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Integrating large language
models for intuitive robot
navigation

Ziheng Xue1, Arturs Elksnis1 and Ning Wang2*
1Bristol Robotics Laboratory, University of Bristol, University of the West of England, Bristol, United
Kingdom, 2School of Computing and Digital Technologies, Sheffield Hallam University, Sheffield,
United Kingdom

Home assistance robots face challenges in natural language interaction, object
detection, and navigation, mainly when operating in resource-constrained
home environments, which limits their practical deployment. In this study,
we propose an AI agent framework based on Large Language Models (LLMs),
which includes EnvNet, RoutePlanner, and AIBrain, to explore solutions for these
issues. Utilizing quantized LLMs allows the system to operate on resource-
limited devices while maintaining robust interaction capabilities. Our proposed
method shows promising results in improving natural language understanding
and navigation accuracy in home environments, also providing a valuable
exploration for deploying home assistance robots.
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1 Introduction

According to data from the United Nations, the global proportion of the population
aged 65 and over has nearly doubled, rising from 5.5% in 1974 to 10.3% in 2024. It
is predicted that between 2024 and 2074, this figure will double again, reaching 20.7%
(Unfpa, 2024). The most pressing issue brought by population aging is the increasing
strain it places on healthcare systems. While expanding nursing homes has been one
solution, it often leads to challenges such as patient suffering and depression (Walker et al.,
2007). Therefore, technological solutions increasingly focus on providing home care for the
elderly, allowing individuals to live independently for longer periods. Despite significant
technological advancements, there are still no commercially available robots capable
of fully supporting elderly care at home. This is primarily due to the complexity of
the tasks these robots must perform (Bodenhagen et al., 2019), the unpredictability of
home environments (Alterovitz et al., 2016), and the need for unstructured interactions
with users (Coronado et al., 2017).

LLMs (Zhao et al., 2023) represent a significant breakthrough in Natural Language
Processing (NLP), enabling machines to perform a wide range of tasks, even those
not explicitly included in their training data. Few-shot learning (Brown, 2020) and
zero-shot learning (Wei et al., 2021) have demonstrated the power of LLMs to
generalize across new tasks with minimal fine-tuning. However, LLMs’ significant
capabilities are accompanied by equally huge computational and memory requirements,
complicating their deployment in resource-limited settings or scenarios requiring
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high concurrency. Low-bit quantization has emerged as a critical
technique for improving the efficiency and deployability of LLMs.
Quantization reduces the bit-width of tensors, lowering memory
and computation requirements while maintaining an acceptable
level of performance. Thus, quantization is crucial for allowing
LLMs to operate efficiently on resource-constrained devices, such as
domestic robots, thereby broadening their practicality. In this paper,
we demonstrate the deployment of a quantized LLMon a local robot,
enabling effective operation on limited hardware.

As LLMs continue to develop, they are increasingly being
integrated into the development of AI agents—intelligent entities
capable of perceiving their environment, making decisions, and
executing actions to achieve predefined goals (Analyticsvidhya,
2024). Recent developments in agent-based autonomous
systems, like AutoGPT (Birr et al., 2024) and ChatGPT-plugins
(Chatgpt plugins, 2024), have leveraged the power of large
language models to generate text, control tools, and engage with
users. These systems act as central controllers within artificial
intelligence frameworks. Each agent is typically given a specific role,
accompanied by tailored instructions and personality traits that
shape how they interact with users. Researchers have found that
shaping an agent’s “personality” can verifiably impact how LLMs
perform in downstream tasks (Serapio-García et al., 2023).

However, despite the promise of AI agents, one of the critical
challenges in deploying these systems is high deployment costs.
Current AI agents rely heavily on large models, which are expensive
to maintain through API calls and are challenging to scale for
widespread commercial use. As a result, there is an increasing
demand for smaller models that can deliver comparable capabilities
at a reduced cost.

To address these challenges of cost and interpretability, we
propose a novel AI agent architecture designed with modularity
and hierarchical decision-making at its core. Our framework’s
primary design objectives are: 1) To enhance system robustness
under complex instructions by decoupling the core tasks of
environmental understanding (EnvNet), high-level planning
(AIBrain), and low-level navigation (RoutePlanner); and 2) To
enable transparent traceability of the agent’s decision-making
process for easier debugging and optimization.Our key contribution
lies in demonstrating how this interpretable, three-part architecture
not only functions efficiently on resource-constrained hardware via
quantized LLMs but also provides a more robust and diagnosable
solution for real-world home care scenarios compared tomonolithic
agent designs.

2 Related work

Home intelligent robots have become a key innovation in smart
home environments, designed to assist users with various daily
tasks. Recent research highlights their effectiveness in performing
household chores, offering companionship, and enhancing security.
For example, vacuum robots like iRobot’s Roomba are widely
accepted for their efficiency in autonomous cleaning (Roomba,
2024). Companion robots have shown great potential in elderly
care by reducing loneliness and providing emotional support.
Additionally, security robots with surveillance capabilities enhance
household safety through real-time monitoring. However,

challenges remain in enabling these robots to navigate complex
home environments and interact naturally with users. As research
advances, future home intelligent robots are expected to offer greater
autonomy and intelligence, tailoring services to user preferences and
incorporating emotional computing to build stronger connections.

LLMs have made significant progress in natural language
processing, demonstrating impressive generative abilities that
can improve the functionality of intelligent robots. Models like
GPT and T5 (Raffel et al., 2020) have advanced natural language
understanding (NLU) and generation (NLG), enabling more
complex interactions. Recent work has focused on combining
LLMs with Vision-Language Pre-training (VLP) models (Dai et al.,
2022), enhancing multimodal capabilities that support a range
of applications, such as 3D comprehension and decision-making
in autonomous systems (Rajvanshi et al., 2023; Elksnis et al.,
2025). This combination is essential for improving the perception
and interaction skills of home robots. Furthermore, the utility of
local quantized LLMs in semantic navigation has been explored,
indicating their potential for enhancing robotic navigation
capabilities in complex environments (Elksnis et al., 2024).

AI Agents represent a key area of research, defined as
autonomous systems capable of performing tasks and interacting
with their environment. These systems can be categorized into
various types, including conversational agents (Miao et al., 2023),
task-oriented agents (Gur et al., 2023), and fully autonomous
agents (Wang et al., 2023). They rely on advanced technologies
such as natural language processing, machine learning, and
knowledge graphs to improve their functionality. While models like
GPT and BERT enable natural language interactions, challenges
such as explainability and contextual understanding remain
significant barriers to broader adoption (Shapira et al., 2023).
Future advancements are expected to improve agent autonomy
and multimodal capabilities, ultimately offering more integrated
solutions across various sectors.

In contrast to existing works, our research contributes a
framework that addresses not only the computational efficiency
via quantized LLMs but also the critical architectural limitations
of current AI agents. While many systems focus on integrating
a single large model, our work emphasizes a principled, modular
design consisting of EnvNet, AIBrain, and RoutePlanner. This
hierarchical structure distinguishes our approach by providing
clear interpretability at each stage of the decision-making process.
It moves beyond simply using an LLM for language tasks and
instead presents a blueprint for a more robust, diagnosable, and
scalable agent architecture tailored for the complexities of home
care robotics.

3 Proposal framework

3.1 System architecture overview

The system architecture of the intelligent home assistance
robot, as illustrated in Figure 1, emphasizes the coordination
between the core hardware and software components. At the
heart of the architecture is the modular design, enabling seamless
integration and communication across all subsystems for real-
time task execution. These core elements work together to
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FIGURE 1
Intelligent home assistance robot system architecture.

ensure precise perception, flexible decision-making, and efficient
navigation in dynamic environments.The details of this architecture
are outlined below:

Our framework consists of three core components: EnvNet,
which facilitates environmental perception; RoutePlanner,
responsible for efficient path planning and obstacle avoidance;
and AIBrain, which processes and interprets user instructions
using LLMs. The AI agent enables the robot to navigate efficiently
using a wheeled locomotion system, allowing it to move through
obstacles and cluttered spaces designed for human environments
while performing tasks at height. This approach aims to improve
the robot’s capabilities in supporting daily activities, making it a
valuable assistant in home care settings.

• EnvNet handles environment perception using an RGB-D
camera. To reduce the computational load, the system is
divided into two parts: fixed objects in the home, such as
sofas and beds, are pre-detected using ORB-SLAM2 (Mur-
Artal and Tardós, 2017) and FCAF3D (Rukhovich et al.,
2022), with their positions, colors, and other attributes
stored. Non-fixed objects, like fruits, are detected in real-time
using YOLOv8 (Ultralytics, 2023).

• RoutePlanner ensures stable and efficient movement through
complex environments using awheeled base.The robot employs
omnidirectional wheels, allowing it to move in any direction
without adjusting its centre ofmass.Thiswheeled path planning
system enables the robot to perform tasks requiring precise
movement and positioning, such as easily navigating through
narrow spaces or avoiding obstacles.

• AIBrain interprets complex natural language commands and
executes intelligent decisions. This component is designed to

imitate human thinking, allowing the AI agent to understand
commands such as “I want to eat an apple,” go to the kitchen,
recognize the apple, and then bring it to the user.

To further clarify how these modules collaborate to execute a
user’s command, the operational workflow is detailed in Figure 2.

3.1.1 Hardware components
The experimental platform is constructed from several key

hardware components, detailed in Table 1. The most critical of these
are outlined below:

• Jetson Orin NX: The Jetson Orin NX serves as the primary
processing unit, equipped with NVIDIA’s powerful AI
computing architecture. It handles the demanding AI inference
and real-time processing tasks, ensuring efficient execution
of deep learning models, particularly for object detection
and SLAM algorithms. Its low power consumption and
high performance make it suitable for the embedded nature
of the robot.

• Mecanum Wheels: The Mecanum wheels enable the robot
to navigate omnidirectionally, providing it with enhanced
mobility in constrained environments. This capability is
particularly crucial when navigating in tight or cluttered spaces,
allowing the robot tomove laterally and rotate in place, ensuring
precise path adjustments during navigation tasks.

• RGB-D Camera: The RGB-D camera captures both color and
depth information from the environment. It plays a vital role
in the perception system (EnvNet) by generating real-time 3D
maps of the surroundings.This data is crucial for environmental
understanding, object detection, and SLAM, allowing the robot
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FIGURE 2
Swimlane diagram illustrating the operational workflow of our proposed AI agent framework. The process starts with a user command and details the
sequential interaction between the AIBrain, EnvNet, and RoutePlanner modules to achieve the final robot action. This visualization highlights the
system’s modularity and hierarchical decision-making process.

to localize itself accurately and recognize both fixed and non-
fixed objects.

3.1.2 Software components

• User Interface (UI) Module: The UI Module is developed
using Qt5, offering users a graphical interface to interact
with the robot. It supports inputting natural language
commands, making the robot more user-friendly. The intuitive
design enhances user experience and allows for smooth
communication with the robot by displaying feedback and
requests for clarification when needed.

• Instruction Processing Module: Deploy the LLMs on the
Ollama platform; the Instruction Processing Module interprets
natural language commands from the UI Module. This
module converts complex user requests into actionable
commands for the robot to perform tasks. The LLMs ensure
accurate command interpretation, with mechanisms for
handling ambiguities by interacting with the user for further
clarifications.

• SLAM Module: The system uses ORB-SLAM2 to generate
real-time sparse point cloud maps of the environment. These
sparse maps are processed further into dense point clouds,
which are stored using an octree structure. This allows for
efficient mapping of the robot’s surroundings, enhancing both

the robot’s localization capabilities and the precision of its
path planning.

• Object Recognition Module: The object recognition system
employs a hybrid approach, combining FCAF3D and YOLOv8
algorithms. FCAF3D is utilized for detecting and classifying
fixed objects, such as furniture, in 3D space, ensuring high
precision. YOLOv8, on the other hand, is applied to recognize
and classify non-fixed objects, such as fruits, in real-time. This
combination allows the robot to operate effectively in dynamic
home environments.

• Navigation & Control Module: The move_base package from
ROS is used for navigation and real-time control. It integrates
the global and local path planning functionalities, relying on
data from both the SLAM and Object Recognition modules.
This module ensures that the robot can navigate complex
environments while avoiding obstacles and adjusting its path
in real-time to complete assigned tasks efficiently.

3.2 Perception module (EnvNet)

This module constitutes the foundation of the robot’s
environmental awareness, enabling it to construct precise 3D
maps, identify both fixed and non-fixed objects. EnvNet integrates
ORB-SLAM2 for mapping with FCAF3D (Rukhovich et al., 2022)
and YOLOv8 for object detection, enabling the robot to remain
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TABLE 1 Hardware Configuration.

Component Parameter Value

Robot Dims (LWH) 266× 230× 402 mm

Drive 4× MG513 DC Motors w/Swing
Suspension

Wheels 4× 75 mm Mecanum

Controller STM32F407VET6

Encoders 500-line GMR

Battery 12V/2.6Ah Li-ion

Compute Main Comp. NVIDIA Jetson Orin NX (16 GB)

CPU 8-core Arm Cortex-A78AE

GPU 1024-core Ampere

RAM 16 GB LPDDR5

AI Perf. Up to 100 TOPS

Sensing RGB-D Cam Orbbec Gemini 2 Pro

IMU MPU-9250 (9-DOF)

Manipulation Arm 6-DOF Robotic Arm

Servos S20F High-Torque Digital Servos

Payload 200–300 g

Weight 1.2 kg

Controller C06B w/Built-in Kinematics

Software OS Ubuntu 20.04 with ROS 1 Noetic

cognizant of environmental changes, which is essential for the AI
agent’s overall performance.

3.2.1 SLAM implementation

• ORB-SLAM2: ORB-SLAM2 is a feature-based visual SLAM
system that performs real-time localization and mapping of
the environment. It utilizes the ORB feature point algorithm
to extract key features from camera images, enabling accurate
position tracking and 3D map generation. ORB-SLAM2
generates sparse point clouds in real time. These point clouds
are then processed to create dense point clouds, while an octree
structure is used to efficiently store and manage the 3D data.
This allows the robot to continuously update its environmental
map with high precision. The dense point clouds provide
detailed descriptions of the surroundings, which are essential
for navigation and interaction with objects in the home.

3.2.2 Object recognition

• Fixed Objects: For detecting and recognizing fixed objects
such as furniture, FCAF3D is employed as the primary
3D object detection method. FCAF3D excels in handling
complex indoor 3D point cloud data without relying on
predefined geometric assumptions. The architecture consists
of a backbone, neck, and head design that ensures efficient
multi-scale feature extraction and high-precision detection.
The loss function of FCAF3D incorporates classification loss,
regression loss, and centerness loss, which together optimize
the prediction of object classes, positions, and 3D bounding
boxes.

• Non-Fixed Objects: YOLOv8 is used for the real-time detection
and classification of non-fixed objects, such as fruits or other
items that may change location over time. The model is
capable of performing object detection and classification at high
speeds, which is essential for a robot operating in dynamic
environments like a home. YOLOv8 ensures that the robot can
quickly identify and respond to moving objects, enabling it to
perform tasks such as picking up or interacting with items as
they are encountered.

3.3 Navigation and control module
(RoutePlanner)

The RoutePlanner module is a crucial component of the AI
agent, responsible for handling path planning and movement
control. It ensures the robot can navigate through complex indoor
environments, avoiding obstacles, and following the most efficient
routes to complete tasks. By integrating both global path planning
through the A∗algorithm and local path optimization using ROS’s
move_base package, RoutePlanner enables seamless navigation even
in dynamic and cluttered environments. This module plays a key
role in determining the robot’s real-time responses to environmental
changes and obstacle detection, making it essential for the overall
functionality of the AI agent.

3.3.1 Global path planning

• 2D Grid Map: The 2D grid map is used to represent the
environment, marking areas as either free, occupied, or
unknown. It provides the necessary information for global path
planning algorithms to select a viable path.

• A∗Algorithm: The A∗algorithm calculates the optimal global
path based on the 2D grid map. It uses a heuristic function to
determine the shortest path from the start to the goal:

f (n) = g (n) + h (n)

where g(n) represents the actual cost from the start to the current
node, and h(n) is the estimated cost from the current node to
the goal. This ensures that the robot finds the most efficient route
through the known environment.
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3.3.2 Local path optimization

• ROS move_base: The move_base package in ROS handles local
path planning and dynamic obstacle avoidance. It uses the
local costmap generated from the robot’s sensors to navigate
around obstacles in real time, ensuring the robot can reach its
destination even in changing environments.

• Layered Costmap: The costmap is divided into layers: the static
map layer provides pre-existing knowledge of obstacles, while
the obstacle layer updates dynamically based on sensor input.
The inflation layer expands obstacle areas to ensure a safety
buffer for the robot.

3.4 Decision-making module (AIBrain)

3.4.1 Motivation and proposal

• Overview of AIBrain: The AIBrain module plays a pivotal
role in the functionality of the AI agent, facilitating the
processing of natural language commands and enabling
intelligent decision-making for complex tasks. This module
harnesses the power of large language models (LLMs) to
seamlessly bridge the gap between human directives and
robotic execution, thereby enhancing the overall efficiency and
effectiveness of the AI system.

• Importance of LLMs: Large languagemodels are integrated into
the AIBrain module to interpret and process natural language
commands with high accuracy. Advanced techniques, such
as prompt engineering and Chain-of-Thought reasoning, are
employed to augment the robot’s understanding and response
to complex tasks.These techniques enable the AI agent to better
comprehend and execute multi-step instructions, leading to
improved performance in various scenarios.

• Need for Fine-tuning andQuantization: Fine-tuning is a crucial
step in adapting LLMs to specific tasks, ensuring that the
model can accurately understand and respond to task-related
commands. Additionally, quantization is essential for efficient
deployment of the model on resource-limited hardware, as it
reduces the memory footprint and computational overhead,
thereby enabling real-time decision-making in constrained
environments.

3.4.2 Technical implementation

• Prompt Engineering: In this study, using prompts is crucial
in producing semantic information from LLMs for semantic
navigation tasks. Specifically, two main types of prompts
are designed: room classification prompts and goal selection
prompts. For room classification, the LLM is queried with a list
of objects observed at a specific location and asked to determine
the room type based on these objects. For goal selection, the
LLM is provided with a free-text description of the target item
to be retrieved and asked to suggest the most likely room
and object location within that room where the item can be
found. These prompts are carefully constructed to align with
the capabilities of the LLMs and facilitate the extraction of

relevant semantic knowledge required for navigation decisions.
To ensure full reproducibility, the complete templates for these
prompts are provided in Supplementary Appendix SA.

• Chain-of-Thought: The Chain-of-Thought (CoT) prompting
technique is employed to enhance the reliability and
interpretability of LLM responses. This technique requires the
LLM to generate a justification for its answers and the final
answer itself. By encouraging the LLM to express its reasoning
process, the CoT prompting technique helps to produce more
consistent and explainable responses. In our experiments, the
LLMs are prompted to provide a chain of thought that explains
their room classification and goal selection decisions. While
this approach sometimes results in varied formatting of the
responses, it generally leads to more reliable and reasonable
navigation decisions. The use of CoT prompting underscores
the importance of transparent and interpretable AI systems,
particularly in safety-critical applications such as semantic
navigation.

• LoRA (Low-RankAdaptation): LoRA is a fine-tuning technique
designed to adapt large pre-trained language models to
specific tasks, while significantly reducing the number of
trainable parameters. LoRA introduces a bypass that performs
dimensionality reduction and expansion instead of training all
parameters. Specifically, two matrices, A and B, are introduced
where matrix A is randomly initialized, and matrix B is set
to zero. The main model’s parameters remain frozen during
training, while onlymatricesA andB are updated.Themodified
weight matrix is expressed as W0 +ΔW =W0 +BA, where B ∈
ℝd×r, A ∈ ℝr×k, and r≪min (d,k).

• Quantization for Local Deployment: To minimize the memory
footprint and reduce the computational overhead for running
the large language model on resource-limited hardware, low-
bit quantization techniques (such as 8-bit or lower) are applied.
This process compresses the model weights, enabling efficient
deployment on devices like the Jetson Orin NX without
compromising the robot’s decision-making abilities.

3.5 Implementation details

To ensure the reproducibility of our work, we detail the
key hyperparameters for the core components of our system.
These parameters were optimized for performance and efficiency
on our target hardware platform. The complete configuration is
presented in Table 2.

4 Experimental setup

The experiments presented in this study are designed as a proof-
of-concept to validate the core efficacy of our proposed modular
framework in representative home scenarios. We acknowledge that
the diversity of environmental conditions and the scale of the
command dataset require further exploration, which we plan to
address in future work. Nevertheless, we contend that the current
results, though preliminary, demonstrate the fundamental feasibility
and potential of our architectural design.
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TABLE 2 Key component hyperparameter Configuration.

Component Parameter Value

ORB-SLAM2 Number of Features 2000

Scale Factor 1.2

Pyramid Levels 8

Depth Threshold 40 mm

FCAF3D Voxel Size 0.02 m

Training Epochs 50

Learning Rate 1e-4

YOLOv8 Model Variant YOLOv8n

Pretrained Weights COCO

Input Size 640x640

Confidence Threshold 0.25

IoU Threshold (NMS) 0.45

LoRA Fine-tuning Rank (r) 16

Alpha (α) 32

LoRA Dropout 0.05

Training Epochs 3

Batch Size 4

Learning Rate 2e-5

Model Quantization Bit Precision 4-bit (NF4)

4.1 Experimental environment

Experiments were conducted in real-world home environments,
selecting various rooms including the living room, bedroom,
kitchen, bathroom, and study room. Each room was furnished with
typical household objects such as chairs, tables, beds, refrigerators,
and bookshelves to simulate actual living conditions. These fixed
objects were used as landmarks for navigation and room type
inference tasks.

4.2 EnvNet experimental phases

4.2.1 SLAM system and mapping generation

• 3D Map Generation: Utilizing the optimized ORB-
SLAM2 system, a 3D OctoMap of the indoor environment
was created (Figure 3). The map includes detailed spatial
information and allowed the robot to navigate complex
household layouts.

FIGURE 3
OctoMap of indoor rooms.

FIGURE 4
FCAF3D detecting the entire household room.

• SLAM + FCAF3D: The purpose of this part was to evaluate
the accuracy of FCAF3D in detecting and classifying objects
in an indoor environment. The robot initially conducted a
thorough scan using the ORB-SLAM2 algorithm to build a 3D
map of the environment, as illustrated in Figure 4. This map
provided a spatial understanding of the room. The FCAF3D
model was employed to detect and classify various objects,
including bed, bookshelf, cabinet, chair, curtain, desk, door,
garbage bin, refrigerator, sink, sofa, table, toilet, andwindow. To
ensure consistent testing conditions, all scans were conducted
at night with all room lights turned on, to avoid variability due
to daylight. Each room was scanned four times to assess the
model’s consistency.

- Independent Variable: The type of object in the indoor
environment.

- Dependent Variable: The accuracy of object detection and
classification by the FCAF3D model.

- Controlled Variables: Testing conditions such as lighting
(performed at night with all lights on), the number of
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FIGURE 5
LLMs fine-tuning data generation code example.

scans (four scans per room), and the indoor environment
being consistent across trials.

4.3 AIBrain experimental phases

4.3.1 Fine-tuning LLMs using generated data
During the fine-tuning of LLMs, an experiment was conducted

to address the lack of specialized datasets, which made direct
fine-tuning of the large language model challenging. To solve
this problem, GPT’s API was used to generate 10,000 training
samples through prompt engineering (Figure 5). These generated
samples provided a suitable dataset for the subsequent fine-tuning
process.

After generating the dataset (Figure 6), LoRA (Low-Rank
Adaptation) was applied for efficient fine-tuning of the model. The
experimental setup to evaluate the effectiveness of LoRA involved:

• Independent Variable: The use of LoRA for fine-
tuning the LLM.

• Dependent Variable: Performance metrics, specifically training
loss and response quality.

4.3.2 LLM performance evaluation
To systematically evaluate the performance of various LLMs,

including Gemma, Mistral, Llama 3, and a fine-tuned Llama 2, we
conducted an experiment designed with clear variables:

• Independent Variable: The LLM being evaluated (Gemma,
Mistral, Llama 3, fine-tuned Llama 2).

• Dependent Variables:

– Accuracy: The ability of the model to correctly extract the
intended target from a given command (e.g., extracting
“couch” from “Navigate to the couch”).

– Response Time: The time taken by the model to respond
to the given prompt.

• Controlled Variables: Testing conditions, including the
format of the prompts, computational environment, hardware
specifications, and the test set.

The test set consisted of both simple and complex commands to
assess the models’ ability to comprehend and execute instructions
with different levels of complexity:

• Simple Commands: For example, “Navigate to the couch,”
which involves identifying a single target destination.

• Complex Commands: For example, “Instruct the robot to
navigate through the living room, starting at the sofa, thenmove
to the beam, make a left turn, go straight to the picture on the
wall, then turn right and head towards the GarbageCan, and
finally end at the bathtub.”These commands involve identifying
multiple sequential navigation targets.

The purpose of this experiment was to determine the
performance differences among various LLMs in terms of accuracy
and efficiencywhenprocessing navigation commands. By evaluating
both accuracy and response time for the same set of ten simple
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FIGURE 6
LLMs fine-tuning data sample.

and ten complex commands, we aimed to identify which LLM
demonstrated superior performance under different command
complexities.

4.3.3 Room type inference
To evaluate the performance of the combined SLAM and

FCAF3D system, and subsequently infer room types using LLMs.

• Room Type Inference with LLM: Following object detection,
this part of the experiment aimed to determine the accuracy
of inferring the room type based on detected objects. The
detected objects were used as input to various LLMs to
classify the room as one of the predefined types: bathroom,
bedroom, kitchen, living room, or study. Each room type was
associated with specific combinations of objects typically found
in that room.

- Independent Variable: Different LLMs used for room type
inference.

- Dependent Variable: The accuracy of the room type
classification.

- Controlled Variables: The set of detected objects (output
from FCAF3D), the prompt format provided to the LLMs,
and the computational environment in which the LLMs
were tested.

A sample illustration for inferring room types is
provided in Figure 7.

4.4 RoutePlanner experimental phases

4.4.1 Multi-object navigation
This experiment aimed to evaluate the robot’s ability to navigate

to a specific target object (e.g., a chair) among multiple identical
objects within a complex indoor environment. The environment
included various rooms: three bedrooms, two bathrooms, one
kitchen, two living rooms, and a study, each populated with identical
objects from the same category.

FIGURE 7
LLMs inferring room type.

• Independent Variable: The target object category (e.g., chair,
bed, table) that the robot was instructed to navigate to.

• Dependent Variables:

– Number of Prompts: The number of additional prompts
required for the robot to successfully locate and navigate
to the specific target object when initial attempts were
uncertain or failed.

– Success Rate: The percentage of successful navigation
attempts where the robot correctly identified and reached
the target object among identical items in the room.
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• Controlled Variables:

– Room Configuration: The layout of the rooms, which
included three bedrooms, two bathrooms, one kitchen,
two living rooms, and a study, remained consistent
across trials.

– Number of Trials: Each room configuration was tested 10
times to ensure robustness across different scenarios.

– Identical Objects: All identical objects in each room
were maintained in their original positions to minimize
variability.

The robot initially received a general command to navigate
to a specific target object, such as “Navigate to the chair.” If the
robot encountered uncertainty or failed to locate the target chair
among multiple identical objects, additional prompts were provided
in a step-by-step manner to assist it in accurately identifying and
navigating to the desired object.

• Initial Command: The robot received a generic instruction,
such as “Navigate to the chair.” This command aimed to test the
robot’s ability to identify and navigate to any chair within the
room without additional information.

• First-Level Prompt: If the robot showed uncertainty or could
not locate the target object, a first-level prompt was given,
specifying the type of room where the target chair was located.
For example, “Navigate to the chair in the living room.” This
level of specificity helped the robot narrow down its search to a
particular room.

• Final-Level Prompt: If the robot still faced difficulty in locating
the correct chair, a second-level prompt was provided to
further specify the chair’s relative position within the room.
For instance, “Navigate to the chair next to the table in the
living room.” This additional spatial context helped the robot
distinguish the target chair from other similar objects in
the same room.

This hierarchical approach to prompting allowed for an
increasingly precise identification process, reducing ambiguity and
helping the robot locate the intended object among multiple
identical items in a complex environment.

5 Results

5.1 EnvNet result

5.1.1 SLAM + FCAF3D object detection
We evaluated the performance of the FCAF3D model in

detecting objects in a real home environment using SLAM-
generated dense point clouds. The experiment’s mAP was 0.55,
closely matching the official AP@0.5 value of 55.2, but notably lower
than the AP@0.25 threshold of 69.7. This difference may be due to
the limitations in generating dense point clouds by ORB-SLAM2
and the object layouts and lighting conditions in the real-world
environment.

Figure 8 summarizes the detection performance for different
objects, with some objects (e.g., windows and curtains) showing

lower detection accuracy due to overlapping features or challenging
lighting conditions.

The experimental results indicate that roomswith distinct, easily
identifiable objects (e.g., refrigerators in kitchens, beds in bedrooms)
were classified with higher accuracy. However, complex or cluttered
environments, such as living rooms, presented greater challenges for
object detection, leading to reduced classification accuracy.

5.1.2 Error analysis
A deeper analysis of the lower detection accuracy for “windows”

and “curtains” (65% and 55% respectively, as shown in Figure 8)
reveals two primary causes. 1) Visual Feature Similarity: In RGB
images, windows under strong daylight and white curtains often
exhibit similar bright, low-texture visual characteristics, leading
to frequent confusion between the two categories. 2) Lack of
Distinct 3D Features: In the point cloud data, both objects
tend to appear as flat, vertical surfaces, lacking the distinctive
geometric signatures typical of furniture such as chairs or tables.
This makes them inherently challenging for a geometry-focused
detector like FCAF3D. These findings expose a key limitation of
our current fusion method in handling low-texture, reflective, or
co-planar objects, highlighting an important direction for future
improvement.

5.2 AIBrain result

5.2.1 LLM performance evaluation
In this experiment, the Llama 2 model was fine-tuned

using LoRA technology with training datasets to improve
its ability to process natural language navigation commands.
Despite the relatively small dataset, remain the low training loss,
as shown in Figure 9, indicating effective learning during the
fine-tuning process.

Following fine-tuning, Llama 2 outperformed the other models,
particularly when handling simple instructions, achieving 100%
accuracy. However, it is important to clarify the context behind
this result. The 100% accuracy refers specifically to a set of ten
simple instructions that I generated, such as “Navigate to the couch.”
These instructions were limited in scope and not derived from a
large, diverse dataset.Therefore, while Llama 2 demonstrated perfect
accuracy on this small sample, this result should not be interpreted
as evidence that it will always achieve perfect understanding
universally. It reflects performance on a very controlled subset of
tasks, and care must be taken not to overgeneralize from these
findings.Formore complex tasks, its accuracy remained high at 80%,
as shown in Table 3. In contrast, alternative models such as Llama
3 and Gemma had a significant drop in accuracy, particularly with
complex instructions.

In terms of response time, Llama 2 again showed a clear
advantage, with faster and more stable response times, especially
for simple tasks, as illustrated in Figure 10. While response times
increased slightly for complex instructions, they remained within an
acceptable range.

5.2.2 Room type inference
In this experiment, room types were inferred using FCAF3D

and LLMs based on the detected objects within the room. The
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FIGURE 8
Summary of detection results for different objects.

FIGURE 9
Training loss at different steps.

TABLE 3 Accuracy comparison by model and instruction type.

Large language model Simple instruction Complex instruction

LLaMA3 80% 60%

LLaMA2(Fine-Tuned) 100% 80%

Gemma 80% 60%

Mistral_q4 60% 50%

Mistral_q6 80% 70%
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FIGURE 10
Response time distribution across different models and instruction types.

FIGURE 11
Comparison of actual room types and predicted room types.

classification accuracy in our indoor environment was 65.7%,
as shown in Figure 11, which compares actual and predicted
room types.

Notably, the confusion observed—such as the misclassification
of a “Study” as a “Bedroom”—highlights the challenge of semantic
understanding in multi-functional spaces. For example, if a study
contains a sofa bed for resting, the presence and visual prominence

of the bed may outweigh that of the desk, leading the LLM to
an incorrect inference. This demonstrates that a strategy solely
reliant on an unweighted list of detected furniture can be brittle
in rooms with ambiguous functions. Addressing this limitation
would benefit from a more sophisticated prompting strategy that
incorporates object spatial relationships and the relative importance
of each item.
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FIGURE 12
Success rate by room type for various prompts.

5.3 RoutePlanner result

5.3.1 Multi-object navigation
The robot’s ability to navigate to a specific target object,

such as a chair, among multiple identical objects in various
rooms was evaluated. As shown in Figure 12, the success rate of
navigation varied depending on the room type and the number of
prompts given.

The kitchen demonstrated the highest success rate, with the
robot reaching 50% accuracy after the first prompt, quickly rising to
80% by the second, and eventually stabilizing at 90%. This suggests
that the kitchen’s straightforward layout enabled more efficient
navigation. In contrast, the bedroom proved the most challenging,
requiring three prompts to reach a 65% success rate. The presence
of multiple bedrooms in the environment likely contributed to the
lower performance. These findings suggest that the complexity of
object arrangement and room layout significantly impacted the
robot’s ability to accurately and efficiently complete navigation tasks.

5.4 Qualitative case studies

To complement the quantitativemetrics, we present a qualitative
analysis of two representative cases to illustrate the framework’s
operational dynamics.

5.4.1 Successful complex command execution
A successful instance involved the command: “Check if the

window near the sofa is closed.” The process, illustrated in Figure 2,
unfolded as follows:

1) AIBrain - Interpretation: The LLM receives the command.
Using Chain-of-Thought (CoT) reasoning, it infers that “check
if closed” requires visual inspection, identifying the key objects
as “window” and “sofa”.

2) AIBrain to EnvNet - Query: It queries EnvNet for the locations
of “sofa” and “window”.

3) EnvNet - Localization: EnvNet returns the coordinates of all
sofas and windows from its semantic map.

4) AIBrain - Disambiguation & Planning: The AIBrain correlates
the locations, identifies the window closest to a sofa,
and generates a high-level plan: “Navigate to window at
coordinate (x,y).”

5) RoutePlanner - Execution: RoutePlanner computes a path to
the target location and executes the navigation.

This case underscores the framework’s strength in decomposing
a complex, underspecified command into a coherent sequence of
logical queries and physical actions.

5.4.2 Failure case analysis: perception module
sensitivity

A failure occurred with the task: “Bring me the apple from the
kitchen table.” Analysis indicated the following sequence:

• AIBrain: Successfully interpreted the command “go to kitchen
table, get apple.”

• RoutePlanner: Correctly navigated to the kitchen table, enabled
by the robot’s pre-built semanticmap,which provided the table’s
precise location.

• EnvNet (2D Recognition): Upon arrival, the robot’s YOLOv8
module successfully detected the ’apple’ in its 2D camera feed,
confirming the target’s presence.

• EnvNet (3D Perception for Interaction): Failure. To proceed
with grasping, the robot initiated a real-time, high-resolution
scan of the table surface to determine the apple’s exact 3D
coordinates. This critical step failed: strong overhead lighting
caused severe specular glare on the table, preventing the RGB-
D camera from generating a usable point cloud in that region,
thereby impeding object localization for manipulation.

Here, the failure did not arise from the decision-making
pipeline, but rather from the perception stage. The system’s inability
to acquire a reliable 3D representation of the table surface prevented
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the subsequent (albeit out-of-scope for this work) grasp planning.
This highlights the current limitations of the perception module in
handling challenging lighting conditions,marking it as a critical area
for future robustness improvements.

Together, these qualitative cases demonstrate both the system’s
compositional reasoning strengths and its perceptual bottlenecks,
providing actionable insights for next-stage development.

6 Discussion & future work

This paper introduced a modular AI agent framework designed
for home assistance robots, centered on the novel integration of a
quantized Large Language Model for device decision-making. Our
three-part architecture-comprising EnvNet for perception, AIBrain
for reasoning, and RoutePlanner for navigation-demonstrated its
viability on resource-constrained hardware. Key results validated
our approach: the fine-tuned Llama two model achieved up to 100%
accuracy in interpreting simple navigation commands and 80% on
complex ones, outperforming several baselinemodels. Furthermore,
our system successfully navigated complex multi-object scenarios
with a success rate reaching 90% after hierarchical prompting,
indicating a practical solution to environmental ambiguity in home
environments.

Despite these promising results, we acknowledge several
limitations that define a clear direction for future research. First,
the perception module (EnvNet) struggled with objects possessing
ambiguous geometric or visual features, such as windows and
curtains, leading to a modest mean average precision (mAP) of 0.55
for object detection. Second, our experiments were conducted in
a limited number of home environments with a relatively small,
synthesized set of user commands. While effective as a proof-of-
concept, this scope does not capture the full diversity of real-world
scenarios. Finally, our evaluation focused on discrete navigation
tasks rather than complex, end-to-end domestic chores, which are
essential for validating true long-term autonomy.

Building directly upon these limitations, our future work will
proceed along three primary tracks. To enhance perception, we
will integrate more advanced multi-modal fusion techniques, such
as geometric boundary features, to better distinguish between
challenging, co-planar objects. To address the issue of scale and
generalizability, we plan a longitudinal study, deploying the system
across a large and diverse collection of households to gather a
comprehensive dataset of naturalistic interactions. Additionally, we
will design a suite of complex, continuous task chains (e.g., “find the
dirty cup in the living room, take it to the kitchen, and place it in
the sink”) to enable a rigorous evaluation of the system’s end-to-end
performance and robustness.

In conclusion, the modular and interpretable AI agent
framework proposed in this study offers not only a functional system
but also a viable technical blueprint for developing more intelligent,
reliable, and safer home assistant robots. By decoupling perception,
reasoning, and action, our design provides a transparent alternative
to opaque end-to-end models. This emphasis on interpretability
and safety is particularly crucial for high-stakes domains—such as
elderly care and assistance for individuals with special needs—where
trust and reliability are paramount, thereby laying a solid foundation
for real-world deployment.
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