

clean energy facilities, WT is expanding rapidly[1]. 

Critical components such as WT blades, when 

chronically exposed to extreme weather, salt spray 

corrosion, and mechanical loads, are prone to surface 

defects including cracks, damage, and erosion. These 

defects compromise aerodynamic performance, cause 

structural failures, and may even lead to fracture 

incidents. Statistics indicate that operation and 

maintenance costs account for 25%–30% of a WTs 

lifecycle expenditure, with surface defects contributing 

to over 40% of these failures[2]. 

Conventional defect detection methods include 

manual inspection, ultrasonic testing, infrared 

thermography, and robotic inspection. However, manual 

inspection poses significant risks due to the necessity of 

working at height and is susceptible to blind spots, 

whereas non-destructive techniques (e.g., ultrasonic and 

thermographic testing) require specialized equipment 

and highly trained personnel. These approaches often 

lead to slow detection rates, high operational costs, and 

limited capabilities for real-time monitoring. The 

deployment of UAVs not only adapts to complex 

terrains and eliminates risks associated with manual 

high-altitude inspections but also enables millimeter-

level crack identification and comprehensive coverage 

through mounted high-resolution equipment[3]. 
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Integrating UAVs with deep learning-based defect 

detection frameworks facilitates holistic monitoring of 

wind turbine operational status. Consequently, 

intelligent detection technologies are essential to 

support efficient wind power operations and 

maintenance under the "Dual Carbon" goal[4]. 

In recent years, advancements in deep learning 

technology have opened a novel path for the intelligent 

operation and maintenance of WTs. Currently, there are 

two types of models applied to WT defect detection: one 

is the convolutional neural network represented by R-

CNN [5-7] and YOLO [8-10] series of algorithms. The 

second is the Transformer-based DETR family of 

frameworks [11]. Diaz and Davis' team built a detection 

model based on Cascaded Mask R-CNN and improved 

Mask R-CNN [12][13], which reduces the model 

complexity but weakens the feature characterisation 

capability. Gu et al. proposed WT-YOLO to enhance 

wind turbine detection accuracy by integrating an 

Omni-Dimensional Dynamic Network (ODDNet) and a 

Pyramid Squeeze Attention Network (PSANet). 

However, this framework overlooks a critical factor in 

WT blade performance[14]. Zhang et al. proposed 

GCB-YOLO, a lightweight detection architecture that 

significantly reduces model size through the integration 

of GhostNet and a Bidirectional Feature Pyramid 

Network (BiFPN). Unfortunately, this approach over-

emphasizes surface-level features while inadequately 

extracting defect edge characteristics[15]. Yu et al. 

introduced the YOLOv8-WTDD algorithm, which 

enhanced multi-scale defect detection accuracy by 

incorporating the Diverse Branch Block (DBB) module 

and Receptive Field Attention Network (RFANet). 

Nevertheless, its detection capability shows limitations 

when applied to small-scale defect identification[16]. 

The Transformer-based Real-Time Detection 

Transformer (RT-DETR) algorithm integrates the 

ResNet backbone with an Attention-based Intrascale 

Feature Interaction (AIFI) hybrid encoder and an 

enhanced decoder structure. This design achieves 

significant improvements in inference speed while 

preserving the global modeling capabilities of DETR. 

By incorporating the DINO denoising learning strategy 

to accelerate convergence, this framework constitutes a 

state-of-the-art detection solution tailored for real-time 

UAV streaming data processing demands[17]. Zhao et 

al. proposed WTNet, a lightweight detection model that 

refined RT-DETR through a Reparameterized Efficient 

Layer Aggregation Network (RepELANNet) and Sparse 

Parallel Feature Pyramid (S-FPN). Further 

improvements are needed to enhance the detection 

capability for closely spaced minor defects[18]. 

However, deploying a UAV-based defect 

identification network in wind farms or natural 

environments faces significant challenges. Firstly, scale 

imbalance in defects complicates multi-scale object 

detection, as corrosion can extend up to 1 m, while 

cracks may measure only 1 cm[19]. Secondly, image 

quality is often compromised by cluttered backgrounds, 

viewpoint variations, and lighting fluctuations. 

Simultaneously, critical spatial features (crack textures 

and corrosion patterns, etc.) are obscured, and WT 

defect edges are blurred. Moreover, conventional 

detection networks like YOLO and R-CNN, despite 

effectively extracting global semantic features, exhibit 

limited localization accuracy due to insufficient 

attention to fine edge details. These issues are hindering 

the progress of UAVs in WTs industrial detection. 

Therefore, an innovative DMCA-Net WTs defect 

detection network is proposed in this study, which is 

specifically designed for UAV-based aerial inspection 

scenarios and constructed upon the RT-DETR 

framework. The specific contributions are listed below: 

(1) We propose a novel backbone detection 

network, termed DMDT, to tackle the challenge of 

inaccurate defect localization caused by weak edge 

information in small target defects. The proposed 

framework incorporates a Hierarchical Edge Pyramid 

Generator (HEPG) to extract robust and noise-resistant 

edge features. In addition, a Dynamic Feature Selector 

(DFS) ensures precise granularity alignment between 

edge features and backbone features. Furthermore, 

multi-scale edge information is adaptively integrated 

into the backbone via a Cross-Channel Edge Integrator 

(CCEI) through a dynamic feature fusion mechanism. 

(2) A novel HSAH encoder is given to adaptively 

partition and hierarchically extract target features in 

complex scenes. Subsequently, small defect detection 

accuracy is significantly boosted in challenging 

environments. 

(3) To solve the problem of weak feature spatial 

information of small object defects triggered by non-

structural factors[20], a novel feature fusion network 

TAAFSFPN is proposed to replace the Cross-Scale 

Feature-Fusion Module (CCFM). Dynamic integration 

of local details and global features is achieved through 

dual-dimensional channel-space modeling. 

(4) To enhance model generalization and mitigate 

performance degradation from mixed-scale targets, we 

define a proportionality factor as a ratio, which is 

conbined with DIoU, Inner-IoU, and NWDLoss to 

construct a novel NWD-InnerDIoU loss function. 

2. Related work 
2.1 Backbone networks in detectors 

As the central feature extraction unit, the backbone 

network progressively extracts semantic information 

from the input image. It can construct multi-scale 

feature maps to provide discriminative features for the 

detection head. The evolution of backbone architectures 

has progressed from manually designed shallow 

convolutional networks, e.g., AlexNet [21] and 

VGGNet [22], to automatically searched modern 

Transformer-based structures, e.g., Swin Transformer 

[23] and ConvNeXt [24]. As target detection has 
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matured, backbone networks have diversified. For 

instance, ResNet-50/101 is commonly employed as the 

backbone in Faster R-CNN. Within the YOLO series, 

YOLOv3 utilizes Darknet-53, which consists of 53 

convolutional layers [25]. YOLOv5 includes a CSP-

optimized variant of Darknet (CSPDarknet), a Focus 

module and Fast Spatial Pyramid Pooling (SPPF) [26]. 

YOLOv8 further enhances this architecture by 

integrating a window attention mechanism adapted 

from the Swin Transformer into the CSPDarknet 

framework [27]. To address the limitation of multi-scale 

modelling in existing architectures, Zhao et al. proposed 

High- performance GPU Network (HGNetv2) to reduce 

the model size, which hierarchically aggregates features 

across receptive fields[28]. A weighted multi-layer 

feature reconstruction (MLFR) module was proposed 

for backbone networks in [29]. While traditional 

network architectures demonstrate effective global 

semantic feature extraction capabilities in response to 

increasing accuracy demands in engineering 

applications, they often exhibit insufficient attention to 

object edge details. Therefore, it results in constrained 

localization accuracy, particularly in tasks involving 

small object defects and low-contrast scenarios, e.g., 

wind turbine crack identification. To address this issue, 

we propose a network structure that enhances the 

extraction of edge information and incorporates multi-

scale dynamic feature representation within the 

backbone architecture. 

2.2 Feature Fusion Methods  
Feature fusion technology strengthens the model's 

perception of multi-scale targets by integrating feature 

information at different levels and scales. The strategic 

integration of high-resolution shallow features 

containing detailed visual information with 

semantically rich deep features significantly improves 

the performance of small object defects. Concurrently, 

cross-layer information exchange between hierarchical 

feature levels strengthens contextual comprehension in 

complex visual environments. Zhang et al. developed a 

multi-scale feature pyramid FPN network to enhance 

small object defects, though its unidirectional 

propagation mechanism inherently compromises fine-

grained detail preservation[30]. Du et al. incorporated 

bottom-up enhancement pathways into their baseline 

architecture and developed PANet to facilitate 

bidirectional information flow, albeit at a substantially 

increased computational cost[31]. Lu et al. subsequently 

proposed CSP-BiFPN, which employed cross-scale skip 

connections and weighted feature fusion to strengthen 

the efficiency of feature interaction[32]. To achieve an 

efficient lightweight model, Zhang et al. developed a 

lightweight dynamic fusion module integrating FFN 

and DWConv to improve feature representation and 

reduce both the parameter count and computational 

overhead[11]. The high-level semantic features are 

employed in an HSFPN architecture to guide the 

selection of low-level features and a channel attention 

mechanism is introduced to dynamically fuse multi-

scale information in order to improve cross-scale 

detection performance in[33]. Chi et al. introduced a 

lightweight three-path context-guided network 

(LTCGNet) for sonar frequency-domain 

applications[34]. However, existing multi-scale 

pyramid fusion, cross-scale dynamic fusion, and 

lightweight dynamic fusion methods still struggle to 

effectively achieve synergistic enhancement between 

local feature representation and global semantic 

information. WTs defects exhibit significant 

morphological variations across different scales. 

Current feature extraction and fusion architectures 

struggle to concurrently capture both large-scale 

deformation patterns and small-scale detail 

characteristics. 

2.3 Comparison with Related Work on Wind 
Turbine Defect Detection 

Although ODDNet[14] dynamically captures local 

details of blade defects through omni-dimensional 

dynamic convolution, it imposes stringent 

computational demands. GhostNet[15] achieves 

lightweight advantages by replacing regular 

convolutions with cheap linear operations, but at the 

expense of fine-grained detail precision. C2f_DBB[16] 

demonstrates strong multi-scale generalization 

capability. however, it heavily depends on sufficient 

training data. RepELAN[18] enhances inference speed 

via efficient layer aggregation and structural re-

parameterization, yet exhibits limited adaptability in 

dynamic scenarios. In contrast, our proposed DMDT 

network introduces a unique edge information flow 

propagation mechanism, which effectively addresses 

the core challenges of edge blurring and small object 

defects omission in WT defect detection. Therefore, it 

can achieve a superior accuracy-efficiency trade-off 

compared to existing backbone networks. 

PSANet[14] employs spatial pyramid pooling to 

compress global contextual features. However, its fixed-

scale pooling operations are less effective in adapting to 

the slender tubular structures of WTs. Despite its 

enhanced multi-scale interaction via repeated 

bidirectional stacking, BiFPN[15] lacks the ability to 

filter background noise. While SE attention in 

RFANet[16] enables dynamic receptive field weighting, 

the architecture fails to establish synergistic perception 

between global turbine structures and local defects. 

Moreover, it tends to lose edge continuity in small 

defects when S-FPN[18] reduces redundant cross-layer 

connections with sparse parallel pathways. Conversely, 

the proposed TAAFSFPN synergistically integrates 

anchor-based attention and channel-wise attention to 

concurrently capture global and local features, 

achieving co-optimization of edge preservation and 

semantic noise suppression through dual-dimensional 

filtering. 
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3. Proposed methods 
3.1 Introduction to the structure of DMCA-Net 

A novel architecture termed DMCA-Net is 

presented to address the inadequate performance of WT 

defect detection systems under conditions involving 

small object defects or low contrast. Therefore, the high-

precision defect identification can be obtained in 

complex operational environments, as illustrated in Fig. 

1. 

UAV-captured WT surface damage images serve 

as the input to the DMDT backbone network. HEPG is 

utilized within the network to extract multi-scale edge 

information from shallow convolutional features, 

producing edge feature maps at multiple resolutions. 

The developed DFS delivers spatially aligned edge 

features to the CCEI, establishing bidirectional 

complementary integration between edge 

characteristics and backbone features. In the neck 

coding network, a HSAH encoder is designed to reduce 

the leakage and misdetection rates by capturing the 

features dynamically and performing the binning 

operation. An enhanced second-generation TAAFSFPN 

incorporating a three-layer CAA is applied to replace 

the CCFM. The output from DMDT is shown in the 

three-layer fusion feature map 3s 4s 5s , which is used to 

address the weakening of spatial information of small 

object defects features triggered by non-structural 

factors. 

 

Fig. 1 The overall architecture of our proposed DMCA-Net

3.2 Defect marginal detail transfer backbone 
network 

Traditional small object defect detection methods 

demonstrate limited accuracy in low-contrast 

environments due to insufficient attention to boundary  

details. To address it, we propose a novel architecture, 

i.e., DMDT, which systematically transfers marginal 

information from shallow features throughout the 

backbone network and enables hierarchical multiscale 

feature integration. 

To mitigate background noise and preserves 

fundamental object contours, we implement shallow 

feature extraction using three convolutional layers with 

max-pooling operations, which significantly enhances 

preliminary edge features. The Hierarchical Edge 

Preservation Gate (HEPG) resolves the inherent trade-

off between detailed feature preservation and limited 

semantic attention in shallow features by generating 

multi-scale edge responses. As shown in Fig. 2, the 

architecture of the spatial marginal pyramids is 

established to maintain high-resolution information 

integrity and suppress original image noise interference. 

The HEPG is designed to extract gradient magnitude 

features mainly using SobelConv for edge detection. 

The process is as follows in Eq. (1) and Eq. (2): 

Conv3D( , ), Conv3D( , )x x y yX KG XG K= =  (1) 

 x yG G G= +  (2) 

where X B C H W     is the input feature map. B 

is the batch size, C is the number of channels, H is the 

height of the feature map, and W is the width of the 

feature map. The horizontal Sobel convolution and 

vertical Sobel convolution edge feature maps are given 

by xG   and 
yG  , respectively. K ,Kx y

  is Sobel's 

convolution kernel. 

Initial edge features kE   are extracted via the 
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SobelConv principle depicted in Fig. 2. Maxpool with 

stride 2 is adopted to realize a multi-stage 

downsampling operation. Subsequently, 1 1Conv    is 

used to execute channel adjustment to refine the feature 

representations. 

DFS is developed to achieve feature alignment 

between output edge features kF   and backbone-

derived main features, as illustrated in Fig. 2. The multi-

index target feature maps are dynamically selected to 

provide spatially aligned edge feature through cross-

layer integration. The related Eq. (3) is below:  

 ( )1 2DFS [ ], [ ], , [ ]k mF F k F k F k=   (3) 

To improve detection of small and morphologically 

irregular defects in WTs, multi-scale edge information 

is dynamically integrated into the backbone network to 

counteract edge blurring caused by downsampling in 

deep features. As shown in Fig. 2, CCEI is designed to 

achieve bidirectional complementarity between edge 

features and backbone features through the residual base 

block BasicBlock and the CCEI structure. Initially, 

Conv Channel Fusion[35] is used for feature splicing. 

1 1Conv   is used for input channel compression to fuse 

features across channels. Next, spatial feature extraction 

is performed by 3 3Conv   to enhance the local details 

of the edge features. Finally, 1 1Conv   is used to adjust 

the dimension of the feature map. Specific formulas are 

described by Eq. (4) and Eq. (5):  

0 1 1Concat( , , , )

( )

cat N

cat k

F F F F

F B ouc H W

−= 

    
     (4) 

1 1 3 3 1 1fuse cat

fuse out

Conv Conv Conv ( )F

F B C H W

F   =

   
 (5) 

where catF   is the feature map output after feature 

channel splicing, and fuseF  is the final feature after the 

fusion of deep semantic features and shallow edge feat 

ures. By modifying the structure of DMDT1, we derive 

three variants as illustrated in Fig. 3, and conduct the 

Backbone Network Comparative Experiment outlined 

in Section 4.4.1. 

 
Fig. 2 From left to right in the DMDT structure: DFS, HEPG, CCEI modules 

 
Fig. 3 Network structure of three different marginal information fusion layers (S3, S4, S5) combined with cross-scale feature 

fusion layers (N3, N4, N5). DMDT2: Parallel fusion is used to fuse S3, S4 and S5 with N3, N4 and N5. DMDT3: A cascade is 

used to fuse S3, S4, and S5 with N3, N4, and N5. DMDT4: CCEI is re-integrated with S3, S4 and S5 based on DMDT3. 

3.3 Histogram-based Synergistic Attention Head 
Small defect features often suffer degradation or 

occlusion under severe weather conditions. 

Conventional global uniform attention mechanisms 

struggle to effectively capture these characteristics, 
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which are dynamically changed. To solve this problem, 

we propose the HSAH encoder, as illustrated in Fig. 4, 

which dynamically extracts and adaptively bins target 

features according to their intensity levels. It 

significantly enhances detection accuracy for small 

object defects in challenging environmental conditions.  

The input feature F B C H W      is 

segmented into two parts using ( )Split x   along the 

channel dimension and then ( )Sort x  is used to rank 

its intensity along the horizontal and vertical directions, 

as shown in Eq. (6) and Eq. (7):  

 
1 2, Split( )F F F=   (6) 

( )( )( )( )( )out 3 3 1 1 1 2Conv Conv Concat ,d

v hSortF FSort F =  (7) 

Frequency-wise paths and Bin-wise paths are 

Created by Eq. (8): 

Softmax SoftmaxB B F F
B FP

Q K Q K

d d
V V

   
=    

   

• •

 (8) 

Where ( ), /B B C B BQ K HW    and

( ), /F F C B BQ K HW    . They are defined as the 

query key matrixes for Bin-wise paths and Frequency-

wise paths. B is the number of bins (to control the global 

scope), and d is the number of attention heads. is the 

element-by-element multiplication and P is the final 

attention map obtained.  

 
Fig. 4 Detailed structure of HSAH including Dynamic-range convolution (Drconv) and Histogram Self-Attention (HSA). The 

dynamic-range feature interaction is achieved bin-wise (capturing global features between bins) and frequency-wise (capturing 

local features within bins), respectively. 

3.4 Three-layer Anchor Attention Feature 
Selection and Fusion Pyramid Network  

The cross-layer fusion mechanism in hierarchical 

scale feature pyramid networks (HSFPN)[36] exhibits 

limited capacity to correlate global structural patterns of 

WTs components with localized defects due to restricted 

receptive fields, which lead to failure in capturing 

macroscopic deformation features in large-scale 

damage (e.g., erosion exceeding 50 cm in length). 

Critical spatial information preservation is diminished 

in the architectural constraint. Particularly, edge 

ambiguity artefacts in WT defect detection are 

introduced via small object defects to reduce crack 

texture details and erosion defect characteristics. Thus, 

the TAAFSFPN network is proposed, as shown in Fig. 

5. The CAA module[37], illustrated in Fig. 5, mitigates 

attention dispersion in long-sequence Transformer 

operations through multi-scale DWconV  [38], which 

explicitly expands receptive fields to encompass meter-

scale structural deformations. Simultaneously, the 

module enhances defect region contrast and suppresses 

false detections induced by texture ambiguity. 

Complementarily, a multi-stage screening mechanism is 

employed in the CA module in Fig. 5 to integrate 

shallow high-resolution features with deep semantic 

features and filters irrelevant channels to suppress 

redundant background interference. The spatial 

coordinate awareness maintains boundary continuity for 

irregular large-scale defects. These dual spatial-channel 

attention mechanisms synergistically complement the 

HSFPN lightweight architecture through depth-wise 

separable convolutions, and complete holistic 

recognition of both microscopic cracks and 

macroscopic erosion patterns. Finally, a simultaneous 

leakage detection risk mitigation and parameter 

reduction can be achieved. As shown in Fig. 5, ‘Position’ 

is added to the CAA module one by one to do the 
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ablation experiment. 

 

 
Fig. 5 Three-layer Anchor Attention Feature Selection and Fusion Pyramid Network. Left: Feature Selection Module (FSM). 

Right: Feature Fusion Module (FFM). Top: the CAA module and the CA module.

3.5 Improvement of the Loss Function 
Conventional IoU loss results in frequent leakage 

and false detection due to insufficient gradient 

information, particularly for small objects where minor 

localization errors cause drastic IoU decay. There are 

unique challenges in WTs defect scenarios that 

microscopic cracks co-exist with macroscopic erosion 

damage. Conventional IoU metrics demonstrate critical 

limitations in such environments, with neither scale 

adaptability relative to target dimensions nor balanced 

gradient allocation across multiscale targets. 

Enhanced localization is achieved through DIoU's 

center-distance penalty, which operates in parallel with 

NWDLoss's distribution alignment. Furthermore, Inner-

IoU prevents large erosion targets from dominating the 

optimization process by adaptively generating dynamic 

auxiliary boxes based on target scales. In addition, 

NWDLoss mitigates scale imbalance by modeling 

bounding boxes as Gaussian distributions and 

computing similarity via Wasserstein distance. This 

distribution-based metric ensures equal gradient 

sensitivity for both small and large targets. The pixel-

level vulnerability of IoU is effectively resolved[39-41]. 

Ultimately, both detection accuracy and generalisation 

capability are improved. The NWD-InnerDIoU is 

defined from Eq. (9) to Eq. (13): 

 

a

InnerIoU

rea

over
L

lap

total
=  (9) 

 

2

DIoU 2

( , )
1

gtb b
L IoU

c


= − +  (10) 

 Inner DIoU DIoU InnerIoUL L IoU L− = + −  (11) 

2

2 ( , )
NWD( , ) exp

A B

A B

W

C

 
 = −
 
 

N N
N N  (12) 

NWD NWD(1 ) Inner DIInnerDIoU UoL ratio L ratioL −− = − + (13) 

where b and gtb  are the centres of the prediction and 

target frames, respectively.    is the Euclidean 

distance between the two centre points. c is the diagonal 

distance of the smallest rectangle that can cover both the 

prediction frame and the target frame. 
2

2 ( , )A BW N N  

is the Wasserstein distance between the two bounding 

boxes. C is the number of categories in the dataset. 
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Gaussian distribution
AN  corresponds to the predicted 

bounding box, while 
BN  represents the ground-truth 

bounding box. NWD( , )A BN N   is the Wasserstein 

distance normalised by the exponential form.  

4. Experiment 

4.1 Surface damage dataset for WTs 
This study addresses the challenge of acquiring 

high-quality datasets in the wind energy sector. Two 

complementary data sources are integrated: the DTU-

Drone dataset provided by ASM Shihavuddin [42] and 

a surface damage dataset supplied by the National 

Jiuquan WT Equipment Quality Supervision and 

Inspection Centre [43]. The image data was acquired 

with a Zenmuse P1 camera mounted on a DJI Matrice 

300 RTK UAV platform. There are two key 

specifications that ensure high-quality data for this 

research: a storage capacity of 128 GB and a maximum 

photo resolution of 8192 × 5460 pixels. The dataset 

includes three characteristic defect categories. The first 

category comprises cracks, specifically linear cracks, 

bending cracks, and forking cracks. The second 

category consists of damage types including scratches, 

depressions, and deformations. The third category 

involves erosion patterns characterized by irregular 

wear and material shedding. Multi-angle lighting and 

multi-view capture strategies are employed under 

diverse weather conditions to ensure comprehensive 

scene variability. 

We first allocate 1960 images from a dataset of 

2986 samples at 640×640-pixel resolution to the 

training set. The remaining images are divided into a test 

set (684 samples) and a validation set (342 samples). 

Subsequently, data augmentation techniques illustrated 

in Fig. 7 are applied to the training set to enhance model 

generalization across diverse datasets. Therefore, the 

training set is expanded to 2392 images, which 

maintains a 7:2:1 ratio between the training, test, and 

validation sets. 

 
Fig. 6 Type of defect 

 
Fig. 7 Data set enhancement methods: (a) original image, (b) 

mirroring, (c) clockwise rotation 90  , (d) anti-clockwise 

rotation 90 , (e) mosaic with different brightness, (f) cropping. 

Information on the WT defect detection dataset 

based on drone photography is shown in Fig. 8. The 

marked box’s area is classified as small if 240S   

pixels, medium if 2 240 100S    pixels, and large if 
2100S    pixels[44]. (a) shows a comparable 

prevalence of damage and erosion defects, with cracks 

occurring less frequently, and further provides the size 

distribution of defects across large, medium, and small 

categories. (b) visualizes dynamic distributions of 

bounding boxes, enabling real-time training monitoring 

and early detection of potential overfitting. (c) reveals 

uniform annotation distribution, informing loss function 

selection while exposing dataset characteristics. (d) 

indicates a predominance of small-scale objects. 

 

 
Fig. 8 WT defect dataset information: (a) category 

infographic, (b) boundary detection box dynamic distribution 

diagram, (c) statistical distribution of bounding box positions, 

(d) statistical distribution of bounding box sizes. 
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4.2 Experimental environment 
There are an Intel Core i7-14700HX processor and 

an NVIDIA RTX 4060 graphics card in the experimental 

platform. The software environment involves CUDA 

11.8, PyTorch 2.0.1, and Python 3.8 to fully support 

GPU-accelerated model training and inference 

operations. The iteration cycle is limited to 200 round 

and the number of samples processed in each batch is 

set to 4. In addition, the number of worker threads 

during data loading is set to 8, and the initial learning 

rate is set to 0.0001. All the other training hyper-

parameters are taken as defaults, and all the tests of the 

model are conducted in the same environment. 

4.3 Description of Experimental Indicators 
The performance evaluation for WT defect 

detection employs four established metrics from Eq. (14) 

and Eq. (18): Precision (P), Recall (R), mean Average 

Precision (mAP), and Frames-Per-Second (FPS) 

detection rate. 

 ( )P TP TP FP= +  (14) 

 ( )R TP TP FN= +  (15) 

 
1

0
( )dAP P R R=   (16) 

 
n 1

( )
N

mAP AP n N
=

=   (17) 

erence1000ms preprocess inf postprocessFPS T T T= + +（ ） (18) 

where TP (True Positive) and FP (False Positive) 

represent the number of correctly or incorrectly detected 

surface defects on WTs, respectively. FN (False 

Negative) represents the number of missed defects. AP 

is the average detection accuracy for each class of 

defects, and N is the number of defect classes. 
preprocessT ,

erenceinfT  , postprocessT   denote the image preprocessing 

time, inference speed, and post-processing time, 

respectively. 

4.4 Experimental results and analyses 

4.4.1 Backbone Network Comparative Experiment 
The DMDT1 architecture is augmented to evaluate 

the cross-channel feature fusion benefits of the CCEI 

module across model locations and scales. Specifically, 

its marginal information fusion layer is integrated with 

the deep feature output layer, as illustrated in Fig. 3. 

There are three variants (DMDT2–DMDT4) generated 

for comparative evaluation through structural 

adaptations. The results are shown in Table 1. 

The mAP50 is improved by 1.3% when both 

DMDT1 and DMDT3 are used, but the latter GFLOPs 

and Parameters are improved by 11% and 9%, 

respectively. The detection efficiency is seriously 

affected while the former GFLOPs and Parameters are 

improved by 4% and 6%, which are relatively small. 

Comparative analysis reveals that alternative network 

architectures achieve limited mAP improvement due to 

the detail degradation and progressive amplification of 

the shallow noise during deep fusion processes. Fig. 9 

demonstrates that DMDT1 achieves faster convergence 

and higher mAP50 gains than counterparts, potentially 

attributable to conflicting edge-semantic gradients that 

impede convergence in comparative models. 

Consequently, DMDT1 is selected as the optimal 

architecture in the enhanced backbone network because 

of superior benefit-cost performance among the four 

variants. 

In order to validate the superior feature extraction 

capability of the proposed DMDT backbone network for 

WT defects, comprehensive comparative experiments 

with state-of-the-art backbones are conducted. As 

shown in Table 2, DMDT1 achieves the highest 

precision among all compared models while 

maintaining a competitive mAP50 of 0.813. It 

approaches the top-performing ODDsNet with 10.1% 

lower computational cost and 7.8% fewer parameters. 

Obviously, the precision–recall trade-off gap observed 

in RepELANNet is reduced in DMDT1 through 

optimized edge-aware feature transfer to enhance crack 

localization accuracy. GhostNet exhibits lower 

computational complexity. However, its mAP50 lags 

significantly behind DMDT1 by 1.5%, indicating 

critical limitations in micro-defect boundary 

preservation. Additionally, DMDT1 achieves a 1.3% 

higher mAP50 than C2f_DBB when 0.4% fewer 

parameters are used, proving exceptional efficiency in 

suppressing redundant feature interactions. It is 

confirmed that the HEPG and DFS play a synergistic 

role in robust defect characterization under complex 

operational conditions. 
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Fig. 9 mAP50 curve comparison chart

 ab   1 Comparison of model performance by improved the 

backbone network. 

Model mAP50 P R GFLOPs Parameters 

RT-

DETR 
0.800 0.817 0.782 56.9 19.87 

DMDT1 0.813 0.820 0.786 59.4 21.11 

DMDT2 0.802 0.808 0.781 63.2 21.80 

DMDT3 0.811 0.817 0.774 63.2 21.80 

DMDT4 0.810 0.810 0.796 65.8 22.24 

 ab   2 Comparing experimental results of backbone 

networks. 

Model 
mAP5

0 
P R 

GFLOP

s 

Parameter

s 

ODDsNet 0.814 
0.81

6 

0.79

6 
66.1 22.90 

GhostNet 0.798 
0.82

3 

0.79

8 
49.1 16.32 

C2f_DBB 0.800 
0.80

5 

0.75

8 
58.4 21.2 

RepELANN

et 
0.804 

0.81

5 

0.80

6 
53.0 20.12 

DMDT1 0.813 
0.83

0 

0.78

6 
59.4 21.11 

4.4.2 Experimental analysis of enhancing model 
performance using the CAA attention mechanism  

To evaluate the combined efficacy of CAA and 

HSFPN in global context capture, we sequentially 

integrate the channel attention assembly module at five 

strategic positions within the hierarchical scale feature 

pyramid network, as shown in Fig. 5. This systematic 

ablation study, documented in Table 3, precisely isolates 

each component's contribution. ("√" indicates that the 

CAA module is added to that position, and the"-" 

indicates that the CA module is retained at that position). 

As evidenced by the defect scale distribution in Fig. 8(a), 

erosion defects (43.0%, n=1195) predominantly 

constitute large-scale manifestations, while damage 

(50.6%, n=1486) displays small-scale anomalies. 

Precision trends in Table 3 reveal dual-attention 

specialization. CAA modules progressively enhance 

large-scale erosion detection accuracy, and the retained 

CA modules preserve small-scale damage recognition. 

The optimal multi-scale balance is achieved by 

integrating three CAA layers and two CA modules into 

the FSM. Consequently, a 1.7% improvement in mAP50 

is obtained over the baseline. The parameters and 

GFLOPs are reduced to 4.5% and 7%, respectively. 

Although full CAA integration improves erosion 

detection, damage accuracy is reduced by 4.5% due to 

diminished edge sensitivity, while a 4% computational 

overhead is incurred. 

The Grad-CAM++ algorithm is employed in this 

study to generate infrared heat maps, as illustrated in Fig. 

10, enabling visual verification for multi-scale defect 

recognition. The colour intensity in the heat map 

directly correlates with the model's defect detection 

sensitivity, where deeper red hues signify stronger 

defect recognition. The enhanced model utilizes CA-

driven local attention to minimize background 

interference for small-scale cracks and maintains 

critical edge details from small object defects. The false 

identification issues inherent in the baseline model can 

be effectively resolved by the proposed approach. 

Regarding large-scale erosion, the CAA module 

expands hotspot coverage across defects, enabling a 

holistic perception of metric-scale deformations. The 

TAAFSFPN network improves large-area erosion 

detection via a dual attention framework that combines 

global context modeling with localized attention 

mechanisms. By prioritizing attention weights on defect 

core regions rather than peripheral edges, the accuracy 

of defective area recognition is significantly enhanced 

in the synergistic system. Quantitative and visual 

evidence collectively confirms that the three-layer CAA 

configuration optimizes synergy between global and 

local features. 

As shown in Table 4, comparative experiments are 

conducted to rigorously evaluate the feature fusion 
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efficacy of TAAFSFPN. The results show that the 

second-highest precision (0.835) is achieved among 

state-of-the-art networks, being slightly outperformed 

only by RFANet (0.838), while using 9.8% fewer 

computational resources. Notably, TAAFSFPN obtains 

a leading mAP50 of 0.817 that matches top-performing 

BiFPN and RFANet. However, there are 8.2% fewer 

GFLOPs and 7.5% reduction parameters than BiFPN. 

Crucially, the proposed method overcomes the critical 

recall deficiency of S-FPN and mitigates PSANet's 

precision-recall imbalance through adaptive spatial-

channel filtering. 

 
Fig. 1  Heat map comparison 

 
Fig. 11 (a) Train Box Loss curve (b) Val Box Loss curve 

 ab   3 Ablation experiments by adding CAA modules at each of the five positions of the feature fusion network. 

Position1 Position2 Position3 Position4 Position5 mAP50 crackmAP  
damagemAP  

erosionmAP  mAP50:95 GFLOPs 
Parameter

s 

- - - - - 0.806 0.883 0.767 0.786 0.443 53.3 18.11 

√ - - - - 0.810 0.849 0.762 0.792 0.438 53.5 18.36 

√ √ - - - 0.812 0.867 0.753 0.800 0.435 53.9 18.39 

√ √ √ - - 0.817 0.896 0.747 0.810 0.449 54.3 18.43 

√ √ √ √ - 0.814 0.869 0.730 0.823 0.432 55.9 18.46 

√ √ √ √ √ 0.817 0.822 0.722 0.877 0.439 56.5 18.56 

 

 ab   4 Comparing experimental results of feature fusion network 

Model mAP50 P R GFLOPs Parameters 

PSANet 0.811 0.815 0.806 50.4 17.62 

BiFPN 0.817 0.830 0.806 59.3 19.94 

RFANet 0.816 0.838 0.802 60.1 20.11 

S-FPN 0.812 0.824 0.798 52.0 18.11 

TAAFSFPN 0.817 0.835 0.801 54.3 18.43 
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4.4.3 Ablation experiment 
To further investigate the impact of DMDT1, 

TAAFSFPN and HSAH on the detection model, we 

perform a careful ablation study on the WTs defect 

target detection dataset. The effect of each structure on 

the performance of the RT-DETR baseline model is 

measured separately. Table 5 depicts the results of the 

ablation study. The symbol “√” indicates that the 

structure is used, while “-” indicates that it is not used. 

The DMDT1 backbone network contributes a 

selective 1.3% improvement in mAP50 while 

maintaining consistent mAP50:95 performance. It 

indicates the effectiveness in coarse-grained defect 

identification and a constrained impact on fine-grained 

localization tasks. The standalone integration of 

TAAFSFPN produces a 1.4% mAP50:95 improvement 

with a 4.6% GFLOPs reduction. It demonstrates the 

efficient feature selection capabilities. The HSAH 

encoder resulted in a 1.7% improvement in mAP50, 

which shows the effectiveness of its channel-space dual-

dimensional attentional synergy. In the Group 5 

experiment, mAP50 is improved by 2.1%, while FPS is 

decreased by 8.1%. GFLOPs are basically flat. The 

experimental results show complementary performance 

characteristics between DMDT1 and TAAFSFPN, with 

GFLOPs remaining largely unchanged. DMDT1 and 

TAAFSFPN are combined to jointly enhance 

classification precision since the former delivers robust 

edge feature representation, and the latter uses attention 

mechanisms to suppress background interference. 

Nevertheless, the computational cost associated with 

edge feature transmission constrains further localization 

accuracy enhancement. Group 7 experimental results 

demonstrate synergistic optimization of the multi-

attention mechanism. The 0.823 mAP50 and 0.444 

mAP50-95 are obtained to confirm the effectiveness for 

complex background target detection. Group 8 results 

show further improvement to 0.828 mAP50 and 0.445 

mAP50-95, while a 7.3% FPS reduction to 81.3 

compared to baseline. The precision and recall are 

increased by 2.4% and 2.0% respectively to indicate 

significant inter-module synergy. 

As shown in Fig. 12 and Fig. 13, Group 8 maintains 

a consistently higher mAP50 and Precision across all 

training epochs and demonstrates the fastest 

convergence speed among all experimental models. 

 
Fig. 12 mAP50 comparison curves 

 
Fig. 13 Precision comparison curves 

4.4.4 Validity of loss function improvements 
In the loss function comparison experiments, 

multiple Inner-series loss functions are first 

systematically evaluated to investigate the correlation 

between the DMCA-Net algorithm's detection 

performance and InnerIoU computation methodologies. 
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Subsequently, the effectiveness and stability of the 

NWD-InnerDIoU combination are rigorously 

investigated to validate its contributions to small object 

defects detection accuracy enhancement and loss 

convergence improvement. Comparative experiments in 

Table 6 and Fig. 11 demonstrate that NWD-InnerDIoU 

(ratio=0.5) achieves the lowest Train Box Loss and Val 

Box Loss values through scaling factor ratio 

optimization. This observation, combined with the 

values of mAP50 and mAP50:95 metrics in Table 6, 

indicates a significant improvement in small object 

defects localization performance. 

NWD-InnerDIoU fundamentally addresses the 

inherent challenge of 'small targets being submerged by 

large objects' in WT defect detection through probability 

distribution alignment and dynamic scale adaptation. A 

reusable loss function design paradigm is established by 

the ratio modulation mechanism for industrial multi-

scale object detection. 

4.4.5 Impact of Dataset Scale on Model 
Performance 

The WT defect training set consists of 1,968 raw 

images, and is expanded to 2,392 through data 

augmentation thereafter. Although smaller than generic 

object detection benchmarks, this scale can accurately 

reflect real-world industrial inspection scenarios[7]. 

However, there are some inherent data acquisition 

constraints in these applications. For example, the 

limitation of high-altitude access can reduce image 

collection frequency, occurrence rates defect are low 

(e.g., the annual failure rate of wind turbine blades is 

only 0.3% [45]), and the specialised annotation is 

needed to support fine-grained defect categorisation. 

To evaluate the impact of data volume on model 

performance, we construct multiple training sets based 

on the original 2,392 images. As illustrated in Fig. 14, 

we generate an additional seven training subsets through 

random sampling and augmentation techniques. These 

subsets vary in size and composition, which allows for 

a more comprehensive analysis of the impact of dataset 

size on the model[18]. The experimental setup and 

corresponding results are shown in Fig. 14 When trained 

on 50% of the base set (1,196 images), the model shows 

an 8.2% drop in mAP50 due to limited feature diversity. 

Performance saturates at 2,392 images, which explains 

that adequate learning signals were obtained. Detection 

performance is slightly improved by less than 1.0% 

when using images larger than those in the base set, 

consistent with the principle of diminishing returns. 

This indicates that our model can achieve better 

detection performance without relying on excessively 

large datasets.

 
Fig. 14 Impact of Training Data Scale on Model Performance 

4.4.6 Comparison experiments 
To rigorously validate the superiority of our 

proposed DMCA-Net, comprehensive comparative 

experiments are conducted against both established 

object detection architectures (including the YOLOv5–

YOLOv8 series) and the state-of-the-art YOLOv10. For 

a fair performance evaluation, models with similar 

computational complexity (GFLOPs) are systematically 

selected, as shown in Fig. 14 The hyperparameter 

settings for all of the above versions refer to open-

source data published by the experimental developers. 

Combination of Table 7 and Fig. 15, DMCA-Net 

demonstrates superior efficiency and real-time 

processing capability with 19.94M parameters and 

12.3ms inference time (substantially which are lower 

than YOLOv8m, YOLOv9m[46], and YOLOv10m[47]). 
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Our proposed model achieves state-of-the-art detection 

performance, with a precision of 0.840, mAP50 of 0.831, 

and mAP50-95 of 0.449, surpassing all compared 

methods. Additionally, the recall rate remains highly 

competitive, with only a 0.3% gap compared to the top-

performing YOLOv10m. These results confirm the 

model's strong accuracy and robustness in object 

detection tasks. Compared to the RT-DETR baseline 

model, it achieves 3.1% and 1.4% improvement in the 

mAP50 and mAP50:95 metrics, respectively. 

The proposed detection system achieves an 

optimal precision-efficiency balance through novel 

architectural design. Specifically, it is designed for high-

precision detection of small defects in computationally 

constrained environments. The proposed solution 

delivers outstanding performance in wind turbine 

surface inspection. It maintains a modest 7.8% increase 

in inference latency and significantly enhances real-

world applicability in resource-limited settings. 

 ab   5 Results of the ablation experiments. 

Group DMDT1 
TAAF- 

SFPN 
HSAH mAP50 mAP50:95 P R FPS GFLOPs 

1 - - - 0.800 0.435 0.817 0.782 87.70 56.9 

2 √ - - 0.813 0.435 0.820 0.786 78.13 59.4 

3 - √ - 0.817 0.449 0.835 0.801 88.50 54.3 

4 - - √ 0.817 0.42 0.833 0.777 91.74 57.3 

5 √ √ - 0.821 0.439 0.831 0.786 80.65 56.8 

6 √ - √ 0.820 0.429 0.821 0.769 81.96 59.7 

7 - √ √ 0.823 0.444 0.840 0.798 90.10 54.3 

8 √ √ √ 0.828 0.445 0.841 0.802 81.30 57.1 

 ab   6 Loss function comparison experiment 

R-Loss mAP50 mAP50:95 P R 

Giou 0.828 0.445 0.841 0.802 

InnerGiou+nwdloss 0.821 0.444 0.827 0.799 

InnerEiou+nwdloss 0.825 0.440 0.832 0.793 

InnerPiou+nwdloss 0.822 0.435 0.838 0.802 

InnerSiou+nwdloss 0.819 0.435 0.843 0.797 

NWD-InnerDIoU(ratio=0.5) 0.831 0.449 0.840 0.807 

NWD-InnerDIoU(ratio=0.45) 0.817 0.444 0.828 0.809 

NWD-InnerDIoU(ratio=0.6) 0.805 0.435 0.821 0.795 

MPDiou 0.821 0.447 0.815 0.806 

InnerMPDiou 0.827 0.432 0.83 0.806 

Focaler_Giou 0.826 0.442 0.831 0.794 

 ab   7 Experimental comparison results of different algorithms 

Models P R mAP50 mAP50:95 Inference time Parameters GFLOPs 

YOLOv5m 0.788 0.758 0.786 0.441 10.8 20.02 47.9 

YOLOv6s 0.810 0.801 0.798 0.432 10.6 18.63 44.0 

YOLOv8m 0.824 0.804 0.817 0.439 15.1 24.84 78.7 

YOLOv9m 0.811 0.789 0.820 0.421 14.7 24.12 76.5 

YOLOv10m 0.836 0.810 0.827 0.436 13.3 21.41 64.5 

RT-DETR 0.817 0.782 0.800 0.435 11.4 19.87 56.9 

Ours 0.840 0.807 0.831 0.449 12.3 19.94 57.1 

 
Fig. 15 A comparative evaluation of the latest models of the YOLO series and the proposed method based on four performance 
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metrics: (a) GFLOPs versus parametric quantities, (b) mAP50 versus inference speed. 

It can be seen from Fig. 16 that larger box 

dispersion and lower robustness coefficients are caused 

in YOLOv5m and YOLOv6s with lightweight 

architecture due to their limited feature extraction 

capability. The proposed DMCA-Net is further 

improved through the integration of multi-scale feature 

enhancement and optimized feature fusion. This 

improvement yields superior performance over both 

YOLOv8m and YOLOv9m in WT defect detection 

tasks. However, both of them cannot deal with small 

object defects on complex backgrounds and WTs. The 

robustness is still insufficient. Therefore, a SPP-SAM 

hybrid module YOLOv10m is integrated to strengthen 

the defect edge response through spatial attention 

weighting. It significantly improves the mAP50 under 

complex backgrounds. The DMCA-Net model 

significantly outperforms other algorithms in terms of 

its stability and robustness distribution. 

A comparison of the detection results of the seven 

models for the three types of defects on the test set is 

shown in Fig. 17. In the crack detection task, although 

YOLOv10m, RT-DETR and DMCA-Net show higher 

accuracies, ours can completely detect all three crack 

defects while the other models have leakages. For 

damage defects, YOLOv5m, YOLOv6s and YOLOv9m 

show significant underdetection and low localisation 

accuracy. It is demonstrated by our model's results that 

the highest bounding box matching accuracy is achieved 

on all five damage defect detections. In the detection 

task involving seven tiny erosion targets, YOLOv6s and 

YOLOv8m fail to detect four and three targets, 

respectively, while RT-DETR exhibits category 

misclassification. In contrast, our method achieves 

precise identification of all defects. Therefore, the 

experimental results show that our model achieves 

optimal detection accuracy in all three defect detection 

tasks. 

 
Fig. 16 Comparison of boxplots for multiple models 

 

 
Fig. 17 Results of WTs surface defect detection.

5. Conclusion 
The DMCA-Net detection model is proposed with 

the following core contributions: 

First, the DMDT backbone network is constructed 
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to facilitate bidirectional complementarity between 

shallow edge details and deep semantic features. This is 

achieved through a triple mechanism comprising 

gradient-aware edge feature extraction, multi-scale edge 

pyramid generation, and cross-channel feature fusion. 

Second, a novel HSAH encoder is introduced to 

dynamically capture target features in complex 

environments and perform intensity-based feature 

binning, thereby improving detection accuracy for small 

object defects. 

Additionally, the TAAFSFPN feature fusion 

network is designed to enhance the performance of 

small defect detection via a dual-dimensional attention 

mechanism operating across both channel and spatial 

domains. This mechanism effectively balances global 

contextual modeling with fine-grained local detail 

perception. 

Finally, a composite loss function named NWD-

InnerDIoU is proposed to mitigate the limitations of 

traditional IoU metrics in small object defect detection 

scenarios. 

While reducing detection loss, sensitivity has been 

improved and convergence speed has been accelerated. 

Experimental results show that DMCA-Net achieves a 

mAP50 of 0.831 on the WTs defect dataset. The 

proposed method outperforms the baseline RT-DETR, 

with a real-time detection rate of 81.3 FPS, and exceeds 

mainstream YOLO variants in inference speed. 

This framework demonstrates a superior accuracy-

efficiency balance compared to mainstream algorithms, 

e.g., the YOLO series. We also provide a 

computationally efficient and deployment-ready 

solution for industrial WTs inspection systems. 
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