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Abstract
Football referees must make quick and accurate decisions in unforgiving environments. In parallel, advances in  optical 
tracking have created new avenues for technology-assisted officiating. Using skeletal and ball tracking data, we present a 
novel diphase framework for Semi-automated Last Touch detection, designed to help referees adjudicate out-of-bounds pos-
session decisions where player and ball occlusion may pose challenges. The proposed methodology uses a touch probability 
model to find the decision frame of the last touch before the ball goes out-of-bounds, and rules-based or supervised learning 
algorithms predict the player responsible for the touch. Leveraging principles of kinematics, human anthropometry, and 
machine learning, the models predict the correct possession decision with up to 82.5% accuracy on a test dataset of duels 
from the 2022 FIFA World Cup, including over 90% for aerial duels. Our results represent potential improvements in human 
performance reported in previous literature and provide a baseline benchmark for future studies.

Keyword  Technological aids, Referees, Decision-making

1  Introduction

The primary role of a football referee is to adjudicate deci-
sions based on The Laws of the Game (LOTG) as defined 
by The International Football Association Board (IFAB). 
Officials are expected to make calls quickly and accurately, 
often in unfavorable conditions. Complications include rapid 
speed of play, obstructed visual perception, and noisy envi-
ronments with potentially contentious managers and players 
[1, 2]. Studies on professional referees using independent 
expert refereeing panels report accuracy rates of 0.50 to 0.93 
for booking and foul decisions, highlighting the challenging 

decision-making environments faced [3–6]. The appeal of 
technology-assisted officiating lies in its perceived objectiv-
ity and visual robustness, as tracking data can quantitatively 
explain events in ways humans cannot. In addition, technol-
ogy, such as the Video Assistant Referee (VAR), can help 
increase the accuracy of decisions [7]. However, extended 
officiating delays associated with some existing tech-assisted 
systems have drawn criticism from fans and media, empha-
sizing the need for low-latency solutions [8–10].

Technology’s value in the analysis of football matches 
continues to grow. Collection of large volumes of game 
footage and annotations, such as the SoccerNet datasets, 
has facilitated player and ball detection and action spotting, 
greatly expanding the ability to quantify on-pitch events 
using computer vision [11–13]. Additionally, previous work 
has been done in using video of incidents to train models 
that predict officiating decisions like fouls and cards, even 
accompanied by explanations [14, 15].

Beyond single-source video, advancements in multi-cam-
era optical tracking now allow for near-real-time delivery of 
ball and skeletal tracking data, produced by an ensemble of 
in-stadium cameras. Balls can be embedded with an inertial 
measurement unit (IMU) and ultra-wideband sensors, allow-
ing the implementation of these technologies to aid officials. 
In 2012, the Fédération Internationale de Football Association 
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(FIFA) introduced goal line technology to detect when the ball 
crosses the goal line automatically. Recent FIFA World Cups 
introduced Semi-automated Offside Technology (SAOT), 
leveraging skeletal and ball tracking data to transition offside 
decisions into a faster, more efficient system.

Last-touch detection for out-of-bounds (OOB) scenarios 
remains an unexplored area of tech-assisted refereeing in foot-
ball but merits attention for two key reasons. First, OOB sce-
narios result in a possession decision, which has been shown 
to impact team behavior and performance [16–18]. Second, 
and perhaps more importantly, OOB scenarios at the goal lines 
determine whether play is resumed with a corner kick or a goal 
kick. The offensive value of corner kicks is well-documented 
in the literature. Analyses of elite international tournaments 
indicate that corners led to a team leveling the score or tak-
ing the lead in 73% of cases, and contributed to winning or 
drawing the match 76% of the time [19, 20]. Corner kicks in 
the 2017–2018 FA Women’s Super League season resulted in 
38 goals, accounting for 13.5% of the total 282 goals scored 
[21]. In these match-altering moments, exploring technologi-
cal tools to assist the referee is well motivated.

This paper proposes a novel approach for Semi-automated 
Last Touch detection (SALT) using optical tracking data 
suitable for low-latency operation. The proposed frame-
work operates in two phases. First, ball tracking data is run 
through a touch probability model that produces a decision 
frame, or the instant when the last touch is detected. Then, 
four metrics are engineered at the decision frame. These 
metrics can be used in rules-based approaches or aggregated 
into a binary classifier that predicts which player was respon-
sible for the touch. In this paper, the rationale behind each 
step in the methodology is detailed, and SALT performance 
is evaluated on a dataset of challenging duel scenarios with 
ground truth labels of who touched the ball last.

We summarize our contributions as follows. First, we 
propose a diphase framework for SALT that operates on 
skeletal and ball tracking data. Second, we present multi-
ple approaches for inferring the responsible player under 
this framework, combining rules-based and machine learn-
ing methods. Finally, we evaluate these methodologies on a 
dataset of challenging duels, provide a formal recommenda-
tion with supporting rationale, and demonstrate the feasibil-
ity of last-touch detection using tracking data, establishing 
both a baseline and directions for future research.

2 � Data and methods

2.1 � Data resources

A collection of 330 videos from broadcast footage (Dura-
tion: 5 s, Resolution: 1080p) capturing 2-opposition player 
duels from FIFA World Cup 2022 (FWC22) matches was 

manually annotated by a FIFA researcher (KM). The inter-
annotator reliability was assessed across 30 randomly 
selected videos (HW). This dataset included a range of sce-
narios in which the ball either remained in play or went OOB 
following the duel. For each clip, the researcher was given 
the identities of the two players involved and was tasked 
with identifying the player and selecting the body part that 
made the final contact with the ball. In instances where it 
was difficult to distinguish the player or body part, the duel 
was marked as non-visible. A majority (195 of 330) were 
aerial duels involving the head, 109 occurred with the legs 
or feet, and 26 occurred with the torso, arms, or an unclear 
body part.

Skeletal and ball tracking data for all 330 duels were 
provided by Hawk-Eye Innovations (HEI) Player and Ball 
Tracking System [22] using high-definition multi-camera 
optical tracking. This technology was tested and certified 
by the FIFA Quality Programme in September 2021, with 
details in the Online Resource. The system tracks the xyz 
position of 29 joints on each player’s body and the ball at 50 
Hz, which we use to detect contact with the ball. The skeletal 
data is described in greater detail in section 2.2.

We identify two key challenges with the use of skeletal 
data for SALT. First, tracking quality and precision may 
decrease in close opposition scenarios, resulting in inaccu-
rate player and ball positions. Second, only a subset of the 29 
joints are directly tracked, while extremities (e.g., head, toes, 
heels, fingers, hips) are extrapolated. This work attempts 
to develop a framework using both distance-dependent and 
distance-independent metrics to enhance the robustness to 
tracking uncertainty.

All matches during FWC22 used the Adidas Connected 
Official Match Ball equipped with Kinexon Connected Ball 
Technology [23], which we refer to as an instrumented ball/
football. This ball, with an embedded IMU sensor, samples 
movement data at 500 Hz, allowing for the extraction of 
touch timestamps to the nearest 0.002 s that were down-sam-
pled and time-synchronized with tracking data. We also pro-
pose a touch probability algorithm, detailed in section 2.2.2, 
that can predict touches in the absence of the instrumented 
ball, offering a more accessible alternative, which becomes 
the focus of this paper. The instrumented ball was tested 
and certified by the FIFA Quality Programme in September 
2021, with details in the Online Resource.

For each duel, we had access to a 5-second window seg-
ment of skeletal and ball tracking data. However, the exact 
duel frames were unknown but essential for analysis. To 
identify the duel frames within this window, heuristics using 
two thresholds were used. 

1.	 The mid-hips of both players are within 1.25 m apart.
2.	 At least one player’s mid-hip is within 0.75 m of the ball.
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The first threshold ensures physical proximity between play-
ers, and the second stipulates that the scuffle is occurring on 
the ball. These thresholds were applied as a filter across the 
tracking data segment, and the longest consecutive stretch of 
remaining frames was taken. For this duel dataset, we found 
that using the last 25 frames captured the last touch. In real-
world implementation, a manual operator may verify that the 
tracking frames used contain the last touch.

2.2 � Methods

In this section, we detail the methods behind each piece of 
the SALT framework, from how players are represented to 
how a final last touch prediction is made.

2.2.1 � Player representations

The player representations are first defined, as summarized 
in Fig. 1.

The skeleton was augmented by extrapolating the coor-
dinates of each player’s crown, a key part of aerial duels 

(shown in Fig. 1(b)). Let r⃗j ∈ ℝ
3 be the position of joint j. 

First, the midpoint of the eyes ( ⃗rmid-eyes ) was computed using 
the positions of the left and right eyes.

Next, the unit vector pointing from the nose to the mid-
point of the eyes was defined:

Finally, the crown coordinate was computed by extending 
the vector from the nose in the direction of u⃗ by 0.18 m 
based on mean measurements of the human head [24]:

In addition to estimating r⃗crown , the locations of the left and 
right thumbs and fifth digit were pruned because the duel 
dataset did not include any handballs.

The skeletal representation models each athlete as a col-
lection of 30 limb connections, or line segments connecting 
joints on the body. Not all connections, specifically in the 

(1)u⃗ =
r⃗mid-eyes − r⃗nose

‖‖‖r⃗mid-eyes − r⃗nose
‖‖‖

(2)r⃗crown = r⃗nose + 0.18 ⋅ u⃗

Fig. 1   (a) Skeletal coronal representation of tracked landmarks com-
prising all joints and limb connections, excluding the head (b) Skele-
tal representation of tracked landmarks comprising all joints and limb 

connections in the head (c) Volumetric representation of all body 
parts (d) Transverse-plane view illustrating how the head sphere of 
the volumetric representation is formed
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head, are limbs in the anatomic sense. However, limbs cap-
ture the space between joints where the body may contact 
the ball. Figure 1(a) reports the set of limbs used in the skel-
etal representation and the joints used to connect each limb. 
Several quasilimbs are drawn in the head (scalp, eyeline, 
earline, face, midhead) to improve header detection, shown 
in Fig. 1(b).

A limitation of the skeletal representation is its lack 
of volume, which the volumetric representation seeks to 
address using a collection of spheres, triangular prisms, and 
cylinders to create a more realistic player model, depicted in 
Fig. 1(c). The head is approximated by a sphere formed from 
the circumcircle of the triangle that connects the left ear, the 
right ear, and the nose, with the circumcircle serving as the 
bisecting cross section (Fig. 1 (d)). The feet are modeled as 
triangular prisms, with a base formed by the heel, the big 
toe, and the small toe, and a height of 0.063 m based on 
measurements of a popular football foot (US size 11). The 
limbs are represented by right circular cylinders with radii 
derived from mean anthropometric data of elite Spanish 
footballers [25]. The forearms (radius 0.027 m) connect the 
elbow and wrist, the upper arms (radius 0.052 m) connect 
the shoulder and elbow, the thighs (radius 0.085 m) connect 
the hip and knee, and the shins (radius 0.06 m) connect the 
knee and ankle. The Achilles tendon is also modeled as a 
cylinder (radius 0.037 m) that connects the ankle and heel. 
Finally, the ball is represented as a sphere with a radius of 
0.11 m, consistent with Law 2 of the LOTG [26].

2.2.2 � The decision frame

To assert which player touched the ball last, we identify the 
predicted decision frame, f̂d , which is the last instant when 
the ball was touched prior to going OOB. To find f̂d , we 
estimate the sequence {pf

touch
}25
f=1

 , which represents the prob-
ability of ball contact over the 25 consecutive frames 
indexed by f. The last peak in this sequence is f̂d , as there 
can be multiple peaks in the 25 frame sequence.

We engineer a feature space to maximize linear separabil-
ity and train a binary classifier to predict pf

touch
 at any frame f 

using HEI ball tracking as inputs and instrumented football 
touches as labels. The first feature is Velocity Cosine Simi-
larity (VCS), defined as the cosine similarity between the 
current velocity vector at frame f and the outgoing velocity 
vector at f + 1 . For the boundary frames f = 1 and f = 25 , 
p
f

touch
 is estimated using tracking data from frames f = 0 and 

f = 26 , respectively, which are defined and contain acces-
sible data but excluded from the 25-frame duel sequence. 
Intuitively, a VCS of 1 indicates a low probability of ball 
touch, as the trajectory remains undisturbed. If VCS is −1, 
the probability of ball touch is high, as the ball has begun 
traveling back toward its origin.

Definition 1  Velocity Cosine Similarity (VCS): Let v⃗f  be 
the instantaneous velocity vector at frame f and v⃗f+1 be the 
outgoing velocity vector at frame f + 1.

The second feature is Velocity Magnitude Ratio (VMR), 
which captures changes in speed of the ball and ranges 
between 0 and 1. VMR approaches zero as the current and 
outgoing velocity vectors become increasingly different in 
magnitude. When VMR is close to 1, the velocity of the 
ball exhibits minimal change between frames, indicating 
a low touch probability.

Definition 2  Velocity Magnitude Ratio (VMR): Let v⃗f  be 
the instantaneous velocity vector at frame f and v⃗f+1 be the 
outgoing velocity vector at frame f + 1.

Finally, the last feature is minimum closeness, simply 
the Euclidean distance between the ball and the nearest 
limb on any player at a given frame. Intuition says frames 
where minimum closeness is high are unlikely to contain 
a touch.

Using the three predefined features, we train a logistic 
regression classifier ℙ̂touch with L2 regularization using a 
70/30 train-test split. There were a total of 7807 unique 
frames of ball tracking data that were down-sampled and 
synced with the touch data at 50 Hz. The dataset was highly 
imbalanced, as about 5% of frames were touches. A balanced 
class weight loss function was employed in training, which 
over-penalized false negatives, and 5-fold cross validation 
optimized the feature polynomial order. The touch model 
achieves an out-of-sample ROC AUC of 0.97 and F1-score 
of 0.71, and exhibits low precision as a result of the class-
balanced loss function, but very high recall, ensuring no 
touches are missed.

To find f̂d , we define a touch probability sequence output-
ted by ℙ̂touch over the duel frames and found the last peak in 
probability exceeding the height threshold hthresh = 0.75 over 
the last 25 frames, which was selected using a grid search. 
This process could be considered a temporal feature selec-
tion step to determine which time slice should be used to 
make predictions. Details of the selection of hthresh are found 
in the Online Resource. We encourage the reader to review 
section 2.2.3 beforehand for a proper context.

Definition 3  Predicted Decision Frame ( f̂d): Let 
p̂
f

touch
= ℙ̂touch(touch ∣ f ) be the predicted probability of ball 

touch at frame f. Let S = {p̂
f

touch
}25
f=1

 be the touch probability 

VCS∶=
v⃗f ⋅ v⃗f+1

‖v⃗f‖‖v⃗f+1‖
∈ [−1, 1]

VMR∶=min

� ‖v⃗f‖
‖v⃗f+1‖

,
‖v⃗f+1‖
‖v⃗f‖

�
∈ [0, 1]
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sequence. The predicted decision frame is defined as 
follows.

If no such frame exists, the decision frame is at the maxi-
mum probability in S.

The decision frame offers flexibility by allowing manual 
adjustments when deemed incorrect, mirroring the approach 
used in SAOT and motivating the term “Semi-automated 
last touch.”

2.2.3 � Rules‑based approaches

In this subsection, we propose several rules-based 
approaches using metrics derived from skeletal and kine-
matic principles, designed to intuitively infer duel outcomes. 
The naive closeness approach (NCA) is the “laziest”, base-
line approach. NCA omits the decision frame and observes 
the minimum distance between the skeletal representation 
and the ball over the entire duel, asserting that the player 
with the smallest minimum distance is the last-touch player. 
NCA does not distinguish closeness from contact and is 
blind to signals from relative player and ball movement.

Closeness, the most intuitive approach, measures each 
pairwise limb-to-ball distance for a given player at f̂d , using 
the skeletal representation rather than the volumetric repre-
sentation, and takes the minimum value.

Definition 4  Closeness: For a player p with limbs Sp , let 
dskel(s⃗i) be the minimum Euclidean distance between a limb 
s⃗i ∈ Sp and the ball. The player’s closeness, Cp , is:

The closeness approach (CA) asserts that the skel-
etal representation closest to the ball at f̂d belongs to the 
player who touched the ball last. CA represents an improve-
ment over NCA using the decision frame, distinguishing 
closeness from contact, but does not leverage volumetric 
characteristics.

Volumetric closeness is analogous to closeness but 
replaces the skeletal representation with the volumetric 
representation. We measure the distance between the ball 
sphere and each boundary surface on the player and then 
take the minimum value. The volumetric closeness approach 
(VCA) is identical to the closeness approach but uses volu-
metric closeness. Additional computational details for dskel(⋅) 
and dvol(⋅) are found in Section 6.

f̂d = max
{
f ∣ f ∈ {1, 2,… , 25}, p̂

f

touch
> hthresh ∧ p̂

f−1

touch
< p̂

f

touch
> p̂

f+1

touch

}

f̂d = argmax
f

{S}

Cp∶=min{dskel(s⃗i) ∣ s⃗i ∈ Sp}.

Definition 5  Volumetric Closeness: For a player p with 
body part shapes Bp , let dvol(b⃗i) be the minimum Euclidean 

distance between the surface boundary of b⃗i ∈ Bp and the 
ball. The player’s volumetric closeness, VCp , is:

Although closeness is the fundamental indicator of 
ball contact, it may be unreliable when tracking quality 
decreases. Under these conditions, we might infer which 
player kicks the ball by observing the relative motion of 
the feet and ball. If both are moving in the same direction, 
then contact is more likely. Under poor tracking, this sig-
nal may be more reliable than a distance-dependent metric. 
Following this intuition, we define joint velocity similarity 
(JVS) as the cosine similarity between the nearest joint’s 
velocity and the ball’s velocity at the decision frame.

Definition 6  Joint Velocity Similarity (JVS): Let v⃗ball ∈ ℝ
3 

be the velocity vector of the ball. Let v⃗j1 , v⃗j2 ∈ ℝ
3 be the 

velocity vectors of the two joints connecting the limb closest 
to the ball. We define JVS as follows.

Values close to 1 suggest a higher probability of touch. 
We illustrate this intuition in Fig. 2. Under the Joint Veloc-
ity Similarity Approach (JVSA), the player with the higher 
JVS at the decision frame is assigned the last touch. Physi-
cally, a touch is an elastic collision between body and ball 
and observing a projectile’s pre- and post-collision trajec-
tories may help infer the orientation of the collision sur-
face. We leverage this intuition by defining Expected Tra-
jectory Similarity (ETS) using volumetric representations.

At frame fd − 1 , we calculate the pre-collision normal 
vector n⃗pre connecting the nearest point on the surface 
of the closest shape at fd to the ball for a given player. 
The calculation of n⃗pre depends on whether this shape is a 
sphere, a cylinder, or a triangular prism. For spheres, the 
pre-collision normal vector to the ball n⃗spherepre  is the vector 
connecting the origins of both spheres, r⃗ball and r⃗sphere.

For cylinders, we find the normal vector by projecting the 
ball’s position onto the cylinder’s axis to get r⃗proj . The nor-
mal vector n⃗cylpre is the vector that connects the origin of the 
ball to this projection minus the radius of the ball. More 

VCp∶=min{dvol(b⃗i) ∣ b⃗i ∈ Bp}.

JVS∶=max

�
v⃗ball ⋅ v⃗j1

‖v⃗ball‖‖v⃗j1‖
,

v⃗ball ⋅ v⃗j2

‖v⃗ball‖‖v⃗j2‖

�
∈ [−1, 1]

(3)n⃗sphere
pre

= r⃗ball − r⃗sphere
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formally, let r⃗start and r⃗end be the positions of the start and 
end of the cylinder’s axis. Let r⃗axis = r⃗end − r⃗start . We com-
pute n⃗cylpre as follows:

Finally, for triangular prisms, we use the face of the prism 
deemed to have touched the ball, either a triangle or rec-
tangle, and we can find the normal vector n⃗prismpre  by taking 
the cross product of any two connected edges e⃗1 and e⃗2 , and 
then orienting the vector so it points towards the ball by 
ensuring the dot product between n⃗prismpre  and r⃗ball − n⃗

prism
pre  is 

positive. In Eq. 5 below, the “ ∗ ” operator represents scalar 
multiplication.

Finally, using n⃗pre , we define ETS as the cosine similarity 
between n⃗pre and v⃗ball

post
 , the ball’s post-collision velocity at 

frame fd + 1.

Definition 7  Expected Trajectory Similarity (ETS): Let 
n⃗S
pre

 be the pre-collision normal vector between the nearest-
limb shape S and the ball at frame fd − 1 . Let v⃗ball

post
 be the 

velocity vector of the ball at frame fd + 1.

ETS takes values between −1 and 1, with a value of 1 
indicating a high collision likelihood. Under the Expected 
Trajectory Similarity Approach (ETSA), the player with 
the highest ETS at the decision frame is deemed responsi-
ble for the last touch Fig. 3.

We summarize the set of rules-based approaches in 
Table 1.

(4)n⃗cyl
pre

= r⃗ball −
(
r⃗start +

(r⃗ball − r⃗start) ⋅ r⃗axis

r⃗axis ⋅ r⃗axis
× r⃗axis

)

(5)
n⃗prism
pre

=
(
2 ∗ 1

{
(e⃗1 × e⃗2) ⋅ (r⃗ball − e⃗1 × e⃗2) > 0

}
− 1

)
∗ (e⃗1 × e⃗2)

ETS∶=
n⃗S
pre

⋅ v⃗ball
post

‖n⃗S
pre
‖‖v⃗ballpost‖

∈ [−1, 1]

2.2.4 � Multimodal approaches

The rules-based approaches in section 2.2.3 capture differ-
ent kinematic signals, potentially offering a balance of pre-
dictive power and robustness to tracking uncertainty. We 
explore developing multimodal predictors that aggregate 
all four methods. In Table 2, we summarize the five multi-
modal approaches proposed and detail them in this section, 
with accuracies reported in section 3. Traditional ensem-
ble methods use unweighted majority or plurality voting to 
aggregate the outputs of disjoint classifiers, which has been 
shown to improve overall predictive performance [27, 28]. 
In our binary classification setting, we implement majority 
voting on the intermediate decisions from CA, VCA, JVSA, 
and ETSA, using VCA as the tiebreaker. This Majority Vote 
Classifier (MVC) serves as the baseline multimodal method.

Definition 8  Majority Vote Classifier (MVC) Define 
hA(x) ∈ {0, 1} as the binary last touch decision produced 
by rules-based approach A on duel x . The decision D̂MVC is:

where each hA(x) is mapped from {0, 1} to {−1,+1} , 
and the sum is taken over all classifiers in the set 
{CA, VCA, JVSA, ETSA}.

D̂MVC = sign

(
∑

A

(2hA(x) − 1)

)

Fig. 2   Illustrating joint velocity similarity (JVS) with joint and ball 
velocity vectors: On the left, JVS is high as both vectors point in sim-
ilar directions; on the right, JVS is low as both vectors point in oppo-
site directions

Fig. 3   Illustration of vectors in ETS computation for all possible vol-
umetric shapes. Note that for the prism, a rectangular face is shown, 
but the same logic applies to triangular faces
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We extend MVC by training ML models to learn the 
optimal weights for each rules-based output. To reduce 
variability from train-test splits, we use Monte Carlo cross 
validation (MCCV) with 500 rounds. A key extension of the 
multimodal ML approach is the ability to allow the relative 
importance of inputs to vary depending on the body region 
involved through segmentation modeling. We determine the 
duel’s body region by identifying, via our closeness metrics, 
the skeletal and volumetric parts closest to the ball for both 
players, mapping these parts to one of three regions (upper, 
lower, or head), and assigning the duel the most frequent 
region. The Online Resource section contains details of how 
limbs are mapped to body regions.

We first implement a logistic regression (LR) classifier 
using binary rule-based decisions as inputs, selecting a linear 
or quadratic feature space through 5-fold cross-validation. 
We experimented with more expressive model classes, but 
found similar performance with loss of interpretability, a key 
pillar of existing frameworks for evaluating sports technol-
ogy quality, which includes tools related to tracking systems 
[29]. This meta-learner, referred to as a Stacking Classifier 
(SC), employs stack generalization, effective when base clas-
sifiers excel in different subspaces [30]. We also implement a 
Body-segmented Stacking Classifier (BSSC), training sepa-
rate LR models for duels grouped by body region.

Definition 9  Stacking-based Classif iers: Define 
hA(x) ∈ {0, 1} as the binary last touch decision produced by 

classifier A on duel x . �(⋅) is the sigmoid function. Let � be 
learned weights. For clarity, we only define the first-order 
specifications here. 

1.	 Stacking Classifier (SC): The decision made by the 
stacking classifier is: 

 where h(x) = [hCA(x), hVCA(x), hJVSA(x), hETSA(x)]
⊤.

2.	 Body-segmented Stacking Classifier (BSSC): Separate 
models are trained for each body region. The decision 
for each region’s model is: 

 where region ∈ {upper, lower, head}.

One limitation of MVC, SC, and BSSC is the homogeneity 
of inputs, which do not encode how “close” the decision may 
be. To address this, we define �(�) = {mC,mVC,mJVS,mETS} 
as the set of margins produced by CA, VCA, JVSA, and 
ETSA, respectively, for duel x. More formally, let Cp , VCp , 
JVSp , and ETSp denote player p’s closeness, volumetric 
closeness, joint velocity similarity, and expected trajectory 
similarity, respectively. For a duel between players i and j, 
we compute the components of �(�) as follows:

D̂SC = 1
{
𝜎
(
�⊤

h(x)
)
≥ 0.5

}

D̂BSSC,region = 1

{
𝜎
(
�⊤
region

hregion(x)
)
≥ 0.5

}

(6)mC = Cj − Ci

Table 1   Summary of Rules-based Approaches

Approach Summary

Naive Closeness Approach (NCA) The player with the smallest skeletal-to-ball distance over the 25 duel frames is assigned the 
last touch

Closeness Approach (CA) The player with the smallest skeletal-to-ball distance at the decision frame is assigned the 
last touch

Volumetric Closeness Approach (VCA) The player with the smallest volumetric-to-ball distance at the decision frame is assigned the 
last touch

Joint Velocity Similarity Approach (JVSA) The player with the higher Joint Velocity Similarity (JVS) at the decision frame is assigned 
the last touch

Expected Trajectory Similarity Approach (ETSA) The player with the higher Expected Trajectory Similarity (ETS) at the decision frame is 
assigned the last touch

Table 2   Summary of 
Multimodal Approaches

Approach Inputs Model(s)

Majority Vote Classifier (MVC) Rules-based decisions Rules-based majority vote
Stacking Classifier (SC) Rules-based decisions Binary-input LR
Body-segmented Stacking Classifier (BSSC) Rules-based decisions 3 x Binary-input LR
Margin Classifier (MC) Numerical margins LR
Body-segmented Margin Classifier (BSMC) Numerical margins 3 x LR
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We implement the same two model specifications in the pre-
vious section, but replace the binary inputs with m(x) ∈ ℝ

4 . 
We call the two methods Margin Classification (MC) and 
Body-segmented Margin Classification (BSMC), which are 
analogous to SC and BSSC, respectively.

Definition 10  Margins-based Classifiers: Let �(�) be the 
margins vector derived from duel x . �(⋅) is the sigmoid func-
tion. For clarity, we only define the first-order specifications 
here. 

1.	 Margin Classifier (MC): The decision made by the 
margin classifier is: 

 where m(x) = [mC,mVC,mJVS,mETS]
⊤.

2.	 Body-segmented Margin Classifier (BSMC): Separate 
models are trained for each body region. The decision 
for each region’s model is: 

 where region ∈ {upper, lower, head}.

3 � Results

3.1 � Decision frame performance

The touch probability model achieved an out-of-sample 
ROC AUC of 0.97 and an F1-score of 0.71. Notably, the 
upweighting of positive labels in training resulted in a sub-
stantial disparity between precision and recall (0.32 vs. 
0.99, respectively). However, a more informative evalua-
tion of model performance considers the temporal difference 
between the predicted and ground truth decision frames for 
each duel. This directly captures temporal precision, which 
is a more meaningful indicator of performance in this 
context.

Figure 4 depicts the empirical distribution of Δf = fd − f̂d , 
where fd is the labeled touch frame from the instrumented 
ball and f̂d is the predicted decision frame from the touch 
probability model. The highest magnitude difference is 13 
frames. Manual investigation revealed that large differences 
were caused by missed instrumented ball touches, errant ball 

(7)mVC = VCj − VCi

(8)mJVS = JVSi − JVSj

(9)mETS = ETSi − ETSj

D̂MC = 1
{
𝜎
(
�⊤

m(x)
)
≥ 0.5

}

D̂BSMC,region = 1

{
𝜎
(
�⊤
region

mregion(x)
)
≥ 0.5

}

tracking data, and instances where bounces on the pitch were 
flagged as touches. However, 66.7% of the time Δf = 0 , and 
Δf ∈ [−1, 1] for 91% of the 301 duels. In real-world imple-
mentation, any frame decision errors can be corrected by the 
operator, which is already standard practice in SAOT when 
detecting the kick point.

3.2 � Rules‑based approach results

Figure 5 shows rules-based accuracy differences, with VCA 
performing best. Each rules-based approach varies in pre-
dictive performance based on body part, as seen in Fig. 6. 
VCA generally outperforms JVSA except for duels involving 
the feet. NCA’s underperformance relative to CA and VCA 
demonstrates the value of the decision frame, and VCA’s 
superiority over CA confirms the utility of richer player 
representations.

3.3 � Multimodal approach results

An aggregate accuracy of 80% was observed for MVC across 
the entire dataset. For multimodal ML-based methods, the 
distribution of test performances is shown in Table 3. For 
comparison, VCA performance on the same bootstrapped 
train/test splits is reported in the final (italicized) row.

Using the VCA 82% accuracy rate as a baseline, some 
multimodal methods (MC and BSMC) outperform the rule-
based approach in expectation, but the difference is not 
statistically significant given the values of �test . In addition 
to aggregate accuracy, we continue the discussion of body-
part-specific performance, with mean classification accura-
cies shown in Fig. 7. The overlapping distributions indicate 
that no single method consistently outperforms the others 
across all body parts.

Fig. 4   Histogram of the differences between instrumented ball touch 
frame and the predicted decision frame; about 91% of decision 
frames occur within 1 frame of the instrumented football’s reported 
touch frame
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4 � Discussion

In this paper, we demonstrated the ability of skeletal 
tracking data to aid out-of-bounds possession decisions. 
We began by defining heuristics that sufficiently isolated 
frames of interest for the duels. Next, distance-depend-
ent rules-based approaches were able to predict deci-
sions effectively, and we observed improvements as the 
closeness metric became more sophisticated. In addition, 
performance varied by body part. VCA adjudicated head 
duels with near 90% accuracy, but duels involving the legs 
or feet were around 65–75%. For these scenarios, JVSA 
outperforms VCA, likely due to noise in the tracking data 
under occlusion, making distance-based metrics less reli-
able. The multimodal approaches attempted to address this 
challenge by leveraging distance-independent features and 
supervised learning. However, since the last touch problem 
is, in principle, solved by VCA given perfect tracking of 
player bodies and the ball, and because the two approaches 

yield statistically indistinguishable results, we argue that 
VCA is the preferred method. Moreover, VCA and CA 
exhibit the highest importance in training, and VCA per-
formance should improve naturally as tracking data quality 
improves.

We note that metric computation for rules-based 
approaches takes 1–2 s per duel, and inference runs in near-
real-time, producing immediate predictions for individual 
duels across both rules-based and multimodal approaches. 
These findings suggest that SALT is fast enough for poten-
tial implementation during match play. Furthermore, speed 
improvements are likely achievable through parallelization, 
though this was not utilized in the current study.

The diphase design of SALT supports the need for adapt-
able decision support systems that are globally accessible. 
High definition multi-camera optical tracking systems 
could be replaced by more accessible broadcast tracking 
[31, 32]. The touch probability model could be substituted 
with precise touch data from connected balls, which has 
already been implemented in major international competi-
tions [33–35]. Ultimately, SALT represents an advance in 
technology-assisted officiating that was previously infeasible 
with center-of-mass tracking, showcasing a potentially use-
ful application of skeletal tracking.

Fig. 5   Bar plot summarizing the classification accuracies of each 
rules-based approach using predicted decision frames

Fig. 6   Comparison of JVSA and 
VCA classification accuracy by 
annotated body part

Table 3   Summary of MCCV Results for ML-based Multimodal 
Approaches with Rules-based VCA Comparison

Approach �
train

�
train

�
test

�
test

Stacking Classifier (SC) 83.1 1.67 81.4 2.97
Margin Classifier (MC) 84.2 1.81 82.5 2.92
Body-segmented Stacking Classifier (BSSC) 84.6 1.37 81.4 3.22
Body-segmented Margin Classifier (BSMC) 86.4 1.65 82.5 3.17
Volumetric Closeness Approach (VCA) 82.2 1.59 82.0 2.93
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There are still many avenues for improvement for 
SALT, several of which are motivated by the limitations 
of this study. First, expanded testing on a diverse and rep-
resentative dataset of duels, especially non-aerial duels, 
is needed to enable a more robust evaluation of perfor-
mance, particularly given both the observed accuracy dis-
parity between aerial and ground duels and the omission 
of non-visible duels during annotation, which could bias 
reported model performance. Second, pursuing improve-
ments in the quality of the tracking data will benefit 
SALT in parallel, particularly under the preferred VCA 
method, since better tracking under occluded conditions 
and precise estimation of extremities will enhance the 
integrity of the system. Avatar or mesh representations 
can produce more accurate player models than standard 
volumetric templates [36]. Frame rates beyond 50 Hz will 
yield greater precision in the decision frame, as the con-
tact time between the ball and the player is less than 0.01 
s [37, 38]. The validation of labeled touch data will facili-
tate the training of the models for a more robust detection 
of the decision frames with better-balanced precision and 
recall. Finally, more work on measuring human accuracy 
on OOB decisions, which is currently lacking, is needed 
to understand SALT’s true utility.

5 � Conclusions

In this paper, we proposed several rules-based and multi-
modal approaches for Semi-automated Last Touch detec-
tion (SALT) in football using optical tracking data. Using 
touch data from an instrumented football to train a touch 
probability model, we were able to identify the frame of 
the last touch before the ball goes out-of-bounds. Then, 
by formulating skeletal and volumetric representations 
of players, measuring the relative movement of the ball 
and joints, and leveraging intuition on elastic collisions, 
we created four rules-based approaches to predict who 
touched the ball last in duel scenarios. A rules-based 
volumetric closeness approach achieved 82.1% accuracy 
in a criterion last-touch dataset, competitive against more 
sophisticated machine learning methods. We argue that 
this volumetric closeness methodology provides the most 
accurate representation of the physical system without the 
risk of overfitting our sample and may generalize better 
across diverse scenarios. Additionally, as tracking data 
continues to improve in quality and representativeness, 
this approach will become increasingly effective without 
requiring additional development. Ultimately, this work 

Fig. 7   Mean test accuracies 
for all multimodal approaches, 
segmented by body part, with 
rule-based VCA for comparison 
(light gray). Error bars denote 
standard deviations (SD) in 
classification accuracy across 
MCCV splits. SD bars all over-
lap within each body part
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indicates that tracking data has the potential to effectively 
support possession decisions after out-of-bounds events 
and provides a baseline for future research.
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