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ABSTRACT Brain tumors are among the most common and aggressive diseases, often resulting in sig-
nificantly reduced life expectancy at advanced stages. Consequently, effective treatment planning becomes
crucial for improving patient quality of life. However, in real-world clinical settings, MRI data often suffer
from missing modalities i.e., certain MRI sequences (such as T1, T2, or FLAIR) are unavailable due to
patient movement, time constraints, or equipment failure. This partial data availability leads to reduced
performance of deep learning-based diagnostic systems, which typically rely on input. To address this gap,
we propose a novel framework based on Non-negative Matrix Tri-Factorization (NMTF) that reconstructs
missing portions of MRI data and enables reliable classification even when input is incomplete. Unlike
previous studies that either ignore missing data or assume fixed missing patterns, our model adaptively
factorizes available information into three low-rank non-negative matrices, enabling the recovery of missing
features. To evaluate the effectiveness of proposed framework, six deep neural network classifiers are initially
trained and tested on complete MRI scans (both 2D and 3D). Subsequently, varying amounts of data (from
10% to 50%) from sagittal slice are deliberately removed, and the classifiers are re-applied, resulting in
a noticeable drop in performance due to the missing information. To address this, the proposed NMTF
method is used to reconstruct the missing portions of the MRI data. The classifiers are then re-evaluated
on the NMTF-recovered scans. This approach is validated across two distinct datasets. Results indicate that
the average classification accuracy improves by approximately 10% =+ 2 when comparing performance on
incomplete MRI scans versus those reconstructed via NMTF.

INDEX TERMS Brain tumor, deep learning, MRI scans, non-negative matrix tri-factorization.

I. INTRODUCTION

Brain tumor classification is an essential procedure in med-
ical evaluation in computer-assisted diagnostics (CAD).
Time-consuming and complex identification of brain tumors
from the results of Magnetic Resonance Imaging (MRI)
inspection results in wrong detection and classification.
Such a complexity is due to the fact that brain tumor
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segmentation is based on a series of complex steps and mod-
ules. MRI has continued to be the leading method of diagnosis
of brain tumor because it is capable of producing detailed
images, which differentiates soft normal and abnormal brain
tissues. Notwithstanding its relevance, medical practitioners
are exposed to immense difficulties when it comes to timely
and accurate diagnosis of gliomas. The developments in
the deep learning have enabled medical image analysis and
diagnostics in the process of automation, which increase the
accuracy and of brain tumor segmentation [1].

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
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Manual brain tumor classification on MRI scans presents
significant challenges, demanding extensive effort, being
susceptible to human error, and yielding inconsistent out-
comes across different radiologists. Driven by the need
for enhanced accuracy and consistency in identifying brain
tumors, automated segmentation techniques have seen con-
siderable advancements. The automated brain tumor seg-
mentation process has experienced major progress because
of deep learning algorithms, which include Convolutional
Neural Networks (CNNs), U-Net and V-Net. The superior
performance of these models over traditional methods stems
from their advantages in achieving high accuracy, consistent
outcomes, and robust reproducibility. These medical systems
utilize MRI analysis algorithms for automated tumor segmen-
tation, which not only alleviates radiologist workload but also
enhances the reliability of healthcare results [2]. Automated
systems demonstrate significant utility in clinical workflows
due to their capacity for processing extensive data collec-
tions and their ability to iteratively enhance performance
through continuous data assimilation [3]. The proficiency
of automated systems in handling substantial data volumes
and their iterative performance enhancement via continuous
data assimilation render them highly applicable to clinical
workflows [4]. Enhanced performance in brain tumor detec-
tion is achieved through deep learning techniques, primarily
leveraging ResNet and DenseNet architectures’ exceptional
ability to process complex data. These advancements miti-
gate the computational constraints inherent in earlier models,
thereby offering improved flexibility for the detection of
diverse tumor pathologies, imaging modalities, and patient
populations [5].

The current need for precise brain tumor diagnosis grows
stronger as brain cancer cases continue to escalate. Each year
in the United States the medical community diagnoses about
23,000 new brain cancer cases primarily because gliomas
represent the most common and fastest-growing brain tumor
type [6]. Healthcare professionals need to detect gliomas
early and precisely segment tumors because this enables
successful treatment planning. Modern medical practices
rely on accurate tumor segmentation for constructing simu-
lated 3D surgical resection models as well as for designing
specific radiotherapy and chemotherapy treatments [7]. Com-
prehensive assessment of tumor progression and evaluation
of treatment efficacy necessitate the consistent application
of MRI scans across both the diagnostic and therapeutic
phases. Automated segmentation methodologies facilitate the
acquisition of raw data for continuous treatment follow-ups,
owing to their high precision in identifying even minute alter-
ations in tumor morphology [8]. Technical methods minimize
the human errors that appear, when experts perform manual
segmentation work by producing consistent outcomes [9].

The progression of medical imaging has facilitated
the incremental integration of deep learning segmenta-
tion models into contemporary healthcare delivery. These
advanced models exhibit substantial potential to yield enha-
nced diagnostic accuracy, optimized therapeutic regimens,
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and minimized adverse effects, collectively contributing to
superior patient outcomes. Concurrently, these algorithms
demonstrate considerable scalability across diverse clinical
environments, offering tangible benefits to both medical per-
sonnel and their respective patient cohorts [10].

The current trajectory of personalized medicine is sub-
stantially bolstered by these advancements. Precise auto-
mated tumor segmentation facilitates enhanced surgical
planning and optimized radiotherapy and chemotherapy
protocols by ensuring the preservation of healthy brain
tissue during complete tumor resection. Concurrently, the
economic viability of the healthcare sector is improved
through these advanced technologies, as they mitigate man-
ual labor and expedite diagnostic processes, rendering
them particularly advantageous for deployment in resource-
constrained environments. Ultimately, automated segmenta-
tion yields considerable economic benefits by concurrently
optimizing clinical workflows and augmenting healthcare
accessibility [11].

The reconstruction of missing features in MRI data within
this study leverages the inherent low-rank structure and non-
negativity of medical imaging data. MRI scans, particularly
those of the brain, exhibit strong spatial and contextual
correlations, meaning neighboring pixels and slices often
contain redundant or related information. This redundancy
allows us to approximate the original high-dimensional data
using a lower-dimensional representation without significant
loss of detail. By exploiting this physical property, NMTF
techniques decompose the data into interpretable basis com-
ponents and encoding coefficients under the constraint of
non-negativity, which aligns naturally with the physical prop-
erty of MRI intensities being non-negative by nature. This
structured decomposition allows the missing values to be
estimated based on observed data patterns, resulting in a
realistic and consistent recovery that preserves the structural
integrity of brain tissues.

The novelty of this study lies in the following key
contributions:

a) This is the first work to apply a NMTF matrix
factorization-based method for recovering missing parts of
sagittal slices in brain MRI scans used for tumor diagnosis.

b) We conduct a comparative analysis between matrix
and tensor factorization techniques for missing data (MD)
recovery, demonstrating the superior performance of the
tensor-based approach.

c) To evaluate the effect of data recovery on deep learn-
ing classifiers, we initially trained and tested the models
on complete MRI datasets, achieving a mean accuracy of
89%. Subsequently, we introduced varying levels of miss-
ing data (10% to 50%), which led to a noticeable drop in
performance-accuracy decreased to 82% for 10% missing
data and to 70% for 50%. After applying the proposed recov-
ery methods, classifier accuracy improved to 86% and 80%
for 10% and 50% missing data, respectively. These results
highlight the effectiveness of the recovery framework in mit-
igating the adverse impact of missing data.
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Il. LITERATURE REVIEW

The field of medical image analysis has witnessed rapid
progress with the integration of deep learning tech-
niques [28], [29], particularly in addressing challenges such
as incomplete data and robust image reconstruction. Several
studies have explored missing data imputation in MRI using
approaches like statistical interpolation, nearest neighbor, and
patch-based filling, but these often fail to preserve spatial
and contextual integrity. More recent research has adopted
generative models (e.g., GANs, VAEs) to reconstruct miss-
ing or corrupted regions in medical images with improved
fidelity. However, many of these methods either rely heavily
on supervised learning with large paired datasets or are not
scalable. Our work builds upon these foundations by propos-
ing a matrix factorization-based approach that is scalable
and handles missing feature-level data and then systemati-
cally evaluate the impact of data recovery on deep learning
classifiers and compare NMTF with other matrix and tensor
factorization techniques to validate the advantages of higher-
order modeling.

In the study [12], authors introduced a curated real-
world multi-modal dataset MMIST-CCRCC that includes
MRI modality as well. In that dataset, they further pro-
vided benchmarks for up to 90% missing data for MRI
The missing data is recovered by encoder-decoder approach.
Encoder first replaced the missing modality vector by zeros,
whereas decoder reconstructs that missing modality. How-
ever, they have not shown the effect of recovering missing
data on accuracy of DL-classifiers. In another study [13],
Deep Learning Generative Adversarial Network (DLGAN) is
proposed to regenerate the MRI images. It showed enhanced
image reconstruction performance along with addressing
vanishing-gradient problem as well. However, DLGAN is
based on deep learning model, which is complex and requires
huge time for training and computational resources. The
authors in [14] employed a dual-objective adversarial learn-
ing framework to recover up to 50% missing sagittal slices
from MRI scans. The task at hand was to predict progres-
sion from mild cognitive impairment (MCI) to Alzheimer’s
disease (AD) in presence of missing data. In [15], authors
presented a work in which they first removed the noise
by employing Altered Phases Preserving Dynamic Range
Compression (APPDRC), then they employed Golden Eagle
Optimization (GEO)-optimized GAN to further reduce noise
from MRI scans. However, the presence of missing data is not
explored with much detail in the work. In another study [16],
CNN with various ML algorithms is employed in presence of
missing data. However, the missing data was replaced simply
by applying median based on neighboring values. As MRI
images have fine structural details (e.g., tumor boundaries,
tissue textures) therefore technique like Median filtering
blurs or distorts important edges, which are critical for diag-
nosis or automated classification. In the study [17], the
authors proposed to recover missing data simply by replac-
ing the highest occurrence value. Such strategy can create
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unrealistic patches and be misleading. Moreover, it is unable
to utilize inter-modal correlations or temporal consistency in
3D scans. Recently, transformers have also been employed
to recover missing data. For example, in the study [18],
authors employed Multi-Modal Mixing Transformer (3MT)
for classification of MRI scans in presence of noise. However,
the authors reported the issue of scalability and quadratic
increase of computational complexity when the number of
pixels increase.

Ill. METHODOLOGY

Our proposed framework involves four key stages: prepro-
cessing, data matrix construction, feature extraction, and
classification. First, we apply six deep neural networks-based
classifiers on complete MRI scans (both 2D and 3D). Next,
Fig. 1 shows that we deliberately remove data from 10%
to 50%, and again employ classifiers. As expected, perfor-
mance of classifiers is reduced because of missing data.
Finally, we apply proposed NMTF to recover missing data as
shown in Fig. 2, which completes the scans. And classifiers
are now employed on NMTF-recovered MRI Scans.

A. DETAILS OF DATASETS

1) DATASET 1

The dataset employed in this research originates from the
BraTS 2020 Challenge data, a component of the Medical
Segmentation Decathlon (MSD) contest [26]. It consists of
750 fully labeled 3D MRI images, each presented as stan-
dardized NIfTT (.nii.gz) files. Every scan within the dataset
measures 240 x 240x 155 voxels, and includes four MRI
modalities: T1, Tlc, T2, and FLAIR. Crucially, each study
is accompanied by its ground truth tumor segmentation map.

Training data
with 10% to
50% missing

Training data ~ [——————»f .
data in channels
Deep-Neural
p ) Networks
omplete classifiers
MRI data
Classification
Test data [ <
model

l

Classification
accuracy

FIGURE 1. Classification by using the incomplete MRI scans.

2) DATASET 2

For this study, we also utilized the Brain Tumor Image
Dataset from Kaggle [27], created by pkdarabi. This dataset
comprises 3064 MRI brain images, each 640 x 640 pixels,
and including corresponding tumor masks.
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FIGURE 2. Classification by using the NMTF-recovered MRI scans.

B. PREPROCESSING

Preprocessing helps make the raw medical imaging data
ready for effective and successful deep learning analysis.
The Dataset 1 includes 3D MRI scans in the NIfTI for-
mat (.nii.gz), containing scans from brain tumor patients
with their expert-made segmentation labels. The dataset was
accessed from Google Drive, and processed using Google
Colab in this study. The study used 450 3D MRI volumes,
with 360 selected for training, and 90 for testing how well the
model performs. The MRI images and the related labels had
their size limited to 32 x 32 x 16 voxels so less processing
time would be needed. The changes enabled important fea-
tures to remain intact during training with limited memory
usage. Each volume was adjusted to fit in a range from O to 1
by dividing each voxel by the maximum intensity. Dataset 2
holds 2D images for a similar application, had its images all
sized to 256 x 256 pixels. Because the data is standardized,
deep learning models that require precise-sized input can
be used.

C. FEATURE EXTRACTION

Feature extraction is a crucial process in machine learning
and data analysis, where raw data is transformed into a set
of informative characteristics or ‘““features” between healthy
and tumor groups. The goal is to reduce the dimensionality of
the data, while retaining its most important aspects, making
it easier for algorithms to detect patterns, and make accurate
predictions.

1) NON-NEGATIVE MATRIX TRI-FACTORIZATION (NMTF)

NMTF focuses on decomposing a non-negative data into
meaningful lower-dimensional representations U € Rﬁxq
by multiplying three matrices A, B and C together, where
A e RY™ B e RY™, and C € R [19] as shown
in Fig. 3. NMTF reduces the size of input data U, removes
noise from it, and explains the underlying structure of the
data [20]. In comparison to traditional non-negative matrix
factorization, NMTF decomposes the input matrix into three
factor matrices instead of two. The latent matrix A creates
a space of r; dimensions that tries to resemble U’s rows.
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FIGURE 3. Decomposition and reconstruction of input matrix in presence
of missing data.

Correspondingly, C explains a column-space made up from
r1, rp vectors, and B specifies the way the two separate latent
spaces interact. This reconstruction error between the two
matrices U and Y = ABTCT is measured by the Frobenius
distance DpRro as given in eq. 1:

Drro (U |AB™CT) = |v — |aBTCT H2 (1)
FRO

Moreover, different loss functions such as the Kullback-
Leibler divergence, Alpha divergence [21], and Beta diver-
gence [22] could be used for optimization. In fact, we can use
other variants of Dpro by adding further regularization terms
to its loss function. In clustering applications, we may require
orthogonality between A and C so that their latent vectors
reflect the transfer of row and column objects to different
clusters. In this case, including the AT A regularization term
in the loss function will ensure the latent vectors in A are
no longer parallel. The latent matrices can be made sparse by
using ||A|l; and ||C||; regularization in the loss function [23].

2) MULTIPLICATIVE UPDATE RULES FOR NMTF

Generally, NMTF has a non-convex objective function, yet
fixing all but one latent matrix makes it convex [19]. To reach
a stationary point, the objective function is minimized for
each of A, B and C. Initially, the latent matrices are ini-
tialized with random values, and then iteratively updated
using gradient-based steps until convergence is achieved.
Convergence is typically assessed by monitoring changes in
the objective function (as defined in Eq. 1) over successive
iterations. Following this, we provide a concise overview of
the current multiplicative update rules. Applying the Karush-
Kuhn-Tucker condition means aaTL,«- = 0 to find the partial
derivative of A at the i-th row and j-th column, and update
the matrix accordingly. The final rule for updating A is shown
below:

A<AO (UCBT) o (ABCTCBT) )

Here, the © stands for Hadamard product, and the @ repre-
sents Hadamard division. This rule can also be found among
the update rules in the process.

C <~ CoUTABo CBTATAB (3)

To obtain the update rule for latent matrix B, we differen-
tiate the objective function with respect to B, and use the
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Karush-Kuhn-Tucker conditions. As a result, a new update
rule for B is found by this procedure given as:

B<BO (ATUC) o (ATABCTC) (4)

NMTF can also be solved using alternating least squares (ALS).

In ALS, the method iterates, and each loop requires a
least-squares solver applied to the latent matrix [24].
We derive the objective in Eq. 1 for the different latent
matrices, and enforce positivity on them using a simple rule.
Using this procedure, we get the following rules for updating

the system:
r -1
A< :(UCBT (BCTCBT) )L (5)
C < (UTAB) (BTATAB)I)] (6)
- -1 T J—rl
T
B« _(ATA) A UC) (c C) L ™

where [-], is the projection to the non-negative space, cal-
culated as A;; = 0 if A;; < 0 else A;;. The ALS approach is
equivalent to the second-order quasi-Newton approach [25].

3) PROJECTED GRADIENTS FOR NMTF

Gradient descent optimizes matrix factorization by incre-
mentally adjusting parameters along the gradient’s descent
direction. The learning rate (step size) presents a trade-off:
excessively large values risk divergence, while overly small
values reduce convergence speed.

The projected gradient method addresses constrained opti-
mization in NMTF by iteratively updating latent factors while
enforcing non-negativity through projection. It selects an
optimal learning rate to maximize progress along the gradient
direction without violating the constraints. Notably, with a
step size of 1, it reduces to multiplicative updates, while
maintaining stricter non-negativity guarantees than ALS.

For NMTF, we obtain the following rule to update the latent
matrix U:

Pa=A—AQ@(ABCTCB")® (UCBT))
> (Pa © ((ABCTCBT) — (UCBT)))
7 (((BCTC) (BPLPA)
A < [A—naPaly )]

nA =

The matrix P, is the projection matrix, and n4 represents how
large a step to take. The method to update the latent matrix C
is given as:
Pe=C-Co ((CBTATAB) © (UTAB))
> (Pc © ((CBTATAB — UTAB)))
T 1, ((BPTPC) (B7ATA))
C < [C—ncPcly ©)

Here, Pc is the projection matrix, and n¢ is used as the
step size when the algorithm runs. The update rule for latent
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matrix B is as follows:
Ps=B—BO ((ATABCTC) o (ATUC))
> (P (ATABCTC-ATUC))
T, ((ATAPg) (CTCPL))
B < [B—nyPgl, (10)

Ny =

Here, Pp is the projection matrix, and np is used as the step
size when the algorithm runs.

4) COORDINATE DESCENT FOR NMTF

Many machine learning techniques such as support vec-
tor machines and non-negative matrix factorization (NMF),
use coordinate descent. It has been reported that coordinate
descent provides new advantages for NMF compared to other
approaches such as in two-factor NMF and multiplicative
updates. Instead of moving the latent matrices together as
in multiplicative and gradient-based methods, the coordinate
descent approach independently calculates the gradient of
each vector in each matrix.

It is a first-order method, just like multiplicative update
rules, alternating least squares and projected gradients.
Rather than computing the derivatives of the full latent
matrix, coordinate descent handles scalars or vectors in the
matrix, and reuses part of its earlier results immediately.
Updates to the first vector in the latent matrix are fed into
the second one, and the first two vectors are combined in
computing the third. Because you can order the updates
differently, coordinate descent is available in three versions:
cyclic, stochastic and greedy. Updates follow the same order
in each cycle with a cyclic method, whereas a stochas-
tic algorithm update choices randomly. A greedy method
updates the vector that results in the greatest improvement
to the objective function.

In the following section, we present the method to update
the parameters using cyclic coordinate descent in the NMTF:

((UCBT) , — (ABCTCBT) .)

a;<—a.;+ | o CTCoT
i i

+
((UTAB), — (CBTATAB) )
cj<—cj+| biCTijT ] (12)
~ : +
((aTvc), - (ATaBcTC),)
bij—byj + [ — 1 a3)
a; acc, N

Here, a.; represents the i-th column of A, and c.; represents
the j-th row of C. Update rules for A and C are successively
applied to every column in A and C, where b;; update is
applied to each element in latent matrix B.

D. CLASSIFICATION

To assess the performance of the proposed framework, fol-
lowing deep neural networks—based classifiers were used:
U-Net, V-Net, DenseNet, ResNet, CNN and FCN. The details
of the parameters for each of the model are given in Table 1 to
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show the training procedure. CNN is a fundamental type of
neural network specifically designed to process data with a
known grid-like topology, such as images (2D grid of pixels).
On the other hand, FCN is a type of CNN architecture specifi-
cally designed for semantic segmentation, where the goal is to
classify each pixel in an image. FCNs replace the traditional
fully connected layers with convolutional layers. This allows
the network to output a spatial map (a segmentation mask)
rather than a single vector. ResNet is used for classification
of images. However, it introduces residual connections to
address the problem of vanishing gradient. U-Net is a specific
type of Fully Convolutional Network (FCN), which com-
bines encoder-decoder architecture with skip connections
between corresponding resolution levels in the encoder and
decoder paths. V-Net is an extension of the U-Net architec-
ture specifically designed for 3D volumetric medical image
segmentation. It maintains the core principles of U-Net but
adapts them for 3D data (e.g., CT scans, MRI sequences that
are inherently 3D). It uses 3D convolutions (instead of 2D
convolutions) in both the encoder and decoder paths.

Experiments were conducted using a Core i5-13450HX
CPU, NVIDIA GeForce RTX 3050 GPU, 8 GB RAM, and
a 256 GB SSD. The dataset was split 70:30 into training
and validation sets using the segmented ROI masks as labels.
A 10-fold cross-validation was used to reduce the bias.

1) U-NET

Due to GPU memory limitations, the normalized 3D MRI
brain scans (original size: 240 x 240x 155) were resampled
to 128 x 128 x 1 by extracting only the middle slice.

A U-Net architecture with 23 convolutional layers was
employed in study as shown in Fig. 4. It consists of an
encoder-decoder structure: the encoder compresses spatial
information using repeated 3 x 3 convolutions, ReL.U acti-
vations, and 2 x 2 max-pooling layers, while the decoder
reconstructs the segmentation map via 2 x 2 transposed
convolutions and concatenation with encoder features (skip
connections).

The final 1 x 1 convolution maps feature vectors to
two classes (ROI and background), producing a segmented
output. A sigmoid activation function is used for binary clas-
sification. The fully convolutional design (no dense layers)
allows variable input sizes. Skip connections aid feature reuse
and help address vanishing gradients by maintaining con-
tinuous gradient flow. For image-level classification, global
average pooling is applied to the bottleneck features, followed
by fully connected layers and a softmax function.

2) V-NET

V-Net, originally designed for prostate segmentation from
MRI, uses an encoder-decoder structure shown in Fig. 5. The
encoder compresses the input via down-sampling, while the
decoder restores the original resolution using deconvolutions.
Both sides contain four resolution blocks, each with one to
three convolutional units. Residual connections within blocks
and skip connections between encoder and decoder help
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improve segmentation accuracy. Each block starts and ends
with a 1x1 x 1.3D convolution to reduce parameters and
memory usage. For image-level classification, features from
the bottleneck (e.g., 256 channels of 6 x 6x6) are passed
through Global Average Pooling to obtain a compact vector,
then fed into dense layers. A softmax layer produces the final
classpredictions.

3) DENSENET

The DenseNet model employed in this study follows an
encoder-decoder architecture as shown in Fig. 6. To accel-
erate training and improve performance, a pre-trained
DenseNet121 is used as the encoder. The input image passes
through a series of dense blocks in the encoder, which extract
rich feature representations. These features are then passed
to the decoder, whose role is to progressively upsample and
reshape the features. Skip connections are used to trans-
fer semantic information from corresponding encoder layers
to the decoder, helping retain spatial details. The decoder
includes 3 x 3 convolution layers with batch normaliza-
tion and ReL.U activations. The final layer of the decoder
applies a 1 x 1 convolution followed by a sigmoid acti-
vation. As illustrated in Fig. 6, the architecture combines
DenseNet’s powerful feature extraction with UNet’s spatial
reconstruction capabilities. Although some information is
lost during downsampling via max-pooling, skip connections
help restore it, enabling precise localization especially for
preserving tumor boundaries. The decoder concludes by pro-
ducing high-dimensional features that are fed into a softmax
layer for classification.

4) RESNET

The ResNet model shown in Fig. 7 begins with an initial
convolutional layer that uses 64 filters of size 7 x 7 with a
stride of 2. This is followed by batch normalization and a
ReLU activation function to maintain consistency across the
feature maps. A 2 x 2 max pooling layer is then applied to
reduce the spatial dimensions and extract dominant features.

Next, the model enters the first residual stage, which con-
sists of one convolutional block and two identity blocks. Each
of these blocks utilizes filter sets of [64, 64, 256] with a stride
of 1, allowing the network to learn and retain fine-grained
details from the input.

In the third stage, the architecture includes another con-
volutional block and three identity blocks, using filters [128,
128, 512] and a stride of 2. This stage deepens the network
and captures more abstract representations. The fourth stage
is more extensive, containing one convolutional block and
five identity blocks, each using filters [256, 256, 1024] with
3 x 3 convolution sizes and a stride of 2. This further enhances
feature extraction at a deeper level.

The fifth stage comprises one convolutional block and two
identity blocks, each using filters [512, 512, 2048] with a
stride of 2, enabling the model to learn high-level, com-
plex patterns. Finally, the network concludes with a fully
connected layer that maps the extracted features to the num-
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TABLE 1. Details of the parameters for employed models.

_— Learning Loss
Model Optimizer Rate Function Epochs
Binary
U-Net Adam le-4 Cross- | 149
Entropy
(BCE)
V-Net | Adam led Diee 1109
Loss
Categori
cal
DenseNet Adam le-3 Cross- 60
Entropy
(Softmax
)
Stochastic Catecori
Gradient cagl
ResNet Descent le-3 100
Cross-
(Momentu Entro
m=0.9) Py
CNN Adam le-3 Cross- 50
Entropy
FCN Adam le-4 Cross- 100
Entropy

ber of output classes using a softmax activation. The output
is then flattened to produce the final classification result.

5) CNN

The architecture shown in Fig. 8 illustrates a 3D Convo-
Iutional Neural Network (CNN) designed for image-level
classification of 3D medical data, such as MRI scans for
tumor detection. The architecture begins with an encoder-like
feature extraction backbone, where multiple 3D Convolu-
tional Layers (followed by ReLU activations) progressively
learn hierarchical patterns from the input images. These
convolutional layers are interspersed with 3D Max Pooling
layers, which reduce the spatial dimensions of the fea-
ture maps, thereby compressing the data and making the
learned features more robust to minor variations in the input.
This downsampling process allows the network to capture
increasingly abstract and high-level representations of the
entire 3D volume, effectively acting as a powerful feature
extractor.

Next, the architecture incorporates a dedicated classifica-
tion head, which starts with a Global Pooling (GP) Layer,
which is crucial for image-level tasks. This layer aggregates
the 3D feature maps from the deepest part of the convolu-
tional backbone into a single 1D feature vector by averag-
ing or taking the maximum across all spatial dimensions.
This flattened representation is then fed into a Fully Con-
nected (FC) Layer, which learns to map these high-level fea-
tures to the final classification output. For a multi-class clas-
sification problem, the final output layer used a softmax acti-
vation function to produce a probability score, indicating the
likelihood of the input image belonging to one of the different
classes.
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IV. RESULTS

Given that the main question of this study is related to the
effect of using information of images with a tensor analysis
approach in improving the classification results of patients
with brain tumor and healthy individuals, it is necessary to
compare the process with the conventional approach, and
without considering the concepts of tensor analysis, and
finally compare them. Therefore, in the following section,
first classifiers are trained and tested on original images
(with no missing data), which is a conventional approach.
Afterwards, missing data from 10% to 50% is introduced
deliberately, and classifiers are trained and tested on them.
Lastly, missing data is recovered by various approaches, and
classifiers are trained and tested on them.

A. PERFORMANCE OF PROPOSED STRATEGY

ON DATASET 1

The performance of the proposed framework is assessed on
Dataset 1 in terms of its ability to recover the underlying
factors. Table 2 shows the performance of NMF, CP-WOPT
and NMTTF for different percentages of missing data. It is evi-
dent that NMTF outperformed other methods as it achieved
minimum RME even in the worst case, when 50% of the data
was missing. Table 2 demonstrates that even if a significant
percentage, e.g., 50%, of the tensor entries are missing, the
NMTF factor matrices can still be recovered successfully.

The ROC curves for DenseNet, when employed on
Dataset 1 and Dataset 2 are shown in Fig. 9 and Fig. 10,
respectively. The Fig. 9(a) and Fig. 10(a) show accuracy
trends for both training and testing datasets. It can be
observed that the training accuracy increases steadily, reach-
ing approximately 90%, while the testing accuracy stabilizes
around 82%. The Fig. 9(b) and Fig. 10(b) presents the Root
Mean Error (RME) over the same epochs. The training error
drops rapidly and flattens below 0.1, while the testing error
decreases more gradually and stabilizes around 0.2.

As reference accuracies are required for comparison, hence
Table 3 presents the accuracies of six classifiers, when they
are trained on data with no missing values (complete dataset).
Table 3 shows that U-Net and V-Net achieved an accuracy of
92.2%. However, DenseNet achieved the accuracy of up to
96%, outperforming all other methods. The state-of-the-art
CNN achieved an accuracy of 81.11%. As we have obtained
the reference accuracies, next we employed six classifiers on
the incomplete Dataset 1. The results are reported in Fig. 11.
For the case of 10% missing data, DenseNet outperformed
other classifiers by achieving 90% accuracy. However, other
classifiers could not achieve such accuracy. The same is true
for other percentages of missing data. Furthermore, it must be
noted that as percentage of missing data increase, accuracies
deteriorate significantly.

Fig. 13 shows the classification accuracy of various deep
learning models (Unet, Vnet, Densenet, Resnet, CNN, and
FCN) for Dataset 1 with three imputation methods: NMTEF,
CP-WOPT, and NMF. The first section (left-most part) of the
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Fig. 13 indicates the performance of classifiers when missing
data is recovered by NMTF. It can be seen that there is a
reduction in the classification accuracies as the percentage of
missing data increase from 10%-50%. However, DenseNet
outperformed other classifiers for almost all cases of missing
data. Fig. 13 further reports that the accuracies achieved by
classifiers on NMTF recovered data are better as compared to
NMF-recovered and CP-WOPT-recovered data, demonstrat-
ing the usefulness of the proposed framework.
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B. PERFORMANCE OF PROPOSED STRATEGY

ON DATASET 2

The performance of the proposed framework is assessed
on Dataset 2 as well. Table 4 shows the performance
of NMF, CP-WOPT and NMTF for different percentages
of missing data. It is again evident that NMTF out-
performed other methods as it achieved minimum RME
even in the worst case, when 50% of the data was
missing.
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As reference accuracies are required for comparison, hence
Table 5 presents the accuracies of six classifiers, when they
are trained on data with no missing values (complete dataset).
U-Net achieved the accuracy of up to 98%, outperforming all
other methods. The results for classification with missing data
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are reported in Fig. 12. It must be noted that as percentage
of missing data increase, accuracies deteriorate significantly.
Fig. 14 shows the classification accuracy of various deep
learning models for Dataset 2, when three imputation meth-
ods are employed to recover the missing data. The first section
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TABLE 2. Performance of imputation techniques on dataset 1.

Dataset 1
o 100
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;\;\ 80
10% 20% 30% 40% 50% —
g 00 "10%
Imputation Methods -
" £ 40 u20%
NMTF 0.21 0.26 0.34 0.39 0.41 é 20 - 30(y
(]
0 40%
NMF 0.34 0.37 0.39 0.43 0.48 .Qz}' ‘Q ‘Q’ Q 6% .50%
N \ & & Q <
& ¥
Classifiers
CP-WOPT 0.25 0.29 0.36 043 045
FIGURE 11. Performance of various classifiers on dataset 1 with 10% to
TABLE 3. Accuracy of classifiers for dataset 1 without missing data. 50% missing data.

Classifiers Accuracy % Dataset 2
100
U-Net 028 +32%
~< 80
V-Net 922 +2.1% =
B 60
DenseNet 96.2 + 2.4% g 10
()
ResNet 853 = 1.7% < 20
0
+ 0
CNN 81.1=2.4% Unet Densenet  Resnet
FCN 75.5+£1.31% Classifiers

m10% m20% m30% =40% m50%

(left-most part) of the Flg 14 indicates the performance of FIGURE_ 'l?. Performance of various classifiers on dataset 2 with 10% to
classifiers when missing data is recovered by NMTF. It can be 50% missing data.

seen that there is a reduction in the classification accuracies

as the percentage of missing data increase from 10%-50%.

However, DenseNet outperformed other classifiers for almost V. DISCUSSION

all cases of missing data. Fig. 14 further reports that the In this research, our primary inquiry revolved around

accuracies achieved by classifiers on NMTF recovered data the question of whether the recovery of missing data
are better as compared to NMF-recovered and CP-WOPT- is important for classifiers as opposed to the conven-
recovered data, demonstrating the usefulness of the proposed tional approach of neglecting the missing data leads to
framework. an improvement in problem-solving. To investigate this,
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TABLE 4. Performance of imputation techniques on dataset 2. TABLE 5. Accuracy of classifiers for dataset 2 without missing data.

10% 20% 30% 40% 50% Classifiers Accuracy %
U-Net 98 +2.1%
Imputation NMTIF 0.22 0.27 0.36 0.41 042 V-Net NA
methods
DenseNet 95.5+1.5%
NMF 035 038 041 0.44 05 ResNet 89 +3.3%
CNN 83.5+£2.1%
CP-WOPT 032 031 037 0.44 047 FCN 80 + 3.4%

we employed tensor decomposition as one of the tools dataset I demonstrated a relative enhancement in perfor-
to delve into this matter. The ultimate findings on mance accuracy of classifiers, validating our hypothesis.
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For further validation, we applied the NMTF-based new
approach to another dataset, and the same observation was
noted in dataset II.

On the subject of diagnosing brain tumor, many studies
have been performed so far, none of which used the concept of
NMTF. According to the results obtained in this study, which
are shown in Fig. 6 and Fig. 8, the use of this tensor decompo-
sition method led to the increased accuracy of classification.

In this study, without using the tensor decomposition
method, the average classification accuracy was 79.21%,
which reached 88.6% using our proposed method in dataset I.
To be further evaluate, our proposed method was tested
on the second dataset, in which case the classification
accuracy increased from 75.22% to 87.16% compared to
the traditional method and therefore, our initial theory
was proved.

The experiments show that ResNet performed better than
other models for the dataset 1. The reason ResNet performs
better is because residual connections help solve the van-
ishing gradient issue, and allow layers to become deeper
which helps find and show more detailed tumor features in
MRIs. The results showed that performance of U-Net almost
matches ResNet due to the effective spatial information han-
dling built into its encoder-decoder architecture.

The results further show that V-Net was able to handle
volumetric image segmentation comparable to U-Net but is
not as precise as ResNet. The three networks, DenseNet,
FCN and CNN, performed slightly poor, suggesting they
work better with other tasks rather than with brain tumor
segmentation. FCN and CNN struggled because they do not
have enough layers and do not capture hierarchy like the
other models. The idea of tensor completion is especially
important in clinics since weak images can lead to problems
with automated assistance.

According to these results, MRI analysis powered by data
completion and deep learning-based classification can assist
clinicians in better planning treatments and improving how
patients recover. More studies could concentrate on enhanc-
ing the versatility of the models Introduction using different
datasets and trying architectures that blend the capabilities of
several models.

A. LIMITATIONS AND FUTURE RECOMMENDATIONS

In this study, we employed several deep learning-based
classifiers to complete, incomplete, and imputed MRI
scans. However, encoder-decoder-based models tend to be
over-parameterized and computationally intensive, especially
in their 3D forms, making them susceptible to overfitting,
particularly with limited medical datasets.

To address this, future work will focus on incorporat-
ing intelligent data augmentation strategies to expand the
dataset and integrating attention mechanisms to enhance fea-
ture representation. Additionally, extending the research to
include multi-modal data could further improve classification
accuracy.
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Vi. CONCLUSION

The correct diagnosis of brain tumor can significantly reduce
the progression of the disease to severe stages. However,
due to the mild and ambiguous clinical symptoms, it is
difficult and expensive to diagnose brain tumor. Moreover,
data can miss in MRI scans because of various reasons
such as hardware errors, voluntary motion and physiological
motion of patients, metallic implants etc. In this study, it was
found that classification accuracy of classifiers deteriorates
as percentage of missing data increase. Therefore, rather
than neglecting the missing data, we propose to first recover
it by NMTEF, and then use this NMTF-recovered data to
train the classifiers. It was shown that classification signif-
icantly improves when classifiers are fed tensor-completed
data rather than incomplete data. We evaluated the proposed
framework on two datasets.
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