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Abstract

Surrogate models provide virtual representations that mirror physical objects or processes,
serving distinct purposes in simulations and digital transformation. This review article
examines how integrating surrogate modelling with artificial intelligence (Al) techniques
can facilitate the iterative development of surrogate models and identify instances where
additional data acquisition is necessary to enhance the performance of a surrogate model.
This demonstrates the potential of combining Al with surrogate modelling in addressing
some of the key challenges in the food and drink manufacturing industry. The paper also
provides an accessible examination of Al and surrogate modelling in the food and drink
manufacturing industry, offering a summary of current applications and advancements
within the field. The key areas addressed by this article include the application of Al
and ML in process control, prediction, and modelling for food manufacturing, as well
as the advantages and limitations of Al-based surrogate modelling (SM), among other
issues addressed. Based on the literature reviewed herein, Al-based surrogate models
can be employed to optimise production processes and reduce the need for extensive
physical prototyping in the food and drink manufacturing industry. This review emphasises
Al-based surrogate modelling techniques tailored for complex food processing systems
and distinguishes itself by bridging method-specific insights with practical industrial
relevance. Additionally, this article reviews challenges and limitations in the food and
drink manufacturing industry and the application of surrogate modelling, along with
future directions for research in this rapidly evolving field.

Keywords: surrogate models (SMs); artificial intelligence (Al); food manufacturing; process
optimisation; digital twins; predictive maintenance; machine learning (ML); sustainability;
data-driven modelling; industrial applications

1. Introduction

During the past decade, the integration of artificial intelligence (Al) into the food and
drink manufacturing industry has expanded rapidly, driven by technological progress,
advances in data availability, processing power, and machine learning (ML) techniques,
and the growing need for improved efficiency and productivity [1]. According to [2],
adopting Al, particularly through Al-based surrogate models, has been shown to positively
influence internal environmental management, ecodesign and corporate asset management,
while also optimising production processes, reducing prototyping costs, and improving
product quality, ultimately advancing sustainability in the food and drink manufacturing
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industry. The integration of Al in the food and drink manufacturing industry is also linked
to the promotion of circular economy practices.

Recent syntheses highlight how Al is simultaneously reshaping personalised nutri-
tion (PN) and intelligent food manufacturing, with shared methods such as multi-omics
modelling, computer vision, and federated learning (FL) for privacy-preserving analytics.
The reviews emphasise digital twins for virtual experimentation and process optimisation,
and call for explainable models to support regulatory acceptance and equitable deployment
across populations [3].

This review focuses specifically on Al-based surrogate modelling within the food and
drink manufacturing context. While previous reviews have addressed Al applications
broadly, such as the application of artificial intelligence and big data in the food indus-
try [4] or machine learning in food quality determination, control tools, classification, and
prediction [5], this article offers a focused synthesis of the technical methodologies and
industrial relevance of Al-based surrogate models in the food and drink manufacturing
sector. The novelty lies in bridging recent developments in Al with surrogate modelling
applications unique to food systems.

Canatan et al. (2025) provide a broad review article in Food Engineering Reviews on Al
in food manufacturing, covering machine learning, computer vision, robotics, and NLP
across quality control, predictive maintenance, and safety [6]. Although comprehensive in
application breadth, the paper does not deeply examine surrogate modelling as a method-
ological pillar for digital twins or physics-informed surrogates for regulatory-grade process
understanding. In contrast, our review unifies Al-based surrogate modelling with dig-
ital twin design for food and drink manufacturing, detailing how PINNs and Al-based
surrogate models can be deployed as surrogates, alongside design of experiments and
multifidelity data strategies.

Food processing often includes complexities and dynamic difficulties that make direct
simulation impractical and very costly. Surrogate models thus not only reduce computa-
tional effort but also offer a pathway to emulate systems where first-principles models are
infeasible.

A study by Graetz and Michaels [7], indicated that Al-powered robots contributed to
a quarter of GDP growth in several countries from 1993 to 2007, suggesting a significant
role for Al in improving productivity [2].

Al-based surrogate models are significantly transforming various industries by en-
hancing efficiency, reducing costs, and accelerating innovation. Section 3 will provide
a detailed definition of surrogate modelling and a generic framework for developing
surrogate models, highlighting their purpose and workflow in computational modelling
processes. For example, in the field of material design, Al-based surrogate models have
contributed to the rapid development of bio-inspired materials and the optimisation of
mechanical properties, significantly shortening the time required to bring new materials to
market [8]. Surrogate models can also be utilised for design optimisation and performance
prediction of complex systems, such as in the aerospace and automotive industries, simu-
lating aerodynamic properties or structural integrity under various conditions, allowing
engineers to make informed decisions without the need for exhaustive testing [9,10]. Surro-
gate models can leverage historical data and predictive analytics to support organisations in
making informed decisions regarding material selection, process optimisation, and product
development, leading to improved outcomes and competitive advantages [8].

Al-based surrogate models can potentially transform industries by providing faster,
more effective, and cheaper process modelling. The ability of surrogate models to estimate
results and predict design improvements is a powerful resource for addressing complex
issues and improving efficiency in the food and drink industry and other sectors, which
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were not easily achievable in the past. This capability is changing the face of the food and
drink industry, engineering, and other fields.

This paper comprehensively reviews Al-based surrogate modelling and its grow-
ing significance in the food and drink manufacturing industry. Section 2 introduces the
methodology used in this review, highlighting the inclusion and exclusion criteria of articles
and the databases used in conducting this review. Section 3 delves into the fundamental
principles, highlighting the definition, purpose, and structured workflow of surrogate
modelling. In Section 4, this paper shifts towards Al-driven approaches, offering insights
into machine learning fundamentals and specialised techniques tailored for surrogate mod-
elling. Section 5 provides a detailed exploration of state-of-the-art techniques, including
physics-informed neural networks (PINNs), convolutional neural networks (CNNs), and re-
current neural networks (RNNs), alongside their practical applications in the food and
drink manufacturing industry. Section 6 examines the transformative impact of surrogate
models within the food and drink industry, emphasising their role in process optimisa-
tion and energy efficiency. Section 7 assesses the prevailing challenges and limitations
within the field, leading into Section 8, which explores future research directions in the
application of surrogate modelling in the food and drink manufacturing industry. This
emphasises the importance of addressing the outlined challenges to maximise the potential
of artificial intelligence (AI) and surrogate models (SMs) in reducing the cost of extensive
physical prototyping.

2. Methodology

A structured literature review methodology was adopted in this study to ensure a
comprehensive, transparent, and reproducible synthesis of current research. While this
methodology is not fully systematic, it draws from systematic review principles outlined
by Anlesinya et al. [11].

2.1. Data Sources

The primary sources included Scopus, Google Scholar, and IEEE Xplore, which were
selected due to their extensive coverage of high-quality peer-reviewed research in food
engineering, artificial intelligence, and industrial applications. These databases were
queried using relevant keywords associated with surrogate models and their applications
in the food and drink manufacturing industry.

2.2. Search Strategy

The search strategy employed a combination of Boolean operators and controlled
vocabulary, which was developed iteratively following a preliminary scan of the literature.
Keywords were chosen to reflect the intersection of surrogate modelling, Al techniques,
and food and drink manufacturing.

This review focused on publications released between 1 January 2014 and 1 April
2025 to capture the most recent advancements in the field. Studies included in this review
encompassed peer-reviewed journal articles, conference proceedings, technical reports,
and high-impact reviews that specifically discuss the role and development of surrogate
models within the industry. Articles were screened based on their relevance, with an empha-
sis on works that provided empirical evidence, case studies, or theoretical advancements
related to surrogate modelling.

Beyond synthesising current research, this review identifies several promising av-
enues for future studies in the application of surrogate models within the food and drink
manufacturing industry. It also provides recommendations for expanding the practical
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adoption of surrogate modelling techniques, addressing existing limitations, and exploring
emerging trends in artificial intelligence-driven process optimisation.

3. Surrogate Modelling

This section provides a detailed overview of surrogate modelling, its definition, pur-
pose, and associated framework. Section 3.1 discusses the fundamental concepts of sur-
rogate modelling; Section 3.2 outlines the surrogate modelling framework and workflow,
detailing the step-by-step procedure for constructing a surrogate model and illustrating the
workflow, from design parameters and simulation data to the training and application of
surrogate models in various industrial tasks.

3.1. Definition and Purpose of Surrogate Modelling

Surrogate modelling is a computational technique used to create simplified models that
approximate the behaviour of complex, computationally expensive simulations or physical
processes. Figure 1 illustrates the workflow of using surrogate models to approximate
expensive simulations in computational processes. The design parameters, denoted as
X1, Xy, ..., XN, are input into simulations to evaluate the actual function y = f(X), which
is often computationally expensive due to the need for multiple simulation runs. To reduce
costs in simulations of computational processes, a surrogate model f(X) is fitted using a
dataset of input-output pairs (x, f(x')). Once trained, the surrogate model will serve as a
computationally inexpensive approximation of f(X), enabling efficient sensitivity analysis,
optimisation, and risk analysis. The red dashed arrows highlight the high computational
cost of simulations, while the blue arrows indicate the cost-effectiveness of using surrogate

models for analvsis.

Design
Parameters Output

1 1
X, + Sensitivity (xzv f(xz))
analysis (z?, f(z?)) Fitting it
X * Optimization :
2 * Risk analysis : Y2
XN Surrogate YN
Model

y~ f(X)

hS
lemmmm 'I,’ Itis Expensive, since itinvolves many simulation runs

Itis Cheaper, since fitting and employing a surrogate model is
less expensive

Figure 1. Overview of surrogate modelling process.

In this review, the term surrogate modelencompasses two complementary classes,
as follows: (i) Simulation-sourced (high-fidelity) surrogates, which approximate outputs of a
mechanistic model (e.g., PDE-based or CFD) that is computationally expensive to evaluate;
and (ii) Experiment-calibrated statistical/ML emulators, which learn a predictive mapping
directly from experimental or plant data to accelerate optimisation, reduce costly trials,
or enable real-time decision support. Both classes serve the surrogate modelling objective
of fast, sufficiently accurate prediction for design-space exploration, optimisation, control,
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or digital twins. In Sections 5 and 6, this review includes studies where the surrogate
replaces either a computationally intensive mechanistic model or repeated physical experi-
mentation, and annotates the context accordingly.

The primary goal of surrogate modelling is to reduce computational costs associated
with tasks such as optimisation, sensitivity analysis, and uncertainty quantification [12].
Surrogate models are defined as computationally efficient approximations of more complex
or costly models, including both purely data-driven mappings and reduced-order or hybrid
mechanistic surrogates [13]. They are instrumental in scenarios where the original model is
computationally expensive to evaluate multiple times, such as in optimisation problems or
when conducting extensive simulations [14].

One of the primary advantages of surrogate models is their ability to optimise pro-
cesses in scenarios where traditional models require extensive computational resources;
surrogate models can be employed to explore the design space more efficiently. For instance,
in optimising catalytic reforming and the isomerisation processes, surrogate models can
replace detailed process simulations, allowing engineers to quickly evaluate multiple de-
sign alternatives without the need for time-consuming calculations [15]. Surrogate models
are particularly valuable in situations where the original models are either too complex
to be used directly or where computing the model derivatives is complex. For example,
in the design of distillation columns, surrogate models based on Kriging interpolation can
be utilised to approximate the performance of the columns without requiring direct access
to the detailed simulation models. This capability of surrogates is essential in industrial set-
tings where rapid decision-making is critical, and the ability to quickly assess the impact of
design changes can lead to significant cost savings and improved operational efficiency [16].
In food and drink applications that require optimisation, surrogate models also play a vital
role in sensitivity analysis and uncertainty quantification. Surrogate models thus enable
engineers to assess how variations in input parameters affect system performance. This
is particularly important in industries where processes are subject to uncertainties, such
as fluctuations in feed composition or operating conditions. Surrogate models can help
identify critical parameters that influence system behaviour, allowing for more informed
decision-making and risk management [17]. Integrating surrogate models into digital twin
frameworks enhances their applicability in real-time monitoring and control of industrial
processes. Digital twins, which are virtual representations of physical systems, can leverage
surrogate models to simulate and predict system behaviour under various operating condi-
tions. Integrating surrogate models enables proactive adjustments in response to changing
conditions, ultimately leading to improved process reliability and efficiency [14]. Surrogate
models can help reduce computational costs while ensuring accuracy in the food and drink
sector. In the future, the use of surrogate models is expected to grow, thus enhancing their
application in the food process design and optimisation.

3.2. Surrogate Modelling Framework and Workflow

The workflow in Figure 2, illustrates the step-by-step procedure for building a surro-
gate model, followed by a paragraph of each step in the surrogate model workflow, each
contributing to the development and validation of a surrogate model.
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Figure 2. Data-driven surrogate modelling framework and workflow. This figure illustrates the
step-by-step procedure for building a surrogate model.

The surrogate modelling framework and workflow are a systematic approach that
enables the efficient approximation of complex models, particularly in scenarios where
computational resources are limited. Below is a detailed description of each stage involved
in the surrogate modelling workflow in Figure 2.

i.  Initial Samples (Design of Computer Experiments):

The first stage in the surrogate modelling process is to generate an initial set of
training data points or samples. This process is led by a DoE (design of experiments)
approach to guarantee that the samples are well spaced throughout the input parameter
space. The goal is to encompass a wide range of conditions that the system may encounter.
Various sampling techniques can be employed, such as Latin hypercube sampling, factorial
design, or random sampling, to create a representative training dataset. The quality and
distribution of these initial samples are crucial, as they directly influence the accuracy and
reliability of the surrogate model that will be constructed later [9,18].

ii. ~ Output Evaluations (Training Data Generation):

After the initial samples are chosen, the following step is to compute these samples
using a high-fidelity model, such as finite element analysis (FEA) or computational fluid
dynamics (CFD). Every sample is fed into the high-fidelity model, and the output values
are obtained for each sample in turn, resulting in a set of input-output data. This dataset
forms the foundation for training the surrogate model. The accuracy of the surrogate
model heavily relies on the quality of this training data, as it must effectively represent the
underlying relationships between the input parameters and the output responses [19].

iii. Surrogate Model Construction:

The surrogate model is constructed using the training data obtained from output
evaluations. Various machine learning techniques can be employed for this purpose, in-
cluding polynomial regression, Gaussian processes, artificial neural networks, and radial
basis functions [18]. The choice of the surrogate model depends on the complexity of
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the problem and the nature of the dataset. Surrogate models learn the relationship be-
tween inputs and outputs, creating a computationally inexpensive representation of the
original complex model. This model can then be used to predict outputs for new input
configurations without the need for extensive simulations [17].

iv. Surrogate Model Assessment:

After generating the surrogate model, it is essential to evaluate its performance and
accuracy. This assessment is typically performed by comparing the surrogate model’s
output with the actual output of the high-fidelity model on a separate dataset that was
not used in training the model. Some of the error metrics commonly used to determine
a model’s accuracy include mean squared error and R-squared values. If the surrogate
model does not meet the desired accuracy criteria, it may require further refinement or
retraining. This assessment stage is critical to ensure that the surrogate model is a reliable
approximation of the actual process [19].

v.  Iterative Improvement (Need for Additional Samples):

In many cases, the first surrogate model may not be sufficiently accurate for the
specific task it is intended to support. This is the stage where it is established whether the
model’s performance is adequate for particular requirements. If the surrogate model is
considered inadequate, more samples may be required to enhance the model’s accuracy.
This decision-making process is crucial, as it helps to identify whether further refinement is
necessary or if the model can be utilised as is [19].

vi. Active Learning (Adding Samples):

If the surrogate model needs to be improved, then new samples can be taken using
an active learning strategy. This method selects new sample points that are likely to be
beneficial for the model in areas of the design space where the model yields poor results.
The process of sampling and training is performed sequentially until the surrogate model
achieves the desired level of accuracy. This approach helps in reducing the number of new
simulations that are needed and, hence, reduces the computational costs that are incurred
while trying to build the surrogate model that is both accurate and efficient [19]

vii. Final Surrogate Model:

When the surrogate model has reached the required level of precision, it is referred
to as the final surrogate model. This model can then be used for various applications,
including optimisation, quantification of uncertainty, sensitivity analysis, or real-time
decision-making. The final surrogate provides a computationally efficient alternative to the
original complex model, enabling faster evaluations and more effective analyses. The last
surrogate is a less complex model, which is easier and quicker to evaluate and analyse
as compared to the original model. This stage is the last step of the surrogate modelling
process, and the model is now in a form that can be used in engineering and design [19].
The construction of the surrogate model relies on input data, and through active learning
and iterative enrichment of the training dataset, the model is refined to achieve high
accuracy and efficiency.

The workflow in Section 3.2 applies to both simulation-sourced and experiment-
calibrated surrogates. In the case of simulation-sourced surrogates, the high-fidelity (HF) data
stem from mechanistic simulations (e.g., FEM/CFD/PDE solvers), possibly at multiple
fidelities. In the case of experiment-calibrated surrogates, training data arise from designed
experiments or historical plant data. Physics-informed training (e.g., PINNs) is a training
paradigm that can be applied atop common architectures (FNN/CNN/RNN/transformers)
and is compatible with either branch, where governing equations or constraints are available.
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4. AI-Based Approaches in Surrogate Modelling

Surrogate modelling is increasingly using artificial intelligence (Al), specifically ma-
chine learning (ML), techniques in its implementation. This shift is due to the growing com-
plexity and computational expenses of more conventional modelling strategies. Within Al,
ML is a specific field that focuses on algorithms that can learn from data. This data-driven
approach provides a method for developing models that can utilise a small subset of the
input data to potentially represent the remainder of the design space.

4.1. Introduction to Machine Learning

Machine Learning (ML) is a dynamic and rapidly evolving field within artificial
intelligence (Al) that emphasises the development of algorithms and models that enable
computers to learn from data and make predictions or decisions without being explicitly
programmed for each specific task [20]. Machine learning can be defined as a subset
of artificial intelligence that focuses on creating systems capable of learning from data.
The primary goal of ML is to develop algorithms that can identify patterns within data and
use these patterns to make predictions or decisions about new, unseen data. This learning
process is often achieved through the analysis of large datasets, allowing the model to
improve its performance over time as it encounters more data [21].

The concept of machine learning is not new; it has its roots in the early days of com-
puting. Pioneers like Alan Turing and John McCarthy laid the groundwork for the field,
with Turing discussing the potential for machines to learn from experience as early as
1950 [20]. The resurgence of interest in ML in recent years can be attributed to the exponen-
tial growth of data availability and computational power, as well as the development of
more sophisticated learning algorithms [21].

4.1.1. Distinction Between Traditional Expert Systems and Machine Learning

The distinction between machine learning and traditional expert systems is significant.
In conventional expert systems, a programmer writes explicit rules and instructions that
dictate how a computer should perform a specific task as shown in Figure 3. This approach
is often referred to as rule-based programming. For example, a rule-based system might
include instructions such as “If the temperature exceeds 100 degrees, then activate the
cooling system.”

Traditional Expert System

Rules
Computer

@—p
g — S0

Machine Learning

- Computer Rules
—L-®

Figure 3. Comparison between traditional expert systems and machine learning.
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In contrast, machine learning systems do not rely on predefined rules. Instead, they
learn from examples. For instance, a machine learning model might be trained on historical
data of temperature readings and cooling system activations. Through this training process,
the model learns to recognise patterns and can make predictions about when to activate
the cooling system based on new temperature data, even if it has never encountered
that specific scenario before [9,22]. This fundamental difference allows machine learning
systems to adapt to new information and improve their performance over time, making
them particularly well-suited for tasks where the rules are complex or not well understood.

All machine learning algorithms consist of three main components: data, model,
and loss function.

4.1.2. The Data

Data is the foundational element of any machine learning model. It can take various
forms, including structured and unstructured data. The quality and quantity of the data
significantly influence the performance of the machine learning model. For effective
learning, the data must be representative of the problem domain and contain relevant
features that enable the model to make accurate predictions [9,23].

4.1.3. The Model

The model is a mathematical representation of the relationships within the data. It is
constructed using algorithms that process the input data to learn patterns. Different types
of models can be used depending on the nature of the problem, such as regression models
to predict continuous outcomes or classification models to categorise data into discrete
classes. The choice of model is crucial, as it determines how well the system can learn from
the data [20,22].

4.1.4. The Loss Function

The loss function is a component that quantifies how well the model’s predictions
align with the actual outcomes. It measures the difference between the predicted values
and the true values, providing a metric for the model’s performance. The goal of training a
machine learning model is to minimise this loss function, thereby improving the accuracy
of the predictions. The optimisation process of machine learning models involves adjusting
the model parameters based on the feedback of the loss function, allowing the model to
learn and refine its predictions over time [9,23].

Using data, models, and loss functions, machine learning systems can learn from
experience, adapt to new information, and make informed predictions, distinguishing them
from traditional rule-based expert system approaches.

4.2. Machine Learning Categories

Machine learning can be broadly categorised into several types based on the nature of
the data and the learning process. The primary types of machine learning include super-
vised learning, unsupervised learning, reinforcement learning, semi-supervised learning,
and self-supervised learning as shown in Figure 4. Since supervised learning involves train-
ing models on input-output pairs, surrogate models are developed using this paradigm
(i.e., using known data to predict complex system behaviours efficiently). This review will
primarily focus on supervised learning, as surrogate models are typically classified within
this category.
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Artificial
Intelligence

Broad field of intelligent
systems

Machine Learning

Enables systems to learn
from data

Supervised
Learning

Focuses on labeled data
for prediction

Figure 4. A Venn diagram illustrating the relationship between artificial intelligence, machine
learning, and supervised learning.

Supervised learning is a type of machine learning where algorithms learn from labelled
data [24]. In this context, labelled data consists of input—output pairs, where the output
variable is known. The primary goal of supervised learning is to build a model that can
accurately predict the output for new, unseen data based on the patterns learned from the
training data.

Common tasks in supervised learning include the following:

*  (lassification:This involves categorizing input data into predefined classes. In the
food industry, surrogate models can be used to classify food quality during packaging
processes. For example, in the packaging of processed foods, sensors collect data on
parameters like moisture content, temperature, and packaging conditions. A surrogate
model, trained using supervised learning, could be developed based on historical
process data to predict whether a batch of packaged food meets quality standards
based on input variables. In the manufacturing industry, surrogate models can be
used for fault classification in assembly line operations to optimise production [25].
For example, a surrogate model can be developed using supervised learning on histor-
ical data collected from various sensors installed along the assembly line. The model
learns to predict faults based on the data and classifies them into different categories,
such as “Minor Misalignment”, “Severe Defect”, or “No Fault”.

*  Regression: This task focuses on predicting continuous output variables [22,23]. An ex-
ample of regression in the manufacturing industry is predicting the surface roughness
of a machined part based on features such as cutting speed, feed rate, tool wear,
and material hardness. The model aims to map these input parameters related to the
machining process to a continuous output variable, which is the surface roughness of
the final product.

Supervised learning methods require the value of the output variable for each training
sample to be known, allowing for performance evaluation through metrics such as accuracy,
precision, and recall [23]. Surrogate modelling is fundamentally a regression problem as
it focuses on capturing the relationship between input variables and output responses in
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complex systems. Surrogate models learn to approximate these relationships by leveraging
data from simulations or physical experiments, enabling rapid and efficient predictions for
new inputs.

4.3. Machine Learning Techniques for Surrogate Modelling

Machine learning techniques are grounded in statistical principles and computational
theories, allowing for the extraction of patterns and insights from large datasets. The process
typically involves several key steps, including data collection, data preprocessing, model
selection, model training, and model evaluation. During training, algorithms adjust their
parameters based on the input data to minimise prediction errors, often utilising techniques
such as gradient descent or regularisation to enhance performance. Feature engineering
usually plays a crucial role in this process, as it involves selecting and transforming input
variables to improve model accuracy. Additionally, the choice of algorithm—ranging from
linear regression and decision trees to more complex neural networks—depends on the
nature of the data and the specific problem being addressed. As machine learning continues
to evolve, the integration of automated machine learning (AutoML) tools can streamline
the process of model selection and hyperparameter tuning, making these techniques more
accessible to practitioners across various fields [23,26].

The subsequent sections discuss some frequently employed machine learning strate-
gies for developing surrogate models.

4.3.1. Support Vector Regression Models

Support vector regression (SVR) is a supervised machine learning technique used
for regression tasks, extending the principles of support vector machines (SVMs), which
were originally designed for classification. SVR is particularly effective in handling high-
dimensional data and modelling non-linear relationships through the use of kernel func-
tions [27].

SVR formulates an optimisation problem to learn a regression function that maps the
input predictor variables to the output observed response values. The primary goal of SVR
is to find a function f(x) that has at most an € deviation from the actual target values y; for
the training data, while also being as flat as possible as shown in Figure 5. This is achieved
by minimising a loss function that incorporates both the prediction error and the model’s
complexity [27].

In wine, beer, and yoghurt fermentation processes, SVR can model the non-linear
relationship between process variables, such as temperature, pH, and time, and also product
quality outcomes, including flavour and alcohol concentration. In a winery, the SVR can
predict the ideal duration and temperature of fermentation to achieve the preferred flavour
profile and the concentration of alcohol in the end product, using historical fermentation
data [28].

Furthermore, SVR’s kernel flexibility enables integration with multi-fidelity modelling
frameworks, where low-fidelity simulation data can be fused with sparse high-fidelity ex-
perimental measurements to improve prediction accuracy without excessive computational
cost [29].

However, the performance of SVR as a surrogate model is highly sensitive to the
choice of kernel type, regularisation parameter value, and kernel-specific hyperparameters.
Hyperparameter tuning methods such as grid search, Bayesian optimisation, and evolu-
tionary algorithms have been successfully employed to optimise these settings for food
process applications [30]. Although SVR can produce excellent accuracy, its scalability to
very large datasets is limited compared to deep learning models, making it most suitable
for small- to medium-sized datasets typical of laboratory-scale and pilot-plant studies.
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Figure 5. Comparison between a classification problem using support vector machines (SVMs) and
a regression problem using support vector regression (SVR). The left diagram illustrates the SVM
classification, with a margin separating the support vectors. The right diagram shows the SVR
regression with support vectors and the e-insensitive tube.

4.3.2. Gaussian Process Regression

Gaussian processes (GPs) represent a robust non-parametric Bayesian approach
used for regression and classification tasks, especially in fields such as machine learn-
ing, statistics, engineering, and computational materials science. Gaussian processes
provide a flexible framework for modelling complex functions and capturing uncertainty
in predictions [31,32].

A Gaussian process (GP) as shown in Figure 6, is a collection of random variables, any
finite number with a joint Gaussian distribution [31,32].

Gaussian process regression (GPR) can serve as an effective surrogate modelling
tool within the food and drink sector, providing real-time predictions of process vari-
ables and capturing system dynamics. The uncertainty estimation from GPR allows for
more robust monitoring [33]. GPR has been successfully applied across diverse food pro-
cesses. For example, it has been used to model drying kinetics of fruits and vegetables,
capturing nonlinear moisture-temperature interactions more accurately than polynomial
regression [34]. In beer brewing, GPR has been used to predict alcohol yield and sensory
attributes based on fermentation conditions, offering uncertainty estimates that inform
process adjustments [35]. In dairy processing, GPR has supported the online prediction
of cheese ripening indices, such as pH, proteolysis, and texture, from near-infrared spec-
troscopy data, enabling non-destructive quality monitoring [36].

Beyond these applications, a further advantage of GPR lies in its strong performance
in multi-fidelity frameworks, where sparse high-fidelity experimental data are combined
with lower-fidelity simulation or pilot-scale data. This has been shown to reduce the need
for expensive experimentation in optimisation of spray drying processes and flavour encap-
sulation [37]. However, scalability remains a limitation, as the complexity of GPR training
grows cubically with dataset size. Sparse GPR methods, point approximations, and varia-
tional inference approaches are being increasingly explored to extend their applicability to
large-scale industrial datasets [38].
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Figure 6. Generated sample data: The red line represents the function f(x) that models the data,
while the blue dots represent the training data points.

4.3.3. Artificial Neural Networks

Artificial neural networks (ANNs) are computational models inspired by the biological
neural networks that constitute the brains of animals. They are designed to recognise
patterns, classify data, and perform various tasks that require learning from examples.
ANNSs as shown in Figure 7, consist of interconnected groups of artificial neurons that
process information using a connectionist approach [391.

Input Layer Hidden Layer 1 Hidden Layer 2 Hidden Layer3  Output Layer
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Output
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Figure 7. Structure of a feedforward neural network and a single neuron’s mechanism. The network
consists of an input layer (SNP), multiple hidden layers, and an output layer, where each neuron
computes its output using weighted inputs, a bias term, and an activation function.

The basic building block of an ANN is the artificial neuron, which mimics the function
of a biological neuron. Each neuron receives inputs, processes them, and produces an
output. A weighted sum of the inputs determines the output passed through a non-linear
activation function [40].
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The learning process in ANNSs involves adjusting the weights based on the error
between the output and the expected result. One of the most common learning algorithms
is the back-propagation algorithm, which uses gradient descent to minimise the error
function.

There are various architectures of ANNSs, each suited for different types of tasks.
The feedforward neural networks are the simplest type of ANNs, where connections
between the nodes do not form cycles. Information moves in one direction, from input to
output [40].

Feedforward neural networks (FNNs), the most basic form of artificial neural networks
(ANNSs), have been widely used as surrogate models in food and drink manufacturing.
In an FNN, information flows unidirectionally from the input layer through one or more
hidden layers to the output layer, without feedback connections. This architecture is well-
suited for mapping static, nonlinear input—-output relationships that arise in many food
processes [41].

ANN s are widely used for predictive maintenance, allowing food and drink manu-
facturers to forecast equipment failures based on historical sensor data [42]. In a beverage
bottling plant, an ANN can predict when machinery will need maintenance by analysing
vibration, temperature, and usage data. This ensures that parts are serviced before they
break down [43].

In the food and drink sector, ANN-based surrogate models have been successfully
applied to predict thermal profiles in pasteurisation, optimise spray drying parameters
for powdered products, forecast fermentation yields, and model the rheological proper-
ties of beverages. For example, multilayer perceptron (MLP) models have outperformed
traditional regression methods in predicting moisture content and texture changes during
drying, especially when combined with dimensionality reduction techniques such as prin-
cipal component analysis (PCA) [44]. Convolutional neural networks (CNNs), a specialised
ANN architecture, have been adapted for surrogate modelling in machine vision-based
quality control, allowing rapid assessment of product defects from process line images [45].

However, ANN surrogates face challenges in interpretability, risk of overfitting with
small datasets, and sensitivity to hyperparameter choices, number of layers, learning rate,
and activation functions. Strategies to mitigate these issues include early stopping, dropout
regularisation, and integration of physics-based constraints to form physics-informed
neural networks (PINNSs). In food manufacturing, hybrid ANN-mechanistic models
have shown promise by leveraging the generalisation capability of neural networks while
retaining the interpretability of domain equations [46].

4.4. Advantages and Limitations of AI-Based Surrogate Modelling

Al-based surrogate models are computational models that utilise artificial intelligence
techniques, particularly machine learning algorithms, to approximate complex functions or
systems. Unlike traditional surrogate models, which often rely on simpler mathematical
forms, such as polynomial regression or Gaussian processes, Al-based models can capture
intricate relationships within data through advanced techniques, including neural networks
and decision trees [47]. This allows Al-based surrogate models to model non-linearities
and interactions more effectively than traditional approaches, making them particularly
useful in high-dimensional spaces.

Al-based surrogate models significantly enhance computational efficiency by pro-
viding rapid approximations of expensive simulations. Full-scale simulations, such as
those used in computational fluid dynamics (CFD) or finite element analysis (FEA), can
be computationally intensive and time-consuming. In contrast, once trained, Al-based
surrogates can deliver predictions in a fraction of the time, enabling faster iterations in opti-



Processes 2025, 13, 2929

15 of 33

misation processes [19]. This efficiency is particularly beneficial in scenarios where multiple
evaluations are required, such as in optimisation or uncertainty quantification tasks.

Al-based surrogate models are generally better equipped to handle high-dimensional
and complex datasets. Traditional surrogate models often struggle with the “curse of
dimensionality”, where the volume of the input space increases exponentially with the
number of dimensions, making it challenging to sample effectively [48]. Al techniques,
particularly deep learning, can learn hierarchical representations of data, allowing them to
manage and extract meaningful patterns from high-dimensional spaces more effectively.
This capability enables Al-based models to provide accurate approximations even when
the underlying relationships are complex and non-linear [19].

Al-based surrogate models exhibit a high degree of adaptability to various domains
and changing conditions. Their flexibility enables them to be trained on diverse datasets
from various fields, including engineering, aerospace, and manufacturing [12]. Moreover,
they can be retrained or fine-tuned with new data to accommodate changes in the un-
derlying processes or conditions, making them suitable for dynamic environments. This
adaptability is crucial in applications where system behaviour may evolve over time or
under different operational scenarios [19].

Al-based surrogate models can effectively integrate with hybrid methods, including
physics-informed models and domain-specific knowledge, to enhance their predictive
capabilities. By incorporating physical laws or constraints into the training process, these
models can enhance their predictive capabilities while ensuring that the results remain
consistent with known scientific principles [47]. This integration enables the development
of more robust models that leverage both data-driven insights and established theoretical
frameworks, resulting in improved accuracy and reliability in predictions [49].

The performance of Al-based surrogate models heavily depends on the quality and
quantity of the training data. High-quality, representative datasets are essential for training
models that generalise well to unseen scenarios. However, obtaining sufficient data can be
challenging, especially in fields where data collection is expensive or time-consuming [19].
Additionally, issues such as noise, outliers, and missing values can adversely affect model
performance. Ensuring that the training data captures the full range of operating conditions
is critical for developing reliable surrogates [48].

Interpretability is a significant concern with many Al-based surrogate models, par-
ticularly those employing complex architectures, such as deep neural networks. While
these models can provide high accuracy, their “black-box” nature makes it challenging to
understand how they arrive at specific predictions [49]. This lack of transparency can pose
significant challenges in decision-making, particularly in safety-critical applications where
understanding the rationale behind a model’s output is crucial. The inability to interpret
model behaviour may lead to a lack of trust among stakeholders and complicate regulatory
compliance [19].

Training Al-based surrogate models, particularly for large-scale problems, can incur
substantial costs. These costs arise from several factors, including the need for high-
performance computing resources, the time required for model training, and the expertise
needed to develop and validate the models [50]. Furthermore, the iterative nature of Al
models can lead to increased computational expenses. Organisations must weigh these
costs against the potential benefits of improved efficiency and accuracy when considering
the adoption of Al-based surrogate modelling.

5. State-of-the-Art Techniques in Surrogate Modelling

This section distinguishes between neural architectures (e.g., CNNs, RNNs) and train-
ing paradigms (e.g., physics-informed training). Section 5.1 will examine and introduce
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physics-informed neural networks (PINNs) as a training paradigm and provide representa-
tive applications in food and drink manufacturing, which incorporate knowledge of the
governing equations into the modelling process to enhance the fidelity of the predictions.
The remaining subsections will present CNNs and RNNs, explaining what they are and
their applications in surrogate modelling.

CNNs and RNNs are neural architectures tailored to spatial (grid/image-like) and
temporal (sequence) data, respectively. By contrast, a physics-informed neural network
(PINN) is not a distinct architecture, but a training paradigm that imposes governing physics
(e.g., PDEs, conservation laws) via the loss function and can be applied to various archi-
tectures (FNN/CNN/RNN/transformers). In the remainder of Section 5, CNNs/RNNs
are presented as architectural baselines that may or may not be trained under physics-
informed constraints.

5.1. Physics-Informed Neural Networks (PINNs) in Surrogate Modelling

Physics-informed neural networks (PINNs) represent a significant advancement in
the field of surrogate modelling, particularly for problems governed by partial differential
equations (PDEs). By directly integrating physical laws into the training process of neural
networks, PINNs provide a robust framework for approximating complex systems, ensur-
ing that the solutions adhere to the underlying physics [51,52]. PINNs solve supervised
learning problems while respecting the underlying physics, making them particularly suit-
able for modelling systems where labelled data are scarce but physical knowledge is well
established [53]. This enables the model to maintain physical consistency during training,
offering improved generalisation and interpretability compared to black-box networks.

In food and drink manufacturing, PINNs are gaining traction for their ability to model
thermophysical and biochemical processes that are otherwise computationally expensive
or analytically intractable.

The architecture illustrated in Figure 8 above comprises four main components of
a physics-informed neural network (PINN) framework: (a) Domain variables, such as
time and position, serve as inputs. (b) The neural network, represented by a set of hidden
layers, parameterised by 6, approximates the target function. (c) Design variables provide
additional information, including control parameters like force and power. (d) Loss compu-
tation is performed based on the governing equations, constraints, and goals. Automatic
differentiation is used to compute derivatives of the output with respect to inputs, ensuring
adherence to physical laws. The optimisation seeks to minimise a composite loss function
by combining physics laws, constraints, and goals.
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Figure 8. Diagram of a physics-informed neural network (PINN) framework. (Source: Oluwafemidi-
akho, exploring the capabilities of physics-informed neural networks (PINNs).
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PINNSs leverage the power of deep learning while incorporating physical knowledge,
which allows them to learn from both data and the equations governing the physical
behaviour of the system [51]. The fundamental idea of PINNs is to embed the PDEs, along
with initial and boundary conditions, into the loss function of the neural network. This
approach not only enhances the accuracy of the model but also improves its interpretability
and generalisability [54].

The training of a PINN involves minimising the total loss function using optimisation
algorithms such as Adam or stochastic gradient descent. The use of automatic differen-
tiation enables the efficient computation of the derivatives required for evaluating the
residuals, as highlighted in the literature [55]. The automatic differentiation technique
is employed to compute the gradients of the loss function with respect to the network
parameters, allowing for efficient backpropagation [56].

During the training process, the network learns to approximate the solution to the
PDE while simultaneously fitting the observed data. This dual learning mechanism ensures
that the model remains physically consistent, even in the presence of noisy or sparse data.

PINNSs have been successfully applied in various fields for surrogate modelling, par-
ticularly in scenarios where traditional numerical methods are computationally expensive.
For example, in the context of fluid dynamics, PINNs have been utilised to model complex
flow phenomena governed by the Navier-Stokes equations [57]. The ability to incorporate
physical constraints directly into the model allows for accurate predictions with signifi-
cantly reduced computational costs.

Physics-informed neural networks (PINNs) have been applied to model transient heat
transfer phenomena in pasteurisation and sterilisation processes, where precise thermal
profiling is essential for ensuring microbial inactivation without compromising nutritional
or sensory quality. In these thermal operations, achieving a uniform temperature distri-
bution throughout the food matrix is vital to avoid both under-processing, which poses
food safety risks, and over-processing, which leads to energy inefficiency and product
degradation, by embedding the heat conduction equation as a constraint within the PINN
framework. Research by Singh et al. was able to generate high-resolution spatiotemporal
temperature predictions using sparse sensor data. This enables real-time thermal mapping
of food products within retorts and continuous flow systems, facilitating adaptive process
control and optimisation. Moreover, PINNs have demonstrated robustness in handling
variable boundary conditions, such as fluctuating inlet temperatures and changes in prod-
uct geometry, making them a versatile surrogate modelling tool for thermal food process
engineering [58].

Khan et al. applied physics-informed neural networks (PINNs) to model coupled heat
and mass transfer during the drying of biological materials, providing a novel approach
for simulating internal moisture content and temperature profiles in food matrices. Drying
processes involve complex transient dynamics, particularly when dealing with porous
and heterogeneous food products, making conventional numerical techniques such as
finite-element methods computationally demanding. In contrast, the PINN framework in
this study directly incorporated the governing partial differential equations for moisture
diffusion and thermal conduction into the neural network’s loss function. This enabled
accurate, mesh-free predictions of spatial and temporal moisture and temperature fields
using limited experimental data. The model demonstrated lower error margins and faster
computation times compared to classical solvers, while maintaining physical consistency.
Such capabilities are essential for optimising drying parameters in industrial food manu-
facturing, where product variability, ambient fluctuations, and energy efficiency are critical
considerations. Additionally, the PINN approach showed flexibility in adapting to dif-
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ferent geometries, drying conditions, and food substrates, illustrating its potential as a
generalisable surrogate modelling tool in the food processing industry [59].

Precision fermentation illustrates how Al-driven surrogate models and advanced con-
trol deliver tangible benefits. Predictive control of the model, combined with dynamic flux
balance analysis, has improved fed-batch performance in both microbial and mammalian
systems. Surrogate models accelerate design space exploration and can be embedded
into flowsheet optimisation. Furthermore, machine learning-assisted computational fluid
dynamics (CFD) promises faster and more scalable mixing and aeration studies for scale-
up. Integrating techno-economic analysis and life cycle assessment in optimisation aligns
process choices with cost and sustainability targets [60].

In the context of Bayesian inverse problems, PINNs can serve as surrogate models
that facilitate efficient sampling of the posterior. By constructing a surrogate of the forward
model using PINNSs, researchers can achieve accurate posterior information with a minimal
number of forward simulations, as demonstrated in [61].

The integration of physics into the neural network training process offers several
advantages, as follows:

¢ Improved Accuracy: By enforcing physical laws, PINNs can produce more accurate
predictions compared to purely data-driven models [54].

*  Reduced Data Requirements: PINNs can effectively learn from limited data by lever-
aging the underlying physics, making them suitable for applications where data
collection is expensive or impractical [62].

e Enhanced Interpretability: The explicit incorporation of physical constraints allows
for better understanding and interpretation of the model’s predictions [55].

Physics-informed neural networks represent a powerful tool for surrogate modelling,
particularly in complex systems governed by PDEs. By combining the strengths of deep
learning with the rigour of physical laws, PINNs provide a framework that enhances
predictive accuracy and ensures that the solutions are physically plausible.

Despite their promise, physics-informed neural networks (PINNs) often require sub-
stantial computational resources during training. They are notably sensitive to how differ-
ent components of the loss function are weighted, particularly the physics-based residual
versus data-driven error terms. Recent work has introduced adaptive weighting mech-
anisms to address this challenge. For example, Wang et al. developed a formulation
based on maximum likelihood that dynamically adjusts loss weights during training to
enhance convergence and robustness compared to standard PINN [63]. Additionally, Chen
et al. proposed a self-adaptive, point-wise weighting method that balances residual decay
rates, significantly enhancing prediction accuracy and reducing training uncertainty [64].
Research by Perez et al. into Bayesian PINNs further explores uncertainty quantification
in multitask and multiscale settings, automatically tuning loss weights based on task
uncertainty to achieve stable and interpretable performance [65].

5.2. Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) are a specialised class of deep learning al-
gorithms designed for processing structured grid data, such as images. They consist of
multiple layers, including convolutional layers, pooling layers, and fully connected layers,
which work together to extract and learn features from the input data. CNNs are particu-
larly effective in recognising patterns and structures in visual data, making them suitable
for various applications in the food and drink sector, such as food image recognition and
quality assessment [66].

The architecture of a typical CNN as shown in Figure 9, mimics the connectivity pattern
of neurons in the human visual cortex, allowing it to learn hierarchical representations
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of data. The convolutional layers apply filters to the input data, capturing local patterns,
while pooling layers reduce dimensionality, retaining only the most significant features [67].
This ability to learn from large datasets and generalise well to unseen data has made CNNs
a popular choice in the food industry for tasks such as food identification and quality
detection [68].
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Figure 9. Diagram of a convolutional neural network (CNN) architecture.

CNN's can effectively model complex physical and chemical processes in food produc-
tion by leveraging their capacity to learn intricate patterns from high-dimensional data.
For example, CNNs have been employed to analyse spectral data obtained from techniques
like near-infrared (NIR) spectroscopy, enabling the prediction of quality attributes in food
products [69]. This approach allows for the identification of key chemical components and
their interactions during food processing. Moreover, CNNs can analyse images captured at
various stages of food production. By training on labelled datasets that include images of
food products at different quality levels, CNNs can learn to identify defects, assess ripeness,
and predict shelf life [70]. This capability is crucial for ensuring consistent product quality
and optimising production processes. Research has demonstrated that CNN-based surro-
gate models can capture the dynamics of food production processes by integrating data
from multiple sources, including chemical composition and environmental conditions [71].

For example, in a bottling line, CNNs can analyse images of bottle caps to classify
them as usual, unfixed, or missing, ensuring quality control and reducing waste [72].
Additionally, CNNs can predict the remaining shelf life of products based on real-time data,
assisting manufacturers in making informed decisions about inventory management and
distribution [70].

Integrating CNN surrogate models with sensors and Internet of Things (IoT) systems
facilitates real-time monitoring and optimisation of food production processes. By connect-
ing sensors that measure various parameters such as temperature, humidity, and chemical
composition to a CNN model, manufacturers can continuously feed data into the model
for analysis [72]. This real-time data integration can allow for immediate feedback on
production conditions, enabling on-the-fly adjustments to optimise processes in the food
and drink manufacturing industry. The use of IoT systems enhances this integration by
providing a platform for data collection, storage, and analysis, allowing food manufacturers
to gain insights into their production processes and implement predictive maintenance
strategies [71].

To address the limitations of CNNs in food production, several potential advancements
can be explored. One approach is the development of hybrid models that combine CNNs
with other machine learning techniques, such as recurrent neural networks (RNNs) or
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reinforcement learning. This combination could enhance the model’s ability to capture
temporal dynamics and improve predictive accuracy. Additionally, incorporating transfer
learning techniques can help mitigate the data scarcity issue by allowing models trained on
large datasets from related domains to be fine-tuned for specific food production tasks. This
approach can significantly improve CNN performance in food detection and analysis [71].

5.3. Recurrent Neural Networks (RNNs)

Recurrent neural networks (RNNs) are a class of artificial neural networks designed to
recognise patterns in data sequences, such as time series or natural language [73]. Unlike
traditional feedforward neural networks, RNNs have connections that loop back on them-
selves, allowing them to maintain a hidden state and capture information about previous
inputs [74]. This unique architecture enables RNNs to model temporal dependencies and
sequential data effectively.

The basic structure of an RNN consists of input, hidden, and output layers as shown
in Figure 10. The hidden layer retains information from previous time steps, which is
crucial for tasks where context is essential [75]. For example, in the food industry, RNN
can be used to analyse time-dependent data such as temperature, humidity, and other
environmental factors that influence food quality and safety [76].

Input Layer Hidden Layers Output Layer Recurrent Neural Network

Figure 10. Diagram of a recurrent neural network (RNN) architecture.

Recurrent neural networks (RNNSs) are particularly well-suited to model complex
physical processes in the food industry because of their ability to handle sequential data
and learn from historical patterns [77]. They can be applied in various areas, including the
following:

*  Quality Control: RNNs can predict the quality of food products based on historical
data, such as temperature and humidity during processing. For example, they can
model the fermentation process in dairy production, where various time-dependent
factors influence the quality of the final product [76].

*  Process Optimization: By analysing historical data, RNNs can identify optimal pro-
cessing conditions. For example, they can be used to optimise drying processes by
predicting the moisture content over time, ensuring that products are dried to the
desired specifications without compromising quality [46].

*  Predictive Maintenance: RNNs can forecast equipment failures by analysing time-
series data from sensors monitoring machinery. This predictive capability enables
timely maintenance, reducing downtime and enhancing operational efficiency [78].

RNNSs can process incoming data streams to provide immediate feedback on pro-
duction processes. For example, in a brewing process, RNNs can analyse fermentation
data in real time to dynamically adjust conditions, ensuring optimal flavour and qual-
ity [79]. By integrating RNNs with IoT systems, food manufacturers can develop decision
support systems that provide actionable insights based on real-time data analysis. These
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systems can help make informed decisions about process adjustments, resource allocation,
and quality control.

Using advanced RNN architectures such as long-short-term memory (LSTM) networks
and gated recurrent units (GRUs) can help mitigate the vanishing gradient problem and
improve the model’s ability to capture long-term dependencies [80].

Recurrent neural networks, particularly LSTM and GRU architectures, have significant
potential as surrogate models in the food and drink sector. Their ability to model complex
physical processes, integrate with IoT systems for real-time monitoring, and optimise
production processes can lead to enhanced efficiency and sustainability in food production.
In food processing environments, where real-time data is continuously generated from
sensors, such as temperature, pH, moisture content, and machine vibration, RNN-based
models can act as efficient surrogates for complex, physics-based simulations. These models
can learn intricate patterns and relationships from data, enabling accurate predictions of
process outcomes, product quality, and equipment behaviour. As research and technology
continue to advance, the application of RNNs in the food and drink sector is likely to
expand, paving the way for more innovative and sustainable food production practices.

6. Application of Surrogate Models in the Food and Drink
Manufacturing Industry

This section provides an overview of the food and drink manufacturing industry,
including its challenges, and how surrogate models can be utilised to address these is-
sues. The first subsection will discuss the variability in raw materials and its impact on
product quality and process efficiency, illustrating how surrogate models can improve
decision-making and process control. Next, we will examine the computational challenges
of simulating complex food processes and explore how surrogate models can provide
efficient solutions.

6.1. Food and Drink Manufacturing Challenges

The food and drink manufacturing industry faces several key challenges that can
be effectively addressed through the application of surrogate models. One significant
challenge is the inherent variability in raw materials, which can lead to inconsistencies in
product quality and process efficiency. Surrogate models can help predict results based
on limited experimental data, facilitating better decision-making and process control [81].
For instance, in processes such as fermentation and baking, where the interactions between
ingredients and environmental conditions are complex, surrogate models can optimise
conditions to enhance product quality while minimising resource use [82].

Another major challenge in the food and drink sector is the computational intensity
of simulating complex food processes. Traditional modelling approaches often require
extensive computational resources, making them impractical for real-time applications.
Surrogate models, which are simpler approximations of complex systems, can significantly
reduce computational demands while maintaining accuracy in scenarios requiring numer-
ous simulations, such as optimisation studies or Monte Carlo simulations [82]. Specific
processes in food and drink manufacturing are particularly resource-intensive or complex
and can benefit from optimisation using surrogate models. Clean-in-place (CIP) systems,
for example, are essential for maintaining hygiene in food processing but often lead to
excessive use of water, energy, and cleaning agents [81]. By employing surrogate models,
manufacturers can optimise CIP parameters, reducing resource consumption while ensur-
ing effective cleaning (experiment-calibrated surrogate trained on plant and sensor data) [81].

Complex interactions among various parameters, including temperature, humidity,
and ingredient composition, characterise processes such as baking, fermentation, and
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drying. Surrogate models can be used to explore these interactions and identify optimal
operating conditions, thereby enhancing efficiency and product quality [83].

The primary objectives of the food and drink manufacturing industry include cost
reduction, quality improvement, sustainability, and efficiency. Surrogate models can be
tailored to address these objectives by enabling manufacturers to explore various opera-
tional scenarios and identify optimal conditions for production [83]. For example, surrogate
models can help minimise energy usage during baking while ensuring product quality,
thus contributing to sustainability goals [81].

Various surrogate models are applicable in food and drink manufacturing, including
Gaussian processes, neural networks, and polynomial chaos expansions. These models are
beneficial for capturing the complex relationships between input parameters and output
in food processes. For example, neural networks can be used to model the relationship
between ingredient properties and final product quality, allowing predictive analytics in
product development. Training surrogate models typically requires data sets that cover
a range of operating conditions and product characteristics, often derived from historical
data or designed experiments [81]. The quality and quantity of data used for training are
critical as they directly impact the performance of the surrogate model.

Physical and chemical processes in food manufacturing, such as mixing, baking,
and fermentation, require physics-informed surrogate models. These models integrate
fundamental physical principles with empirical data to improve predictive accuracy. For ex-
ample, in baking, surrogate models can be used to predict the effects of temperature and
humidity on the texture and taste of the product, thus optimising the baking process [82].
In the food and drink manufacturing sector, the optimisation of clean-in-place processes
and the application of Bayesian optimisation techniques have been used to minimise water
and energy consumption while maintaining hygiene standards. In addition, surrogate
models have been utilised in quality control applications, such as predicting taste, texture,
and shelf life based on ingredient variability [81].

Surrogate models play a crucial role in mitigating variability in raw materials or
production conditions. By modelling the relationships between processing conditions and
product stability, manufacturers can make informed decisions that enhance food safety
and extend shelf life [83]. This capability is particularly valuable in industries where the
quality of raw materials can fluctuate significantly, such as in the production of beverages
and baked goods [81].

The integration of surrogate models with Industry 4.0 technologies represents a signif-
icant advancement in the food and drink manufacturing sector. Industry 4.0 encompasses a
range of technologies, including the Internet of Things (IoT), artificial intelligence (Al), big
data analytics, and digital twins, all of which can enhance operational efficiency, product
quality, and sustainability in food production processes. By integrating data from various
sources, including historical production data and real-time monitoring, surrogate models
can provide insights into how changes in processing conditions affect product stability and
safety [83].

Digital twins are virtual replicas of physical systems that allow for real-time monitor-
ing and simulation of processes. Surrogate models play a crucial role in developing digital
twins by providing simplified representations of complex systems, enabling faster compu-
tations and real-time decision-making. By integrating surrogate models into digital twins,
manufacturers can simulate various scenarios, optimise processes, and predict outcomes
without the need for extensive physical trials. This capability is particularly valuable in the
food industry, where the complexity of processes and variability in raw materials can make
traditional modelling approaches cumbersome and time-consuming [14].
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The IoT facilitates the collection of vast amounts of data from sensors embedded in
production equipment and processes. Surrogate models can be used to analyse this data,
providing insights into process performance and enabling predictive maintenance. For in-
stance, in aquaculture, IoT devices can monitor water quality parameters, and surrogate
models can predict fish growth based on these parameters, allowing for optimised feeding
schedules and resource management [84]. This integration not only improves operational
efficiency but also reduces waste and enhances sustainability by ensuring that resources
are used effectively.

The integration of surrogate models with Industry 4.0 technologies allows for the
utilisation of real-time data in decision-making processes. By continuously updating
surrogate models with data collected from IoT devices, manufacturers can adapt their
operations to changing conditions, ensuring optimal performance [81].

Surrogate models can be enhanced by applying Al and machine learning techniques.
These technologies can be employed to refine surrogate models by identifying patterns in
data that may not be immediately apparent [85].

Despite the potential benefits of integrating surrogate models with Industry 4.0 tech-
nologies in the food and drink sector, several challenges remain. The complexity of food
processes and the variability of raw materials can complicate the development and im-
plementation of effective surrogate models [86]. Additionally, the need for high-quality
data to train these models is critical, as inaccuracies in the data can lead to suboptimal
predictions and decisions [87]. Future research can focus on developing robust data collec-
tion and management strategies, as well as exploring the application of advanced machine
learning techniques to enhance the capabilities of surrogate models within the context of
Industry 4.0.

6.2. Process Optimisation in the Food Sector Using Surrogate Modelling

The food sector faces numerous challenges in process optimisation, primarily revolving
around efficiency, quality control, and cost reduction. Achieving optimal efficiency in
production processes is critical, as it directly impacts throughput and operational costs.
The complexity of food processes, which often involve multiple variables and interactions,
complicates the identification of the most efficient operational parameters [88]. Quality
control is paramount, as variability in raw materials and processing conditions can lead
to significant quality issues. The need to maintain consistent product quality necessitates
robust optimisation strategies [89]. Additionally, the food industry is under constant
pressure to reduce production costs while adhering to safety and quality standards, which
includes minimising waste and energy consumption [87].

Traditional optimisation methods in the food sector often rely on direct experimen-
tation and empirical models, which can be time-consuming and resource-intensive. Tech-
niques such as gradient-based optimisation are effective for smooth, continuous functions
but struggle with complex, non-linear food processes [81]. Heuristic methods, while help-
ful in exploring large solution spaces, may not guarantee optimal solutions. In contrast,
surrogate modelling offers a more efficient approach by creating simplified models that
approximate the behaviour of complex systems. Surrogate models can quickly evaluate
multiple scenarios without the need for extensive physical experimentation, making them
particularly advantageous in the food industry [87].

The primary goals of process optimisation in food manufacturing include yield im-
provement, waste reduction, and energy efficiency. Maximising the output of desired
products from raw materials is crucial, as higher yields correlate directly with profitabil-
ity. Waste reduction is essential for sustainability and cost-effectiveness, and data-driven
models can help identify opportunities for minimising waste in various food processing
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operations [87]. Furthermore, reducing energy consumption during processing lowers costs
and contributes to environmental sustainability, a growing concern in the food sector [88].

The food sector is increasingly adopting advanced optimisation techniques, including
data-driven approaches and machine learning. Industry trends indicate a shift towards
the integration of IoT and big data for real-time process monitoring and optimisation [90].
Sustainability initiatives are also gaining traction, with a focus on reducing environmental
impact through optimised resource use [87]. Automation and robotics are being imple-
mented to enhance precision and efficiency in production, further driving the need for
sophisticated optimisation strategies [91].

Several case studies have illustrated the successful application of surrogate models
in food production optimisation. For instance, surrogate models have been utilised to
optimise the concentration of fruit juices, balancing energy use and product quality [88].
In cleaning-in-place (CIP) processes, Bayesian optimisation combined with surrogate mod-
elling has improved efficiency by minimising water use and energy consumption [81].
Surrogate models can optimise parameters in food formulation by identifying optimal in-
gredient ratios and reducing the experimental burden. By simulating various formulations,
surrogate models minimise the need for extensive physical trials, allowing for quicker
product development iteration [91].

6.3. Energy Consumption in the Food and Drink Industry

The food and drink industry is a significant energy consumer, accounting for a sub-
stantial portion of total energy consumption in the manufacturing sector. This section
examines the primary processes that require energy, the types of energy utilised, the vari-
ations between different segments, and the environmental and economic implications of
energy consumption in this sector.

Energy consumption in the food and drink industry encompasses various energy-
intensive processes. Key processes include electricity, thermal energy, mechanical energy,
refrigeration, and cleaning and sanitation. Thermal processing, which includes cooking,
baking, and drying, is prevalent in sectors such as food processing and dairy production.
For instance, the production of instant coffee and milk powder involves significant ther-
mal energy consumption, with processes like freeze-drying and drying being particularly
energy-intensive [92]. Refrigeration is another critical aspect, especially in the beverage
industry, where it is recognised as one of the most energy-intensive processes [93]. Ad-
ditionally, cleaning and sanitation in meat and dairy processing have increased energy
and water use due to stringent hygienic standards [92]. Electricity is extensively used in
rice milling, refrigeration, lighting, and various processing equipment. Thermal energy,
sourced from natural gas, steam, and other fuels, is crucial for cooking and heating pro-
cesses. Mechanical energy is employed in operations such as mixing, milling, grinding,
and packaging. The reliance on fossil fuels remains a concern, as the industry continues to
depend on natural gas and petroleum, which are considered unsustainable [92].

Energy consumption varies significantly between different segments of the food and
drink industry. For example, the energy consumption for bakery products averages around
5.21 MJ/kg [94]. The brewing industry, particularly beer production, is dominated by small
and medium-sized enterprises (SMEs), which account for a significant portion of energy
use in this sector [95]. Dairy processing is highly energy-intensive, with an average total
specific consumption of 13.8 MJ/kg for cheese and 10.3 M]/kg for powdered milk [94].
The energy intensity of the meat industry is also notable, with a mean consumption of
primary energy of approximately 4.4 MJ/kg for poultry and 3.0 MJ/kg for pig meat [95].

The environmental impacts of energy consumption in the food and drink industry are
profound, contributing to greenhouse gas emissions and resource depletion. The sector is



Processes 2025, 13, 2929

25 of 33

responsible for a significant share of the total GHG emissions, necessitating urgent action
to improve energy efficiency [96]. Economically, high energy costs can affect profitability,
particularly for SMEs that may lack the resources to invest in energy-efficient technolo-
gies [97]. The food industry is also facing increasing pressure to adopt sustainable practices,
as consumer awareness and demand for environmentally friendly products grow [96]. Cost
savings are a significant driver in improving energy efficiency in the food and drink indus-
try, as reducing energy consumption directly correlates with lower operational costs [95].
Additionally, sustainability goals are increasingly influencing companies to enhance their
energy efficiency, as consumers demand more environmentally responsible practices [97].
While a growing body of research exists on energy consumption in the food and drink
industry, significant gaps remain in the application of surrogate modelling techniques.
Specifically, the literature lacks comprehensive studies that integrate surrogate modelling
with energy consumption data to predict and optimise energy use in various food pro-
cessing sectors. The potential of surrogate modelling to bridge the gap between complex
energy systems and practical applications in the food industry remains under-explored.

7. Current Challenges and Limitations of Surrogate Modelling

Surrogate modelling has emerged as a powerful tool in various fields, particularly in
engineering and optimisation. Despite its advantages, surrogate modelling is not without
its challenges and limitations. Below are the common challenges and trade-offs between
accuracy and computational efficiency faced in surrogate modelling.

One of the primary challenges in surrogate modelling is ensuring model accuracy,
particularly when the surrogate model is built on a limited dataset. Surrogate models are
often constructed based on a limited dataset, which can lead to overfitting or underfitting.
Opverfitting occurs when the surrogate model captures noise in the training data rather than
the underlying relationship, resulting in poor generalisation to new data points. Conversely,
underfitting happens when the model is too simplistic to capture the complexities of the
original model. These issues are often linked to the way the training data is sampled.
Inadequate or poorly distributed samples can fail to cover critical regions of the input space,
especially in high-dimensional, non-linear systems. To address this, sampling strategies
such as Latin hypercube sampling, adaptive sampling, or active learning are crucial for
generating informative data points in the design space, which enhances the model’s ability
to make accurate predictions or inferences on new, unseen data based on the patterns it
learned during training. For instance, in the context of chemical process optimisation,
surrogate models must accurately represent the non-linear relationships between input
parameters and outputs, which can be particularly challenging when dealing with high-
dimensional spaces [98].

Another significant challenge is managing uncertainty. Many real-world processes
are subject to variability and noise, which can affect the performance of surrogate mod-
els. For example, in the optimisation of distillation processes, the presence of numerical
noise in the simulation can complicate the development of reliable surrogate models [99].
Researchers have noted that the performance of surrogate models can vary significantly
based on the quality and quantity of the training data, as well as the sampling strategies
employed [100]. This variability can lead to different realisations of the surrogate model,
making it difficult to achieve consistent and reliable predictions.

In wastewater treatment optimisation, surrogate models are used to predict the per-
formance of various treatment configurations. The primary challenge in using surrogate
models for wastewater treatment optimisation is ensuring the accuracy of the surrogate
in representing the underlying complex processes. The surrogate model must capture
the non-linear relationships between input parameters (such as flow rates, concentrations,
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and operational conditions) and output responses (like effluent quality and treatment
efficiency). If the surrogate model is not sufficiently accurate, it may lead to suboptimal
decisions in the treatment process [98]. Wastewater treatment processes are inherently
subject to variability and uncertainty, including fluctuations in influent characteristics as
well as operational conditions. Managing this uncertainty is crucial, as it can significantly
impact the performance of surrogate models. For instance, if the surrogate model does not
account for the variability in wastewater composition, the optimisation results may not be
robust, leading to potential failures in meeting regulatory standards [100]. The performance
of surrogate models heavily relies on the quality and quantity of the training data used
to build them. In wastewater treatment, obtaining high-fidelity data from simulations
or experiments can be resource-intensive and time-consuming. Limited or poor-quality
data can result in inaccurate surrogate models, which may not generalise well to unseen
scenarios [17]. The choice of sampling methods for generating training data is critical.
Traditional methods, such as random sampling or Latin hypercube sampling, may not
adequately capture the design space, particularly in high-dimensional problems typical
of wastewater treatment optimisation. Advanced design of experiments methodologies
are needed to ensure that the surrogate model is trained effectively [101]. While surrogate
models are designed to reduce computational costs, the initial development phase can still
be expensive, especially when high-fidelity simulations are required to generate training
data. The computational burden can be exacerbated when dealing with multi-fidelity
models, where the decision on how to allocate computational resources between low- and
high-fidelity simulations remains a challenge [101].

Integrating surrogate models with optimisation algorithms can be complex, primarily
due to challenges related to model accuracy, variability, and calibration. The optimisation
process often requires iterative evaluations of the surrogate model. If the model is not well-
calibrated or exhibits high variability, it can lead to convergence issues or inefficient searches
for optimal solutions [102]. A critical consideration in surrogate modelling is the trade-off
between accuracy and computational efficiency. While surrogate models are designed to
provide faster evaluations than high-fidelity simulations, balancing speed and accuracy can
be difficult. In many cases, increasing the complexity of the surrogate model—such as using
higher-order polynomials or more sophisticated machine learning techniques—can improve
accuracy but at the cost of increased computational demands during the training phase. This
trade-off is often observed when using complex models, such as Gaussian processes, which
yield highly accurate predictions but require more computational resources for training
compared to simpler models, like polynomial regression [98]. Moreover, the performance
of surrogate models can significantly depend on the quality and quantity of the training
data and the sampling strategies employed, which affects their ability to generalise and
make reliable predictions [100].

In the aerospace industry, surrogate models are frequently used for aerodynamic shape
optimisation. However, the complexity of the flow dynamics and the presence of noise in
the simulation data can hinder the accuracy of the model, making it challenging to obtain
consistent and reliable results [101]. Similarly, in the optimisation of distillation processes,
surrogate models are employed to replace computationally expensive simulations. Yet,
numerical noise in the simulations complicates the development of reliable surrogate
models, which can lead to inaccuracies and inefficiencies in the optimisation process [99].

In the context of catalytic reforming processes, researchers have found that while com-
plex surrogate models, such as Gaussian processes, can offer highly accurate predictions,
they require significantly more computational resources for training compared to simpler
approaches, such as polynomial regression [98]. This can be particularly problematic
in situations requiring rapid decision-making, such as real-time process control. Similarly,
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in machine learning applications, specific techniques like support vector machines may
not match the accuracy of models like Gaussian Processes but offer faster training times,
necessitating a careful selection of the surrogate model based on the specific application
and constraints [9].

Reduced order models (ROMs) are also an essential class of surrogate modelling.
ROMs simplify complex mechanistic models while retaining their spatio-temporal fidelity,
thereby providing fast yet physically grounded predictions. Recent work by Ghosh and
Datta (2023) demonstrated a deep-learning—enabled ROM for food processes, where tran-
sient heat transfer and coupled heat moisture transport were predicted in real time with
high accuracy compared to full finite-element simulations [13]. For example, the ROM
successfully modelled thermal sterilisation operations, reproducing temperature profiles
at a fraction of the computational cost of high-fidelity PDE solvers. In addition, ROMs
were applied to simulate spatio-temporal moisture diffusion during food drying, a pro-
cess where conventional mechanistic models require significant computational resources
due to moving boundaries and strong non-linearities. The deep-learning-enabled ROM
approximated the same dynamics while being 100-1000x faster, enabling near real-time
prediction of moisture content evolution. These results highlight the potential of ROMs to
serve as reliable digital twin components for online process control and optimisation in
food manufacturing.

Despite their advantages, Al-based surrogate models are constrained by several prac-
tical limitations. Interpretability remains a major concern, especially for complex neural
networks. In food safety applications, black-box predictions hinder trust and regulatory
compliance. Reviews call for governance frameworks that address bias, transparency,
and equitable access in food and manufacturing deployments [103].

Another challenge lies in hyperparameter optimisation. The performance of models
like CNNs and PINNSs is susceptible to architecture choices, number of layers, kernel
sizes, and regularisation. Grid search, random search, Bayesian optimisation, and AutoML
frameworks are increasingly used to tune these settings efficiently.

Al-based surrogate models are often trained on datasets derived from specific pro-
duction lines or process configurations. Consequently, their ability to generalise to new
settings, such as different plant layouts, ingredient compositions, or environmental condi-
tions, is limited. This challenge is being addressed through transfer learning and domain
adaptation techniques. However, empirical validation of these strategies in industrial food
manufacturing remains sparse, representing an open area of research.

The summary in Table 1 provides a conceptual map of the major surrogate modelling
strategies, applications, benefits, and limitations used in food and drink manufacturing.
The table offers a structural guide for researchers and practitioners to identify the most
suitable approach for specific unit operations or decision-making contexts. For example,
data-driven models remain attractive for rapid input—output prediction and monitoring
tasks. At the same time, physics-informed approaches, such as PINNs and ROMs, are
particularly valuable for maintaining spatio-temporal process fidelity in thermal and dry-
ing operations. Hybrid mechanistic-ML models stand out for system-level optimisation
and digital twin development, especially when life-cycle assessment or techno-economic
objectives are considered.
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Table 1. Summary of surrogate modelling approaches in food and drink manufacturing, with method-

ology context and representative citations.

Applications in Food & N NP High-Fidelity Source & Representative
Approach Drink Benefits Limitations/Challenges ML Framework/Training Applications
CIP optimisation with
Fermentation kinetics E . . Risk of over /underfitting Source: Experimental /plant Bayesian methods [51],
Data-dri } e . asy to train on available T . S S wastewater /process
ata-driven mod prediction; quality control data: 20od accuracy for with limited data; sensitive data (DoE, historical); optimisation
els (e.g., RE, GP, (e.g., texture, flavour); aata; g Y. X to sampling strategy; Framework: RF/GP/ANN; P ) .
ANN) wastewater treatment Input-output mapping; limited transfer across Training: cross-validation [67,96-100,104], quality
SR useful in monitoring and . s ne: ¢ ’ prediction
optimisation; CIP soft sensors plants; interpretability Bayesian/rand search for [38,66,68-71], energy
optimisation concerns hyperparameters o P
assessment in juice
concentration [88]
Thermal processes Source: Mechanistic PDEs +
(pas teurisa tion Embed PDEs/constraints ~ Computationally sparse data; Framework: Food thermal/drying
Physics- slt)erilisa tion); d; in into loss; high expensive to train; FNN/CNN/RNN/ modelling [58,59],
Informed Neural (heat-mass t;an;‘,,fer%- spatio-temporal fidelity; sensitive to loss weighting transformers with PINN methodology
Networks inverse problems: ! robust with sparse/noisy ~ and hyperparameters; physics-informed loss; and advances
(PINNS) fermentgtion wi ﬂ’\ data; improved industrial practice still Training: Adam/SGD with [51-55,63-65] inverse
H/temperature couplin interpretability emerging adaptive loss weighting, problems [61]
p P ping UQ (Bayesian PINNs)
Source: High-fidelity Deen-
Drving dynamics Require careful FEM/CFD simulations; learr}:in _enabled
ying dynamic X Retain physics fidelity at training/validation; Framework: &
(moisture diffusion); . ) ROM:s in food
much lower cost; often accuracy—efficiency deep-learning—enabled
Reduced Order CFD-based 1 . processes [13], thermal
. .. 00-1000x faster than full trade-off; reduced ROM e
Models (ROMs) aeration/mixing; heat PDE sol . suitable f flexibili d d . sterilisation & coupled
transfer in food matrices: solvers; suitable for exibility under extreme (au?ognco ers/ operators), heat—moisture
sterilisation traiectories . near real-time DT extrapolation; sampling Training: supervised on HF transport [13], general
J critical snapshots with CAE Iz on texi [,ng]
physics-consistency checks
Precision fermentation Combine mechanistic Integration complexity; izgjii&eﬁiﬂigace(f;es * gr]ejcr}silng?::i\gr;t[aétg]m
Hybrid (MPC with dFBA); interpretability with ML need diverse datasets; Framework: hybrid ML’ broader ngo 4 !
Mechanistic-ML flowsheet optimisation; flexibility; system-level hyperparameter (GP/NN) with mechanistic  engineering

Models

process intensification;
soft sensors aligned with
LCA/TEA

optimisation; alignment
with sustainability and
cost goals

optimisation critical; risk of
drift in real-time
deployment

constraints; Training: joint
calibration, Bayesian
optimisation/AutoML

optimisation [82],
Al-in-food reviews
[3-5]

8. Conclusions and Further Research Directions

Despite advancements in surrogate modelling techniques, specific gaps remain in
the current literature regarding the application of surrogate modelling in the food and
drink industry. Most studies are based on specific processes or technologies, thus calling
for systematic reviews that encompass surrogate modelling within multiple food manu-
facturing processes. Also, the capability of surrogate models to support real-time energy
management and decision-making has not been further explored.

Future research should focus on the development of more sophisticated surrogate
models that can capture the various conditions characterising food production processes.
In the food and drink industry, transformers can be utilised in the creation of surrogate
models, which are used to make predictions based on various input factors, such as in-
gredients, cooking techniques, and consumer tastes. Transformers are a class of deep
learning models that have significantly advanced the field of natural language processing
(NLP) and are increasingly being applied in various domains, including the food and drink
industry. Introduced by Vaswani in [104], the Transformer architecture is characterised by
its self-attention mechanism, which allows the model to weigh the importance of different
input elements dynamically. This capability enables transformers to capture long-range
dependencies in data, making them particularly effective for tasks that require understand-
ing context and relationships within sequences. The ability of transformers to process and
analyse large datasets makes them suitable for tasks such as predicting nutritional content,
assessing food quality, and optimising recipes [105]. Additionally, combining transformers
with other machine learning techniques, such as reinforcement learning, could lead to
the development of more sophisticated models that not only predict outcomes but also
recommend optimal operational strategies based on historical performance data [106].
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The integration of machine learning models with surrogate modelling can improve
the accuracy of the surrogate models and help estimate energy consumption trends better.
Additionally, there is a need for benchmarking methods to determine how surrogate
models contribute to enhancing energy efficiency across various segments of the food and
beverage industry.

Surrogate modelling, therefore, has the potential of being a valuable tool in enhancing
energy efficiency in the food and drink industry. Through the application of advanced
modelling approaches, such as sampling and uncertainty quantification, stakeholders will
be able to understand the patterns of energy use and, therefore, be in a position to make
recommendations that may lead to improved efficiency in the food production chain.

Author Contributions: Conceptualisation, E.L. and A.S.; Methodology, E.L.; Writing—Original
Draft, E.L. and A.S.; Writing—Review & Editing, E.L., A.S., and C.E.d.S.; Resources, E.L. and A.S.;
Supervision, A.S. and C.E.d.S. All authors have read and agreed to the published version of the
manuscript.

Funding: This study received no external funding.
Data Availability Statement: No new data were created or analysed in this study.

Acknowledgments: The authors gratefully acknowledge support from the Advanced Food Innova-
tion Centre (AFIC), the Commonwealth Scholarship Commission (CSC), and Sheffield Hallam Uni-
versity.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References

1.  Raj, M.; Seamans, R. Artificial intelligence, labor, productivity, and the need for firm-level data. In The Economics of Artificial
Intelligence: An Agenda; University of Chicago Press: Chicago, IL, USA , 2018; pp. 553-565.

2. Ronaghi, M. The Influence of Artificial Intelligence Adoption on Circular Economy Practices in Manufacturing Industries.
Environ. Dev. Sustain. 2023, 25, 14355-14380. [CrossRef]

3. Agrawal, K.; Goktas, P.; Kumar, N.; Leung, M.F. Artificial intelligence in personalized nutrition and food manufacturing: A
comprehensive review of methods, applications, and future directions. Front. Nutr. 2025, 12, 1636980. [CrossRef]

4. Ding, H,; Tian, J.; Yu, W.; Wilson, D.L; Young, B.R.; Cui, X;; Xin, X.; Wang, Z.; Li, W. The application of artificial intelligence and
big data in the food industry. Foods 2023, 12, 4511. [CrossRef]

5. Mavani, N.R.; Ali, ].M.; Othman, S.; Hussain, M.; Hashim, H.; Rahman, N.A. Application of artificial intelligence in food
industry—A guideline. Food Eng. Rev. 2022, 14, 134-175. [CrossRef] [PubMed]

6. Canatan, M.; Alkhulaifi, N.; Watson, N.; Boz, Z. Artificial Intelligence in Food Manufacturing: A Review of Current Work and
Future Opportunities. Food Eng. Rev. 2025, 17,189-219 . [CrossRef]

7. Graetz, G.; Michaels, G. Robots at Work: The Impact on Productivity and Jobs; Technical Report; Centre for Economic Performance,
LSE: London, UK, 2015.

8.  Badini, S.; Regondi, S.; Pugliese, R. Unleashing the Power of Artificial Intelligence in Materials Design. Materials 2023, 16, 5927.
[CrossRef] [PubMed]

9.  Espinoza Guzman, J. Study on the Performance of Machine Learning Algorithms as Surrogate Models for a Representative
Model. Master’s Thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway, 2023.

10. Iuliano, E.; Pérez, E. Application of Surrogate-Based Global Optimization to Aerodynamic Design; Springer: Cham, Switzerland, 2016;
Volume 22.

11. Anlesinya, A.; Dadzie, S.A. Technology and the conduct of bibliometric literature reviews in management: The software tools,
benefits, and challenges. In Advancing Methodologies of Conducting Literature Review in Management Domain; Emerald Publishing
Limited: Leeds, UK, 2023; pp. 57-78.

12.  Franzoi, R.; Kelly, J.; Menezes, B.; Swartz, C. An Adaptive Sampling Surrogate Model Building Framework for the Optimization
of Reaction Systems. Comput. Chem. Eng. 2021, 152, 107371. [CrossRef]

13.  Ghosh, D.; Datta, A. Deep learning enabled surrogate model of complex food processes for rapid prediction. Chem. Eng. Sci.
2023, 270, 118515. [CrossRef]

14. Barkanyi, A.; Chovan, T.; Nemeth, S.; Abonyi, ]. Modelling for Digital Twins—Potential Role of Surrogate Models. Processes 2021,

9, 476. [CrossRef]


http://doi.org/10.1007/s10668-022-02670-3
http://dx.doi.org/10.3389/fnut.2025.1636980
http://dx.doi.org/10.3390/foods12244511
http://dx.doi.org/10.1007/s12393-021-09290-z
http://www.ncbi.nlm.nih.gov/pubmed/40477643
http://dx.doi.org/10.1007/s12393-024-09395-1
http://dx.doi.org/10.3390/ma16175927
http://www.ncbi.nlm.nih.gov/pubmed/37687620
http://dx.doi.org/10.1016/j.compchemeng.2021.107371
http://dx.doi.org/10.1016/j.ces.2023.118515
http://dx.doi.org/10.3390/pr9030476

Processes 2025, 13, 2929 30 of 33

15.

16.

17.

18.

19.

20.
21.

22.
23.

24.
25.

26.

27.
28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Mencarelli, L.; Pagot, A.; Duchéne, P. Surrogate-Based Modeling Techniques with Application to Catalytic Reforming and
Isomerization Processes. Comput. Chem. Eng. 2020, 135, 106772. [CrossRef]

Quirante, N.; Javaloyes, J.; Caballero, J. Rigorous Design of Distillation Columns Using Surrogate Models Based on Kriging
Interpolation. AICHE J. 2015, 61, 2169-2187. [CrossRef]

Kudela, J.; Matousek, R. Recent Advances and Applications of Surrogate Models for Finite Element Method Computations: A
Review. Soft Comput. 2022, 26, 13709-13733. [CrossRef]

Ramancha, M.; Vega, M.; Conte, J.; Todd, M.; Hu, Z. Bayesian Model Updating with Finite Element vs Surrogate Models:
Application to a Miter Gate Structural System. Eng. Struct. 2022, 272, 114901. [CrossRef]

Kim, S.; Boukouvala, F. Machine Learning-Based Surrogate Modeling for Data-Driven Optimization: A Comparison of Subset
Selection for Regression Techniques. Optim. Lett. 2020, 14, 989-1010. [CrossRef]

Smola, A.; Vishwanathan, S. Introduction to Machine Learning; Cambridge University: Cambridge, UK, 2008; Volume 32, p. 34.
Badillo, S.; Banfai, B.; Birzele, F.; Davydov, I.; Hutchinson, L.; Kam-Thong, T.; Siebourg-Polster, J.; Steiert, B.; Zhang, ]. An
Introduction to Machine Learning. Clin. Pharmacol. Ther. 2020, 107, 871-885. [CrossRef]

Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2020.

Bagtanlar, Y.; Ozuysal, M. Introduction to Machine Learning. In miRNomics: MicroRNA Biology and Computational Analysis;
Springer: Berlin, Germany, 2014; pp. 105-128.

Nasteski, V. An Overview of the Supervised Machine Learning Methods. Horizons B 2017, 4, 51-62. [CrossRef]

Shenfield, A.; Howarth, M. A Novel Deep Learning Model for the Detection and Identification of Rolling Element-Bearing Faults.
Sensors 2020, 20, 5112. [CrossRef]

Raschka, S.; Patterson, J.; Nolet, C. Machine Learning in Python: Main Developments and Technology Trends in Data Science,
Machine Learning, and Artificial Intelligence. Information 2020, 11, 193. [CrossRef]

Vapnik, V. Statistical Learning Theory; Wiley: New York, NY, USA, 1998.

Astray, G.; Mejuto, J.; Martinez-Martinez, V.; Nevares, I.; Alamo-Sanza, M.; Simal-Gandara, J. Prediction Models to Control Aging
Time in Red Wine. Molecules 2019, 24, 826. [CrossRef]

Qu, C;; Wang, Z,; Jin, X.; Wang, X.; Wang, D. A moisture content prediction model for deep bed peanut drying using support
vector regression. J. Food Process Eng. 2020, 43, €13510. [CrossRef]

Sultana, N.; Hossain, S.Z.; Abusaad, M.; Alanbar, N.; Senan, Y.; Razzak, S. Prediction of biodiesel production from microalgal oil
using Bayesian optimization algorithm-based machine learning approaches. Fuel 2022, 309, 122184. [CrossRef]

MacKay, D. Information Theory, Inference, and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003.

Forrester, A.; Sobester, A.; Keane, A. Engineering Design via Surrogate Modelling: A Practical Guide; John Wiley & Sons: Chichester,
UK, 2008.

Chakraborty, S.; Adhikari, S.; Ganguli, R. The Role of Surrogate Models in the Development of Digital Twins of Dynamic Systems.
Appl. Math. Model. 2021, 90, 662-681. [CrossRef]

Malvandi, A.; Feng, H.; Kamruzzaman, M. Application of NIR spectroscopy and multivariate analysis for Non-destructive
evaluation of apple moisture content during ultrasonic drying. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 269, 120733.
[CrossRef] [PubMed]

Bhonsale, S.; Mores, W.; Van Impe, ]. Dynamic optimisation of beer fermentation under parametric uncertainty. Fermentation
2021, 7, 285. [CrossRef]

Seratlic, S.; Guha, B.; Moore, S. Advances in Spectroscopic Methods for Predicting Cheddar Cheese Maturity: A Review of FT-IR,
NIR, and NMR Techniques. NDT 2024, 2, 392-416. [CrossRef]

Zhang, Z.; Xiao, D.; Choi, K.S.; Mao, X. The fusion of flow field data with multiple fidelities. Phys. Fluids 2022, 34, 097113.
[CrossRef]

Liu, H.; Ong, Y.S.; Shen, X.; Cai, ]. When Gaussian process meets big data: A review of scalable GPs. IEEE Trans. Neural Netuw.
Learn. Syst. 2020, 31, 4405-4423. [CrossRef] [PubMed]

Livingstone, D. Artificial Neural Networks: Methods and Applications; Springer: Berlin, Germany, 2008; Volume 458.

Abraham, A. Artificial Neural Networks; John Wiley & Sons, Ltd.: Chichester, UK, 2005.

Ding, H.; Hou, H.; Wang, L.; Cui, X.; Yu, W.; Wilson, D.I. Application of convolutional neural networks and recurrent neural
networks in food safety. Foods 2025, 14, 247. [CrossRef]

Zatsu, V.; Shine, A.; Tharakan, J.; Peter, D.; Ranganathan, T.; Alotaibi, S.; Mugabi, R.; Muhsinah, A.; Waseem, M.; Nayik, G.
Revolutionizing the Food Industry: The Transformative Power of Artificial Intelligence—A Review. Food Chem. X 2024, 24,
101867. [CrossRef]

Rodriguez, J.; Hamzaoui, Y.; Herndndez, J.; Garcia, J.; Flores, J.; Tejeda, A. The Use of Artificial Neural Network (ANN) for
Modeling the Useful Life of the Failure Assessment in Blades of Steam Turbines. Eng. Fail. Anal. 2013, 35, 562-575. [CrossRef]
Khan, M.ILH,; Sablani, S.S.; Joardder, M.; Karim, M. Application of machine learning-based approach in food drying: Opportunities
and challenges. Dry. Technol. 2022, 40, 1051-1067. [CrossRef]


http://dx.doi.org/10.1016/j.compchemeng.2020.106772
http://dx.doi.org/10.1002/aic.14798
http://dx.doi.org/10.1007/s00500-022-07362-8
http://dx.doi.org/10.1016/j.engstruct.2022.114901
http://dx.doi.org/10.1007/s11590-019-01428-7
http://dx.doi.org/10.1002/cpt.1796
http://dx.doi.org/10.20544/HORIZONS.B.04.1.17.P05
http://dx.doi.org/10.3390/s20185112
http://dx.doi.org/10.3390/info11040193
http://dx.doi.org/10.3390/molecules24050826
http://dx.doi.org/10.1111/jfpe.13510
http://dx.doi.org/10.1016/j.fuel.2021.122184
http://dx.doi.org/10.1016/j.apm.2020.09.037
http://dx.doi.org/10.1016/j.saa.2021.120733
http://www.ncbi.nlm.nih.gov/pubmed/34920303
http://dx.doi.org/10.3390/fermentation7040285
http://dx.doi.org/10.3390/ndt2040024
http://dx.doi.org/10.1063/5.0105820
http://dx.doi.org/10.1109/TNNLS.2019.2957109
http://www.ncbi.nlm.nih.gov/pubmed/31944966
http://dx.doi.org/10.3390/foods14020247
http://dx.doi.org/10.1016/j.fochx.2024.101867
http://dx.doi.org/10.1016/j.engfailanal.2013.05.002
http://dx.doi.org/10.1080/07373937.2020.1853152

Processes 2025, 13, 2929 31 of 33

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Islam, M.R.; Zamil, M.Z.H.; Rayed, M.E.; Kabir, M.M.; Mridha, M.; Nishimura, S.; Shin, J. Deep learning and computer vision
techniques for enhanced quality control in manufacturing processes. IEEE Access 2024, 12, 121449-121479 . [CrossRef]

Bhagya Raj, G.; Dash, K.K. Comprehensive study on applications of artificial neural network in food process modeling. Crit. Rev.
Food Sci. Nutr. 2022, 62, 2756-2783. [CrossRef]

Llacay, B.; Peffer, G. Categorical Surrogation of Agent-Based Models: A Comparative Study of Machine Learning Classifiers.
Expert Syst. 2023, 42, €13342. [CrossRef]

Shan, S.; Wang, G. Survey of Modeling and Optimization Strategies to Solve High-Dimensional Design Problems with
Computationally-Expensive Black-Box Functions. Struct. Multidiscip. Optim. 2010, 41, 219-241. [CrossRef]

Misener, R.; Biegler, L. Formulating Data-Driven Surrogate Models for Process Optimization. Comput. Chem. Eng. 2023,
179,108411. [CrossRef]

Zhai, ].; Boukouvala, F. Data-Driven Spatial Branch-and-Bound Algorithms for Box-Constrained Simulation-Based Optimization.
J. Glob. Optim. 2022, 82, 21-50. [CrossRef]

Cuomo, S.; Di Cola, V.; Giampaolo, F; Rozza, G.; Raissi, M.; Piccialli, F. Scientific Machine Learning through Physics-Informed
Neural Networks: Where We Are and What's Next. J. Sci. Comput. 2022, 92, 88. [CrossRef]

Karniadakis, G.; Kevrekidis, I; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-Informed Machine Learning. Nat. Rev. Phys. 2021,
3, 422-440. [CrossRef]

Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686-707. [CrossRef]

Huang, B.; Wang, ]. Applications of Physics-Informed Neural Networks in Power Systems—A Review. IEEE Trans. Power Syst.
2022, 38, 572-588. [CrossRef]

Purlis, E. Physics-Informed Machine Learning: The Next Big Trend in Food Process Modelling? Curr. Food Sci. Technol. Rep. 2024,
2,1-6. [CrossRef]

Chen, X.; Chen, R;; Wan, Q.; Xu, R;; Liu, J]. An Improved Data-Free Surrogate Model for Solving Partial Differential Equations
Using Deep Neural Networks. Sci. Rep. 2021, 11, 19507. [CrossRef] [PubMed]

Cai, S.; Mao, Z.; Wang, Z.; Yin, M.; Karniadakis, G. Physics-Informed Neural Networks (PINNs) for Fluid Mechanics: A Review.
Acta Mech. Sin. 2021, 37, 1727-1738. [CrossRef]

Singh, P.; Pandey, S.; Manik, S. A comprehensive review of the dairy pasteurization process using machine learning models. Food
Control 2024, 164, 110574. [CrossRef]

Khan, M.ILH.; Batuwatta-Gamage, C.P.; Karim, M.; Gu, Y. Fundamental understanding of heat and mass transfer processes for
physics-informed machine learning-based drying modelling. Energies 2022, 15, 9347. [CrossRef]

Vinestock, T.; Short, M.; Ward, K.; Guo, M. Computer-aided chemical engineering research advances in precision fermentation.
Curr. Opin. Food Sci. 2024, 58, 101196. [CrossRef]

Li, Y.; Wang, Y.; Yan, L. Surrogate Modeling for Bayesian Inverse Problems Based on Physics-Informed Neural Networks. ].
Comput. Phys. 2023, 475,111841. [CrossRef]

Wiirth, T.; Krauf, C.; Zimmerling, C.; Kérger, L. Physics-Informed Neural Networks for Data-Free Surrogate Modelling and
Engineering Optimization—An Example from Composite Manufacturing. Mater. Des. 2023, 231, 112034. [CrossRef]

Wang, J.; Xiao, X.; Feng, X.; Xu, H. An improved physics-informed neural network with adaptive weighting and mixed
differentiation for solving the incompressible Navier-Stokes equations. Nonlinear Dyn. 2024, 112, 16113-16134. [CrossRef]
Chen, W.; Howard, A.A ; Stinis, P. Self-adaptive weights based on balanced residual decay rate for physics-informed neural
networks and deep operator networks. J. Comput. Phys. 2025, 114226. [CrossRef]

Perez, S.; Maddu, S.; Sbalzarini, LE,; Poncet, P. Adaptive weighting of Bayesian physics informed neural networks for multitask
and multiscale forward and inverse problems. J. Comput. Phys. 2023, 491, 112342. [CrossRef]

Nayak, J.; Vakula, K.; Dinesh, P.; Naik, B.; Pelusi, D. Intelligent food processing: Journey from artificial neural network to deep
learning. Comput. Sci. Rev. 2020, 38, 100297. [CrossRef]

Liu, Y.; Pu, H.; Sun, D.W. Efficient extraction of deep image features using convolutional neural network (CNN) for applications
in detecting and analysing complex food matrices. Trends Food Sci. Technol. 2021, 113, 193-204. [CrossRef]

Ozsert Yigit, G.; Ozyildirim, B.M. Comparison of convolutional neural network models for food image classification. ]. Inf.
Telecommun. 2018, 2, 347-357. [CrossRef]

Luo, N.; Xu, D.; Xing, B.; Yang, X.; Sun, C. Principles and applications of convolutional neural network for spectral analysis in
food quality evaluation: A review. J. Food Compos. Anal. 2024, 128, 105996. [CrossRef]

Chakravartula, S.S.N.; Moscetti, R.; Bedini, G.; Nardella, M.; Massantini, R. Use of convolutional neural network (CNN) combined
with FT-NIR spectroscopy to predict food adulteration: A case study on coffee. Food Control 2022, 135, 108816. [CrossRef]
Addanki, M; Patra, P.; Kandra, P. Recent advances and applications of artificial intelligence and related technologies in the food
industry. Appl. Food Res. 2022, 2, 100126. [CrossRef]


http://dx.doi.org/10.1109/ACCESS.2024.3453664
http://dx.doi.org/10.1080/10408398.2020.1858398
http://dx.doi.org/10.1111/exsy.13342
http://dx.doi.org/10.1007/s00158-009-0420-2
http://dx.doi.org/10.1016/j.compchemeng.2023.108411
http://dx.doi.org/10.1007/s10898-021-01045-8
http://dx.doi.org/10.1007/s10915-022-01939-z
http://dx.doi.org/10.1038/s42254-021-00314-5
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1109/TPWRS.2022.3162473
http://dx.doi.org/10.1007/s43555-023-00012-6
http://dx.doi.org/10.1038/s41598-021-99037-x
http://www.ncbi.nlm.nih.gov/pubmed/34593943
http://dx.doi.org/10.1007/s10409-021-01148-1
http://dx.doi.org/10.1016/j.foodcont.2024.110574
http://dx.doi.org/10.3390/en15249347
http://dx.doi.org/10.1016/j.cofs.2024.101196
http://dx.doi.org/10.1016/j.jcp.2022.111841
http://dx.doi.org/10.1016/j.matdes.2023.112034
http://dx.doi.org/10.1007/s11071-024-09856-6
http://dx.doi.org/10.1016/j.jcp.2025.114226
http://dx.doi.org/10.1016/j.jcp.2023.112342
http://dx.doi.org/10.1016/j.cosrev.2020.100297
http://dx.doi.org/10.1016/j.tifs.2021.04.042
http://dx.doi.org/10.1080/24751839.2018.1446236
http://dx.doi.org/10.1016/j.jfca.2024.105996
http://dx.doi.org/10.1016/j.foodcont.2022.108816
http://dx.doi.org/10.1016/j.afres.2022.100126

Processes 2025, 13, 2929 32 of 33

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

Bahaghighat, M.; Abedini, F.; S’hoyan, M.; Molnar, A.J. Vision inspection of bottle caps in drink factories using convolutional
neural networks. In Proceedings of the 2019 IEEE 15th International Conference on Intelligent Computer Communication and
Processing (ICCP), Cluj-Napoca, Romania, 5-7 September 2019 ; IEEE: Piscataway, NJ, USA, 2019; pp. 381-385.

Tarwani, KM.; Edem, S. Survey on recurrent neural network in natural language processing. Int. . Eng. Trends Technol. 2017,
48, 301-304. [CrossRef]

Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Gated feedback recurrent neural networks. In Proceedings of the International
Conference on Machine Learning, PMLR, 2015, Lile, France, 6-11 July 2015; pp. 2067-2075.

Zargar, S. Introduction to Sequence Learning Models: RNN, LSTM, GRU; Department of Mechanical and Aerospace Engineering,
North Carolina State University: Raleigh, NC, USA, 2021.

Kim, S.Y;; Park, S.; Hong, S.J.; Kim, E.; Nurhisna, N.L; Park, J.; Kim, G. Time-series prediction of onion quality changes in cold
storage based on long short-term memory networks. Postharvest Biol. Technol. 2024, 213, 112927. [CrossRef]

Weerakody, P.B.; Wong, K.W.; Wang, G.; Ela, W. A review of irregular time series data handling with gated recurrent neural
networks. Neurocomputing 2021, 441, 161-178. [CrossRef]

Wahid, A.; Breslin, J.G.; Intizar, M. A. Prediction of machine failure in industry 4.0: A hybrid CNN-LSTM framework. Appl. Sci.
2022, 12, 4221. [CrossRef]

Khan, PW.,; Byun, Y.C.; Park, N. IoT-blockchain enabled optimized provenance system for food industry 4.0 using advanced deep
learning. Sensors 2020, 20, 2990. [CrossRef]

Matla, Y.; Yannamaneni, R.R.; Pappas, G. Globalizing Food Items Based on Ingredient Consumption. Sustainability 2024, 16, 7524.
[CrossRef]

Bowler, A.; Rodgers, S.; Cook, D.; Watson, N. Bayesian and Ultrasonic Sensor Aided Multi-Objective Optimisation for Sustainable
Clean-in-Place Processes. Food Bioprod. Process. 2023, 141, 23-35. [CrossRef]

Datta, A.; Nicolai, B.; Vitrac, O.; Verboven, P.; Erdogdu, F; Marra, E; Sarghini, F.; Koh, C. Computer-Aided Food Engineering.
Nat. Food 2022, 3, 894-904. [CrossRef] [PubMed]

Di Martino, M.; Avraamidou, S.; Cook, J.; Pistikopoulos, E. An Optimization Framework for the Design of Reverse Osmosis
Desalination Plants under Food-Energy-Water Nexus Considerations. Desalination 2021, 503, 114937. [CrossRef]

Chiu, M.C,; Yan, W.M.; Bhat, S.; Huang, N.F. Development of Smart Aquaculture Farm Management System Using IoT and
Al-Based Surrogate Models. J. Agric. Food Res. 2022, 9, 100357. [CrossRef]

Khan, M.; Moallemi, E.; Thiruvady, D.; Nazari, A.; Bryan, B. Machine Learning-Based Surrogate Modelling of a Robust,
Sustainable Development Goal (SDG)-Compliant Land-Use Future for Australia at High Spatial Resolution. J. Environ. Manag.
2024, 363, 121296. [CrossRef]

Datta, A. Status of Physics-Based Models in the Design of Food Products, Processes, and Equipment. Compr. Rev. Food Sci. Food
Saf. 2008, 7, 121-129. [CrossRef]

Fisher, O.; Watson, N.; Escrig, J.; Witt, R.; Porcu, L.; Bacon, D.; Rigley, M.; Gomes, R. Considerations, Challenges and Opportunities
When Developing Data-Driven Models for Process Manufacturing Systems. Comput. Chem. Eng. 2020, 140, 106881. [CrossRef]
Nkosi, N.; Tumba, K. Optimization and Energy Assessment of Carbon Dioxide Hydrate-Based Fruit Juice Concentration Process.
Food Bioproc. Technol. 2024, 17, 1845-1861. [CrossRef]

Awuah, G.; Ramaswamy, H.; Economides, A. Thermal Processing and Quality: Principles and Overview. Chem. Eng. Process.
Process Intensif. 2007, 46, 584—602. [CrossRef]

Kumar, I.; Rawat, J.; Mohd, N.; Husain, S. Opportunities of Artificial Intelligence and Machine Learning in the Food Industry. J.
Food Qual. 2021, 2021, 4535567. [CrossRef]

Becker, D.; Schmitt, C.; Bovetto, L.; Rauh, C.; McHardy, C.; Hartmann, C. Optimization of Complex Food Formulations Using
Robotics and Active Learning. Innov. Food Sci. Emerg. Technol. 2023, 83, 103232. [CrossRef]

Ladha-Sabur, A.; Bakalis, S.; Fryer, P.; Lopez-Quiroga, E. Mapping Energy Consumption in Food Manufacturing. Trends Food Sci.
Technol. 2019, 86, 270-280. [CrossRef]

Naresh Kumar, S.; Chakabarti, B. Energy and Carbon Footprint of Food Industry. In Energy Footprints of the Food and Textile Sectors;
Springer: Cham, Switzerland, 2019; pp. 19-44.

Corigliano, O.; Algieri, A. A Comprehensive Investigation on Energy Consumptions, Impacts, and Challenges of the Food
Industry. Energy Convers. Manag. X 2024, 23, 100661. [CrossRef]

Meyers, S.; Schmitt, B.; Chester-Jones, M.; Sturm, B. Energy Efficiency, Carbon Emissions, and Measures towards Their
Improvement in the Food and Beverage Sector for Six European Countries. Energy 2016, 104, 266-283. [CrossRef]

Millén, G.; Llano, E.; Globisch, J.; Durand, A.; Hettesheimer, T.; Alcalde, E. Increasing Energy Efficiency in the Food and Beverage
Industry: A Human-Centered Design Approach. Sustainability 2020, 12, 7037. [CrossRef]

Clairand, ].M.; Briceno-Leon, M.; Escriva-Escriva, G.; Pantaleo, A. Review of Energy Efficiency Technologies in the Food Industry:
Trends, Barriers, and Opportunities. IEEE Access 2020, 8, 48015-48029. [CrossRef]


http://dx.doi.org/10.14445/22315381/IJETT-V48P253
http://dx.doi.org/10.1016/j.postharvbio.2024.112927
http://dx.doi.org/10.1016/j.neucom.2021.02.046
http://dx.doi.org/10.3390/app12094221
http://dx.doi.org/10.3390/s20102990
http://dx.doi.org/10.3390/su16177524
http://dx.doi.org/10.1016/j.fbp.2023.06.010
http://dx.doi.org/10.1038/s43016-022-00617-5
http://www.ncbi.nlm.nih.gov/pubmed/37118206
http://dx.doi.org/10.1016/j.desal.2021.114937
http://dx.doi.org/10.1016/j.jafr.2022.100357
http://dx.doi.org/10.1016/j.jenvman.2024.121296
http://dx.doi.org/10.1111/j.1541-4337.2007.00030.x
http://dx.doi.org/10.1016/j.compchemeng.2020.106881
http://dx.doi.org/10.1007/s11947-023-03228-5
http://dx.doi.org/10.1016/j.cep.2006.08.004
http://dx.doi.org/10.1155/2021/4535567
http://dx.doi.org/10.1016/j.ifset.2022.103232
http://dx.doi.org/10.1016/j.tifs.2019.02.034
http://dx.doi.org/10.1016/j.ecmx.2024.100661
http://dx.doi.org/10.1016/j.energy.2016.03.117
http://dx.doi.org/10.3390/su12177037
http://dx.doi.org/10.1109/ACCESS.2020.2979077

Processes 2025, 13, 2929 33 of 33

98.

99.

100.

101.

102.

103.

104.

105.

106.

Durkin, A.; Otte, L.; Guo, M. Surrogate-Based Optimisation of Process Systems to Recover Resources from Wastewater. Comput.
Chem. Eng. 2024, 182, 108584. [CrossRef]

Xiong, Z.; Guo, K,; Cai, H.; Liu, H.; Xiang, W.; Liu, C. Distillation Process Optimization: A Screening-Clustering Assisted Kriging
Optimization Method. Chem. Eng. Sci. 2021, 238, 116597. [CrossRef]

Hiillen, G.; Zhai, J.; Kim, S.; Sinha, A.; Realff, M.; Boukouvala, F. Managing Uncertainty in Data-Driven Simulation-Based
Optimization. Comput. Chem. Eng. 2020, 136, 106519. [CrossRef]

Yondo, R.; Andrés, E.; Valero, E. A Review of Design of Experiments and Surrogate Models in Aircraft Real-Time and Many-Query
Aerodynamic Analyses. Prog. Aerosp. Sci. 2018, 96, 23—61. [CrossRef]

Wang, C.; Duan, Q.; Gong, W.; Ye, A.; Di, Z.; Miao, C. An Evaluation of Adaptive Surrogate Modeling Based Optimization with
Two Benchmark Problems. Environ. Model. Softw. 2014, 60, 167-179. [CrossRef]

Dhal, S.B.; Kar, D. Leveraging artificial intelligence and advanced food processing techniques for enhanced food safety, quality,
and security: A comprehensive review. Discov. Appl. Sci. 2025, 7, 75. [CrossRef]

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30 .

Gim, M.; Park, D.; Spranger, M.; Maruyama, K.; Kang, J. Recipebowl: A cooking recommender for ingredients and recipes using
set transformer. IEEE Access 2021, 9, 143623-143633. [CrossRef]

Zhao, S.; Bai, Z.; Wang, S.; Gu, Y. Research on automatic classification and detection of mutton multi-parts based on swin-
transformer. Foods 2023, 12, 1642. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1016/j.compchemeng.2024.108584
http://dx.doi.org/10.1016/j.ces.2021.116597
http://dx.doi.org/10.1016/j.compchemeng.2019.106519
http://dx.doi.org/10.1016/j.paerosci.2017.11.003
http://dx.doi.org/10.1016/j.envsoft.2014.05.026
http://dx.doi.org/10.1007/s42452-025-06472-w
http://dx.doi.org/10.1109/ACCESS.2021.3120265
http://dx.doi.org/10.3390/foods12081642

	Introduction
	Methodology
	Data Sources
	Search Strategy

	Surrogate Modelling
	Definition and Purpose of Surrogate Modelling
	Surrogate Modelling Framework and Workflow

	AI-Based Approaches in Surrogate Modelling
	Introduction to Machine Learning
	Distinction Between Traditional Expert Systems and Machine Learning
	The Data
	The Model
	The Loss Function

	Machine Learning Categories
	Machine Learning Techniques for Surrogate Modelling
	Support Vector Regression Models
	Gaussian Process Regression
	Artificial Neural Networks

	Advantages and Limitations of AI-Based Surrogate Modelling

	State-of-the-Art Techniques in Surrogate Modelling
	Physics-Informed Neural Networks (PINNs) in Surrogate Modelling
	Convolutional Neural Networks (CNNs)
	Recurrent Neural Networks (RNNs)

	Application of Surrogate Models in the Food and Drink Manufacturing Industry
	Food and Drink Manufacturing Challenges
	Process Optimisation in the Food Sector Using Surrogate Modelling
	Energy Consumption in the Food and Drink Industry

	Current Challenges and Limitations of Surrogate Modelling
	Conclusions and Further Research Directions
	References

