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Abstract 

The icing failures of wind turbine blades are critical factors that affect both power 

generation efficiency and safety. To improve the diagnostic accuracy and speed, 

an improved weighted kernel extreme learning machine (IWKELM) optimized by 

multi-strategy adaptive coati optimization algorithm (MACOA) for icing fault diagnosis 

model is proposed, i.e., MACOA-IWKELM. Firstly, in order to improve the model opti-

mization performance, the MACOA is proposed by introducing chaotic mapping Lévy 

flights, nonlinear inertial step factors, an improved coati vigilante mechanism, and an 

improved objective function. Secondly, the weighted kernel extreme learning machine 

(WKELM) is optimized by improved weighted parameters considering the influence 

of the internal distribution of samples on the diagnostic model. Finally, the MACOA 

is applied to the IWKELM and combined with the random forest (RF) dimensionality 

reduction technique to form the icing diagnostic model. The method is based on two 

sets of real SCADA data of wind turbine blade icing for comparison experiments with 

other models. In the two sets of experiments, the accuracy reaches 92.22% and 

96.94% respectively, and the standard deviation of the accuracy in 50 experiments is 

2.53% and 1.92% respectively. Keywords: Multi-strategy adaptive coati optimization 

algorithm; Improved weighted extreme learning machine; Wind turbine blade icing 

fault detection; Fault detection.

Introduction

Wind energy is commonly used in various applications, including power generation, 
heating, and water pumping [1]. However, during the process of wind power gener-
ation, the turbine blades are susceptible to icing due to low-temperature conditions. 
Consequently, it is essential to study icing fault diagnosis. Currently, there are two 
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primary categories of methods for diagnosing icing faults in wind turbine blades: 
mechanistic models and data-driven approaches [2].

Mechanistic models are based on physical and engineering principles to investi-
gate the operational mechanisms and failure modes of wind turbines. However, these 
models tend to be complex, incur high computational costs, and pose challenges in 
terms of maintenance and updates. On the other hand, data-driven methods involve 
constructing intelligent models based on extensive datasets to detect and analyze 
the operational conditions of wind turbine blades, thereby assessing their operational 
status. This approach requires less specialized knowledge and has proven effective 
in actual predictive scenarios [3].

Common data-driven fault diagnosis methods are based on classifiers such 
as BP, ELM, KNN, SVM, and DT, among others [4]. While these methods have a 
well-established theoretical foundation and are cost-effective and widely applicable, 
they often depend on expert knowledge and face challenges in real-time monitor-
ing, as well as the risk of misdiagnosis and omissions [5]. The Extreme Learning 
Machine (ELM) [6], proposed by Huang, is frequently employed in fault diagnosis 
due to its remarkable characteristics, including strong learning capability, effective 
testing performance, rapid training speed, and robust generalization ability. How-
ever, ELM exhibits limited generalization in nonlinear systems and is particularly 
sensitive to noise. To address these nonlinear issues, the Kernel-Based Extreme 
Learning Machine (KELM) was introduced [7]. Additionally, to tackle the problem of 
imbalanced data, Weighted Kernel-Based Extreme Learning Machine (WKELM) was 
proposed [8]. However, WKELM only applies weights to the two types of samples as 
a whole, overlooking the distribution within the samples, indicating that there is still 
room for improvement.

Since optimization algorithms can screen initial solutions for traditional models 
and improve their optimization search process, it is highly feasible and good diag-
nosis to use them to optimize fault diagnosis methods. Yan Y et al. [9] proposed 
an On-Load Tap-Changer fault diagnosis method based on the Weighted Extreme 
Learning Machine optimized by Improved Grey Wolf Algorithm. Guo X Y et al. [10] 
used an ELM model optimized by the Genetic Algorithm. In literature [11], the Grey 
Wolf Optimization-Ant Lion Optimizer-Extreme Learning Machine model was pro-
posed. In the literature [12], a Kernel Extreme Learning Machine optimized by Grey 
Wolf Optimization was presented. The Coati Optimization Algorithm (COA) is a heu-
ristic algorithm that simulates the natural behaviour of long-nosed coatis [13], has a 
strong optimization ability, which makes it competitive among similar algorithms. Jia 
et al. [14] proposed the introduction of a sound-based search encirclement strategy 
as well as a physical exertion strategy to improve the COA but failed to take into 
account the optimization of the generation of the initial population. Zhang et al. [15] 
improved the COA by applying it to real engineering problems, such as the three-
bar truss design problem, but only a simple nonlinear strategy was used. Barak [16] 
proposed to combine the COA with the grey wolf optimization algorithm for active 
suspension linear quadratic regulator controller tuning. Baş [17] et al. proposed a 
nonlinear optimization algorithm ECOA (Enhanced Coati Optimization Algorithm). 
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ECOA improved the COA by balancing exploitation capacity and exploration capacity but failed to consider eliminating 
the imbalance by optimizing the exploitation phase.

With the development of ELM, more and more models based on extreme learning machines have appeared. Tong R 
et al [18] proposed a new ellipsoid nearest neighbour graph computation strategy and fused ELM to form the ESS-ELM 
model. A short-term load forecasting model for distributed energy systems is introduced by the KELM optimized Fireworks 
Algorithm combining with Kernel Principal Component Analysis [19]. Vijaya et al [20] proposed a prediction model, which 
was combined with Variational Mode Decomposition and Multi Kernel Extreme Learning Machine Auto Encoder. Shang 
S et al [21] optimized the ELM by Improved Zebra Optimization Algorithm (IZOA). Pustokhina IV et al [22] used WELM 
model optimized by multi-objective rainfall optimization algorithm. Wang C L et al [23] proposed a sound quality prediction 
model based on ELM optimized by fuzzy adaptive Particle Swarm Optimization.

To address the issue of imbalanced wind turbine blade icing data, weighted parameters that vary according to the 
internal distribution of samples are introduced into the traditional Weighted Kernel Extreme Learning Machine (WKELM) 
model. This leads to the proposal of the Improved Weighted Kernel Extreme Learning Machine (IWKELM). In addition, 
to improve the performance of parameter optimization, this paper proposes a multi-strategy adaptive coati optimization 
algorithm (MACOA). The proposed MACOA uses a chaotic mapping mechanism to enhance the diversity and quality of 
the initial population. MACOA introduces a nonlinear inertial step size factor during the global optimization process to 
improve optimization efficiency. During the local optimization process, MACOA incorporates an improved sparrow vigilante 
mechanism to prevent the algorithm from falling into local optima. Additionally, an improved objective function is intro-
duced during algorithm iteration to provide solutions for escaping local optima. Finally, MACOA is employed to optimize 
the parameters of the IWKELM model, resulting in the development of the MACOA-IWKELM icing diagnostic model. This 
model is compared with the BP, ELM, and KELM models, and experiments are conducted using the CEC2017 dataset, 
12 publicly available datasets, and two sets of real turbine operation SCADA datasets to validate the effectiveness of the 
proposed method.

Fundamental theories

Xm×n is an input data matrix which consists of n samples with m features. The xij denotes the jth feature value of the ith 
sample. The output matrix is defined as Ym×n.

Weighted kernel extreme learning machine

According to the literature [6], the ELM is modelled as shown in Eq. (1) and Eq. (2):

	
Y = f(x)=

{
h(x)HT(I/C+ HHT)–1T,whenn < L
h(x)(I/C+ HTH)–1HTT,whenn ≥ L	 (1)

	

H = [h(x1)T,h(x2)T, ......,h(xn)T]T =



g(w1 · x1 + b1) · · · g(wL · xi + bL)

...
. . .

...
g(w1 · xn + b1) · · · g(wL · xn + bL)



n×L	 (2)

where, the hidden layer output is defined as h(xi). the hidden layer matrix is I, whereas, H expresses the output matrix of 
the hidden layer neurons. C indicates the regularization parameter.

T = [t1, t2,...,tN]T expresses the desired output of training sets. L represents the number of hidden layer neurons, and the 
internal parameters of the hidden neurons (wi and bi) are randomly generated.

The kernel function K(xi, xj) is employed to solve the nonlinear mapping problem, shown in Eq. (3) [7]:
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Y = f(x) =




K (x, x1)
K (x, x2)

. . .
K (x, xN)


 (I/C+Ω)–1T

	 (3)

	
K (xi, xj)= exp

(
– ∥xi – xj∥

g

)

	 (4)

where, the kernel matrix is Ω = HTH, Ωij expresses the element located in the ith row and jth column, and K(xi, xj) is the 
Gaussian kernel function as shown in Eq. (4).

When samples are trained using the traditional Kernel-Based Extreme Learning Machine (KELM), each sample is 
assigned equal importance. This approach significantly impacts the classification performance, particularly when there is 
interference from noise and outliers, or when the distribution of sample classes is highly imbalanced. To solve the prob-
lem, the WKELM model [8] is produced as shown in Eq. (5):

	

Y = f(x)=h(x)β =




K (x, x1)
K (x, x2)

. . .
K (x, xN)


 (I/C+WΩ)

–1WT

	 (5)

	

W =




W+(1)
. . .

W+(n1)
W–(1)

. . .
W–(n2)



	 (6)

where W is the weighted matrix, the formula is shown in Eq. (6). W+(i) = δ1 and W-(i) = δ2 denote the weights of the posi-
tive and negative class samples, respectively.

Coati optimization algorithm

The COA is a population intelligence optimization algorithm based on the behaviour of long-nosed coatis in nature [13]. In 
the COA, each individual coati is a candidate solution. They have two natural behaviours in the hunting period: (1) Hunting 
for iguana, (2) Escaping from predators. It can be interpreted in the algorithm as two phases: exploration and exploitation.

Hunting for iguana (exploration).  During the exploration phase, the coatis initiate a hunt and attack on the iguana, 
with a part of coatis climbing a tree in order to get close to the iguana. Other coatis wait beneath the tree to hunt the 
iguana once it fell to the ground. This strategy enables individual coatis to relocate to various positions within the search 
space, which demonstrates the global search capability of the COA within the problem space, i.e., Exploration.

During the exploration phase, xtbest  denotes the position of the best individual in population, corresponds to the position 
of the iguana. Half of the coatis will ascend the tree, while the other half will remain on the ground, waiting for the iguana 
to fall. The position of the coati on the tree is shown in Eq. (7).

	
xt+1
i (j) = xti(j) + r ·

(
xtbest(j) – RI · xti(j)

)
, i = 1, 2, · · ·, N

2
, j = 1, 2, · · ·,M

	 (7)
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where xti(j) is the position of an individual, t denotes the current iteration number, and r denotes a random number 
between [0,1]. RI denotes a random integer from {1,2}. N denotes the population size. M expresses the dimension.

After the iguana’s falling, it is placed randomly. Then, the coatis, which stay on the ground, move through the space, 
searching for the iguana. The position is updated by Eq. (8) and Eq. (9) below:

	 Iguanatground(j) = lbj + r · (ubj – lbj)	 (8)

	

xt+1
i (j) =





xti(j) + r ·
(
Iguanatground(j) – I · xti(j)

)
, iffitness(Iguanatground) < fitness(x

t
i)

xti(j) + r ·
(
xti(j) – Iguana

t
ground(j)

)
, else

,i =
N
2
+ 1,

N
2
+ 2, · · ·,N

	 (9)

where lbj and ubj expresses the lower and upper limit of the jth dimensional variable. fitness(·) is the formula for calcu-
lating fitness. Iguanatground  expresses the new position of the iguana after falling. xti(j) is the value of the ith dimensional 
variable for the ith individual under the current iteration.

If the new position improves the fitness value, it is accepted as the new position. Otherwise, the coati remains in previ-
ous position, indicating that a greedy selection is performed shown in Eq. (10).

	
xt+1
i =

{
xt+1
i , iffitness(xt+1

i ) < fitness(xti)
xti , else 	 (10)

Escaping from predators (exploitation).  During the exploitation phase, the updating of the coati’s location is 
modeled after the natural behavior of a coati escaping from a predator. This action allows the coati to move closer to a 
safer position nearby, reflecting the local search capability of the COA, which is indicative of exploitation.

During the exploitation phase, random positions are generated near every coati’s location, as shown in Eq. (11) and Eq. 
(12):

	
lblocalj =

lbj
t
, ublocalj =

ubj
t
, t = 1, 2, · · ·,T

	 (11)

	 xt+1
i (j) = xti(j) – (1 – 2r) ·

(
lblocalj + r · (ublocalj – lblocalj )

)
, i = 1, 2, · · ·,N	 (12)

where T represents the maximum iteration count. t denotes the current number of iterations. ublocalj  and lblocalj  express the 
upper and lower bounds of the jth dimensional variable, which are updated with each iteration. r denotes a random num-
ber in the range of [0,1].

Finally, one more greedy choice is made, i.e., Eq. (10).

Multi-strategy adaptive COA and improved weighted kernel ELM

Multi-strategy adaptive coati optimization algorithm

Chaos mapping for Levi’s flight.  The chaotic mapping mechanism is characterized by high uncertainty and 
sensitivity. It can produce complex and unpredictable dynamic behaviors, allowing for a broader exploration of the search 
space [24,25]. Levy Flight is a specialized random walk model that describes movement patterns characterized by long-
tailed distributions [26]. Levy flights are incorporated into the initialization process of the MACOA, as illustrated in Eqs. 
(13), (14) and (15):
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α⊕ Levi(β) ∼ 0.01

u∣v∣–β
(

→
X(t) –

→
Xα(t)

)

	 (13)

	
σu =

[
Γ(1 + β) sin(πβ2 )

Γ( 1+β
2 )β × 2

β–1
2

] 1
β

,σv = 1

	 (14)

	 X(t+ 1) = X(t) + α⊕ Levi(β)	 (15)

where X(t) denotes the position of the ith coati, ⊕ expresses point-to-point multiplication, and α is the weight of the control 
step. u ∼ N(0,σ2

u). v ∼ N(0,σ2
v ). β is the shape parameter of the step distribution, which is set to 1.5 in this paper.

Nonlinear inertia step size factor.  The introduction of a nonlinear inertia step size factor can significantly improve 
search efficiency and convergence performance, allowing the COA to dynamically adjust the search behavior. This 
mechanism maintains a high level of exploration capability during the initial stages, while the gradual reduction of weights 
in later stages encourages a more focused local search. Considering that updating a coati’s position is influenced by its 
current position, a nonlinear inertia step size factor is introduced. This factor adjusts the relationship between the coati’s 
position update and the current position information based on the individual coati’s location. The factor is then calculated 
using Eq. (16):

	

ω =
( tT )

Cn

( tT )
Cn

+ (1 – t
T )

Cn

	 (16)

where Cn is a constant greater than 1 to control the degree of nonlinearities, which is taken as 2.
Initially, the value of ω is small, which means that position updates are less influenced by the current position. This 

allows for a broader search range for the algorithm and enhances its global exploration capability. As the search process 
progresses, the value of ω increases over time, resulting in a greater influence from the current coati position. This adjust-
ment helps the algorithm in finding the optimal solution and also improves its convergence speed and local exploration 
ability.

The improved formula for modelling coati positions in the first stage is shown in Eq. (17):

	
xt+1
i (j) = ω · xti(j) + r ·

(
xtbest(j) – I · xti(j)

)
, i = 1, 2, · · ·, N

2 	 (17)

Improved sparrow vigilante mechanism.  The Sparrow Search Algorithm is inspired by the behavior of sparrows 
while foraging for food, where some individuals act as vigilantes, responsible for monitoring their surroundings and 
sounding an alarm when a potential threat is detected. This approach enables the COA to maintain a higher degree of 
flexibility and dynamism in exploring the solution space, thereby enhancing its ability to adapt to uncertain problems [27].

Introducing the sparrow vigilante mechanism during the exploitation phase enhances the vigilance capability of the 
COA to search within an optimal range. Coatis at the edge of the population will quickly move away to find a safe area 
when they sense danger. Meanwhile, the coatis located in the center will move randomly to get closer to others in the 
population. The formula for the Sparrow Vigilante Mechanism is presented in Eq. (18):

	

Xt+1
i,j =





Xtbest + β ·
∣∣∣Xti,j – Xtbest

∣∣∣ , if fi > fg
Xti,j + K ·

( ∣∣∣Xti,j–Xtworst
∣∣∣

(fi–fW)+ε

)
, if fi = fg

	 (18)
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where Xtbest represents the global optimal position in the current iteration, β represents the step control parameter. 
β ~ N(0,1). K is a random number with values between [−1,1]. fi is the fitness value. fg is the global greatest fitness value, 
and fw is the worst one. ε is a very small constant.

In order to escape from predation, coatis in the middle stay close to each other.
The Eq. (18) can be optimized to attack the problem of the global search capability. A dynamically adjusted step factor 

[28] is introduced shown in Eq. (19):

	

Xt+1
i,j =





Xtbest + β(t) ·
∣∣∣Xti,j – Xtbest

∣∣∣ , if fi > fg
Xti,j + K(t) ·

( ∣∣∣Xti,j–Xtworst
∣∣∣

(fi–fW)+ε

)
, if fi = fg

	 (19)

	
β(t) = fg – (fg – fw) · (

T – t
T

)1.5
	 (20)

	 K(t) = (fg – fw) · e–20·tan (
t
T )

2

· (2 · rand – 1)	 (21)

where β(t) is a dynamically adjusted step factor as shown in Eq. (20). K(t) is a dynamically adjusted step factor as shown 
in Eq. (21). rand∈[0,1].

The introduction of dynamic step factors β(t) and K(t) allows the algorithm to adjust its search behavior dynamically. In 
the initial stages of the algorithm, the focus is on exploration, while the later phases emphasize exploitation. These opti-
mizations enhance the adaptability and robustness of the COA, particularly in complex and high-dimensional problems, 
enabling it to find the global optimal solution more efficiently.

Improved objective function.  Traditional objective functions often exhibit sensitivity to initial values, a tendency to 
converge on local optimal solutions, and a lack of robustness. Therefore, an improved objective function is proposed. 
In general, the dataset is divided into three subsets: the training set, the validation set, and the test set. Alternatively, 
it can be divided into two subsets: the training set and the test set. When the dataset is split into a training set and 
a test set, the objective function used to optimize the model parameters is either the number of classification errors 
(ERROR) or the root mean square error (RMSE) of the test results. ERROR and RMSE are calculated as shown in 
Eqs. (22) and (23).

	
ERROR =

FP+ FN
TP+ TN+ FP+ FN 	 (22)

	

RMSE =
1

N

√√√√ N∑
i=1

(Yi – Ti)2

	 (23)

When ERROR is used as the objective function, the particle can be viewed as approaching a decreasing extreme value 
during the reduction of the ERROR. However, there may be instances where, after reaching a certain extreme value, the 
particle fails to find a more optimal direction, leading to convergence at a local extreme value.

When RMSE is used as the objective function, it is possible for the RMSE value to decrease while the ERROR value 
increases. Although the overall direction of optimization is correct, the iteration may reduce the RMSE for the overall 
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samples, resulting in most test samples being classified correctly. However, some samples may be misclassified in the 
next iteration, causing their classification results to change from correct to incorrect.

Therefore, an improved objective function is proposed, i.e., Eq. (24):

	 ERROR+ ERMSE	 (24)

where ERMSE is the value of the root mean square for the error sample.
Multi-strategy adaptive coati optimization algorithm.  The specific flowchart of the MACOA is shown in Fig 1.The 

pseudo-code for MACOA is shown in Table 1.

Improved weighted kernel extreme learning machine

In the traditional Weighted Kernel Extreme Learning Machine (WKELM) model, the weighted parameter only influences 
the overall weight of each class of positive and negative samples. This approach results in the algorithm treating the two 
classes of samples as a whole during the optimization process, without considering the internal distribution of the sam-
ples. As a result, the information provided by the internal distribution is overlooked, which may negatively impact the 
model’s classification performance. To address this issue, the Improved Weighted Kernel Extreme Learning Machine 
(IWKELM) model is proposed. This model not only takes into account the overall weight distribution of the two types of 
samples but also focuses on the weights within each class, which vary according to their distribution, thereby enhancing 
the weighting of both types of samples.

For all positive sample weights, the formula was modified to Eq. (25):

	 W+(i) = (d+(i)/max(d+) ∗ δ1 + 1) ∗ δ3	 (25)

For all negative sample weights, the formula was modified to Eq. (26):

	 W–(i) = (d–(i)/max(d–) ∗ δ2 + 1) ∗ (1 – δ3)	 (26)

where d+(i) and d-(i) denote the Euclidean distance of the positive and negative samples to the centre of the respective 
two samples, and the formulae for the calculation of the respective centres of the two samples are given in Eq. (27) and 
Eq. (28).

	
d+(i) = xcenter1 =

1

n1

n1∑
i=1

x1i
	 (27)

	
d–(i) = xcenter2 =

1

n2

n2∑
i=1

x2i
	 (28)

For example, in the weighted formula for positive class samples, a term of (d+(i)/max(d+)*δ1+1) is introduced into the prod-
uct, in addition to the weighted factor δ3, which affects all positive class samples. The term d+(i)/max(d+) is used to normal-
ize the distances between the centers and all positive class samples. Meanwhile, the term (d+(i)/max(d+)*δ1+1) maps the 
normalized distances into the range of [1+δ1,1]. When multiplied by δ3, the distances between the centers and all positive 
class samples can be adjusted to [(1+δ1)*δ3,δ3].

Clearly, δ3 represents the upper limit of the weights for the positive class samples, while (1+δ1)*δ3 serves as the lower 
limit. δ3 is proportional to the total weights of the positive class samples and inversely proportional to the total weights of 
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Fig 1.  Flow chart of the MACOA.

https://doi.org/10.1371/journal.pone.0329332.g001

https://doi.org/10.1371/journal.pone.0329332.g001
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the negative class samples. Consequently, the closer a sample is to the center of the positive class, the closer its weight is 
to δ3. Conversely, as the distance increases, the weights of the edge-positive class samples approach (1+δ1)*δ3.

For positive class samples, the relationship between the size of the sample weights and the distances from the sam-
ples to the sample centres is shown in Fig 2.

In Fig 2, after fixing δ3, it is evident that the closer the value of δ1 is to 0, the weights of all positive samples approach 
δ3, indicating that the internal distribution of the positive samples becomes less significant. Conversely, as the value of 
δ1 approaches −1, the weights of samples closer to the center of the positive class remain near δ3, while those further 
away from the center tend toward 0. This suggests that the influence of the internal distribution of positive samples still 
requires further consideration. Similarly, for negative samples, δ2 is related to the degree of influence exerted by the 
distribution of positions within the negative samples, and the overall weights of all negative samples are adjusted by 
controlling δ3.

To test the performance of IWKELM in handling the internal distribution of samples, marginal samples were taken from 
the KEEL dataset based on Z-score for experimentation. The specific experimental results are shown in Table 2.

The experimental results show that the diagnostic performance of the IWKELM model far exceeds that of traditional 
models. Furthermore, the diagnostic accuracy of COA-IWKELM is 0.15% and 0.69% higher than that of COA-WKELM in 
the two marginal data sets, respectively. The diagnostic accuracy of MACOA-IWKELM is 0.08% and 0.85% higher than 
that of MACOA-WKELM, respectively. The results show that IWKELM has a significant advantage in handling the internal 
distribution of samples.

The specific structure of the modelling of the IWKELM is shown in Fig 3, and the flowchart is shown in Fig 4.

Table 1.  Pseudo-code of MACOA.

Algorithm 1. Pseudo-code of MACOA.

Start MACOA.
  Input the optimization problem information.
  Set the number of iterations T and the number of coatis N.
 � Initialization of all coatis and evaluation of the objective function for the population using Eqs. (13), (14) 

and (15).
  For t = 1:T
  Update location of the iguana based on the location of the best member of the population.
      Phase 1: Hunting and attacking strategy on the iguana (Exploration Phase)
      Calculate the weighted factor ω using Eq. (16)
      For i=1: [N / 2]
        Calculate new position for the ith coati using Eq. (17).
        Update position of the ith coati using Eq. (10).
      End for
      for i = N/2 + 1: N
        Calculate random position for the iguana using Eq. (8).
        Calculate new position for the ith coati using Eq. (9).
        Update position of the ith coati using Eq. (10).
      End for
      Phase 2: The process of escaping from predators (Exploitation Phase)
      For i = 1: N
        Calculate the new position for the ith coati using Eq. (19).
        Update the position of the ith coati using Eq. (10).
      End for
    Save the best candidate solution found so far
  End for
  Output of the best obtained solution by MACOA for given problem.
End MACOA.

https://doi.org/10.1371/journal.pone.0329332.t001

https://doi.org/10.1371/journal.pone.0329332.t001
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Experiments for the multi-strategy adaptive coati optimization algorithm

This section presents simulation studies and evaluations of the optimization efficiency of the Multi-strategy Adaptive Coati 
Optimization Algorithm (MACOA). Given that the individual coatis in the proposed MACOA possess strong optimization 

Fig 2.  The relationship between the sample weight and the distance from the sample to the sample center.

https://doi.org/10.1371/journal.pone.0329332.g002

Table 2.  Experimental results for marginal sample sets.

titanic_marginal phoneme_marginal

BP 84.62% 71.77%

ELM 85.38% 72.54%

KELM 85.15% 79.15%

KNN 84.08% 77.46%

SVM 78.38% 66.85%

DT 85.62% 76.54%

COA-WKELM 86.08% 84.46%

MACOA-WKELM 86.69% 84.69%

COA-IWKELM 86.23% 85.15%

MACOA-IWKELM 86.77% 85.54%

https://doi.org/10.1371/journal.pone.0329332.t002

https://doi.org/10.1371/journal.pone.0329332.g002
https://doi.org/10.1371/journal.pone.0329332.t002
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Fig 3.  Structure chart of the IWKELM.

https://doi.org/10.1371/journal.pone.0329332.g003

Fig 4.  Flow chart of the IWKELM.

https://doi.org/10.1371/journal.pone.0329332.g004

https://doi.org/10.1371/journal.pone.0329332.g003
https://doi.org/10.1371/journal.pone.0329332.g004
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capabilities, there is no need to set a large population for the algorithm. However, certain requirements exist regarding the 
number of iterations. Therefore, the experimental conditions, including the population size and the maximum number of 
iterations, are outlined in Table 3.

Benchmark functions and compared algorithms

Twenty-nine standard benchmark functions from the IEEE CEC-2017 [29] have been utilized to evaluate MACOA’s capa-
bility in addressing various objective functions. A comparison of MACOA’s performance with eleven well-known algorithms 
is performed in order to assess its quality in providing optimal solutions, namely COA [13], SABO [30], WSO [31], SCSO 
[32], GJO [33], TSA [34], WOA [35], GWO [36], TLBO [37], GSA [38] and PSO [39]. The results are displayed using four 
metrics: mean, standard deviation (std), rank, and execution time (ET). The value of control parameters for all competing 
algorithms are detailed in Table 4.

Experimental results and analysis

CEC-2017 includes thirty standard benchmark functions of various types, as shown in Table 5.
The test function F2 from the CEC-2017 is not used in this paper because of its unstable performance (same as other 

authors in their paper [15]). Complete information and details for these test functions can be found in literature [29].
The proposed Multi-strategy Adaptive Coati Optimization Algorithm (MACOA) and baseline algorithms were subjected 

to 29 independent experiments at CEC-2017, each consisting of 200,000 function evaluations (FEs). The experiments 
utilized three dimensions of test functions: 30, 50, and 100. The ranking results for the experiments are presented in  
Tables 6–8. The results for the 30-dimensional case (m = 30) indicate that the MACOA is the best algorithm for solving the 
F4, F10, F11, F22, F24–F26, F28, and F29 functions.

The results for the 50-dimensional case (m = 50) clearly indicate that MACOA is the best optimization algorithm for 
solving the F1, F4, F10, F11, F16, F18, F22–F26, and F29 functions. Similarly, the results for the 100-dimensional case 
(m = 100) demonstrate that MACOA excels in solving the F1, F4, F10, F12, F14, F16, F17, F22–F26, F29, and F30 func-
tions. A comparison of the experimental results shows that MACOA outperforms the competing algorithms for most of the 
tested functions. Overall, MACOA consistently delivers the best performance across different dimensions (30, 50, and 
100) of the CEC-2017 test functions.

Compared with other 11 algorithms, the MACOA proposed has strong exploration, exploitation and search capability. It 
has superior performance compared to other optimization algorithms.

Wind turbine blade icing fault diagnosis model based on MACOA-IWKELM

To enhance the diagnostic correctness of the IWKELM. A wind turbine blade icing diagnosis model based on MACOA-
IWKELM is proposed. The specific process of modelling the model is as follows below:

Table 3.  Experiment condition.

Item Parameter

CPU AMD R7-5800H

RAM 16GB

Software MATLAB R2018a

Population 20

Max iteration 1000

https://doi.org/10.1371/journal.pone.0329332.t003

https://doi.org/10.1371/journal.pone.0329332.t003
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(1)	 All wind turbine blade SCADA point data is adjusted and grouped out, overpowered samples are removed, some attri-
butes are averaged, and then all data is normalized by the minimum-maximum standardization method.

(2)	 All data are processed using the Random Forest algorithm for dimensionality reduction to avoid too high dimensional-
ity leading to too poor training results.

(3)	 The MACOA-IWKELM model is used for wind turbine blade icing fault diagnosis among the dataset obtained after the 
dimensionality reduction process, and a compared classification model is set up for experimentation.

The framework of MACOA-IWKELM is shown in Fig 5.

Table 4.  Values set for control parameters of compared algorithms.

Algorithm Parameter Value

COA r: random number r∈[0,1]

I: random number I∈[0,1]

SABO v:random vector v∈[1,2]

ri: random number ri obeys a normal distribution

WSO fmin 0.07

fmax 0.75

τ 4.11

a0 6.25

a1 100

a2 0.0005

SCSO rG Linear reduction from 2 to 0.

SM 2

GJO c1 1.5

E0: random number E0∈[−1,1]

β 1.5

TSA Pmin 1

Pmax 4

c1,c2,c3 Random numbers stand in the interval[0,1]

WOA a Linear reduction from 2 to 0.

r: random vector r∈[0,1]

l: random number l∈[−1,1]

GWO a Linear reduction from 2 to 0.

TLBO TF: teaching factor TF = round[(1 + rand)]

r: random number r∈[0,1]

GSA Alpha 20

Rpower 1

Rnorm 2

G0 100

PSO Topology Fully connected.

C1: Cognitive constant 2

C2: Social constant 2

Inertia weight Linear reduction from 0.9 to 0.1.

Velocity limit 10% of the dimensions range of the variables.

https://doi.org/10.1371/journal.pone.0329332.t004

https://doi.org/10.1371/journal.pone.0329332.t004
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Model diagnostic experiments

Introduction to the datasets and models

All the experimental conditions are performed in a test environment with AMD R7 CPU, 3.20GHz, 16GB RAM, and Win-
dows 11 64-bit. PCA method is performed using SPSSPRO software. BP neural network, Support Vector Machine (SVM), 
and Decision Tree (DT) model training are performed using MATLAB toolkit. The k-nearest neighbour (KNN), ELM and 
their derived models are programmed using MATLAB 2018a.

12 datasets are used in the experiment, which includes datasets 1–4 from UCI and datasets 5–12 from KEEL. All 
datasets are normalized. The experimental dataset is shown in Table 9: it contains the sample name, source, number of 
sample features, total number of samples, and number of positive and negative class samples.

A total of 12 models, BP, ELM, KELM, KNN, SVM, DT, COA-KELM, MACOA-KELM, COA-WKELM, MACOA-WKELM, 
COA-IWKELM, MACOA-IWKELM are used for the comparison experiments in this experiment. Where COA-KELM is the 
KELM optimized by COA, MACOA-WKELM is the WKELM optimized by MACOA, and so on.

Table 5.  Summary of the CEC-2017 test functions.

Name No. Functions Fi = Fi(x*)

Unimodal
Functions

1 Shifted and Rotated Bent Cigar Function 100

3 Shifted and Rotated Zakharov Function 200

Simple
Multimodal
Functions

4 Shifted and Rotated Rosenbrock’s Function 300

5 Shifted and Rotated Rastrigin’s Function 400

6 Shifted and Rotated Expanded Scaffer’s F6 Function 500

7 Shifted and Rotated Lunacek Bi_Rastrigin Function 600

8 Shifted and Rotated Non-Continuous Rastrigin’s Function 700

9 Shifted and Rotated Levy Function 800

10 Shifted and Rotated Schwefel’s Function 900

Hybrid
Functions

11 Hybrid Functions 1(N = 3) 1000

12 Hybrid Functions 2(N = 3) 1100

13 Hybrid Functions 3(N = 3) 1200

14 Hybrid Functions 4(N = 4) 1300

15 Hybrid Functions 5(N = 4) 1400

16 Hybrid Functions 6(N = 4) 1500

17 Hybrid Functions 6(N = 5) 1600

18 Hybrid Functions 6(N = 5) 1700

19 Hybrid Functions 6(N = 5) 1800

20 Hybrid Functions 6(N = 6) 1900

Composition
Functions

21 Composition Functions 1(N = 3) 2000

22 Composition Functions 2(N = 3) 2100

23 Composition Functions 3(N = 4) 2200

24 Composition Functions 4(N = 4) 2300

25 Composition Functions 5(N = 5) 2400

26 Composition Functions 6(N = 5) 2500

27 Composition Functions 7(N = 6) 2600

28 Composition Functions 8(N = 6) 2700

29 Composition Functions 9(N = 3) 2800

30 Composition Functions 10(N = 3) 2900

Search Range:[−100,100]D

https://doi.org/10.1371/journal.pone.0329332.t005

https://doi.org/10.1371/journal.pone.0329332.t005
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100 training samples and 100 test samples are randomly selected in the data set for each experiment, with  
half of the samples in each of the positive and negative categories. In each experiment, all models use this  
randomly selected data at the same time. A total of 50 experiments are conducted, and the experimental results are 
averaged.

In this experiment, because the data used is test data set, the test function in MACOA experiment has higher complex-
ity, so the maximum number of iterations need not be set too high. The experimental hardware conditions are shown in 
Table 3. The population size and maximum number of iterations are set to 20 and 200. The model fixed parameters and 
particle optimization ranges are shown in Table 10.

Table 6.  Rank results of the CEC-2017 objective functions (the dimension m = 30).

MACOA COA SABO WSO SCSO GJO TSA WOA GWO TLBO GSA PSO

F1 2 11 7 5 6 8 9 12 4 1 3 10

F3 2 10 4 7 5 8 6 12 3 1 11 9

F4 1 11 8 7 5 6 9 12 4 3 2 10

F5 2 11 7 3 6 4 9 12 1 8 5 10

F6 2 10 7 4 6 3 8 11 1 12 5 9

F7 2 11 7 6 5 4 9 12 1 8 3 10

F8 3 10 7 2 6 5 9 12 1 11 4 8

F9 4 10 7 9 6 5 11 12 1 2 3 8

F10 1 10 9 4 5 6 7 11 3 12 2 8

F11 1 11 8 3 5 7 9 12 4 2 6 10

F12 2 11 6 7 5 8 9 12 4 1 3 10

F13 3 12 6 5 7 8 10 11 4 1 2 9

F14 3 11 9 4 5 7 10 12 6 2 8 1

F15 4 11 7 1 8 9 10 12 6 2 3 5

F16 3 11 9 1 5 4 8 12 2 6 7 10

F17 5 12 9 1 4 2 8 11 3 6 7 10

F18 2 11 9 3 8 6 10 12 7 4 5 1

F19 3 11 7 2 8 9 10 12 5 1 4 6

F20 3 10 8 1 5 4 6 12 2 9 7 11

F21 2 9 6 4 5 3 8 11 1 12 7 10

F22 1 11 4 7 5 6 9 12 2 3 8 10

F23 2 8 6 5 4 3 7 10 1 9 11 12

F24 1 11 5 8 4 3 7 9 2 12 6 10

F25 1 11 7 5 4 6 8 12 3 9 2 10

F26 1 11 8 6 5 3 9 12 2 4 7 10

F27 3 11 7 8 6 5 9 2 4 10 12 1

F28 1 12 9 7 6 8 11 3 5 10 4 2

F29 1 11 9 3 5 4 6 12 2 8 7 10

F30 2 11 7 3 6 8 10 12 5 1 4 9

Sum rank 63 311 209 131 160 162 251 319 89 170 158 239

Mean rank 2.172 10.724 7.207 4.517 5.517 5.586 8.655 11 3.069 5.862 5.448 8.241

Total rank 1 11 8 3 5 6 10 12 2 7 4 9

https://doi.org/10.1371/journal.pone.0329332.t006

https://doi.org/10.1371/journal.pone.0329332.t006
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Results of diagnostic experiments on the dataset

In order to confirm that MACOA and IWKELM can improve the classification effect when optimizing the model parameters, 
datasets 1–12 are selected for the experiment. The experimental results are presented in Tables 11 and 12. Among them, 
the distribution of 50 experiments is shown in the box plot Fig 6.

In this experiment, since there are more models and more combinations, a side-by-side comparison is needed, so 
some of the models are combined to facilitate the comparison, and the groups set are as follows:

Group 1: BP, ELM, KELM, KNN, SVM, DT, COA-KELM

Group 2: COA-KELM, MACOA-KELM

Group 3: COA-WKELM, MACOA-WKELM

Table 7.  Rank results of the CEC-2017 objective functions (the dimension m = 50).

MACOA COA SABO WSO SCSO GJO TSA WOA GWO TLBO GSA PSO

F1 1 11 6 8 5 7 9 12 4 2 3 10

F3 6 11 9 4 1 3 2 12 5 8 10 7

F4 1 11 7 8 5 6 9 12 4 2 3 10

F5 2 11 8 4 6 5 10 12 1 7 3 9

F6 2 9 7 4 6 3 10 11 1 12 5 8

F7 2 11 6 7 5 3 9 12 1 8 4 10

F8 2 11 8 4 6 5 10 12 1 7 3 9

F9 3 10 8 9 4 6 11 12 2 5 1 7

F10 1 10 9 4 5 6 7 11 3 12 2 8

F11 1 11 5 3 6 7 8 12 4 2 9 10

F12 2 12 6 8 5 7 9 11 4 1 3 10

F13 2 12 6 8 5 7 9 11 4 1 3 10

F14 2 12 8 7 5 6 10 11 4 1 9 3

F15 2 11 5 7 6 8 10 12 4 1 3 9

F16 1 12 8 4 7 6 9 11 2 5 3 10

F17 2 11 8 3 6 4 9 12 1 7 5 10

F18 1 11 9 4 6 8 10 12 5 2 3 7

F19 3 12 7 4 5 8 10 11 6 1 2 9

F20 3 10 9 1 5 4 7 12 2 11 6 8

F21 2 10 7 4 5 3 8 12 1 11 6 9

F22 1 9 8 3 5 6 7 11 2 12 4 10

F23 1 10 6 5 4 3 7 9 2 8 11 12

F24 1 12 5 8 3 4 6 11 2 9 7 10

F25 1 11 8 6 5 7 9 12 4 2 3 10

F26 1 11 7 5 4 3 9 12 2 8 6 10

F27 3 11 7 8 6 5 9 1 4 10 12 2

F28 3 12 11 8 7 9 10 2 5 4 6 1

F29 1 11 9 3 6 4 8 12 2 5 7 10

F30 2 11 8 5 6 7 9 12 4 1 3 10

Sum rank 55 317 215 156 150 160 250 315 86 165 145 248

Mean rank 1.897 10.931 7.414 5.379 5.172 5.517 8.621 10.862 2.966 5.690 5 8.552

Total rank 1 12 8 5 4 6 10 11 2 7 3 9

https://doi.org/10.1371/journal.pone.0329332.t007

https://doi.org/10.1371/journal.pone.0329332.t007
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Group 4: COA-IWKELM, MACOA-IWKELM

Group 5: COA-KELM, COA-WKELM, COA-IWKELM

Group 6: MACOA-KELM, MACOA-WKELM, MACOA-IWKELM

It can be concluded from the results of classification correctness in Table 11, and classification accuracy variance in 
Table 12, and box plot in the Fig 6.

Group 1 is selected for comparison, and the results indicate that the BP, ELM, KELM, KNN, SVM, and DT models do 
not achieve a high classification accuracy. The highest average accuracy reaches only 81.86%, with the lowest aver-
age standard deviation at just 3.49%. In contrast, the average accuracy of the COA-KELM model is 87.54%, signifi-
cantly higher than the KELM model’s accuracy of 79.96%. This discrepancy arises because the traditional model lacks 

Table 8.  Rank results of the CEC-2017 objective functions (the dimension m = 100).

MACOA COA SABO WSO SCSO GJO TSA WOA GWO TLBO GSA PSO

F1 1 11 6 8 4 9 5 12 3 2 7 10

F3 5 6 4 3 1 7 10 12 9 11 8 2

F4 1 11 7 8 4 5 6 12 3 2 9 10

F5 2 10 8 4 6 5 11 12 1 7 3 9

F6 2 9 8 4 6 5 10 11 1 12 3 7

F7 2 11 6 8 5 3 9 12 1 7 4 10

F8 2 11 8 4 6 5 10 12 1 7 3 9

F9 2 9 7 8 3 5 11 12 4 10 1 6

F10 1 10 9 4 5 6 7 11 3 12 2 8

F11 4 11 9 6 2 7 3 12 5 1 8 10

F12 1 11 5 7 4 6 9 12 3 2 8 10

F13 2 11 6 8 4 7 9 12 3 1 5 10

F14 1 11 9 6 3 8 7 12 4 2 5 10

F15 2 11 5 8 6 7 9 12 3 1 4 10

F16 1 11 9 4 6 5 8 12 2 3 7 10

F17 1 11 6 7 4 5 9 12 3 2 8 10

F18 2 11 9 6 5 7 8 12 4 1 3 10

F19 2 11 6 7 4 8 9 12 3 1 5 10

F20 2 10 9 1 4 6 7 12 3 11 5 8

F21 2 10 9 5 4 3 6 11 1 7 8 12

F22 1 10 9 3 5 6 7 11 4 12 2 8

F23 1 11 7 5 4 3 8 9 2 6 12 10

F24 1 12 8 6 3 4 7 10 2 5 11 9

F25 1 11 7 9 4 8 6 12 3 2 5 10

F26 1 11 9 5 4 3 6 12 2 8 7 10

F27 3 12 8 10 5 6 9 2 4 7 11 1

F28 3 12 9 11 6 8 7 2 5 4 10 1

F29 1 11 7 5 4 6 8 12 3 2 9 10

F30 1 11 5 7 4 6 9 12 3 2 8 10

Sum rank 51 308 214 177 125 169 230 319 88 150 181 250

Mean rank 1.759 10.621 7.379 6.103 4.310 5.828 7.931 11 3.034 5.172 6.241 8.621

Total rank 1 11 8 6 3 5 9 12 2 4 7 10

https://doi.org/10.1371/journal.pone.0329332.t008

https://doi.org/10.1371/journal.pone.0329332.t008
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optimization of its parameters, which hinders improvements in classification performance and reduces stability. Addition-
ally, as shown in the box plot in Fig 6, the traditional model exhibits more outliers and larger classification errors.

The comparisons in groups 2, 3, and 4 reveal that the average accuracy of MACOA-KELM reaches 87.71%, which is 
0.17% higher than the average accuracy of COA-KELM. Additionally, the average standard deviation is only 2.68%, which 
is 0.14% lower than that of the COA-KELM model. Furthermore, the average accuracy of MACOA-WKELM is 88.53%, 
representing a 0.35% improvement over the average accuracy of COA-WKELM, with an average standard deviation of 
just 2.57%. The MACOA-IWKELM model achieves an average accuracy of 88.88%, which is 0.48% higher than the aver-
age accuracy of COA-IWKELM, and an average standard deviation of only 2.32%, which is 0.24% lower than that of the 
COA-KELM model.

Overall, the MACOA demonstrates a higher correct classification rate and a smaller standard deviation compared to 
the COA, effectively improving stability. This improvement is attributed to the initial population generated by the Lévy 
flight, which is more conducive to optimization, and the optimization speed is significantly enhanced by the nonlinear 

Fig 5.  Framework of MACOA-IWKELM.

https://doi.org/10.1371/journal.pone.0329332.g005

https://doi.org/10.1371/journal.pone.0329332.g005
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factor. Additionally, the proposed coati vigilance mechanism ensures that the algorithm can escape local optima and avoid 
missing the global optimum. Furthermore, the optimized objective function enhances the optimization logic and provides a 
solution when the original iteration fails to yield a better value. The box plot also illustrates that MACOA exhibits significant 
superiority and stability.

From the comparative models in groups 5 and 6, COA-WKELM achieves an average accuracy of 88.18%, which is 
0.64% higher than the average accuracy of COA-KELM. The average standard deviation is only 2.53%, which is 0.29% 

Table 9.  The source and details of the datasets.

No. Name Source Feature Count Positive Sample Count Negative Sample Count

1 blood_transfusion UCI 4 570 178

2 banknote_authentication UCI 4 762 610

3 Statlog (Heart) UCI 13 150 120

4 Vertebral_Column UCI 6 210 100

5 Pima KEEL 8 500 268

6 ionosphere KEEL 33 225 126

7 magic KEEL 10 12322 6688

8 phoneme KEEL 5 3818 1586

9 ring KEEL 20 3736 3664

10 spambase KEEL 57 2785 1812

11 twonorm KEEL 20 3703 3697

12 wdbc KEEL 30 357 212

https://doi.org/10.1371/journal.pone.0329332.t009

Table 10.  Values set for control parameters of compared model.

Model Parameter Value

BP epochs 1000

goal 0.0001

η 0.001

LL:Number of hidden layers 5

ELM LL:Number of hidden layers 100

C 100

KELM LL:Number of hidden layers 100

g 1

KNN k 3

SVM Kernel function gaussian

Box Constraint 1

Kernel Scale 1

DT Max NumSplits Inf

Min Leaf Size 1

Max Depth Inf

Splitcriterion gdi

COA-KELM
COA-WKELM
COA-IWKELM
MACOA-KELM
MACOA-WKELM
MACOA-IWKELM

r:random number [0,1]

I:random number {0,1}

https://doi.org/10.1371/journal.pone.0329332.t010

https://doi.org/10.1371/journal.pone.0329332.t009
https://doi.org/10.1371/journal.pone.0329332.t010
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lower than that of COA-KELM. COA-IWKELM achieves an average accuracy of 88.40%, which is 0.22% higher than the 
average accuracy of COA-WKELM. The average accuracy of MACOA-WKELM reaches 88.53%, representing an increase 
of 0.82% over the accuracy of MACOA-KELM, while the average standard deviation of MACOA-WKELM is only 2.57%, 
which is 0.11% lower than that of MACOA-KELM. Furthermore, the average accuracy of MACOA-IWKELM reaches 
88.88%, which is 0.35% higher than that of MACOA-WKELM, and the average standard deviation of MACOA-IWKELM is 
only 2.32%, which is 0.25% lower than that of MACOA-WKELM.

Therefore, the weight parameters introduced into the IWKELM can further enhance classification accuracy. Additionally, 
the box plot demonstrates that IWKELM significantly increases the stability of multiple predictions, with very few outliers. 
However, in some models, the average standard deviation of WKELM was nearly equal to that of IWKELM. This similar-
ity can be attributed to the limitations of certain datasets and the instability caused by the chaotic mapping mechanism. 

Table 11.  Accuracy of the compared models for Dataset1-12 in diagnostic experiment.

Name No. Average

1 2 3 4 5 6 7 8 9 10 11 12

BP 65.00% 98.17% 73.93% 81.43% 67.23% 78.83% 70.10% 71.37% 70.63% 79.53% 89.77% 91.97% 78.16%

ELM 67.27% 98.10% 77.10% 83.50% 71.43% 82.60% 76.40% 74.33% 77.87% 83.87% 95.37% 94.50% 81.86%

KELM 60.57% 98.77% 72.40% 80.17% 68.50% 72.30% 76.47% 77.37% 96.40% 86.47% 91.07% 79.07% 79.96%

KNN 63.67% 98.40% 76.70% 73.83% 67.23% 80.90% 72.17% 76.87% 55.60% 78.60% 94.63% 94.83% 77.79%

SVM 62.93% 96.37% 80.87% 75.73% 71.97% 83.80% 73.87% 74.33% 71.07% 81.70% 97.07% 95.63% 80.44%

DT 61.83% 91.57% 72.20% 79.23% 67.07% 85.63% 70.63% 72.87% 73.33% 80.80% 73.33% 89.90% 76.53%

COA-KELM 69.57% 99.43% 82.70% 84.77% 74.87% 94.07% 81.07% 81.83% 97.87% 90.70% 97.13% 96.43% 87.54%

MACOA-KELM 69.73% 99.40% 83.67% 85.10% 75.47% 93.90% 81.37% 81.97% 97.87% 90.63% 97.07% 96.40% 87.71%

COA-WKELM 70.83% 99.77% 83.13% 85.83% 76.10% 94.57% 81.50% 82.50% 98.13% 91.20% 97.57% 97.00% 88.18%

MACOA-WKELM 71.43% 99.80% 84.57% 86.20% 76.77% 94.60% 82.40% 82.67% 98.03% 91.13% 97.70% 97.07% 88.53%

COA-IWKELM 71.10% 99.83% 84.10% 85.73% 76.33% 94.53% 82.03% 82.90% 98.10% 91.20% 97.73% 97.17% 88.40%

MACOA-IWKELM 72.73% 99.80% 84.80% 86.17% 77.33% 94.50% 82.87% 83.57% 98.27% 91.40% 97.80% 97.33% 88.88%

https://doi.org/10.1371/journal.pone.0329332.t011

Table 12.  Standard deviation of the compared models for Dataset1-12 in diagnostic experiment.

Name No.

1 2 3 4 5 6 7 8 9 10 11 12 Average

BP 5.57% 1.62% 8.01% 4.34% 7.84% 7.23% 8.81% 8.24% 6.02% 6.26% 4.30% 5.03% 6.11%

ELM 3.49% 1.75% 3.42% 3.65% 5.69% 4.68% 3.54% 3.77% 3.82% 4.83% 2.11% 2.01% 3.56%

KELM 5.67% 1.19% 3.16% 3.38% 6.06% 3.31% 4.55% 3.93% 1.99% 3.43% 1.95% 3.29% 3.49%

KNN 5.00% 1.45% 3.97% 2.97% 5.69% 5.14% 4.82% 4.80% 2.47% 3.97% 2.11% 1.78% 3.68%

SVM 5.35% 1.81% 3.23% 4.12% 5.18% 4.45% 4.45% 3.74% 4.09% 4.32% 1.28% 1.81% 3.65%

DT 5.61% 3.45% 3.93% 3.87% 5.36% 4.15% 4.88% 3.79% 4.50% 4.34% 4.40% 3.14% 4.29%

COA-KELM 3.87% 0.82% 3.34% 3.17% 4.94% 2.46% 3.27% 3.59% 1.41% 3.58% 1.59% 1.74% 2.82%

MACOA-KELM 3.69% 0.81% 3.39% 2.93% 4.21% 2.47% 3.23% 3.45% 1.41% 3.34% 1.46% 1.81% 2.68%

COA-WKELM 3.80% 0.50% 3.22% 2.74% 3.21% 2.42% 3.27% 3.16% 1.36% 3.42% 1.43% 1.78% 2.53%

MACOA-WKELM 3.55% 0.48% 3.16% 2.48% 4.11% 2.40% 3.18% 3.31% 1.25% 3.54% 1.60% 1.72% 2.57%

COA-IWKELM 3.88% 0.46% 3.02% 2.78% 3.76% 2.45% 3.27% 3.28% 1.24% 3.64% 1.34% 1.64% 2.56%

MACOA-IWKELM 3.30% 0.28% 2.88% 2.44% 4.09% 2.32% 2.50% 3.04% 1.03% 3.27% 1.22% 1.43% 2.32%

https://doi.org/10.1371/journal.pone.0329332.t012

https://doi.org/10.1371/journal.pone.0329332.t011
https://doi.org/10.1371/journal.pone.0329332.t012
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These issues could be mitigated by utilizing more datasets, increasing the number of iterations, and conducting extensive 
experimentation. Overall, MACOA-IWKELM exhibits superior optimization search speed and convergence compared to 
the other models.

Wind turbine blade icing diagnostic experiment.  The experimental data presented in this paper is sourced from the 
Industrial Big Data Innovation Competition. The dataset records operational data from November 1, 2015, to January 1, 
2016, for two turbines, identified as Turbine 15 and Turbine 21, each containing 20 features.

Before conducting the experiments, the wind turbine operation data were processed to remove duplicates, average the 
samples with the same timestamp, and eliminate samples with power outputs greater than 2 kW. This resulted in 39,465 
normal samples and 2,841 icing samples for Turbine 15, and 17,602 normal samples and 1,274 icing samples for Turbine 
21. Subsequently, the blade pitch angle, blade pitch speed, and pitch motor temperature data were averaged to yield a 

Fig 6.  Box plot of the compared models for Dataset1-12 in diagnostic experiment.

https://doi.org/10.1371/journal.pone.0329332.g006

https://doi.org/10.1371/journal.pone.0329332.g006
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total of 20 features. The dataset information is summarized in Table 13, while the corresponding attribute numbers for the 
wind turbine blade operation data are detailed in Table 14.

Random forest dimensionality reduction.  Random Forest (RF) Dimensionality Reduction is a feature selection and 
dimensionality reduction technique based on the Random Forest algorithm [40]. In terms of dimensionality reduction, 
Random Forest effectively identifies and selects the features that have the greatest impact on the target variable, thereby 
reducing the dimensionality of the data.

The SCADA data of wind turbine blades are processed by RF dimensionality reduction. The specifics of the attribute 
scores of the SCADA data for turbine 15 and 21 operation under the use of the RF method are shown in Figs 7 and 8. The 
feature importance heat map drawn based on feature importance is shown in Figs 9 and 10.

Table 13.  The source of the fan datasets and details.

No. Name Source Feature 
Count

Sample 
Count

Positive Sam-
ple Count

Negative 
Sample Count

1 15wind The First Industrial Big Data Innovation Competition 20 13607 10766 2841

2 21wind 20 5058 3784 1274

https://doi.org/10.1371/journal.pone.0329332.t013

Table 14.  Number of corresponding attributes of fan operation data.

Feature No. 1 2 3 4 5

Feature name Wind
Speed

Generator RPM Output
Power

Wind Direction Wind Direction (25s)

Feature No. 6 7 8 9 10

Feature name Yaw
Position

Yaw
Rate

Average
Pitch Angle

Average
Pitch Rate

Average Pitch Motor emperature

Feature No. 11 12 13 14 15

Feature name Acceleration in X Direction Acceleration in Y Direction Ambient Temperature Cabin Temperature 1_ng5_tmp

Feature No. 16 17 18 19 20

Feature name 2_ng5_tmp 3_ng5_tmp 1_ng5_DC 2_ng5_DC 3_ng5_DC

https://doi.org/10.1371/journal.pone.0329332.t014

Fig 7.  Importance of the attributes of fan No.15.

https://doi.org/10.1371/journal.pone.0329332.g007

https://doi.org/10.1371/journal.pone.0329332.t013
https://doi.org/10.1371/journal.pone.0329332.t014
https://doi.org/10.1371/journal.pone.0329332.g007
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Fig 8.  Importance of the attributes of fan No.21.

https://doi.org/10.1371/journal.pone.0329332.g008

Fig 9.  Feature importance heat map of fan No.15.

https://doi.org/10.1371/journal.pone.0329332.g009

https://doi.org/10.1371/journal.pone.0329332.g008
https://doi.org/10.1371/journal.pone.0329332.g009
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Based on the results presented in Figs 7–10, the importance of the top 8 attributes for Turbines 15 and 21 is sig-
nificantly greater than that of the other attributes. In particular, the importance of the eighth-ranked feature, Generator 
RPM, is three times that of the ninth-ranked feature. Therefore, experiments were conducted on datasets with 8 or fewer 
extracted features.

Therefore, based on the experimental results in Tables 15 and 16, this paper selects the top 8 features with the high-
est scores as the input feature vectors for each experimental model, while the other attributes are disregarded. The top 
8 highest-scoring features are wind speed, yaw position, average pitch motor temperature, ambient temperature, output 
power, cabin temperature, average pitch angle, and generator RPM.

Diagnostic results and comparative analysis of MACOA-IWKELM.  The SCADA data from two turbines were 
downscaled and then processed using the SMOTE oversampling technique, resulting in 39,465 normal samples and 
2,841 icing samples for Turbine 15, and 17,602 normal samples and 1,274 icing samples for Turbine 21.

The processed data is then fed into the classification models for experimentation. The experimental comparison models 
include BP, ELM, KELM, SVM, KNN, COA-KELM, MACOA-KELM, COA-WKELM, MACOA-WKELM, COA-IWKELM, and 
MACOA-IWKELM, totaling 12 models.

The fixed parameters for the experimental models and the optimization algorithm’s search range are consistent with 
those in Section 6.1. The experimental hardware conditions are shown in Table 3. The population size and maximum 

Fig 10.  Feature importance heat map of fan No.21.

https://doi.org/10.1371/journal.pone.0329332.g010

https://doi.org/10.1371/journal.pone.0329332.g010
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number of iterations are set to 20 and 200. The model fixed parameters and particle optimization ranges are shown in 
Table 10.

The diagnostic accuracy of the experiment for wind turbine No.15 and No.21 is shown in Tables 17–19, where the 
distribution of the 50 experiments is shown in the box plot Figs 11 and 12, and the confusion matrices generated by the 
diagnostic experiments for wind turbine 15 and wind turbine 21 out of the 50 experiments are shown in Figs 13 and 14.

According to the evaluation indicators in Table 18, in the experiment of fan No.15, the indicators of the COA_KELM 
model exceeded those of all traditional models. Meanwhile, the F1 score of MACOA_WKELM is 1.32% higher than that 
of MACOA_KELM, while the F1 score of MACOA_IWKELM is 0.36% higher than that of MACOA_WKELM. In addition, in 
the experiment of fan No. 21, all indicators of COA_KELM were superior to those of the traditional model. The F1 score of 
COA_WKELM was 0.50% higher than that of COA_KELM. The F1 score of COA_IWKELM was 0.07% higher than that of 

Table 16.  The impact of the number of selected features in diagnostic experiments for Fan No.21.

Model Number of features

1 2 3 4 5 6 7 8

BP 74.77% 76.77% 81.15% 81.31% 78.69% 79.46% 76.38% 85.84%

ELM 76.38% 77.00% 80.23% 79.69% 79.23% 81.46% 79.23% 89.54%

KELM 70.31% 80.00% 85.77% 87.31% 89.62% 86.54% 85.15% 92.82%

KNN 70.62% 78.15% 80.15% 80.77% 81.46% 81.08% 79.62% 81.76%

SVM 76.38% 77.54% 78.31% 78.92% 76.69% 78.23% 77.77% 78.28%

DT 69.15% 79.23% 83.08% 83.38% 82.15% 83.69% 81.38% 87.42%

COA_KELM 77.38% 85.38% 88.85% 90.00% 91.69% 89.46% 88.54% 95.52%

MACOA_KELM 77.31% 85.38% 88.77% 89.85% 91.69% 89.38% 88.46% 95.48%

COA_WKELM 77.31% 86.31% 89.15% 90.77% 92.15% 90.38% 89.08% 96.00%

MACOA_WKELM 78.00% 86.23% 89.54% 90.69% 92.46% 90.31% 88.85% 95.86%

COA_IWKELM 77.31% 87.08% 89.38% 90.85% 92.54% 90.31% 89.46% 96.06%

MACOA-IWKELM 77.77% 86.77% 89.77% 90.85% 92.54% 90.31% 89.15% 96.94%

https://doi.org/10.1371/journal.pone.0329332.t016

Table 15.  The impact of the number of selected features in diagnostic experiments for Fan No.15.

Model Number of features

1 2 3 4 5 6 7 8

BP 50.33% 52.42% 55.83% 58.17% 55.83% 54.50% 55.00% 81.76%

ELM 51.00% 53.92% 59.67% 64.50% 64.83% 59.83% 63.33% 84.72%

KELM 52.42% 58.92% 60.50% 66.25% 64.33% 61.25% 63.92% 87.44%

KNN 50.92% 55.00% 54.50% 55.58% 57.25% 53.42% 61.33% 76.96%

SVM 50.67% 53.58% 52.42% 54.42% 54.33% 52.00% 53.58% 75.06%

DT 51.83% 56.33% 56.92% 62.67% 56.42% 59.17% 58.08% 76.66%

COA_KELM 59.33% 65.00% 66.67% 70.42% 69.92% 67.75% 70.00% 90.32%

MACOA_KELM 60.00% 65.25% 66.50% 70.42% 69.92% 67.50% 70.17% 90.20%

COA_WKELM 59.92% 66.00% 67.00% 71.42% 71.00% 68.58% 70.42% 91.00%

MACOA_WKELM 59.50% 66.08% 66.92% 71.58% 70.75% 69.08% 70.83% 90.84%

COA_IWKELM 61.00% 66.58% 67.25% 71.67% 70.92% 69.08% 70.42% 91.10%

MACOA-IWKELM 60.75% 66.33% 67.75% 72.25% 71.42% 69.25% 71.08% 91.22%

https://doi.org/10.1371/journal.pone.0329332.t015

https://doi.org/10.1371/journal.pone.0329332.t016
https://doi.org/10.1371/journal.pone.0329332.t015
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COA_WKELM. This proves the effectiveness of IWKELM’s improvements. In addition, in both experiments, the F1 score 
of MACOA_IWKELM was 0.11% and 0.90% higher than that of COA_IWKELM, respectively. This proves the superiority of 
MACOA over COA.

From the results presented in Tables 17 and 19 and the box plot of the distribution of 50 experiments shown in Fig 11 
and 12. The prediction accuracy of MACOA-KELM for Turbine No. 15 and Turbine No. 21 reach 90.20% and 95.48%, 
respectively, both of which are significantly higher than those of traditional models such as BP and ELM. Moreover, the 
standard deviations of the 50 predictions for Turbines No. 15 and No. 21 are only 2.86% and 2.33%, respectively, which 
are much smaller than those of the traditional models. The accuracy of MACOA-IWKELM is 0.12% and 0.88% higher 
than that of COA-IWKELM for Turbines 15 and 21, respectively. Additionally, the standard deviations of the 50 predictions 
for MACOA-IWKELM are only 2.53% and 1.92%, which are lower than the standard deviations of the 50 experiments for 
COA-IWKELM on Turbines 15 and 21 by 0.28% and 0.31%, respectively. Therefore, it can be concluded that MACOA 

Table 17.  Results of the compared models for Fan No.15 and Fan No.21 in diagnostic experiment.

Model Fan No.15 Fan No.21

TP TN FP FN TP TN FP FN

BP 2037 2051 463 449 2208 2084 292 416

ELM 2039 2197 461 303 2297 2180 203 320

KELM 2187 2185 313 315 2367 2274 133 226

KNN 2047 1801 453 699 2220 1868 280 632

SVM 2017 1736 483 764 1938 1976 562 524

DT 1946 1887 554 613 2209 2162 291 338

COA_KELM 2286 2230 270 214 2349 2427 73 151

MACOA_KELM 2288 2222 278 212 2357 2417 83 143

COA_WKELM 2331 2219 281 169 2371 2429 71 129

MACOA_WKELM 2321 2221 279 179 2367 2426 74 133

COA_IWKELM 2325 2230 270 175 2376 2427 73 124

MACOA-IWKELM 2327 2234 266 173 2411 2436 44 109

https://doi.org/10.1371/journal.pone.0329332.t017

Table 18.  Evaluation of the compared models for Fan No.15 and Fan No.21 in diagnostic experiment.

Model Fan No.15 Fan No.21

precision recall F1-score precision recall F1-score

BP 81.48% 81.94% 81.71% 88.32% 84.15% 86.18%

ELM 81.56% 87.06% 84.22% 91.88% 87.77% 89.78%

KELM 87.48% 87.41% 87.45% 94.68% 91.28% 92.95%

KNN 81.88% 74.54% 78.04% 88.80% 77.84% 82.96%

SVM 80.68% 72.53% 76.39% 77.52% 78.72% 78.11%

DT 77.84% 76.05% 76.93% 88.36% 86.73% 87.54%

COA_KELM 89.44% 91.44% 90.43% 96.99% 93.96% 95.45%

MACOA_KELM 89.17% 91.52% 90.33% 96.60% 94.28% 95.43%

COA_WKELM 89.24% 93.24% 91.20% 97.09% 94.84% 95.95%

MACOA_WKELM 89.27% 92.84% 91.02% 96.97% 94.68% 95.81%

COA_IWKELM 89.60% 93.00% 91.27% 97.02% 95.04% 96.02%

MACOA-IWKELM 89.74% 93.08% 91.38% 98.21% 95.67% 96.92%

https://doi.org/10.1371/journal.pone.0329332.t018

https://doi.org/10.1371/journal.pone.0329332.t017
https://doi.org/10.1371/journal.pone.0329332.t018
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Fig 11.  Box plot of the compared models for Fan No.15 in diagnostic experiment.

https://doi.org/10.1371/journal.pone.0329332.g011

Table 19.  Accuracy and standard deviation of the compared models for Fan No.15 and No.21.

Model Fan No.15 Fan No.21

Accuracy Standard Deviation Accuracy Standard Deviation

BP 81.76% 5.52% 85.84% 4.72%

ELM 84.72% 4.53% 89.54% 2.87%

KELM 87.44% 3.23% 92.82% 3.24%

KNN 76.96% 4.85% 81.76% 4.07%

SVM 75.06% 5.12% 78.28% 3.96%

DT 76.66% 5.10% 87.42% 3.81%

COA_KELM 90.32% 2.94% 95.52% 2.31%

MACOA_KELM 90.20% 2.86% 95.48% 2.33%

COA_WKELM 91.00% 2.87% 96.00% 2.24%

MACOA_WKELM 90.84% 2.87% 95.86% 2.26%

COA_IWKELM 91.10% 2.81% 96.06% 2.23%

MACOA-IWKELM 91.22% 2.53% 96.94% 1.92%

https://doi.org/10.1371/journal.pone.0329332.t019

https://doi.org/10.1371/journal.pone.0329332.g011
https://doi.org/10.1371/journal.pone.0329332.t019
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significantly improves prediction accuracy by applying the chaotic mapping mechanism, nonlinear inertia weighting fac-
tors, an improved sparrow vigilante mechanism, and an enhanced objective function. Regardless of whether the optimized 
model is KELM, WKELM, or IWKELM, both the correct classification rate and the stability of the experimental data are 
significantly improved compared to using the original COA.

The experimental results indicate that in the Fan No. 15 experiment, the prediction accuracy of MACOA-IWKELM 
is 0.38% higher than that of MACOA-WKELM, while the standard deviation is 0.28% lower. Additionally, in the Fan 
No. 21 experiment, the prediction accuracy of MACOA-IWKELM is 0.88% higher than that of MACOA-WKELM, with 
a standard deviation that is 0.31% lower. Therefore, IWKELM can significantly enhance prediction accuracy when 
handling data with more features, thanks to the inclusion of a weight parameter that varies according to the individ-
ual samples. In conclusion, both MACOA and IWKELM improve the accuracy and stability of fault diagnosis for wind 
turbine blade icing.

Conclusion and future prospects

To improve diagnostic accuracy, a wind turbine blade icing fault diagnosis model based on MACOA-IWKELM is pro-
posed. Firstly, weight parameters are introduced into the method, allowing them to be adjusted according to the internal 

Fig 12.  Box plot of the compared models for Fan No.21 in diagnostic experiment.

https://doi.org/10.1371/journal.pone.0329332.g012
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distribution of samples, thereby leading to the development of the IWKELM model. Additionally, to enhance the conver-
gence performance and stability of the Coati Optimization Algorithm (COA), chaotic mapping Lévy flight is employed to 
optimize the initial population, and nonlinear inertia weight factors are added to improve convergence speed. The vigilante 
mechanism of the improved sparrow optimization algorithm is utilized to enhance stability. The performance of the Coati 
Optimization Algorithm is significantly improved by incorporating the enhanced objective function during the iteration 
process.

The effectiveness of MACOA is validated through comparative experiments, which demonstrate that the multi-strategy 
adaptive Coati Optimization Algorithm outperforms the other 11 comparison algorithms. MACOA is used to optimize 
IWKELM, resulting in the proposed MACOA-IWKELM model. Experiments conducted with 12 publicly available data-
sets from UCI and KEEL indicate that the model significantly enhances classification accuracy and stability. Finally, the 
MACOA-IWKELM model is applied to diagnose faults in two sets of real turbine operation data. Based on the experimen-
tal results, the improved model shows a significant increase in fault diagnosis accuracy and stability.

However, the proposed model does have some limitations, primarily related to the parameter settings for population 
size and maximum number of iterations, which are based on empirical values. In the future, further optimization of the 
model will be necessary to achieve even better diagnostic results.

Fig 13.  Confusion Matrix of the compared models for Fan No.15 in diagnostic experiment.

https://doi.org/10.1371/journal.pone.0329332.g013
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