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Abstract—Channel estimation plays a critical role in wireless 
communication, especially under extreme scenarios that pose 
significant challenges to reliable communication. These 
challenges are expected to be more severe in 6G and beyond due 
to the adoption of higher frequencies (millimeter-wave and 
terahertz bands) and the integration of high-speed terrestrial 
and non-terrestrial networks for ubiquitous connectivity. 
Conventional channel estimation techniques, such as the Least 
Squares (LS) and Minimum Mean Squared Error (MMSE) 
estimators struggle under these conditions due to their reliance 
on linear models and sensitivity to noise. This research 
investigates the use of a Convolutional Neural Network (CNN) 
for channel estimation in extreme scenarios. The proposed CNN 
architecture captures the spatial and temporal features, as well 
as the non-linear patterns in the time-frequency resource grid of 
wireless channels, enabling robust and efficient channel 
estimation. Performance comparisons between the CNN-based 
and conventional channel estimation techniques were conducted 
under varying Doppler shift, delay spread, and signal-to-noise 
ratio (SNR) conditions. The results demonstrate that the CNN-
based channel estimator significantly outperforms conventional 
methods, maintaining a low mean squared error (MSE) even 
under severe conditions. These findings highlight CNN-based 
channel estimation as a robust and adaptable solution for next-
generation networks. 

Keywords—6G, Channel estimation, CNN, deep learning, 
extreme scenarios, frequency selective and time-varying channels, 
high mobility, Doppler effects, next generation networks.  

I. INTRODUCTION 

The next generation of wireless networks, 6G and beyond, 
promises transformative advancements beyond previous-
generation networks. They are envisioned to deliver extreme 
data rates, ultra-low latency, increased reliability and 
efficiency, massive connectivity and better quality of service 
(QoS). These advanced capabilities will pave the way for 
transformative technologies, including holographic 
communication, extended reality (XR), autonomous vehicles, 
remote surgery, unmanned aerial vehicles (UAVs), and smart 
cities [1]. 6G also aims to achieve ubiquitous connectivity and 
bridge the digital divide by integrating the existing terrestrial 
network with non-terrestrial networks (NTN), thereby 
forming a space-air-ground integrated network (SAGIN) [2]. 

Despite these advantages, next generation networks would 
face significant challenges in ensuring reliable and efficient 
communication in extreme scenarios. These extreme 
scenarios are characterized by multipath fading, high Doppler 

effects, severe attenuation or path loss at millimeter wave 
(mmWave) and terahertz (THz) frequencies, which presents 
significant challenges for maintaining reliable and efficient 
communication [3]. 

As signals propagate through the wireless channel, they 
can be affected in diverse ways. Channel estimation, a critical 
component of wireless communication, plays a vital role in 
predicting the channel's behavior to facilitate accurate signal 
equalization and detection. However, the frequency-selective 
and rapidly time-varying nature of wireless channels in 
extreme scenarios poses significant challenges to channel 
estimation accuracy. 

Traditional channel estimation techniques, including Least 
Squares (LS) and Minimum Mean Square Error (MMSE), 
have been instrumental in addressing channel estimation in 
previous-generation networks [4]. However, their reliance on 
linear mathematical models, sensitivity to noise, high 
computational complexity and inability to adapt to rapidly 
changing channel conditions render them less effective in 
extreme scenarios where the channel conditions pose 
significant challenges. These limitations have prompted 
researchers to explore more advanced and adaptable solutions. 

In recent years, deep learning (DL) has emerged as a 
promising solution for addressing the challenges in wireless 
communications, offering data-driven approaches to tackle 
complex tasks such as channel estimation, signal detection, 
and beamforming [5]. DL models can exploit spatial, 
temporal, and spectral correlations within the communication 
channels, offering robust channel estimation with reduced 
computational overhead. Hence, researchers are exploring the 
potential of DL for channel estimation [6]. 

Among various DL architectures, Convolutional Neural 
Networks (CNNs) have demonstrated outstanding capabilities 
in channel estimation tasks [7]. CNNs can effectively capture 
spatial features and complex non-linear patterns in channel 
responses, enabling accurate and adaptable channel estimation 
across diverse and challenging scenarios compared to 
conventional methods. Unlike conventional techniques that 
rely on mathematical models and assumptions, CNN-based 
channel estimators learn the relationship between received 
signals and channel conditions directly from data, making 
them adaptable to non-linear, dynamic, and extreme scenarios. 

While existing studies have highlighted the advantages of 
CNN-based channel estimation over conventional methods in 
applications such as millimeter-wave (mmWave) and massive 
multiple input multiple output (mMIMO) systems, there is 
limited research exploring their performance in extreme 



scenarios, which poses significant challenges to channel 
estimation accuracy. These extreme scenarios with high 
Doppler shifts, delay spread, and low SNR are prevalent in 
dense urban areas, vehicular communications, high-speed 
terrestrial and non-terrestrial networks, making this an 
essential area of research for 6G and beyond. 

Hence, this research addresses this critical gap in channel 
estimation by evaluating the performance of CNN-based 
method under extreme conditions anticipated in 6G and 
beyond. By systematically comparing CNN-based models 
with conventional techniques, this study highlights the 
advantages of CNN in tackling challenges such as high 
mobility, severe multipath fading, and low SNR. The findings 
provide valuable insights into the adaptability, efficiency, and 
accuracy of CNN-based channel estimation, establishing it as 
a superior alternative to conventional methods for reliable 
communication in next-generation networks. 

The contributions of this study are summarized as follows: 
 A realistic training dataset was generated for channel 

estimation using standard-compliant waveforms and 
channel models from MATLAB’s 6G Exploration 
Library. This dataset provides a reliable representation 
of wireless channel conditions in extreme scenarios. 

 A CNN-based channel estimation model was 
developed to effectively capture the non-linear, 
complex and dynamic patterns in wireless channels. 
The model demonstrates high accuracy in estimating 
the wireless channel, even in challenging conditions. 

 A detailed comparative analysis of the CNN-based 
channel estimation model and conventional techniques 
(interpolation and LS) was conducted across various 
scenarios. This analysis highlights the strengths and 
limitations of each technique, providing valuable 
insights into the effectiveness of CNN-based methods 
for extreme scenarios anticipated in 6G and beyond. 

The rest of this article is organized as follows: Section II 
reviews related work on DL-based channel estimation. 
Section III presents the system model, CNN model, and 
dataset description. Section IV discusses the simulation results 
and comparative analysis. Finally, Section V concludes the 
article and outlines potential future research directions. 

II. RELATED WORK 

Deep learning has emerged as a transformative approach 
for channel estimation in wireless communication systems, 
offering significant advantages over traditional methods. 
Techniques such as CNNs and Recurrent Neural Networks 
(RNNs) have demonstrated their potential to address the 
limitations of conventional estimators [8]. By enabling models 
to adapt dynamically to rapidly changing channel conditions, 
DL provides robust solutions for high-mobility scenarios and 
complex interference patterns, without relying on 
mathematical channel models. CNNs are well-suited for 
channel estimation due to their ability to capture spatial and 
temporal correlations in input data. This makes them effective 
in extracting meaningful features while suppressing noise. 
Treating the wireless channel as an image is an innovative 
approach adopted to leverage CNNs for channel estimation. 

In [7], a DL pipeline combining image super-resolution 
(SR) and image restoration (IR) was proposed. The wireless 
channel was represented as an image, and the pipeline utilized 
a Learned Denoising-Based Approximate Message Passing 
(LDAMP) network. This network integrated a CNN-based 
denoiser with a linear estimator for channel estimation. The 
approach achieved lower normalized mean squared error 

(NMSE) and higher spectral efficiency than compressed 
sensing algorithms. However, it assumed static channels and 
did not account for hardware impairments, limiting its 
applicability in high-mobility scenarios. Similarly, in [9], 
received pilot symbols and fast-fading channel responses were 
treated as low-resolution images. A super-resolution CNN 
enhanced their resolution, followed by a denoising network to 
refine the estimates. While this technique performed 
comparably to the MMSE and outperformed approximations 
of linear MMSE, its performance degraded at higher SNRs. 
 Authors in [10] proposed a fast super-resolution CNN 
(FSRCNN) for channel estimation in mines. This method used 
the LS channel estimation matrix as a low-resolution input 
image and the true channel state information (CSI) as a high-
resolution output during training. This approach outperformed 
traditional LS estimators in scenarios with limited pilot 
symbols and low SNRs. In [11], a DL framework integrating 
hybrid beamforming and channel estimation was introduced. 
By leveraging channel statistics and CNNs, the framework 
effectively obtained hybrid precoders, demonstrating the 
capability of DL to address both channel estimation and 
beamforming challenges in wireless systems. 

Other DL approaches, such as Generative Adversarial 
Networks (GANs) [12] and Autoencoders [13], have also been 
explored for channel estimation. GANs are often employed to 
generate synthetic datasets to augment training data, whereas 
Autoencoders are utilized for dimensionality reduction, 
feature extraction, or even end-to-end signal detection. 
Overall, the existing literature has highlighted the significance 
of DL architectures such as CNN, in addressing channel 
estimation challenges. However, more research is needed to 
explore the potentials of CNN in challenging scenarios. 

III. SYSTEM MODEL 

The system model captures the complexities of next 
generation wireless networks, including high-mobility, 
multipath fading and low SNR. The model comprises three 
primary components: transmitter, channel, and receiver. 
From these components the dataset is collected to train the 
CNN, which is later deployed as shown in Fig. 1.  

A simplified model considers the received signal as an 
attenuated and delayed version of the transmitted signal. If 
𝑥(𝑡) is the transmitted signal, then the received signal is: 

𝑦(𝑡) = ℎ · 𝑥(𝑡 − 𝜏)     (1) 

where ℎ represents the channel attenuation factor, which is 
dependent on the propagation medium, frequency and 
transmitter/receiver gains, while 𝜏 represents the delay which 
is dependent on the velocity of the electromagnetic wave. 

 

Fig. 1. Block Diagram of the System Model 



In reality, the received signal 𝑦(𝑡)  is composed of 
multiple reflected and scattered versions of the transmitted 
signal, each with varying attenuation and delay. 

𝑦(𝑡) = ෍ ℎ௟(𝑡) · 𝑥(𝑡 − 𝜏௟)

௅ିଵ

௟ୀ଴

                   (2) 

where 𝑙 is a specific path (tap), and 𝐿 is total number of paths. 
Furthermore, relative motion between the transmitter and 

receiver introduces a Doppler frequency shift, which alters 
the signal's wavelength or frequency. This Doppler effect 
significantly influences signal path loss and fading caused by 
multipath propagation. Consequently, the channel 
characteristics (ℎ௟ and 𝜏௟) become time-varying, denoted as 
ℎ௟(𝑡)  and 𝜏௟(𝑡) , respectively. Considering the multipath 
propagation, the Doppler effect and the noise 𝑛(𝑡) , the 
received signal at a specific time 𝑡 can be expressed as: 

𝑦(𝑡) = ෍ ℎ௟(𝑡) · 𝑥(𝑡 − 𝜏௟(𝑡))

௅ିଵ

௟ୀ଴

+ 𝑛(𝑡)                 (3) 

Thus, the received signal is affected by the channel, which 
is characterized by the number of paths, the time-varying 
nature of the channel coefficients, and the time delays 
associated with each path. Hence, the multipath time-varying 
channel can be expressed as [14]: 

ℎ(𝑡, 𝜏) = ෍ 𝐴௟(𝑡)𝛿(𝜏 − 𝜏௟(𝑡))

௅ିଵ

௟ୀ଴

                           (4) 

where 𝐴௟(𝑡) denotes the time-varying amplitude of the 𝑙 th 
channel path or tap, and  𝐿 is the total number of paths. 

The tapped delay line (TDL) models, where each tap 
corresponds to a distinct multipath component with 
associated delay and Doppler spectrum, are adopted. These 
models are parameterized based on the 3rd Generation 
Partnership Project (3GPP) TR 38.901 specifications [15]. 
The upper mid-band (FR3) ranging from 7.125 GHz to 
24.25 GHz, which is under investigation for 6G is employed 
in this research. Therefore, the received signal is given by:  

𝑦(𝑡) = ෍ 𝛼௟ · 𝑒௝ଶగ௙ವ,೗௧ · 𝑥(𝑡 − 𝜏௟(𝑡))

௅ିଵ

௟ୀ଴

+ 𝑛(𝑡)      (5) 

where 𝛼௟ is the amplitude (gain) of the 𝑙-th path, which may 
include frequency-dependent attenuation and blockage 
effects for high-frequency scenarios, 𝑓஽,௟  is the Doppler 
frequency shift for the 𝑙 -th path, 𝑥(𝑡 − 𝜏௟(𝑡))  is the 
transmitted signal delayed by 𝜏௟(𝑡). 

The multipath components can be grouped into clusters, 
where each cluster represents a set of rays with similar delays 
and angles, as defined in the 3GPP Geometry-based 
Stochastic Channel Model (GBSM). The TDL profiles 
include non-line-of-sight (NLOS) profiles A, B, and C, 
characterized by multiple scattered paths, as well as line-of-
sight (LOS) profiles D and E, where a dominant direct path 
exists. To simulate realistic and extreme 6G scenarios, the 

channel model extends the 3GPP framework by 
incorporating larger subcarrier densities, wider delay 
spreads, and increased Doppler shifts, enabling the 
evaluation of communication performance under very high 
mobility and dynamic propagation scenarios. 

A. Dataset Description 

 The dataset for this research was carefully designed to 
reflect the spatial, temporal, and spectral variations expected 
in extreme scenarios in 6G and beyond. It was generated (as 
shown in Fig. 1), using MATLAB’s 6G Exploration Library 
[16]. By employing a single-input single-output (SISO) 
system, the physical downlink shared channel (PDSCH) and 
the demodulation reference signals (DM-RS). Each dataset 
sample represents a resource grid in the time-frequency 
domain, comprising 612 subcarriers and 14 OFDM symbols. 
 The resource grids represent the allocation of resources in 
the time-frequency domain. Each element in the grid 
corresponds to a specific time slot and frequency subcarrier. 
These elements contain complex numbers representing the 
channel characteristics at that specific time and frequency. 
 The dataset was generated through 1024 unique signal 
transmissions, with each simulation incorporating randomized 
channel conditions, including varying delay spreads, Doppler 
shifts, and SNR values. These parameters were selected to 
represent diverse scenarios, including extreme conditions, 
ensuring rigorous evaluation of the proposed CNN model. The 
simulation parameters are outlined in Table 1. 
 To prepare the data for CNN processing, the complex-
valued resource grids (612×14 matrices) were split into two 
real-valued matrices representing the real and imaginary 
components of the complex data. The resulting dataset was 
structured as 4D arrays of size (612×14×1×2N), where the 
third dimension (1) represents the single channel and the 
fourth dimension (2N) represents the real and imaginary parts 
for N (1024) samples. This preprocessing step was essential 
for compatibility with the CNN model, which interprets the 
input as a 2D image. The dataset was then partitioned into 
training (80%) and validation (20%) sets. A batch size of 32 
was applied during training to optimize model learning and to 
periodically monitor performance through validation. 

B. Convolutional Neural Network (CNN) 

 A CNN is a class of DL models designed to process grid-
like datasets, such as images or higher-dimensional arrays 
[17]. CNNs achieve superior feature extraction with 
significantly fewer parameters than fully connected neural 
networks, making them computationally efficient. 

TABLE I.  SIMULATION PARAMETERS 

Parameter Value 

Delay Profile TDL-A, TDL-B, TDL-C, TDL-D, TDL-E 

Delay Spread 1 - 1000 ns 

Maximum Doppler Shift 1000 Hz 

SNR  0 - 15 dB 

Modulation 16 QAM 

Antennas configuration SISO (1×1) 

Subcarriers 612 

Symbols per slot 14 

Resource Blocks 51 

Subcarriers Per RB 12 

Subcarrier Spacing 30 KHz 

Transmission Direction Downlink 



Convolution operations enable CNNs to identify and leverage 
the structural patterns within these grids, making them 
effective for accurate and robust channel estimation. 

The convolutional layers are the backbone of CNNs, 
consisting of multiple filters that slide across the input data to 
extract features such as edges, textures, and patterns. Each 
filter performs element-wise multiplications and summations 
over a local receptive field, producing feature maps. These 
feature maps indicate the presence of specific features across 
spatial locations, which are essential for accurate channel 
estimation. The convolution operation is defined as: 

𝑦(𝑖, 𝑗) = ෍ ෍ 𝑥(𝑖 + 𝑚, 𝑗 + 𝑛) ⋅ 𝑘(𝑚, 𝑛)

ேିଵ

௡ୀ଴

ெିଵ

௠ୀ଴

         (6) 

where 𝑦 is the output feature map at position (𝑖, 𝑗), 𝑥 is the 
input image, 𝑀 and 𝑁 are the dimensions of the kernel. 

The proposed CNN architecture in this research is 
designed to exploit the inherent spatial and temporal 
correlations within the time-frequency resource grid of 
communication systems. By treating resource grids as 2D 
images (where the vertical axis represents subcarriers, and the 
horizontal axis represents OFDM symbols), the channel 
estimation task is performed as an image processing, where 
convolutional operations predict the channel coefficients. 

The proposed CNN architecture consists of an input layer 
that accepts the 612×14×1 time-frequency grid, followed by 
five convolutional layers. Layers 1 and 2 employ 9×9 kernels 
with 2 filters, layers 3 and 4 employ 5×5 kernels with 2 filters, 
and layer 5 employs a 5×5 kernel and 1 filter. All layers 
employ "same" padding to preserve the 612×14 spatial 
dimensions. Each convolutional layer is followed by a 
hyperbolic tangent (TanH) activation function, which enables 
the CNN model to learn nonlinear channel effects effectively. 
The final convolutional layer outputs a refined 612×14×1 
channel estimate, matching the input dimension. 

The training process was monitored using validation data, 
ensuring that the model generalizes well to unseen scenarios. 
Early stopping was implemented by terminating training 
when the validation loss ceased to improve, thus avoiding 
overfitting. See Table II, for the models hyperparameters. 

To evaluate the model’s performance, the MSE is utilized. 
It quantifies the average squared difference between the 
actual channel ℎ௜ and the estimated channel ℎప

෡ , providing a 
robust measure of accuracy. The MSE is expressed as: 

  𝑀𝑆𝐸 =
1

𝑁
෍ ൫ℎ௜ − ℎప

෡ ൯
ଶ

ே

௜ୀଵ
                   (7) 

where 𝑁 is the total number of samples. 

TABLE II.  CNN MODEL HYPER-PARAMETERS 

Hyperparameter  Value 
Number of Layers  5 
Kernel Size  [9×9, 9×9, 5×5, 5×5, 5×5]   
Filters [2, 2, 2, 2, 1] 
Batch Size  32 
Learning Rate  0.0003 
Epochs  200 
Optimizer  Adam 
Loss Function  MSE 
Activation Function  TanH 

IV. SIMULATION RESULTS 

This section presents the simulation results for the 
proposed CNN-based channel estimation compared to 
conventional (interpolation and LS) methods. The evaluation 
covers a range of scenarios, from mild to extreme conditions, 
including high Doppler shifts, severe multipath, and low 
SNR, to evaluate the model's performance and robustness. 

A. Resource Grid Estimation 

Fig. 2 illustrates the time-frequency resource grid, for the 
actual channel and the evaluated channel estimation 
techniques for visualization and comparison. This is an 
extreme scenario with multipath propagation and high 
mobility (considering FR3 band). It is characterized by an 
SNR of 10 dB, a delay spread of 200 ns, and a Doppler shift 
of 400 Hz. The actual channel represents the true channel 
coefficients, serving as the benchmark for evaluating the 
performance of the other methods. Variations along the x-
axis indicate time-domain variations in the channel due to 
factors such as Doppler effects in high-mobility scenarios. In 
contrast, variations along the y-axis represent frequency-
selective fading, due to multipath propagation. 

The interpolation technique is relatively simple and 
computationally efficient. However, it fails to capture the full 
complexity and rapid variations of the channel, especially in 
highly dynamic scenarios, achieving the worst MSE of 
0.19033. This can be seen from the visible discrepancies 
between the interpolated channel and the actual channel. 

The conventional (LS) channel estimator minimizes the 
error between the actual and interpolated channel estimate. It 
achieves a better MSE of 0.15045 and yields a more accurate 
estimate than the interpolation technique. However, it also 
struggles to track time-domain channel variations due to high 
mobility scenarios as shown in Fig. 2. 

The CNN-based channel estimator presents the best 
representation of the actual channel, with a 0.032453 MSE 
(78.42% improvement from LS). By treating the resource 
grids as 2D images, the CNN learns complex relationships 
between received signals and corresponding channel 
coefficients, effectively capturing variations in both time and 
frequency domains. This leads to improved robustness and 
accuracy compared to the other conventional techniques. 

The conventional (LS) channel estimator minimizes the 
error between the actual and interpolated channel estimate. It 
achieves a better MSE of 0.15045 and yields a more accurate  

 

Fig. 2. Time-frequency resource grid of the different channel estimates 



   

Fig. 3. MSE vs Doppler shift comparison at 0 dB SNR 

estimate than the interpolation technique. However, it also 
struggles to track time-domain channel variations due to high 
mobility scenarios as shown in Fig. 2. 

The CNN-based channel estimator presents the best 
representation of the actual channel, with a 0.032453 MSE 
(78.42% improvement from LS). By treating the resource 
grids as 2D images, the CNN learns complex relationships 
between received signals and corresponding channel 
coefficients, effectively capturing variations in both time and 
frequency domains. This leads to improved robustness and 
accuracy compared to the other conventional techniques. 

B. Doppler Shift Performance 

Fig. 3 compares the MSE performance of the proposed 
CNN-based channel estimator with the conventional 
technique for Doppler shifts ranging from 5 Hz to 1000 Hz 
(low to high mobility). The results are presented for two delay 
spreads (1 ns and 300 ns) at 0 dB SNR (indicating a noisy 
scenario with the signal power equal to the noise power). 

The MSE generally increases with higher Doppler shifts 
in both techniques, indicating that channel estimation 
becomes more challenging as the mobility of the transmitter 
or receiver increases. As the Doppler shift increases to 1000 
Hz, the MSE for both conventional and CNN-based methods 
increase. This trend reflects the growing challenge of 
accurate channel estimation with increasing mobility, where 
the channel varies rapidly over time. 

It can be observed that at lower Doppler shifts, the MSE 
performance of the CNN and the conventional technique is 
comparable. This is often the case because conventional 
methods are often sufficient when the channel is relatively 
static or slowly varying. However, the performance gap 
widens significantly as the Doppler shift exceeds 400 Hz. In 
other words, the CNN-based estimator outperforms the 
conventional estimator, particularly at higher Doppler shifts, 
which demonstrates the ability of the CNN to adapt to rapidly 
changing and high-mobility channels in extreme scenarios. 

Both techniques exhibited a slight increase in MSE with 
the higher delay spread (300 ns). This is expected as larger 
delay spreads lead to more severe multipath fading. However, 
the CNN-based estimator demonstrated greater robustness to 
the increased delay spread, exhibiting a smaller increase in 
MSE compared to the conventional (LS) technique. 

  

Fig. 4. MSE vs delay spread comparison at 0 and 10 dB SNR 

C. Delay Spread Performance 

Fig. 4 compares the MSE performance of the proposed 
CNN-based estimator and conventional estimator under 
varying delay spread conditions at SNRs of 0 dB and 10 dB.  
Both methods show an increasing MSE trend as the delay 
spread increases. This reflects the challenging multipath 
propagation conditions at larger delay spreads. While the 
increase in MSE is significantly more pronounced for the 
Conventional method, especially at 0 dB SNR, the CNN-
based estimator maintains significantly lower MSE compared 
to Conventional estimator, demonstrating its ability to handle 
severe noise and multipath fading conditions effectively. 

It is observed that at lower delay spreads (< 200 ns), the 
conventional technique achieves performance comparable to 
that of the CNN model. However, as the delay spread 
increases (> 400 ns), the performance gap between both 
techniques widens and the conventional technique degrades 
significantly, while the CNN-based estimator maintains a 
more robust performance, emphasizing the strength of the 
CNN-based approach in extreme scenarios. 

D. SNR Performance 

Fig. 5 shows the MSE performance of the CNN-based 
estimator and conventional (LS) estimator from 0 to 25 dB 
SNR. As the SNR increases, the MSE decreases for both 
techniques, indicating improved channel estimation accuracy 
in higher SNRs. This behaviour aligns with theoretical 
expectations, as higher SNR typically results in less noise 
interference during channel estimation. 

At higher SNR values (> 15 dB), the MSE performance 
of both techniques converges, achieving near-identical low 
error rates. This indicates that under low-noise conditions and 
high SNR, conventional methods can match the performance 
of CNN-based methods. This convergence is likely because 
the CNN was trained only on data within the 0–15 dB SNR 
range, which limits its ability to generalize to higher SNR 
values. Expanding the training dataset to include higher SNR 
values could potentially improve the CNN's performance in 
such scenarios. 

However, at low SNR values (0–10 dB), the CNN-based 
channel estimator demonstrates a significantly lower MSE 
compared to the conventional channel estimation technique, 
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Fig. 5. MSE vs SNR comparison at 50 Hz and 300 ns 

showcasing its ability to handle noisy conditions better. This 
highlights the robustness of CNN-based models in extreme 
scenarios with high signal degradation and noise levels. 

E. Complexity Analysis 

The Big 𝒪 notation is crucial for understanding algorithm 
efficiency and computational complexity. The LS estimation 
involves matrix inversion with a complexity of 
approximately 𝒪(𝑁ଷ), where 𝑁 is the number of subcarriers 
or channel taps. For 𝑀 symbols, the total complexity scales 
as 𝒪(𝑀𝑁ଷ). The LS is relatively less complex, and ideal for 
real-time applications under simpler channel conditions. 
However, it becomes impractical for larger 𝑁, and struggles 
to cope with non-linearities and noise, making it unsuitable 
in extreme scenarios. 

The computational complexity of CNN during training is 
approximately 𝒪(𝑁𝐷𝐹ଶ𝐶) , where 𝑁  is the number of 
samples, 𝐷 is the depth of the network, 𝐹 is the filter size, 
and 𝐶 is the number of channels. The training phase requires 
substantial computational resources and time. However, 
during deployment, the computational complexity reduces, 
focusing on matrix multiplications and activation functions. 
Making the CNN model suitable for real-time applications. 

V. CONCLUSION 

This research has provided a comprehensive investigation 
into the performance of the CNN-based channel estimation 
model in comparison with conventional channel estimation in 
extreme scenarios in 6G and beyond. The study evaluated 
both methods under varying Doppler shift, delay spread, and 
SNR, demonstrating the efficacy and robustness of the CNN-
based channel estimator in challenging scenarios. 

The CNN-based channel estimator exhibited remarkable 
resilience to extreme scenarios, maintaining lower MSE even 
under high Doppler shifts, significant delay spreads, and 
noisy channels. In contrast, conventional channel estimation 
techniques suffered significant performance degradation 
under the same conditions, highlighting their limitations in 
extreme scenarios. The CNN model is also computationally 
efficient during deployment, making it feasible for real-time 
applications. 

These findings highlight the superior performance of the 
CNN-based channel estimator as a robust solution for reliable 

communication in 6G. Future work will investigate 
alternative DL models to further enhance channel estimation. 
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