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6 Online Resource

This section includes a description of the hthresh selection process from section 2.2.2 as

well as computational details regarding closeness and volumetric closeness metrics defined

in section 2.2.3. Specifically, we describe in greater detail how the functions dskel(·) and

dvol(·) are computed.

FIFA Quality Programme Test Manuals

In section 2.1, we reference certification tests performed under the FIFA Quality Pro-

gramme for the optical limb-tracking system and instrumented ball. The details of these

tests can be accessed as PDFs in the Online Resource.

Selecting hthresh for the Decision Frame

As discussed in section 2.2.2, the decision frame is defined as the last peak in touch

probability exceeding some threshold, notated hthresh. We determine the optimal hthresh

through a coarse grid search across candidate values from 0.50 to 1.00 with a step size

of 0.05, optimizing for accuracy of the rules-based closeness and volumetric closeness

approaches (CA and VCA) across the entire duel dataset. The results of this process

are illustrated in Figure 8. We note that using a threshold of 1 is actually equivalent to

exclusively resorting to the arg maxf{S} case in Definition 3, since the touch probability

model never predicts values exactly equal to 1.

We observe a slight peak at hthresh = 0.75 for both CA and VCA, which we prioritize

because they are the best representations of the data-generating process we are trying

to model. Threshold value differences yield significant but relatively small performance

variations. As expected, NCA accuracy remains constant because it operates independently

of the decision frame.
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Fig. 8 Classification accuracy of rules-based approaches across different values of hthresh for decision
frame detection. The vertical dashed line represents peaks in CA and VCA accuracy observed at a value
of 0.75. We observe that accuracies are not very sensitive to hthresh

6.1 Mapping Limbs to Body Regions

The BSSC and BSMC approaches discussed in Section 2.2.4 involve segmenting the duels

by the body region where the last touch most likely occurred. The body regions include

the head, upper body, and lower body. Table 4 details which skeletal limbs map to which

body regions for both skeletal and volumetric player representations.

Closeness

When measuring the closeness between the ball and a player p with limbs Sp, we compute

the minimum Euclidean distance between a limb si ∈ Sp and the ball, notated as dskel(s⃗i).

Let r⃗ball ∈ R3 be the xyz-coordinate of the ball and let s⃗start
i , s⃗end

i ∈ R3 be the xyz-

coordinates of the start and endpoints of the line segment representing the limb si. The

point-to-line segment distance is computed as follows:

1. Compute the projection factor, or how far along the line segment the perpendicular

projection of the ball falls:

t = (r⃗ball − s⃗ start
i ) · (s⃗ end

i − s⃗ start
i )

∥s⃗ end
i − s⃗ start

i ∥2
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Table 4: Body Part to Region Mapping

Body Region Skeletal Limb Volumetric Body Part
Head (N=205) - L/R Ear-to-Crown

- L/R Ear-to-Nose
- Ear-line
- Eye-line
- Mid-head
- Throat

- Head

Upper (N=18) - L/R Collar
- L/R Upper-arm
- L/R Forearm
- L/R Lat
- L/R Hip-line

- Torso
- L/R Upper-arm
- L/R Forearm

Lower (N=107) - L/R Thigh
- L/R Shin
- L/R Achilles
- L/R Outer-foot
- L/R Inner-foot
- L/R Toe-line

- L/R Thigh
- L/R Shin
- L/R Achilles
- L/R Foot

2. If 0 ≤ t ≤ 1, the perpendicular projection lies within the limb. In this case, compute

the projected point

p⃗ = s⃗ start
i + t (s⃗ end

i − s⃗ start
i )

and then calculate the distance from the ball to the limb as

dskel(si) = ∥r⃗ball − p⃗∥

3. If t < 0 or t > 1, the projection lies beyond the limb segment. The minimum

distance is the smaller of the distances to the endpoints:

dskel(si) = min
{

∥r⃗ball − s⃗ start
i ∥, ∥r⃗ball − s⃗ end

i ∥
}
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Volumetric Closeness

When measuring the volumetric closeness between the ball and a player p with body part

shapes Bp, we compute the minimum Euclidean distance between the surface boundary

of b⃗i ∈ Bp and the ball, notated as dvol(⃗bi). Let r⃗ball ∈ R3 be the xyz-coordinate of the

ball, which is a sphere of radius Rball. We must consider three cases when computing each

dvol(⃗bi).

1. b⃗i represents a sphere.

2. b⃗i represents a cylinder.

3. b⃗i represents a triangular prism.

Case 1

Under case 1, where b⃗i is a sphere with center r⃗bi
∈ R3 and radius Rbi

, we can simply take

the 3D Euclidean distance between the two sphere centers and subtract out the length of

each radius.

dvol(⃗bi) = max
{

0,
∥∥∥r⃗ball − r⃗bi

∥∥∥− (Rball + Rbi
)
}

.

The max{0, ·} operation ensures that if the two spheres intersect, the distance is set to

zero rather than yielding a negative value, although we did not encounter this scenario.

Case 2

For case 2, where b⃗i represents a right circular cylinder with a central axis defined by

endpoints r⃗ start
bi

, r⃗ end
bi

∈ R3 and radius Rbi
, we compute the volumetric closeness between

the ball and the cylinder as follows. First, determine the shortest Euclidean distance

from r⃗ball to the line defined by the cylinder’s central axis. The distance from the point

r⃗ball to the line, notated as daxis, can be computed using the same formula from Case 1.

Then, the distance between the surfaces of the ball and the cylindrical limb is found by

subtracting the sum of their radii from daxis:

dvol(⃗bi) = max
{

0, daxis − (Rball + Rbi
)
}
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The max{0, ·} operation ensures that the distance is set to zero if the objects overlap,

which we did not encounter in this study.

Case 3

Case 3 occurs when b⃗i represents a triangular prism with four rectangular faces and two

triangular faces defined by the set of vertices {vi}6
i=1. We compute dvol(⃗bi) by finding the

distance between the ball sphere and all six faces, and then taking the minimum value.

When the face is a triangle consisting of vertices v⃗tri
1 , v⃗tri

2 , v⃗tri
3 ∈ R3 and edges

e⃗tri
12 , e⃗tri

23 , e⃗tri
31 ∈ R3, we compute four distances to the ball sphere. The first is the distance

to the centroid of the triangle, and the next three are the point-to-line-segment distances

between the edges and the ball. We compute the centroid as:

c⃗tri = 1
3
(
v⃗tri

1 + v⃗tri
2 + v⃗tri

3

)

and then calculate the distance from the ball center to the centroid and subtract the ball’s

radius:

dcentroid = ∥r⃗ball − c⃗tri∥ − Rball

Next, for each of the three edges, compute the point-to-line-segment distance from the

ball center to the edge, then subtract Rball to obtain d12, d23, d31. The distance to the

triangular face is the minimum of these distances.

dtri = min
{

dcentroid, d12, d23, d31

}

The computation for rectangular faces (drect) is identical, except we compute distances to

the four edges as well as the two diagonals.

drect = min
{

dcentroid, d12, d23, d34, d41, d13, d24

}
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Finally, we compute dvol(⃗bi) as the minimum of the six minima computed, one for each

unique face. The final computation is:

dvol(⃗bi) = max
{

d1
tri, d2

tri, d3
tri, d4

tri, d5
rect, d6

rect

}
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