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Abstract
In this paper, we adopt an evolutionary model to describe the coevolution of technological transition and
pollution in a country, where the choice of technology does not only give firms access to cleaner (but more
expensive) or dirtier (cheaper and illegal) forms of production, but also access to social groups and infor-
mation. Firms’ activity may be harmful to the environment and, due to the existence of ambient pollution
charges, economic activity is affected by the level of pollution in the country. Our analysis describes how
the evolution of the transition to clean technology and pollution generates a rich set of possible equilib-
ria, which include stable pure strategies (where all firms choose the same technology) and inner equilibria
(where both technologies could be adopted in the long run). We also observe more complex behavior and
coexistence of different attractors as well as highlight the importance of initial conditions and uncover how
the regulator may face possible pollution traps.

Keywords: Technological transition; non-point source pollution; strategic interaction; asymmetric information; compliance
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1. Introduction
Policymakers around the world are increasingly facing critical challenges related to reducing pol-
luting activities, controlling climate change, and incentivizing a transition to cleaner forms of
production. These challenges are addressed in the 17 Sustainable Development Goals identified
and adopted by all United Nations Member States in 2015. Interestingly, the 2030 Agenda for
Sustainable Development, of which the 17 goals are key elements, describes the interconnected-
ness of environmental sustainability and economic activities, and in particular highlights how the
fulfillment of the goals could trigger positive dynamics for economic growth in developing and
developed countries around the world.

Of course, the way the environment and economic activities interact is complex and circu-
lar (Levin and Xepapadeas (2021)) and requires governments to appreciate the coevolution of
environmental and economic variables. At the same time, the evaluation of the impact and effec-
tiveness of environmental and economic policies must take also into account how economic
agents interact strategically at the micro-level and engage with the behavior of social groups at
the macro-level. At a micro-level, for example, economic agents, such as firms (their sharehold-
ers and management), will have to take strategic decisions (including the choice of investing in
green and sustainable technologies), taking into account the actions of competitors and the incen-
tives of regulatory and fiscal policies. At a more macro level, these agents belong to social groups,
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engage with social norms, and acquire group-specific information. It follows that economic and
environmental policies will influence the conduct of each individual agent which, in turn, will
impact the macro features of the economy (for example, the transition to greener technologies)
and the aggregate state of environmental conditions (for example, overall levels of national pollu-
tion and quality and stock of natural resources); these conditions, of course, will recursively affect
the strategic decisions of individual agents.

In this paper, we develop an evolutionary model that describes the dynamic coevolution of
technological transition and pollution, where individual firms in each period engage in strategic
(quantity) competition with each other based on the particular technology at their disposal. The
choice of technology does not only give firms access to cleaner/more expensive or dirtier/cheaper
forms of production, but also access to social networks and information sharing. In particular, we
focus our attention on a scenario in which clean technology is clearly identified and mandated
by the government. Producers, however, have the opportunity, engaging in illegal activities (e.g.
circumventing environmental standards, falsifying documents and dishonestly reporting false
information, etc.), to adopt a dirtier and cheaper form of production. In choosing to engage in
illegal activities, a firm faces the risk of being audited and to pay financial (and potentially social)
penalties. At the same time, however, through the interaction with illegal practices (for example,
the interaction with third parties that facilitate the falsification of documents or with providers
of polluting and prohibited factors of production), a dishonest firm could also acquire access
to information on the composition of the group of firms who have decided to act illegally; this
information may be inaccessible to firms who decide to act legally and invest in green technology.

In this setup, it follows that a national regulator has to understand the effects that envi-
ronmental policy and auditing may have on the individual conduct of firms, while taking into
consideration the impact created on the dynamic paths of pollution and the adoption of sustain-
able technology, which in our case also corresponds to the prevalence of honest behavior in the
economy overall. We describe a scenario in which a regulator has a preferred technology and can-
not directly assess the impact that the output choices of individual firms have on the environment;
instead, what can be observed is the aggregate level of national pollution. The regulator, therefore,
can impose an environmental tax based on the current level of pollution in the system, regardless
of the quantity choices of the firms.1 An environmental agency, however, can observe the tech-
nological choices of firms after an audit and, if firms are found adopting a dirty technology, they
could face a penalty; the expected cost associated with an audit would reduce the desirability to
cheat and adopt a dirty technology.

We show that the interplay between different factors involved in the model generates various
dynamic scenarios, including stable pure strategies (where all firms choose the same technology),
inner equilibria (where both technologies could be adopted in the long run), and solutions of
more complex form (cycles of low or high period, closed invariant curves, etc.). We observe coex-
istence of different attractors, which implies the possibility of pollution traps and accentuates the
importance of initial conditions. Indeed, if the initial level of adoption of green technology is
sufficiently high, then in the long run the system may escape a pollution trap, converging to an
asymptotic state where all firms comply with environmental standards. We also highlight certain
effects of increasing the number of competing firms. In particular, our initial insights suggest that
higher level of competition would allow for less stringent regulation to lead the system to a good
equilibrium, where all firms adopt a clean technology.

There are multiple strands of economic literature that address the issues that we study in our
work. Several contributions take a macroeconomic perspective to study the relationship between
environmental quality and (exogenous2 or endogenous3) economic growth.4

There is also a vast body of literature that studies the interplay between economic activity
and environmental protection from a micro-perspective. A considerable amount of attention
has been dedicated to the static strategic decision of firms to invest in emission abatement
efforts in the attempt to reduce the impact of environmental taxation. These include the
study of firms’ behavior under international competition (see Ulph (1996) and subsequent
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contributions), production differentiation and firms’ locations (see Bárcena-ruiz and Garzón
(2003) and Espinola-Arredondo and Zhao (2012)), strategic managerial delegation (see Bárcena-
Ruiz and Garzón (2002), Roelfsema (2007) and Pal (2012)), partial cross-ownership (see
Bárcena-Ruiz and Campo (2012)), optimal environmental taxation and strategic regulatory pre-
commitment (see Ouchida and Goto (2016), Radi et al., 2025)), just to mention a few. While
duopolistic competition is normally assumed, there are also works that consider oligopoly and the
role that the number of firms active in the market, a proxy for the degree of competition in a mar-
ket, may have on the equilibrium levels of emissions and regulatory efforts. Lambertini et al. (2017)
study a static Cournot oligopoly in which firms can decide to invest in abatement efforts to reduce
emissions.5 The authors consider, in particular, the possibility that abatement efforts (akin to R&D
investments) can generate spillovers in favor of competitors; they show how that, if “green” inno-
vation generates spillovers, in equilibrium it can be observed an inverted-U relationship between
innovation and competition. More recently, Buccella et al. (2024), extended a previous work
(Buccella et al. (2021)) introducing oligopolist competition and the dynamic decision of firms to
invest in abatement or not, highlighting how different approaches to environmental policy would
influence the long-term decisions of firms and, consequently, social welfare and the environment.

As mentioned above and in contrast to the literature discussed so far, the model proposed
in this paper considers a situation in which firms do not face emission taxes nor contemplate
explicit abatement investments. Instead, we consider the case of ambient charges, imposed to
address non-point source pollution, and the possibility that some firms may engage in dishon-
est behavior. There are several works that assume static oligopolistic strategic behavior of firms
facing ambient charges. See, for example, Ishikawa et al. (2019), Matsumoto and Szidarovszky
(2021), andMatsumoto et al. (2023). While these works highlight the important role that strategic
interdependence may have in defining how firms respond to environmental regulation, they do
not address the dynamics of technological transition and the possibility of dishonest conduct of
firms. From this point of view, our model is also related to the literature that studies how auditing
and transparency can influence attitudes toward corporate social and environmental responsi-
bility. If, due to social norms and environmental awareness of consumers, markets may reward
corporate engagement in social and environmental efforts, firms could exploit forms of strate-
gic behavior such as greenwashing,6 i.e. selectively engaging in observable and salient activities
while neglecting unobservable investments that might be, however, more effective (and poten-
tially more expensive). The literature highlights how the information generated by the result of
auditing efforts (e.g. forms of naming and shaming) and the regulatory requirements on trans-
parency around social and environmental efforts of firms can influence the intrinsic and extrinsic
incentives of firms and, ultimately, social welfare.7

In line with what we do in this paper, the dynamic interdependence between technological
transition, economic performance and environmental quality can be studied adopting an evolu-
tionary framework, where the adoption of a technology is determined by evolutionary selection
and the selection mechanism is driven by the profitability of each production process. Market
structure, type of competition, available technologies (including the possibility of purchasing car-
bon credits) and regulatory standards affect the profitability of different production processes;
in turn, assuming that different technologies may have different levels of environmental sustain-
ability, the technology selection process influences the dynamics of environmental quality which,
ultimately, also may affect the profitability of firms when consumers’ preferences and the avail-
ability of production input depend on environmental quality. Among the contributions in this
branch of the literature, see Zeppini (2015),8 Zhang and Li (2018), Zhang et al. (2019), and more
recently Cavalli et al. (2024). In Zhang and Li (2018) the authors study the condition for cooper-
ation among local governments and in Zhang et al. (2019) the choice between a green technology
and the purchase of carbon credits is investigated. The framework in Cavalli et al. (2024) consid-
ers the effects of an ambient tax on technology selection and it is closest to the one we adopt here.
A recurring message of these contributions is that evolutionary selection may generate multiple
equilibria and nontrivial dynamics characterized by endogenous oscillations.
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None of the contributions mentioned above explicitly considers the possibility that firms may
adopt forms of dishonest behavior and exploit sources of asymmetric information.

The rest of the paper is organized as follows. In Section 2 we state the static model for the
industry that includes the coexistence of firms adopting licit technology and others employing
less expensive, but illegal technology. This model is then used in the evolutionary framework in
Section 3, where the fraction of firms employing each technology is a dynamic variable. Section 4
introduces into the model the component of pollution that is produced by industrial activity and
results in ambient taxation to firms by the regulator. Section 5 concludes. All proofs are collected
in Appendix A.

2. The static industry model
Consider an oligopolistic market served by n identical firms that produce a homogeneous good
and face a linear (inverse) demand, P =A−Q, where A> 0 represents the reservation price and
willingness to pay of consumers and Q is the aggregate level of output supplied by the n firms in
the market.

Suppose that firms face a constant marginal cost equal to ch, where A> ch > 0. So far, we have
described a standard Cournot setup and the well-known Nash equilibrium would be described by
each firm producing qC = A−ch

1+n and in aggregate QC = nqC = n(A−ch)
1+n .

Suppose now that a subset n−m, 2≤m≤ n, of the firms active in the market considers the
possibility of engaging with forms of illegal activities, e.g. circumventing regulatory standards.
Ultimately, the illegal activities we are considering here would allow these n−m companies to
face a lower production cost cd, with 0≤ cd < ch, while still earning the same uniform price as the
remainingm firms who continue to operate legally.

Of course, criminal activity could be detected and sanctioned. Let us assume that the additional
expected cost for a firm that operates illegally is given by F = αθq2i , where 0≤ α ≤ 1 represents the
probability of detection of illegal activities and θ > 0 represents the extent of the sanction. Notice
that the expected cost of being caught engaging in criminal activities is increasing (and quadratic)
in the level of production chosen by the firm; this feature reflects the fact that the production of a
larger quantity of output would imply a more significant regulatory infraction or, alternatively, a
more obvious case that could be the focus of monitoring and detection.9

Operating dishonestly, in addition, may provide a source of asymmetric information. For
example, in order to circumvent regulatory requirements and standards, firms may have to
interact with illegal networks (including corrupt civil servants)10 that could provide falsified doc-
uments and fake certification. This interaction could offer the opportunity to learn, in addition to
ways to circumvent regulations, also information on the other competitors engaging in dishon-
est behavior. Here, we consider the possibility that every firm engaging in criminal activities is
made aware of the number of dishonest firms, n−m. Instead, firms who decided to operate hon-
estly (and therefore have not explored the advantages and risks of criminal activities and criminal
networks) do not possess this information.

Suppose that both types of firms,m operating legally (h-firms) and n−m operating illegally (d-
firms), make output decisions targeting the maximization of profits.11 Specifically, each of the m
honest firms will choose its own quantity to maximize πh = qi

(
A− qi −Qi − ch

)
, where Qi is the

aggregate quantity produced by n− 1 firms, assuming that the rest of the market operates legally.
Consequently, honest firms behave as standard Cournot competitors, choosing in equilibrium
q�
h = qC = A−ch

1+n and producing in aggregate Qh =mq�
h = m(A−ch)

1+n .
The behavior of the honest firms is internalized by the n−m firms who engage in illegal

activities. Each of the n−m dishonest firms chooses output level to maximize

πd = qi
(
A− qi − m(A− ch)

1+ n
−QIi − cd

)
− αθq2i ,
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whereQIi is the aggregate quantity of the remaining n−m− 1 firms operating illegally. At a Nash
equilibrium, the quantity chosen by each firm operating dishonestly is then

q�
d(m)= chm− cd(1+ n)+A(1−m+ n)

(1+ n)(1−m+ n+ 2αθ)
and the aggregate quantity provided by dishonest firms is

Qd(m)= (n−m)q�
d = (n−m)(chm− cd(1+ n)+A(1−m+ n))

(1+ n)(1−m+ n+ 2αθ)
.

It is interesting to observe, especially in relation to the results reported in Section 4, that regard-
less of m, a dishonest firm will supply a larger (lower) level of output than an honest firm when
αθ < β̃ (respectively αθ > β̃), where

β̃
df= (ch − cd)(1+ n)

2(A− ch)
> 0 (1)

In other words, if the expected punishment is sufficiently low, then dishonest firms will produce
more in equilibrium than honest ones to exploit their cost advantage (including the expected pun-
ishment). Otherwise, taking into account the quadratic punishment in quantities, in equilibrium
dishonest firms will produce less than honest ones.

3. Industry dynamics
We employ evolutionary dynamics with heterogeneous behavior to model the choices of honest
and dishonest firms along the lines inHommes et al. (2018), Kopel and Lamantia (2018), Lamantia
et al. (2018) and Radi et al. (2021). A population of firms consists of honest h-firms and dishon-
est d-firms. At each period, n firms are randomly selected to play the one-shot oligopoly game
described in Section 2. The shares of h-firms and d-firms are adjusted over time according to
expected profits and the Cournot game is repeatedly played with updated fractions of firm types.
Depending on the behavior employed, the expected average profit of a firm that knows the popula-
tion shares of honest z and dishonest 1− z firms is computed. Notice that we are not attempting
to study the way individual firms change their strategies over time; instead, in each period, n firms
from a large population are randomly selected to play a one-shot Cournot game, having chosen
whether to operate honestly or not in the market. In the next period, a new set of n firms will be
selected to compete and play the same one-shot game. The expected average profit is the probabil-
ity weighted sum, over all possible market compositions, of the profits realized in each particular
scenario, with k honest rivals and n− k− 1 dishonest ones. Approximating the probability of
selecting an h-firm by the current fraction z of h-firms in the population, an h-firm’s expected
profit is given by

E[πh (z) ]=
n−1∑
k=0

(
n− 1
k

)
zk(1− z)n−k−1q�

h · (A− ch −Q�
h), (2)

where Q�
h = (n− k− 1)q�

d(k+ 1)+ (k+ 1)q�
h. Similarly, a d-firm’s expected profit is given by

E[πd (z) ]=
n−1∑
k=0

(
n− 1
k

)
zk(1− z)n−k−1q�

d(k)
(
A− cd −Q�

d − αθq�
d(k)

)
, (3)

whereQ�
d = (n− k)q�

d(k)+ kq�
h. Firms’ outputs are at the Cournot-Nash equilibrium levels, but in

each period the number of firms in the population what will adopt a specific behavior will update
based on average profitability based on past performance, as specified below.
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The adjustment of the share of firms employing a given behavior will be governed by a
replicator-like equation and provides the source of dynamic behavior for the model.

3.1 Themap
We assume discrete-time adjustments for the share of honest firms. The evolutionary equation
defines the population state at period zt+1 as a function of the current population state, zt and
average profits E[πh (z) ] and E[πd (z) ]. Several possible specifications of the form

zt+1 = f (zt ,Gn(zt))

can be considered for modeling the evolution of firms’ compliance driven by expected profit
differences (also referred to as the gain function)

Gn(z)=E[πh(z)]−E[πd(z)]. (4)

In general, such dynamics follow replicator-like patterns of evolution. Since changes in firm
behavior require long adjustment times, we adopt discrete-time dynamics and in particu-
lar assume a sluggish (exponential) replicator equation, see Cabrales and Sobel (1992) and
Lamantia et al. (2018), meaning that only a share 1− δ, δ ∈ [0, 1], of the firms’ population updates
their behavior towards the more rewarding strategy (asynchronous updating):

zt+1 = fδ(zt)

= δzt + (1− δ)
zt exp (φE[πh(zt)])

zt exp (φE[πh(zt)]) + (1− zt) exp (φE[πd(zt)])

= δzt + (1− δ)
zt

zt + (1− zt) exp (−φGn(zt))
, (5)

where Gn(zt)=E[πh(zt)]−E[πd(zt)] measures the expected extra-profits of h-firms. Parameter
φ > 0 models firms’ propensity in adopting a different type of behavior and is often referred to as
the intensity of choice. In the following, we propose a local equilibrium stability analysis of this map
and present the main dynamic scenarios of the model also through numerical examples. These
insights will be useful when we extend the study to include the evolution of behavior coupled with
pollution dynamics and the impact of ambient charges.

3.2 Equilibrium analysis
We begin the analysis of map (5) by summarizing the structural properties of its equilibria and
their stability for a generic industry size n. To simplify the mathematical analysis, we introduce
the aggregate parameters

a=A− ch, b= ch − cd, β = αθ . (6)

Parameter a measures the maximum margin to honest firms, b is the extra marginal cost for the
technology used by h-firms and β is the expected punishment rate for each unit of quantity pro-
duced by a d-firm. In terms of the new parameters a, b and β , which are strictly positive numbers,
for a given number k of honest firms, the optimal choices become

q�
h = a

n+ 1
and q�

d(k)=
(n+ 1)(a+ b)− ka

(n+ 1)(2β + n− k+ 1)
, (7)
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which implies the expected profits

E[πh(z)]=
n−1∑
k=0

(
n− 1
k

)
zk(1− z)n−k−1 (2β + 1)(n− k)a2 − (n− k− 1)(n+ 1)ab

(n+ 1)2(2β + n− k)
, (8)

E[πd(z)]=
n−1∑
k=0

(
n− 1
k

)
zk(1− z)n−k−1 (β + 1)

(
(n+ 1)(a+ b)− ka

)2
(n+ 1)2(2β + n− k+ 1)2

. (9)

The structural properties of the equilibria of map (5) are as follows.

Proposition 1. For map (5) the following statements hold:

• Boundary equilibria. The points z̄0 = 0 and z̄1 = 1 are equilibria for any parameter
constellation;

• Stability of boundary equilibria. The equilibria z̄0 and z̄1 can lose stability only through
a bifurcation with eigenvalue +1 and z̄0 is stable if a

b < r1(β , n), while z̄1 is stable if a
b >

r2(β , n) with ri(β , n), i= 1, 2 given in (29), (31) (see Appendix A);
• Inner equilibrium. Any point z∗ ∈ (0, 1) such that Gn(z∗)= 0 is an inner equilibrium;
• Stability of inner equilibrium. The inner equilibrium z∗, if exists, is locally asymptotically
stable whenever

−1+ δ

1− δ
< 1+ φz∗(1− z∗)G′

n(z∗)< 1. (10)

The structural properties of boundary equilibria in Proposition 1 derive from the replicator
mechanism, in which, if a behavior is not assumed in the population, it cannot spread and remains
absent. The stability properties of boundary equilibria z̄0 and z̄1 change through transcritical bifur-
cations whenever the point z∗ enters/leaves the interval (0, 1) and becomes feasible/unfeasible.
Such equilibrium fraction z∗ is an equilibrium in the model if it is feasible and if the expected
profits of the different available strategies are equal. In what follows, we may refer to the boundary
equilibria z̄0 and z̄1, respectively, as good and bad, since the former describes a long run scenario
where all firms adopt the regulatory standards of the clean technology and the latter describes a
pollution trap.

In the next subsection, we incorporate the new parameters in the analysis and, for analytical
tractability, we focus on the case G2(z).

3.3 The gain function in some particular cases
The structure of the proposedmodel makes it possible to consider n, the level of industry competi-
tiveness, as a parameter and to show insights into the impact of the level of competitiveness on the
behavior of firms. In Section 4 we shall also report of competition influences the long run level of
aggregate pollution. By construction, the gain function Gn is a polynomial of degree n− 1 in z, so
in the case with two firms G2 is linear. A full analysis on the role of n seems worthy of a separate
investigation given also the significant complexity. Therefore, in the following, we focus on the
n= 2 case, which corresponds to a scenario in which industrial competition is purely duopolistic,
leaving room for later developments with a higher value of n.

Proposition 2 (Properties of the gain functionG2(z) and the map (5)). Consider the model with
n= 2. The following statements hold:

• Linearity. The gain function G2(z) is linear in z of the form G2(z)= c1z + c0.
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Figure 1. (a) The functions r1(β, 2) (red) and r2(β, 2) (green). (b, c) One-dimensional bifurcation diagrams versus β along the
path marked by the blue line in (a). The other parameters are a= 9, b= 3, and (b) φ = 1; (c) φ = 13.

• Inner equilibrium z∗. For almost all parameter values, except for the case when c1 = 0, the
function G2(z) has a single zero given by

z∗ = 2 · 2β(8β
2 + 19β + 12)a2 − 3(16β2 + 36β + 21)ab− 18(β + 1)2b2

(2aβ − 3b)(8aβ2 + 14aβ − 12bβ + 6a− 15b)
. (11)

• Existence of z∗. If r1(β , 2)< a
b < r2(β , 2), then 0< z∗ < 1, and z∗ represents the unique

inner equilibrium of the map fδ in (5), where r1(β , n) and r2(β , n) are given in the Appendix.
• Stability of Equilibria.
– For 0< a

b < r1(β , 2), the point z̄0 is stable (z∗ < 0).
– At a

b = r1(β , 2), a transcritical bifurcation for z̄0 and z∗ occurs.
– For r1(β , 2)< a

b < r2(β , 2), the point z∗ ∈ (0, 1) and is stable whenever μ(z∗)> −1 (see
(32), Appendix A.1). Otherwise, there exists another attractor located inside (0, 1).

– At a
b = r2(β , 2), a transcritical bifurcation for z̄1 and z∗ occurs.

– For a
b > r2(β , 2), the point z̄1 is stable (z∗ > 1).

Figure 1 illustrates the dynamic scenarios of Proposition 1. In the panel a, we plot the functions
ri(β , 2), i= 1, 2. As one can see, both of them have the form of a hyperbola, and moreover, it
holds that r1(β , 2)< r2(β , 2) and limβ→+∞ ri(β , 2)= 0. Thus, with varying regulatory power β

one always observes the same bifurcation scenario. For smaller β (when the ratio a
b is located

below the curve r1(β , 2)), the bad boundary equilibrium z̄0 is stable. An inner attractor exists for
medium values of β (the ratio is between the two curves). For β being large enough, almost all
orbits converge to the good boundary equilibrium z̄1. Whatever the ratio a

b , there always exists the
level of β that guarantees stability of z̄1. However, the smaller the ratio, the larger this required
level of β .

Concerning the inner attractor, the following can be noted. As can be deduced from the
definition of z∗ (11), its location depends only on a, b, and β , while its multiplier (see (32),
Appendix A.1) depends in addition on δ and φ. As numerical experiments show, for small φ the
fixed point z∗ remains stable in the whole parameter range, for which z∗ is feasible. In Figure 1b, a
1D bifurcation diagram versus β is plotted for a= 9, b= 3 and φ = 1. For larger φ, with increas-
ing β above the threshold related to the first transcritical bifurcation of z̄0 and z∗, the fixed
point z∗, being stable right after this bifurcation, later undergoes a flip bifurcation, leading to
the appearance of a stable cycle of period two. When β is increased further, there may follow a
period-doubling cascade and then a period-halving cascade that ends by another (reverse) flip
bifurcation of z∗. After this, the point z∗ remains stable until it becomes unfeasible (and unstable)
due to the transcritical bifurcation with z̄1 (see Figure 1c for φ = 13).

Some of the bifurcation properties uncovered for n= 2, can be generalized also for n> 2. From
Proposition 1 we know that z̄0 is stable if a

b < r1(β , n) and z̄1 is stable if a
b > r2(β , n). In Figure 2a

we plot the functions ri(β , n) for n= 2 (orange), n= 3 (blue), n= 4 (green), n= 5 (red) with the
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Figure 2. (a) The functions ri(β, n), i= 1, 2, n= 2, 3, 4, 5 (orange, blue, green, red). (b, c) The respective one-dimensional
bifurcation diagrams versus β along the path marked by the black line in (a). The other parameters are a= 9, b= 3, and (b)
φ = 1; (c) φ = 13.

hatched area between these two curves. Similarly to the simplest case n= 2, it can be shown that
r1(β , n)< r2(β , n) for any β and n and both ri(β , n) tend to zero with β → ∞ for a fixed n. This
allows us to presume that for any n the most probable bifurcation scenario versus β is similar to
that described for n= 2. In Figures 2b,c we plot 1D bifurcation diagrams versus β for n= 2, 3, 4, 5
(by orange, blue, green, and red colors, respectively) and φ = 1, 13 (with the same a= 9, b= 3). As
one can see, the dynamics is qualitatively the same in all four cases, although the transition from
bad equilibrium z̄0 to the inner attractor and then to the good equilibrium z̄1 occurs for larger β

with increasing n. Theoretically, for n> 2, when Gn(z) is generically a polynomial of degree n− 1
in z allowing for at most n− 1 zeros, two feasible inner fixed points z∗,1 and z∗,2 may appear due
to a fold bifurcation. This may imply the coexistence of one boundary and one inner attractor or
of two inner attractors (with the other inner attractor occurring after a transcritical bifurcation
of z̄0 and z∗ being another zero of Gn(z)). However, we did not observe such situations in our
numerical experiments. Apparently it happens for a rather limited parameter set.

From the dynamic point of view, given a
b , as the competitive pressure increases (higher n), it is

necessary to increase the expected punishment β to induce more compliance in the population. If
choice intensity φ is sufficiently high, the system exhibits inner equilibrium instability and peri-
odic/chaotic dynamics with the coexistence of the two firm behaviors for intermediate β . In any
case, it remains valid that as n increases, the level of punishment must increase in accordance to
sustain compliance.

4. Pollution dynamics
Until now, we have not considered the impact of production on the environment. In this sec-
tion, we will introduce pollution dynamics in the setup. Industry output levels generate a stock of
pollution, which, in turn, affects profits through an environmental tax imposed on emissions.

We will reinterpret firm behavior in this new light: honest firms will follow environmental
standards and adopt clean technologies, while dishonest firms will resort to dirty technologies.
This approach will lead to a bi-dimensional map for industry behavior and pollution. In line with
the non-point source pollution literature,12 we assume that the government imposes an ambient
charge, τ on firms based on total pollution in the market. An honest firm has a net profit

π̃h = qi
(
A− qi −Qi − c

)− τp,

where p is the current total pollution.13 We write the stock of pollution at time t as pt . If caught,
with probability α ∈ [0, 1], a dishonest firm pays a higher charge as a penalty for adopting a dirty
technology. We have that

π̃d = qi
(
A− qi − m(A− c)

1+ n
−QIi − cd

)
− αθq2i − ((1− α)τ + ατd)p
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where τd > τ > 0 is the higher charge imposed to punish the adoption of a dirty technol-
ogy. Pollution changes average profits through pollution taxation leading to the modified gain
function:

G̃n(pt , zt) = E[π̃h(zt)]−E[π̃d(zt)]=E[πh(zt)]−E[πd(zt)]+ α(τd − τ )pt

= Gn(zt)+ α(τd − τ )pt , (12)

where Gn(zt) was defined in (4) of the previous section (for the model without pollution).
On average, if we assume that a unit of product by an h-firm generates a quantity of pollution

normalized to 1, the total amount of pollution generated by the industry sector amounts to the
quantity

QAn(z)=
n∑

k=0

(
n
k

)
zk(1− z)n−k[(n− k)(1+ η)q�

d(k)+ kq�
h(k)

]
. (13)

where η ≥ 0 represents the extra contribution to the pollution by d-firms. Notice that equa-
tion (13) with η = 0 represents the average aggregate quantity provided in the market and is a
polynomial of degree n in z.

Pollution dynamics (see references) follows then the dynamic equation

pt+1 = ρpt +QAn(zt), (14)

where ρ ∈ (0, 1) is the natural decay of pollution.
Equation (14), coupled with the evolutionary dynamics for the share of firms zt , gives rise to a

bidimensional map of the plane F :R2+ 
 (pt , zt)→ (pt+1, zt+1) ∈R
2+

pt+1 = ρpt +QAn(zt),

zt+1 = δzt + (1− δ)
zt

zt + (1− zt)e−φG̃n(pt ,zt)
. (15)

In the following, we address the main dynamic properties of this bidimensional map.
To simplify analytic expressions, we again employ the aggregate parameters given in (6) and

introduce a new one

γ
df= α(τd − τ ), (16)

which represents the expected extra pollution charges for adopting a dirty technology.

4.1 Equilibrium analysis
Before studying the simple cases with a low value of n, we provide some general details concerning
the fixed points. As in the one-dimensional model (5), the values z = z̄0 = 0 and z = z̄1 = 1 define
fixed points with

p̄i = QAn(i)
1− ρ

, i= 0, 1. (17)

Namely, the points E0(p̄0, 0) and E1(p̄1, 1), corresponding to the employment of only one pure
strategy by firms, are always equilibria of the system. We refer to them as boundary equilibria as
the z component is equal to 0 or 1. Taking into account (13), the values p̄i can be written in the
general case as

p̄0 = n(1+ η)q�
d(0)=

n(1+ η)(a+ b)
(2β + n+ 1)(1− ρ)

, p̄1 = nq�
h = na

(n+ 1)(1− ρ)
. (18)
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Note that, with increasing n and the other parameters fixed, the values p̄i, i= 0, 1, increase, but
never exceed the limit values

lim
n→∞ p̄0 = (1+ η)(a+ b)

1− ρ
and lim

n→∞ p̄1 = a
1− ρ

.

Relative to their stability, the next result clarifies how these boundary equilibria can lose
stability as parameters change.

Proposition 3 (Stability of boundary equilibria of map (15)). Consider map (15). Boundary
equilibria E0(p̄0, 0) and E1(p̄1, 1) in (17) and (18), can lose stability only through a bifurcation with
an eigenvalue +1.

Let us now consider possible nontrivial fixed points of (15). From the first component of map
F we have

p∗ = QAn(z∗)
1− ρ

. (19)

Substituting (19) into the modified gain function with pollution (12) and recalling that inner
equilibria of (15) satisfy an isoprofit condition, we obtain the following equation in z∗ only that
characterizes the inner equilibria

G̃n(p∗, z∗)=Gn(z∗)+ γ p∗ =Gn(z∗)+ γ
QAn(z∗)
1− ρ

df= Ĝn(z∗)= 0. (20)

In other words, every zero z∗ of the function Ĝn(z) induces a fixed point of F, and this fixed point
is feasible if z∗ ∈ (0, 1), since this also implies that p∗, defined in (19), is positive. As for the stability
of these inner equilibria, it can be ascertained through the respective Jacobian given by

J(p∗, z∗)=
(

ρ QA′
n(z∗)

(1− δ)φγ z∗(1− z∗) 1+ (1− δ)φz∗(1− z∗)G′
n(z∗)

)
(21)

It is possible to show that the eigenvalues of the Jacobian can be also complex leading to a fixed
point being a focus. Note that because of (20), the elements of J(p∗, z∗) are all expressed in terms
of z∗, but not of p∗.

4.2 Duopolistic industries
Here we focus on the case of an economic system with industries characterized by a low level of
competition, that is, with homogeneous sectors in which competition takes place between two
firms at a time. This case is instructive as the main results can be obtained analytically. In partic-
ular, we show that the coexistence of boundary equilibria E0(p̄0, 0) and E1(p̄1, 1) both being stable
can be achieved in the duopoly setting. Consequently, depending on the initial conditions, the
system can be trapped in a good equilibrium with the predominance of clean firms or in a bad
equilibrium with predominance of dirty firms.

Proposition 4 (Coexistence and stability of boundary equilibria). Consider map (15) with n= 2.
For any given β and b, an interval of the parameter a exists such that two thresholds γ1 and γ2 are
well defined, with γ2 < γ1, so that if γ ∈ (γ2, γ1) then boundary equilibria E0 and E1 coexist and are
stable.

The previous result indicates that, under certain circumstances, the regulator’s decisions on
pollution control and/or taxation policies, represented in our model by parameter γ , all other
economic variables in the model being equal, induce scenarios in which all firms employ only
one type of technology. In other words, the economic system may be trapped in the use of dirty
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technologies or adopt only clean technologies depending on the ambient charges chosen by the
regulator.

Note that for certain parameter constellations, it is p̄1 > p̄0, i.e. the level of pollution in case
when all firms use clean technology is greater than the level of pollution when all firms resort to
dirty production, which may appear to be rather unexpected at first sight. However, we emphasize
that in the current model set up we fix the parameter η = 0 so that the pollution from production
by either firm is equal. It means that we analyze the impact of pure competition between h- and d-
firmswithout taking into account the effect of extra pollution caused by the prohibited technology.
The situation with p̄1 > p̄0 occurs when β > β̃ (defined in (1)), i.e. when the expected cost of
dishonest behavior is relatively high and an h-firm supplies a larger level of output than a d-firm.
Then the higher level of pollution is not induced by the adoption of dirty technology, but it is
the result of higher levels of production. We emphasize that the mentioned condition for β also
means that the parameter a (that is the difference between A and ch) is large enough so that the
price compensates the cost to the large extent even if the expensive technology is used. This is also
the reason why h-firms tend to produce more. Since the aforementioned point requires deeper
analysis, we focus on the specific ranges of parameters, which guarantee p̄0 > p̄1.

As for nontrivial fixed points E∗(p∗, z∗), they can be at most two and are obtained from the
roots of the quadratic equation

Ĝ2(z∗)= νd2z∗2 + (
c1 + νd1

)
z∗ + c0 + νd0 = 0, ν = γ

1− ρ
, (22)

namely,

z∗,± = −c1 − νd1 ±
√(

c1 + νd1
)2 − 4νd2(c0 + νd0)

2νd2
. (23)

The coefficients ci and di, given respectively in (34) and in (42) (see Appendices A.2 and A.3),
depend in a rather complex way on the parameters a, b, and β . Therefore, it is not easy to derive
analytically the exact conditions for the points E∗,−(p∗,−, z∗,−) and E∗,+(p∗,+, z∗,+) to be feasible.
We rely on numerical examples below to show the possible dynamic scenarios at hand.

4.2.1 Example 1: A single attractor
Let us fix the parameters as a= 1.2, b= 2, β = 1, δ = 0, ρ = 0.5, η = 0. For this parameter
constellation, by the results of Proposition 4, being γ1 < γ2, the boundary equilibria are not simul-
taneously stable. In Figure 3 we plot the asymptotic values of p and z versus γ for φ = 1 and
φ = 15. As one can see, for small φ the bifurcation scenario is analogous to the one described
in Sec. 3.3 for the one-dimensional map. Namely, for small γ < γ1 the fixed point E0 (with all
firms being dishonest) is stable, at which the pollution level is relatively high. At γ = γ1, a tran-
scritical bifurcation for the points E0 and E∗,− occurs, due to which the internal fixed point E∗,−
becomes stable and E0 becomes a saddle. The point E∗,− retains stability for γ1 < γ < γ2, until
it undergoes another transcritical bifurcation colliding with E1 at γ = γ2. Finally, for γ > γ2 the
point E1 (with all players being honest and relatively low pollution level) is stable. Note that with
increasing γ the pollution level p gradually decreases with the number of honest producers. For
larger φ (see panel b), the scenario is also similar to the one for the one-dimensional map fδ (cf.
Figure 1(b,c)), but now nontrivial dynamics occurs due to a Neimark-Sacker bifurcation of E∗,−
(instead of cascades of flip bifurcations as for the one-dimensional case without pollution). Notice
that in this example dishonest firms will always produce more than honest firms in equilibrium,
being β < β̃ = 2.5 (see (1)). This explains why the equilibrium with all dishonest firms exhibits
more pollution, despite being η = 0. The greater pollution is implied by the greater output of the
dishonest firms because of the distortion on competition resulting from the use of the cheaper
technology (which with η = 0 turns out to pollute as much as the other technology).



Macroeconomic Dynamics 13

Figure 3. The asymptotic values of p (orange) and z (blue) (a) versus γ for φ = 1; (b) versus γ for φ = 15; (c) versus φ for
γ = 0.4. The other parameters are a= 1.2, b= 2, β = 1, δ = 0, ρ = 0.5, η = 0.

Figure 4. The asymptotic values of (a) p (solid orange and dark red) and (b) z (solid blue and cyan) versus γ . With the dashed
lines of the respective colors p∗,± and z∗,± are shown. In (c), the basins of E0 and E1 for γ = 0.265 are shown in light blue and
pink, respectively. The two basins are separated by the stable set of the saddle E∗,+. The other parameters are a= 8, b= 1,
β = 0.1, φ = 1, δ = 0, ρ = 0.3, η = 0.

4.2.2 Example 2: Coexistence of two pure strategies
As established in Proposition 4, to observe a scenario where two boundary equilibria coexist and
are simultaneously stable with p̄1 < p̄0, the value of β must be sufficiently small. For that purpose,
let us fix β = 0.1. Then, as explained in the proof of Proposition 4, the ratio a

b has to be large
enough and we set a= 8, b= 1. In this case, it is β̃ = 0.1875 (see (1)) so, similarly to the previous
example, dishonest firms will produce more than honest firms thus entailing more pollution even
with η = 0. As it follows from (17), the value of ρ influences the equilibrium pollution levels.
Namely, the smaller ρ, the smaller p̄i, i= 0, 1. To keep them at moderate values, we assume ρ =
0.3. Under this setting, it is γ2 ≈ 0.263 and γ1 ≈ 0.268. In Figure 4 we plot the asymptotic values of
p (panel a) and z (panel b) versus γ . As analytically established, for γ < γ1 the point E0 is stable,
for γ > γ2 the point E1 is stable, and the two equilibria coexist and are stable for γ2 < γ < γ1.
As for the nontrivial fixed points E∗,− and E∗,+, they appear due to a fold bifurcation for some
γ = γ̄ < γ2. At this moment, both equilibria are feasible with E∗,− being a stable node and E∗,+
being a saddle. Thus, there exists another very narrow interval of γ̄ < γ < γ2, for which the stable
E∗,− and the stable E0 coexist. Then with increasing γ , the point E∗,− approaches the point E1 and
at γ = γ2 the two points undergo a transcritical bifurcation, after which E∗,− becomes a saddle and
E1 becomes stable. At γ = γ1 the stable E0 collides with the saddle E∗,+ and they switch stabilities
due to a transcritical bifurcation. In Figure 4(c) we show a state space at γ = 0.265 with the two
stable boundary equilibria E0 and E1, related to the pure strategies, basins of attraction of which
(light blue and pink, respectively) are separated by the stable set of the saddle E∗,+.

From an economic standpoint, in this case, the system can have two asymptotic states, showing
a good equilibrium such as E1 with the predominant use of clean technology or it can exhibit a
pollution trap such as E0 in which firms systematically use the dirty technology. This is assuming
all economic conditions of the system are fixed, but depending only on the initial conditions in
terms of initial pollution and technology adoption. In particular, if the initial level of managerial
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Figure 5. The asymptotic values of (a) p (orange and dark red) and (b) z (blue and cyan) versus γ . The parameters are a= 6,
b= 1, β = 0.1, φ = 1, δ = 0, ρ = 0.3, η = 0.

culture sees a sufficiently high commitment to the use of clean technology, this allows the system
to escape the pollution trap.

4.2.3 Example 3: A different scenario of coexistence
In this example, we let parameter a decrease to a= 6. Now it is γ1 < γ2 and two nontrivial fixed
points E∗,− and E∗,+ occur both feasible due to a fold bifurcation for γ = γ̄ < γ1, with E∗,− being
a stable node and E∗,+ being a saddle (see Figure 5). For γ̄ < γ < γ1 the stable E∗,− and E0 coexist.
At γ = γ1 the points E∗,+ and E0 undergo a transcritical bifurcation switching stabilities. After
this, a single feasible attractor persists, being E∗,− for γ1 < γ < γ2 and E1 for γ > γ2. This example
shows the potential irreversibility associated with the action of the regulator. Imagine that the
initial level of pollution penalty is high enough so that the dynamics converge to equilibrium E1.
This occurs for γ2 < γ , see Figure 5. The regulator could decide to reduce γ as it has no direct
impact on the steady-state pollution level at E1. This is true up to reductions in punishment at the
γ = γ2 level. In fact, for reductions in γ below threshold γ2, the level of pollution at equilibrium
increases. Anyway, if the regulator reduces γ , but leaves it above the level γ1, the reduction of the
share of h-firms in the population and the increment in steady state pollution follow continuously
the reduction of γ . However, if the regulator decided to reduce γ below the γ1 level, then there
would be a jump discontinuity in the attractor of the system, which is now the equilibrium E0
with more pollution and extensive use of dirty technology. A resetting of γ to the previous level,
even above γ1, may not be sufficient now to restore the pre-existing condition of a high level of
clean-tech firms and lower pollution.

In Figure 6 we plot a one-dimensional bifurcation diagram versus φ with the fixed γ = 0.289.
At large values of φ the inner equilibrium E∗,− undergoes a Neimark-Sacker bifurcation and an
attracting invariant curve � appears. The basins of the stable node E0 and the curve � are sepa-
rated by the stable set of E∗,+ (see Figure 7(a)). When φ increases further, this stable set collides
with the saddle fixed point E1 inducing a homoclinic bifurcation, after which the basin of� shrinks
dramatically (see Figure 7(b)). For larger φ, the invariant curve � disappears due to a contact with
the boundary of its basin, and a single boundary attractor E0 remains.

4.3 Insights with higher competition
In the previous section, we assumed that firms typically compete duopolistically. Here we try to
understand what possible effects can be induced by the presence of more competition and present
some details in the case where competitions in various industries are structured in triopolies. As
we shall see, the results are similar to those with two firms, but some additional insights can be
obtained from this analysis.

In the case n= 3, the gain function G̃3(p, z) is quadratic with respect to z and the aggregate out-
putQA3(z) is cubic. The coefficients of these functions depend again on the parameters of themap
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Figure 6. The asymptotic values of (a) p (orange and dark red) and (b) z (blue and cyan) versus φ. The other parameters are
a= 6, b= 1, β = 0.1, γ = 0.289, δ = 0, ρ = 0.3, η = 0.

Figure 7. The basins of E0 and E∗,− are shown in light blue and pink, respectively, for (a) φ = 20; (b) φ = 23. The two basins
are separated by the stable set of the saddle E∗,+. The other parameters are a= 6, b= 1, β = 0.1, γ = 0.289, δ = 0, ρ = 0.3,
η = 0.

in a complex way, and this makes it impossible to derive analytically the values z∗ and p∗ related
to nontrivial fixed points. Now we are mostly restricted to the numerical analysis and we present
below two examples of possible dynamic scenarios with industries having three competitors.

We can observe bifurcation scenarios that are very similar to those presented in Sec. 3.3, with
either a single attractor or the coexistence of two different attractors. The former case is illustrated
by Figure 8 (cf. Figure 3), where the one-dimensional bifurcation diagram is shown versus γ for
small (panel a) and large (panel b) values of φ and versus φ for a medium γ (panel c). Similarly
to Example 1 of Sec. 3.3, for smaller γ < γ̄1 the point E0 is stable, for larger γ > γ̄2 the point E1
is stable, while for medium γ̄1 < γ < γ̄2 the inner attractor exists (the values of γ̄1 and γ̄2 can be
obtained explicitly). Note that in comparison to the case n= 2, the transition from the boundary
equilibrium E0 (pure dishonest strategy) to the inner attractor and further to the second boundary
equilibrium E1 (pure honest strategy) occurs for smaller values of γ . It seems that with increas-
ing competition less stringent regulation in terms of extra pollution charges for adopting a dirty
technology is needed to lead the system to a good equilibrium.14 Likewise in the case n= 2, for
small φ the inner attractor is a fixed point E∗, while for larger φ a closed invariant curve (which
is born due to a Neimark-Sacker bifurcation) exists for medium values of γ . This closed invari-
ant curve disappears due to another (reverse) Neimark-Sacker bifurcation when γ approaches γ̄2.
Note also that for n= 3 the critical value of φ (with a fixed γ ), at which E∗ undergoes a Neimark-
Sacker bifurcation, is slightly larger than the respective value for the case n= 2. This suggests that
increasing n may introduce an element of stability in the system, for a given φ, though this point
still requires additional analysis.
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Figure 8. The asymptotic values of p (orange) and z (blue) (a) versus γ for φ = 1; (b) versus γ for φ = 15; (c) versus φ for
γ = 0.3. The other parameters are a= 1.2, b= 2, β = 1, δ = 0, ρ = 0.5, η = 0.

Figure 9. The asymptotic values of (a) p (solid orange and dark red) and (b) z (solid blue and cyan) versus γ . With the dashed
lines of the respective colors p∗,i and z∗,i , i= 1, 2, are shown. In (c), the basins of E∗,2 and E1 for γ = 0.194 are shown in
light blue and pink, respectively. The two basins are separated by the stable set of the saddle E∗,1. The other parameters are
a= 8.5, b= 1, β = 0.1, φ = 1, δ = 0, ρ = 0.3.

For small values of β , one can observe a bifurcation scenario similar to the one described in
Example 2 of the previous section. In Figure 9 (cf. Figure 4) we plot the asymptotic values of
p (panel a) and z (panel b) versus γ for β = 0.1, b= 1 and a= 8.5. For such a parameter con-
stellation, it holds that γ̄2 < γ̄1 and coexistence of stable boundary equilibria occurs. Hence, for
the medium values γ̄2 < γ < γ̄1 both boundary equilibria E0 and E1 are stable, and their basins
of attraction are separated by a stable set of the inner saddle E∗,1. At γ = γ̄1, the point E∗,2 enters
the feasible region and becomes stable due to the transcritical bifurcation. For γ̄1 < γ < γ̂ , with γ̂

being the value of the fold bifurcation for E∗,1 and E∗,2, one observes coexistence of stable E1 and
E∗,2 (see Figure 9c).

This example suggests that in the presence of higher levels of competition, it might be easier
to observe situations similar to the pollution trap discussed for the duopoly case, but with stable
equilibria not in pure strategies. In other words, pollution traps could be compatible with a strictly
positive probability of adopting clean techniques, as in the case of the equilibrium E∗,2 in the
example of Figure 9c. We leave a more detailed analysis on the role of increasing competition
(higher n) to further research.

5. Conclusions
In this paper, we described the insights of an evolutionary model that considered the dynamic
coevolution of technological transition and pollution. For simplicity, the industrial economic sec-
tors have been assumed to be homogeneous and the level of competition was summarized by the
number of agents competing, drawn from large populations of firms. Thus, the industrial sector
could be viewed as an aggregation of individual sectors. In particular, we focused our attention on
a scenario that could generate possible forms of asymmetric information. In choosing to engage
in illegal activities, including adopting forbidden and dirtier technologies, a firm faces the risk of
being audited and paying financial (and potentially social) penalties; at the same time, however,
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a dishonest firm could also acquire access to information that may be inaccessible to firms who
decide to act legally and invest in green technology.

We showed that the interplay between different factors involved in the model generates a rich
set of possible asymptotic dynamics, which include stable pure strategies (where all firms choose
the same technology), inner equilibria (where both technologies could be adopted in the long run),
and more complex solutions. We observed the coexistence of different attractors and highlighted
the importance of initial conditions, whichmay drive the regulator to face possible pollution traps.
In these cases, the same economic system could have two very different outcomes in terms of
long run pollution based on the initial levels of pollution and propensity of firms to adopt clean
technologies. This highlights the crucial role of regulatory policy to ensure that economic activity
is not locked into a pollution trap. We also pointed out the effect of an increase in the degree of
competition, described by the number of firms active in the economy, which seems to indicate
that less stringent environmental regulation may be needed in order to lead the system to a good
equilibrium, where all firms adopt a green technology.

There are a few venues for further research that would provide additional interesting insights.
Allowing illegal technologies to have a greater effect on the creation of pollution compared to
cleaner ones would expand the range of feasible parameter sets and provide additional realistic
scenarios to be studied. In addition, we have not considered the possibility that pollutionmay have
a direct effect on the efficiency and production costs of firms. Such an externality would reinforce
the impact that pollution has on the production choices of firms via the ambient charges that we
have considered here. Finally, it may be interesting to introduce explicitly the role that reputation
and social costs may have on firms’ decisions and the possibility for regulators to enhance environ-
mental compliance by coupling financial penalties with social instruments such as nudges, naming
and shaming, etc. A welfare analysis of these extensions may also provide additional interesting
insights.
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Notes
1 This environmental phenomenon is often referred to as non-point source pollution and ambient charges describe the tax-
ation connected to the aggregate level of pollution. See Segerson (1998). For a description of the forms of regulation of
point-source pollution, see Xepapadeas (2011).
2 In these models, pollution is considered as a negative externality on households’ utilities. See, for example, Antoci et al.
(2011) and Antoci et al. (2021); Bosi and Desmarchelier (2018).
3 See Fullerton and Kim (2008), Acemoglu et al. (2016) .
4 See also John and Pecchenino (1994), Seegmuller and Verchere (2004), Xepapadeas (2005), Levin and Xepapadeas (2021),
Menuet et al. (2020) and Menuet et al. (2024).
5 See also Fujiwara (2009) for a study of optimal environmental taxation under oligopoly with product differentiation and
free entry.
6 See, for example, Lyon and Maxwell (2011) and Wu et al. (2020).
7 See also Besley and Ghatak (2007) and Tirole and Bénabou (2006).
8 This work, however, does not allow environmental quality to evolve in time.
9 The quadratic nature of the expected cost of dishonest behavior is a common feature in contributions that consider the
environmental damage of polluting emissions and, more broadly, works that consider penalties connected to tax evasion. In
the former case, the convex nature of the cost is often connected to the increasing rate at which the environment may deteri-
orate due to pollution; the latter, convexity is also linked to the limited resources and the costs of auditing of tax authorities
and the possible additional costs connected to the corruption of tax agents and falsification of documents. Another element
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that could explain the convex nature of the costs of dishonest behavior may be the existence of penalties connected to social
norms. See Hashimzade et al. (2010) and Goerke and Runkel (2011).
10 The study of the bargaining with third party agents (see Hashimzade et al. (2010)) or the strategic corruption of civil
servants (see Amir and Burr (2015)) is out of the scope of our paper and will require careful study in future work.
11 An alternative way to look at the competitive set up that we have described so far could allow the implicit introduction of
emission taxes. Honest firms adopt the mandated cleaner technology, but they also produce a level of emissions which faces
environmental taxation; in other words, the unit cost ch can be seen as the combination of a unit cost of production plus the
emission tax. The dishonest firms declare (for example submitting fake documentation) lower emissions and, consequently,
incur lower emission taxes; to some extent, the decision of engaging in illegal activities (and face the related costs) is akin to
the investment in abatement technologies consider by previous literature. Since we are going to explicitly introduce pollution
dynamics and ambient taxes in Section 4, to avoid confusion, for the rest of the paper will not refer to abatement nor emission
taxes.
12 See Xepapadeas (2011).
13 The over sign has been put on profits so as not to confuse the new values with those for the one-dimensional map.
14 See Lambertini et al. (2017) and their insights in a static oligopolistic set up with/without R&D spillovers. The authors
show that when splillovers are absent, competition (measured by the number of firms active in the market) unambiguously
tends to increase innovation and the adoption of clean technology. With spillovers, instead, the relationship between com-
petition and innovation takes an inverted U-shaped form. In our dynamic set up, our expectation is that the relationship
between competition and adoption of clean technologies will also increase in complexity if a detailed analysis of the case
η > 0 is considered.
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A. Technical details
A.1 Proof of Proposition 1.
Let us consider an arbitrary fixed point z̄ of the map fδ . Its multiplier is defined by the derivative
of fδ , which is given as

dfδ(z)
dz

= δ + (1− δ)
(
1+ φz(1− z)G′

n(z)
)
e−φGn(z)(

z + (1− z)e−φGn(z)
)2 = δ + (1− δ)

df0(z)
dz

. (24)

http://wpa.deos.aueb.gr/docs/MMVX.pdf
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Then the multiplier of z̄ is

μ(z̄)= dfδ(z̄)
dz

= δ + (1− δ)
df0(z̄)
dz

.

The point z̄ is stable if |μ(z̄)| < 1. For a positive multiplier the condition becomes

μ(z̄)< 1 ⇔ δ + (1− δ)
df0(z̄)
dz

< 1 ⇔ (1− δ)
df0(z̄)
dz

< 1− δ ⇔ μ0(z̄)
df= df0(z̄)

dz
< 1.
(25)

Therefore, for a fixed point with a positive multiplier, its stability does not depend on δ.
The map fδ has always two fixed points z̄0 = 0 and z̄1 = 1. In addition, any zero z∗ of the gain

function Gn also represents a fixed point of fδ , which is feasible in case z∗ ∈ [0, 1]. The multipliers
of z̄0 and z̄1 are, respectively,

μ(0)= δ + (1− δ)eφGn(0) and μ(1)= δ + (1− δ)e−φGn(1) (26)

and they are always positive and, as shown above, their stability conditions are

μ0(0)= eφGn(0) < 1 and μ0(1)= e−φGn(1) < 1. (27)

Thus, these two fixed points can undergo only a bifurcation with eigenvalue +1. Among those,
a fold bifurcation is not possible, since z̄0 and z̄1 always exist. And it can be shown that a pitch-
fork bifurcation is not possible either. Hence, the boundary equilibria can change their stability
properties only due to a transcritical bifurcation.

Let us obtain the respective stability conditions in terms of the map parameters. For the fixed
point z̄0, the gain functionGn(0) degenerates to a single termwith k= 0 and the stability condition
reads as

μ0(z̄0)= df0(0)
dz

= e
φ

(
(2β+1)na2−(n2−1)ab

(n+1)2(2β+n)
− (β+1)(a+b)2

(n+2β+1)2

)
< 1 ⇔ s2a2 − s1ab− s0b2 < 0, (28)

where

s2 = (n3 + (6β + 4)n2 + (8β2 + 8β + 1)n− 2(β + 1))β ,
s1 = (n+ 1)(n3 + (6β + 3)n2 + (8β2 + 6β + 1)n− 1), s0 = (β + 1)(n+ 1)2(2β + n).

This implies that the fixed point z̄0 is stable if

0<
a
b

<
s1 ±

√
s21 + 4s2s0
2s2

df= r1(β , n). (29)

Similarly, for z̄1 the gain function Gn(1) degenerates to a single term with k= n− 1, and hence,

μ0(z̄1)= df0(1)
dz

= e−φ
4βa2−4(n+1)ab−(n+1)2b2

(n+1)2(2β+n) < 1 ⇔ 4βa2 − 4(n+ 1)ab− (n+ 1)2b2 > 0, (30)

which implies

a
b

>
(n+ 1)(1+ √

β + 1)
2β

df= r2(β , n). (31)

As for a zero z∗ of the gain function Gn, its multiplier simplifies to

μ(z∗)= δ + (1− δ)
(
1+ φz∗(1− z∗)G′

n(z∗)
)
, (32)

which in general can be negative. Hence, the stability conditions for z∗ are

−1+ δ

1− δ
< μ0(z∗)= 1+ φz∗(1− z∗)G′

n(z∗)< 1. (33)
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A.2 Proof of Proposition 2.
The linearity of G2(z) trivially follows from the general definition (4) and its coefficients can be
derived explicitly:

G2(z)= c1z + c0, c1 = − (2aβ − 3b)(2(4β2 + 7β + 3)a− 3(4β + 5)b)
36(2β + 3)2(β + 1)

,

c0 = 2β(8β2 + 19β + 12)a2 − 3(16β2 + 36β + 21)ba− 18(β + 1)2b2

18(2β + 3)2(β + 1)
. (34)

The unique inner equilibrium is z∗ = − c0
c1 . Dropping the technical details, we state that z∗ exists

for

r1(β , 2)
df= 3 · (16β

2 + 36β + 21)+√
(16β2 + 36β + 21)2 + 16β(β + 1)2(8β2 + 19β + 12)

4β(8β2 + 19β + 12)

<
a
b

< 3 · 1+ √
β + 1

2β
df= r2(β , 2). (35)

with ri(β , n) defined in (29) and (31).
Concerning the stability of the fixed points, recall from Proposition 1 that z̄0 is stable if a

b <

r1(β , n), while z̄1 is stable if a
b > r2(β , n). Finally, for z∗ there holds μ(z∗)< 1 if r1 < a

b < r2. It
is worth noting that while z∗ is feasible, it is possible to get μ(z∗)< −1 for certain parameter
constellations. Explicit condition for μ(z∗)= −1 can be stated.

A.3 Proof of Proposition 3.
Stability of an arbitrary equilibrium (p̄, z̄) of the map F can be characterized by the eigenvalues of
the Jacobian matrix

J(p̄, z̄)=

⎛
⎜⎜⎜⎝

ρ QA′
n(z̄)

(1− δ)
φγ z̄(1− z̄)e−φG̃n(p̄,z̄)(
z̄ + (1− z̄)e−φG̃n(p̄,z̄)

)2 δ + (1− δ)

(
1+ φz̄(1− z̄)G′

n(z̄)
)
e−φG̃n(p̄,z̄)(

z̄ + (1− z̄)e−φG̃n(p̄,z̄)
)2

⎞
⎟⎟⎟⎠ , (36)

where Gn, G̃n, and QAn are given in (4), (12), and (13), respectively. The Jacobians of E0 and E1
are

J(p̄0, 0)=
(

ρ QA′
n(0)

0 δ + (1− δ)eφG̃n(p̄0,0)

)
and J(p̄1, 1)=

(
ρ QA′

n(1)
0 δ + (1− δ)e−φG̃n(p̄1,1)

)
. (37)

Since ρ ∈ (0, 1) is one eigenvalue, each of these two fixed points can be either a stable node or a
saddle. Moreover, both eigenvalues of Ei are always positive and only a bifurcation related to one
eigenvalue crossing +1 is possible. The point E0 is then stable if

eφG̃n(p̄0,0) < 1 ⇔ G̃n(p̄0, 0)< 0, (38)

while E1 is stable if

e−φG̃n(p̄1,1) < 1 ⇔ G̃n(p̄1, 1)> 0. (39)

The stability conditions can be written explicitly even in general form, but we do not report them
as they differ from (28) and (30) only by the term γ p̄i, i= 0, 1.
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A.4 Proof of Proposition 4.
Let us consider the simplest case of the gain function

G̃2(p, z)= c1z + c0 + γ p, (40)

where c1, c0 are defined in (34), and the aggregate output function then becomes

QA2(z)= d2z2 + d1z + d0, (41)

with

d2 = 2aβ − 3b
3(β + 1)(2β + 3)

, d1 = (2β + 3)(2aβ − 3b)
3(β + 1)(2β + 3)

, d0 = 2(a+ b)
2β + 3

. (42)

The trivial fixed points are

E0 =
(

d0
1− ρ

, 0
)

=
(

2(a+ b)
(2β + 3)(1− ρ)

, 0
)

(43)

and

E1 =
(
d2 + d1 + d0

1− ρ
, 1
)

=
(

2a
3(1− ρ)

, 1
)
. (44)

The point E0 is stable if

G̃2(p̄0, 0) = c0 + γ p̄0 < 0 ⇔

2β(8β2 + 19β + 12)a2 − 3(16β2 + 36β + 21)ba− 18(β + 1)2b2

18(2β + 3)(β + 1)
+ γ

2(a+ b)
1− ρ

< 0,

(45)

which is equivalent to

γ < −2β(8β2 + 19β + 12)a2 − 3(16β2 + 36β + 21)ba− 18(β + 1)2b2

36(2β + 3)(β + 1)(a+ b)
· (1− ρ) df= γ1. (46)

The point E1 is stable if

G̃2(p̄1, 1)= c1 + c0 + γ p̄1 > 0 ⇔ 4a2β − 12ab− 9b2

12(β + 1)
+ 2γ a

1− ρ
> 0, (47)

which is equivalent to

γ > −4a2β − 12ab− 9b2

24(β + 1)a
· (1− ρ) df= γ2. (48)

There is γ1 > γ2 provided that

min{u1, u2} <
a
b

<max{u1, u2} (49)

with u1 = 3
(
12β + 17+√

(12β + 17)2 + 8(8β2 + 13β + 3)(2β + 3)
)

4(8β2 + 13β + 3)
, u2 = 3

2β
. (50)

This implies the simultaneous stability of the two fixed points E0 and E1 for γ2 < γ < γ1. As fol-
lows from (49), for any fixed β and b there exists a range of a, for which γ2 < γ1. However, if
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a> u2b, then there is p̄1 > p̄0, i.e. the level of pollution with all honest firms exceeds the level of
pollution with all dishonest firms, which is rather odd to occur in reality. However, this result is
plausible since we assumed η = 0 so that the pollution from production by either firm is equal.
And provided that a> u2b, an h-firm supplies a larger level of output than a d-firm. Thus, the
higher level of pollution is induced not by the dirty technology used but because the production
is extensive. The opposite case u1b< a< u2b implies p̄1 < p̄0.

Cite this article: Lamantia F, Panchuk A, Pezzino M andWang Y (2025). “Transition to clean technologies and the impact of
industrial non-compliant behavior.”Macroeconomic Dynamics 29(e123), 1–23. https://doi.org/10.1017/S1365100525100308
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