
Non-intrusive continuous user verification by care robots: 
MoveNet gait data

ZHANG, Ruomeng, KEISHING, Solan, MARCHANG, Jims 
<http://orcid.org/0000-0002-3700-6671>, MAWANDA, Raymond 
<http://orcid.org/0009-0002-2696-8135>, WANG, Ning <http://orcid.org/0000-
0002-3264-1852> and DI NUOVO, Alessandro <http://orcid.org/0000-0003-
2677-2650>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/36010/

This document is the Published Version [VoR]

Citation:

ZHANG, Ruomeng, KEISHING, Solan, MARCHANG, Jims, MAWANDA, Raymond, 
WANG, Ning and DI NUOVO, Alessandro (2025). Non-intrusive continuous user 
verification by care robots: MoveNet gait data. Intelligent Sports and Health, 1 (3), 
160-178. [Article] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


Intelligent Sports and Health 1 (2025) 160–178 

Contents lists available at ScienceDirect 

Intelligent Sports and Health 

journal homepage: www.keaipublishing.com/en/journals/intelligent-sports-and-health 

Non-intrusive continuous user verification by care robots: MoveNet gait data 
Ruomeng Zhanga,⁎, Solan Keishingb, Jims Marchangb,c,⁎⁎, Raymond Mawandab, Ning Wangb,c,  
Alessandro Di Nuovob,c 

a School of Information, University of Warwick, Warwick, UK 
b School of Computing and Digital Technologies, Sheffield Hallam University, Sheffield, UK 
c Advanced Wellbeing Research Centre, Sheffield Hallam University, Sheffield, UK  

A R T I C L E  I N F O   

Keywords: 
Care-robots 
MoveNet 
Machine learning 
Authentication 
Verification 

A B S T R A C T   

The growing ageing population demands for advanced care technologies, such as care robots, to support quality 
living. Ensuring the safety and privacy of these vulnerable users necessitates reliable and user-friendly au-
thentication methods. Security features should not become a burden to the user experiences. However, it is vital 
to continuously verify the user by the care robot in communicating and delivering its services. To offload the 
burden of verification to the users, it should be the robot initiating the verification process. However, relying on 
biometric data like voice doesn’t guarantee the source and needs continual verbal input while face relies on the 
line of sight for continuous verification making it challenging. Thus, this study examined the use of MoveNet by 
the care robot for continuous identity verification for an authentication process of a user, leveraging the 17 data 
points of the gait data collected from body joints and face features along with the distances among the data 
points to verify user identity. The research evaluated the performance of various MoveNet models and machine 
learning algorithms to identify the most effective approach for continuous user authentication in care robots. 
The methodology involved collecting and analysing gait data from a controlled group of participants, im-
plementing and testing with several MoveNet models and machine learning techniques, with a particular em-
phasis on neural networks. The results highlighted that integrating MoveNet with neural network models, 
especially the Thunder and Lightning f16 variants, achieved accurate user identification with an accuracy of 
99.86 % (NN), 99.89 % (CNN),99.93 % (Random Forest) and KNN gives F1 score of 99.74 %, while SVM 
performs the worst with only 13.23 % F1 score. These findings provide an opportunity for the robot to seamlessly 
verify the user for authentication purpose using machine learning methods. A neural network is tested with all 
the MoveNet models (lightning, lightning int8, lightning f16, thunder, thunder int8, and thunder f16) and the 
paper proofs its usability in a ROS system, in average, prediction time takes between 0.99 to 1.06 s with an 
accuracy ranging from 99.64 % to 99.90 %. Lightning f16 and Thunder are the best performing models in terms 
of prediction time and accuracy.   

1. Introduction 

In the UK, the provision of home care for older individuals, espe-
cially those residing alone, is garnering increased focus as the demo-
graphic composition shifts towards an aging population. Government 
statistics from the UK indicate a rise in the proportion of the population 
aged 65 + from 16.4 % in 2011 to 18.6 % in 2021. Notably, 97.3 % of 
these elderly individuals reside in private residences, with 30.1 % living 
independently as reported in [9]. Compared to their counterparts in 
public institutions like hospitals and nursing homes, elderly individuals 

living in their homes generally receive less routine and emergency 
medical care. Although elderly cohabitants may benefit from mutual 
support and assistance, those living alone face greater challenges in 
accessing timely medical aid. While the National Health Service (NHS) 
endeavours to provide comprehensive medical support and care to the 
elderly at no cost, and various private care services are available for a 
fee, these measures remain insufficient for the escalating needs of the 
aging population. In response, the UK government announced a stra-
tegic initiative in 2019 to invest significantly in the development of care 
robots, aiming to engineer devices that are safe, reliable, and respectful 
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of user privacy [15]. These robots are designed to perform essential 
functions such as mobility assistance, task completion, continuous 
health monitoring, and medication management, thereby enhancing 
the quality of life for the elderly. Furthermore, these robotic aids are 
envisioned to support other vulnerable groups, including individuals 
with disabilities and children, significantly alleviating the burden on 
medical and nursing professionals. This technological advancement not 
only promises to fulfil the increasing care demands of the elderly po-
pulation but also aims to reduce the financial strains associated with 
elder care. However, the challenge in deploying such technology ex-
tends beyond the robotic execution of commands—it critically en-
compasses ensuring high safety standards. Care robots must be robust 
against a spectrum of cyber threats while safeguarding user data and 
privacy. Achieving this necessitates the implementation of advanced 
network security defences and stringent authentication and access 
control protocols. 

In the current robotics sector, the identity authentication methods 
employed by robots include password, biometric, token, hardware, and 
behavioural authentication. However, these mainstream methods often 
lack convenience for care robots. They either fail to provide continuous 
authentication, impose interactive requirements on users, or necessitate 
the wearing of devices, which can be cumbersome. There are different 
methods for continuous authentication as highlighted in [5] and it is 
critical in ensuring continuous verification of the users. Given that the 
primary users are often elderly or vulnerable groups, care robots re-
quire an authentication scheme that does not rely on user cognition, 
demand user involvement, or impede user actions. Additionally, due to 
high security demands, this method must enable ongoing verification of 
user identity, guarantee the immediate termination of services upon 
user departure to ensure that user privacy remains uncompromised. 
Given the requirements, applying image recognition techniques for user 
identity verification emerges as a highly suitable option, as explored by  
[44]. This approach necessitates minimal user interaction with the 
camera and eliminates the need for users to remember passwords or 
wear any devices. While image recognition has been successfully uti-
lised in other fields for biometric and behaviour-based recognition, its 
application in robotics remains unexplored. The objective of this study 
is to leverage existing image recognition techniques and assess their 
feasibility for continuous authentication in care robots. If proven viable, 
the solution would allow the robot to automatically and continuously 
verify the user's identity, requiring only the user's presence within the 
robot's field of view. However, the study is aiming at using MoveNet 
approach, so that the actual face or video is not recorded, but only the 
data points are collected in a non-intrusive way for user identification. 
This would obviate the need for users to consciously perform any au-
thentication-specific actions, thereby ensuring that the care robot could 
effectively serve a broad range of vulnerable individuals, including el-
derly users with varying needs. The assumption of this study is that the 
users can at least walk and not bound in a wheelchair. 

1.1. Research aim and objectives 

The primary research aim of this study is to explore the effective 
application of MoveNet for the continuous authentication of care ro-
bots. This will be achieved by employing MoveNet models and other 
machine learning algorithms to accurately and consistently identify 
users within a ROS (Robot Operating System) environment. To ac-
complish this aim, the study has established the following specific ob-
jectives:  

1. Design experiments that replicate real-world conditions and collect 
joint position data from different users while walking. This data will 
be used to train and validate using various machine-learning 
models. In the process, additional data features from the existing 
dataset will be extracted to improve the effectiveness of the models.  

2. Assess the performance of various MoveNet models in detecting 

users' joint positions to ensure the selection of the most suitable 
model for this application scenario and analyse the efficiency and 
accuracy of different machine learning algorithms in identifying a 
user based on the processed data and select the most appropriate 
algorithm.  

3. Implement the programme within a ROS environment to validate 
the feasibility of using MoveNet and machine learning algorithms 
for continuous authentication by care robots. 

1.2. Background study 

Artificial intelligence (AI) has become an integral part of the 
healthcare sector, offering powerful computational and learning cap-
abilities that enhance clinical diagnosis and pathological analysis. For 
example, [37] developed an AI model utilizing convolutional neural 
networks to diagnose COVID-19 through X-ray imaging. Similarly, [38] 
applied deep neural networks to train a model for detecting blood 
samples indicative of COVID-19 cases. In the care sector, closely related 
to healthcare, AI-powered care robots are designed to assist individuals 
requiring daily support due to illness or aging. The UK’s [35] defines 
"care" as the daily assistance and supervision that enable individuals to 
live independently. High-quality care must meet several standards, in-
cluding the timely provision of medical services, ensuring user safety, 
accommodating user preferences, and avoiding discrimination. Care 
robots aim to supplement, not replace, human caregivers, extending the 
range and quality of care services. They fall into two main categories: 
service robots and social robots [39]. Service robots assist with daily 
tasks such as household chores, mobility, personal hygiene, feeding, fall 
prevention, medication reminders, and health monitoring. They pro-
vide continuous oversight, often acting as substitutes for healthcare 
professionals. Social robots, in contrast, focus on emotional support and 
companionship. They help users maintain mental well-being by enga-
ging in conversation, entertainment, and activities like cognitive 
training. Some robots integrate both functionalities. Sawik et al., [39] 
reviewed 21 representative care robots, most designed for elderly users. 
Notable examples include the ASTRO robot [19], which supports indoor 
walking and simple exercises, and the Bandit [17] and Gymmy [27] 
robots, designed for physical exercises and cognitive training. The PR2 
collaborative robot [8] can retrieve objects using its dual-arm design, 
while the IRMA robot [48] assists in locating misplaced items using 
natural language commands. Equipped with a grasping function, IRMA 
can deliver items directly to users. 

Social robots like Pepper [49] enhance interaction, engaging in 
conversations and providing reminders about item locations, to-do lists, 
and weather updates. Designed with a humanoid appearance and a 
display screen, Pepper uses facial expressions and body language to 
create a sense of familiarity. The Healthbots conversational robot [43] 
integrates vital sign monitoring, home safety features, medication re-
minders, fall detection, and assistance with phone calls and emails. 
Robots with single functionalities often struggle to meet comprehensive 
caregiving needs. Multi-functional robots, such as the Hobbit [20] and 
RAMCIP [16], integrate key caregiving features. These robots assist in 
retrieving and organizing items, monitoring health, providing medica-
tion reminders, and engaging users in games or conversations [19,32]. 
One of the most advanced robots in the field is Sophia, developed by  
[23]. Although not specifically designed for caregiving, Sophia’s lifelike 
human appearance and advanced interaction capabilities position her 
for potential caregiving roles. Sophia’s detailed facial features, dex-
terous hands, emotion recognition technology, and learning abilities 
allow her to perform complex tasks, interact naturally with users, and 
foster emotional connections. If adapted for caregiving, Sophia could 
monitor both physical and mental health, assist with intricate tasks, and 
provide companionship akin to that of human caregivers. 

Most care robots are currently designed for indoor use, primarily in 
homes or private spaces. Outdoor applications, while less common, 
involve scenarios where robots remain close to users and may interact 
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with multiple individuals. This highlights the primary user group, i.e., 
elderly individuals, and the typical application scenario: standard-sized 
indoor environments. This study focuses on these contexts, aiming to 
optimize the functionality and deployment of care robots to effectively 
meet user needs. 

1.3. Continuous authentication 

Authentication verifies a user's identity before granting access to 
resources or services [12]. In contrast, continuous authentication en-
forces verification throughout the user’s session, from initial access 
until termination, making it suitable in managing highly sensitive and 
high-security service delivery and interaction scenarios where a user's 
presence may dynamically change. There are different types of au-
thentication methods, and it can be classified into four categories: 
knowledge-based (e.g., passwords, PINs), possession-based (e.g., to-
kens, keys), attribute-based (e.g., biometrics), and location-based (e.g., 
IP address, GPS location) [2]. However, most of the authentication 
methods will not be adoptable in a care robot deployment settings 
because of the physical, psychological and mental condition of the el-
derly users. Token based often involve physical devices like keys or 
smart cards that users must possess to gain access, while certificate- 
based authentication relies on digital certificates that uses encryption, 
decryption keys and a certifying authority's digital signature to verify 
the identity. Password or PIN based sounds easy, but for the elderly it 
will be a challenging method and moreover, it is a one-time authenti-
cation for a session, so it is not possible for a continuous authentication. 
Two additional categories are physiological and behavioral biometrics, 
both of which involve unique biological characteristics. Physiological 
biometrics utilize physical traits such as fingerprints, palm prints, irises, 
facial features, voice patterns, or heartbeats [31]. Behavioral bio-
metrics, on the other hand, rely on patterns in user behavior, such as 
typing speed, finger pressure, mouse movements, signature dynamics, 
or gait. Other approach like wo-factor authentication, is more secure in 
nature because it involves multiple methods to verify a user's identity. 
Among all, biometric authentication approaches using gait are non-in-
trusive and are seamless in nature. Moreover, the robot collecting the 
gait data rather than supplying it from user’s smart devices should be 
the best approach because it doesn’t involve additional communicating 
device that the user needs to carry. 

Biometrics methods have a dominance in the area of delivering 
continuous authentication applications. The work of [6] reviewed the 
accuracy of these technologies, finding that voice recognition out-
performed facial recognition, while ECG surpassed eye movement 
tracking, which in turn was more reliable than EEG. For behavioral 
biometrics, touch dynamics, stylometry, and keystroke dynamics 
achieved accuracy rates over 90 %, whereas gait recognition showed 
variability based on sensor data, and environmental sensing (e.g., IP 
address, devices) ranged between 80 % and 90 % accuracy. The paper 
of [2] explored continuous authentication within Internet of Things 
(IoT) environments, highlighting the integration of environmental and 
device data. It considers factors like device power consumption, hard-
ware specifications, wireless signals, and GPS location contribute to 
authentication in IoT environment. Continuous authentication is re-
garded as a highly secure method for identity verification, it is crucial 
for care robots that handle sensitive user data. These robots operate in 
personal settings, accessing user privacy to deliver tailored care ser-
vices. To ensure optimal care, they must understand physical condi-
tions, preferences, and cultural contexts, minimizing stress or negative 
reactions. Consequently, cybersecurity is paramount to protect user 
data and prevent potential manipulation or harm. Given the healthcare 
sector's vulnerability to cyberattacks [33], robust authentication 
methods that minimize user involvement are essential, particularly for 
elderly users who may lack cybersecurity expertise. The paper explores 
and proposes identity authentication methods for care robots, empha-
sizing usability for elderly individuals. They found wearable devices, 

facial recognition, and gait recognition to be user-friendly, with gait 
recognition and dual-factor authentication offering the highest security 
levels. They proposed a dual-factor system combining facial recognition 
and smartwatch detection, achieving 99.39 % facial recognition accu-
racy and detecting smartwatches within 20 ms. While effective, lim-
itations such as partial camera coverage and unsuitability for users 
unable to wear devices were noted. The work of [3] advanced this 
approach by developing a non-intrusive multimodal user recognition 
system for caregiving robots. Using facial features, voice characteristics, 
and skeletal data from walking patterns, their model achieved 100 % 
accuracy. Similarly, [7] used facial features, height, clothing colour, 
and leg posture for user recognition, demonstrating the utility of mul-
timodal biometrics. The research work of [11] combined heart rate, 
gait, and respiratory rate data from wearable devices, achieving com-
mendable authentication accuracy. However, their gait recognition 
system required user motion, posing limitations. The work of [28] 
identified challenges with facial recognition, such as delays and errors 
caused by hardware and motion, proposing voice recognition as a 
complementary method to enhance reliability. However, [1] focused on 
continuous authentication for collaborative robots, using hand move-
ment recognition to prevent unauthorized access and ensure user 
safety. Moreover, [14] suggested RFID-based authentication for hos-
pital care robots, integrating continuous health monitoring to minimize 
user interaction while maintaining secure authentication. Many studies 
emphasize gait recognition’s effectiveness and reliability as a key 
component of continuous authentication for care robots. Combining 
gait recognition with other methods offers robust security, providing 
valuable insights for future research in this area. 

1.4. MoveNet 

MoveNet is a neural network model developed by Google, based on 
the TensorFlow framework, designed for human pose estimation [41]. 
It can detect the positions of seventeen key points on the human body 
by analysing video footage or real-time camera feeds. MoveNet is 
characterized by its lightweight nature, high accuracy, and speed. It is 
capable of running on a far range of devices, including computers and 
mobile devices. MoveNet offers six different models, ranging from re-
latively lightweight to more complex options, to cater to various needs  
[29]. The more complex models provide higher accuracy but operate at 
slower speeds and require more powerful devices. Nevertheless, all 
models can run on both CPU and GPU, although the processing speed is 
faster on GPS. They all can process video streams at over 30 FPS. The 
input requirements for video streams are minimal, with the ability to 
handle resolutions as low as 360 × 270 pixels, using only a standard 
RGB camera. Additionally, MoveNet performs well in low-light condi-
tions and can detect key points when the person is side-facing or back- 
facing the camera, unless obstructed by other objects or outside the 
camera’s view. It also supports multi-person detection, allowing it to 
identify and track key points for multiple users simultaneously when 
they appear within the frame. The TensorFlow framework, which 
MoveNet relies on, was also developed by Google. It is mainly used for 
data computation and machine learning and is currently one of the 
most popular frameworks in the field of machine learning. 

MoveNet can detect a total of 17 key points, which include the eyes, 
ears, nose, shoulders, elbows, wrists, hips, knees, and ankles. It supports 
two basic output formats: one directly outputs the name of each key 
point, along with its absolute XY coordinates and confidence score for 
each frame of the video or single picture as described in Fig. 1 [45]. The 
other format visualises the key point positions by drawing them as 
points connected by lines on an image or video as shown in Fig. 2, the 
data is generated during the training of the proposed system in this 
paper. MoveNet has already been widely adopted across various fields 
requiring pose recognition, such as sport, fitness, wellness, and 
healthcare [45]. The work of [42] explored the application of MoveNet 
in the fitness domain, specifically developing a real-time yoga pose 
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estimation method. This system was designed to provide guidance to 
yoga practitioners and correct improper poses, thereby preventing in-
jury due to incorrect posture. They first utilised MoveNet to extract the 
key points of the human pose, and then employed a customised Ten-
sorFlow machine learning algorithm to interpret these key points. Using 
an artificial neural network. 

(ANN) for training, they achieved a training accuracy exceeding 
90%, although the accuracy during testing fell slightly below 90%. 
Interestingly, they found that certain poses, despite having fewer 
training samples, achieved accuracy rates close to 100%. Similarly,  
[36] conducted research aiming to use MoveNet to customise yoga 
training programmes for users. They employed MoveNet Thunder to 
obtain key points and used a convolutional neural network (CNN) 
model for training and testing, ultimately achieving a testing accuracy 
of 98%. The research of [4] applied MoveNet to estimate movements in 
Silat, a martial art. They also used MoveNet Thunder for data pre-
processing, followed by ANN for training and classification, achieving 
an impressive accuracy of 97%. However, their dataset was limited to 
only eight types of images. The paper of [26] utilised MoveNet to detect 
instances of campus bullying. They processed 400 min of personal be-
haviour videos and 20 min of physical abuse videos with MoveNet, 
categorised the data into 13 behaviour types, and used ANN for training 
and prediction, resulting in an accuracy of 98%. In the health sector,  
[18] focused on using smartphones to detect human motion as part of a 
solution for identifying stroke patients. They experimented with three 
pose estimation models—MoveNet, PoseNet, and BlazePose. Although 
BlazePose could recognise the most key points, it was the slowest, while 
PoseNet was as fast as MoveNet but produced lower-quality data. 
MoveNet emerged as the most suitable pose estimation model for 
smartphone videos, achieving a classification accuracy of 96% for the 
upper body of stroke patients. However, the accuracy for lower body 

detection was less satisfactory, possibly due to insufficient data. The 
work of [47] also conducted a comparison of pose estimation models. 
They tested MoveNet Lightning, MoveNet Thunder, OpenPose, and 
DeepLabCut, and similarly concluded that MoveNet Thunder delivered 
the best performance. The findings from these studies indicate that 
MoveNet is one of the best-performing models in pose estimation, de-
monstrating its reliability. Among the various models, MoveNet 
Thunder consistently emerges as the most effective. Additionally, most 
studies that utilise MoveNet have opted to pair it with neural network 
algorithms, providing clear guidance for the selection of machine 
learning algorithms in this research. These studies pave ways to use 
similar MoveNet data for user identification by enabling the assistive or 
robotic systems to directly gather gait data without the need of users 
supplying any secret verification code and use the gait data for unique 
user identification. 

1.5. Gait and distance recognition 

Gait recognition is a technology that identifies individuals by ana-
lysing the way they walk. Each person has a distinct walking pattern, 
characterised by factors such as step length, speed, and the changing 
angles of their legs and arms. These features are unique and difficult to 
replicate, making gait recognition highly suitable for identity authen-
tication. It is a non-invasive behavioural biometric method, frequently 
used for continuous authentication. Beyond identity verification, gait 
recognition also has applications in medical care, where it can assist in 
detecting walking-related illnesses, support patient recovery, and in 
physical exercise, where it can help individuals assess and correct their 
posture. 

The concept of gait recognition was first introduced in 1994, and 
early research primarily focused on methods for recognising gait 
through video analysis (Wan et, al, 2018). As technology advanced, the 
use of depth cameras to construct 2D or 3D models for analysing gait 
characteristics gradually emerged. Concurrently, sensor-based methods 
for data collection gained popularity. These include approaches that 
utilise body-worn sensors to capture acceleration, floor sensors to 
measure pressure, and radar systems to track gait positions. In recent 
years, the focus of gait recognition research has shifted towards more 
routine and lightweight data collection methods, alongside efforts to 
achieve higher recognition accuracy. Leveraging sensors from everyday 
electronic devices—such as computer and mobile phone cameras, smart 
devices, and wearable technology—has made gait data collection 

Fig. 1. MoveNet keypoints extraction [45].  

Fig. 2. MoveNet Skeleton Extraction 
(Source: Authors Data). 
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easier, more accessible, and cost-effective. Given the relatively low 
usability and high cost associated with specialised sensors, video-based 
data collection remains a more mainstream research direction. In a gait 
recognition survey, [40] evaluated 15 widely used public video gait 
databases spanning from 2001 to 2020. The number of participants in 
these databases varied significantly, with the smallest including only 20 
individuals and the largest comprising over 60,000. However, the 
number of sequences per individual typically ranged between 10 and 20 
or more. Most of the databases focused on recording silhouettes, while 
the more recent ones included skeleton data. The majority of the data 
collection environments were indoors. The databases also differed in 
the number of viewpoints recorded, with some capturing gait from only 
one viewpoint and others from as many as 25 [40]. Additionally, they 
included varying degrees of other factors, such as balanced gender ra-
tios and even age distributions among participants. Some databases 
recorded gait under different conditions, such as when participants 
were empty-handed, carrying a bag, or wearing a coat. Others captured 
a variety of clothing types, walking surfaces, and footwear. Some da-
tabases also recorded gait at different walking speeds, and a few utilised 
infrared captures to account for nighttime conditions. By summarising 
the characteristics of existing public gait databases, it is possible to 
analyse the expected features of the dataset in this study and identify 
key factors that need to be considered during its design. 

Once the video dataset is obtained, the next step is to extract fea-
tures from it. Gait recognition through video can be categorised into 
two main approaches: contour-based and skeleton-based [40]. The 
contour-based approach involves segmenting the human silhouette 
from the video and then extracting features such as shape, variation, 
and gait cycle. This method does not require labelling the human body 
before feature extraction, but it is highly susceptible to external factors 
such as clothing shape and lighting conditions. In contrast, the skeleton- 
based approach begins by labelling the skeleton of the human body, 
after which the relative positions of the joints, the angles between them, 
and the changes in these joints during movement are extracted [40]. 
This method is less affected by external factors and yields more accurate 
data. However, it requires greater computational power and involves 
more complex data processing steps. Currently, with computational 
power no longer being a primary constraint and pose detection tech-
niques achieved good accuracy. The focus has shifted to skeleton-based 
gait feature extraction. In their gait recognition study of [21], selected 
18 joint points on the body and used their x and y coordinates along 
with confidence scores as features. The work of [30] directly utilised 
the 18 2D body joints extracted by OpenPose, from which they esti-
mated 14 3D joint positions as features. They further enhanced their 
model by designing three additional features: joint angles, limb lengths, 
and the dynamics of joints during motion. The research of [10] took a 
different approach to enhance the model by calculating the average 3D 
coordinates of all the joints, the Euclidean distances from each joint to 
the average coordinates, and the rotations around the y-axis relative to 
the camera, derived from the coordinates of the shoulder and hip joints. 
To improve tracking, they implemented a sliding window technique to 
accumulate data and track the trajectory of the joints over time. Nguyen 
et al., [34] concentrated on feature extraction specifically from the legs 
to more efficiently identify abnormal gait patterns associated with 
diseases. They calculated the angles between the leg joints, the lengths 
of the skeletal segments, the lateral distance between the joints of the 
left and right legs, and the angle between the left and right feet. From 
the literature, it is evident that skeleton-based gait recognition features 
primarily focus on the key joints of the human body and their inter-
relationships, such as distances, angles, and dynamic changes. This 
aligns closely with the keypoint information provided by MoveNet, 
highlighting the potential of using MoveNet for gait recognition. The 
final step in gait recognition is classification. In their survey on gait 
recognition, [46] introduced five primary classification methods. The 
most straightforward approach is the distance method, which involves 
setting a threshold and then calculating the distance between the 

collected gait data and the data in the database to measure similarity. 
Classification is then performed based on the threshold. The second 
method is correlation calculation, with common metrics such as 
Pearson correlation coefficient. The absolute value of the correlation 
coefficient indicates the degree of correlation or dependency between 
datasets, with values closer to 1 indicating a stronger correlation. The 
third method, and currently the most prevalent, is the use of machine 
learning. Gait recognition often employs supervised learning algorithms 
such as support vector machines (SVM), decision trees, and neural 
networks. The fourth method is the Hidden Markov Model (HMM), 
which is also widely used, particularly for handling temporal relation-
ships within gait data. The fifth and final method is the Bayesian model, 
which calculates the probability that a data vector matches the data in 
the database and classifies the data accordingly. In the feature selection 
studies mentioned earlier, most researchers employed supervised ma-
chine learning algorithms to classify their data, with CNN (Convolu-
tional Neural Networks), RNN (Recurrent Neural Networks), and LSTM 
(Long Short-Term Memory) being the most frequently cited algorithms. 
The findings from these studies consistently indicate that CNNs 
achieved higher accuracy compared to the other algorithms. 

2. Research methodology 

My ontological position asserts that the classification of users' gait 
data can be objectively measured and analysed as a tangible entity. By 
employing MoveNet and other machine learning tools as scientific 
methods for analysing this data, I aim to achieve the objective of user 
identity verification. In this research, I adopt a positivist approach. I 
contend that through the quantitative collection and analysis of data, it 
is possible to obtain objective knowledge about the effectiveness of 
using MoveNet for continuous authentication in care robots. By de-
signing experiments to collect data and developing programmes to 
analyse the results, I can ascertain the objective feasibility of my re-
search aims. Based on this paradigm, the study has been designed with 
a comprehensive experimental process to collect data, analyse it, and 
compare model performance. Initially, gait data from different users in 
specific environments will be collected through experiments. MoveNet 
will then be used to extract key features from this data, generating a 
dataset. Various machine learning algorithms will be applied to classify 
these features, with output scores across multiple dimensions to eval-
uate and compare the accuracy of each algorithm. Finally, these tech-
niques will be integrated into a ROS environment, where the perfor-
mance of the solution will be tested using a separate test dataset. By 
assessing the final accuracy and comparing it with existing research 
solutions, the usability and effectiveness of the proposed solution can 
be determined. 

This study employed a single-subject analysis, focusing exclusively 
on evaluating the application of MoveNet in continuous authentication 
for care robots. The research concentrated solely on MoveNet's gait 
recognition capabilities and did not explore other biometric technolo-
gies or multifactor authentication methods. 

2.1. Data collection 

This study employed quantitative methods for data collection, fo-
cusing on the authentication of user gait data processed by MoveNet. 
The collection of video data of users' gait through quantitative means is 
essential to achieving this objective. This approach ensures an objective 
and controlled research process, aligning with a positivist methodology. 
Quantitative data collection allows for precise control of variables, 
minimising the influence of extraneous factors and reducing errors in 
the comparison of results, thereby yielding more accurate outcomes. 
Additionally, accurately controlling variables during the data collection 
process enhances the repeatability of the experiment. This ensures that 
the data collection process can be easily replicated in future studies if 
necessary. A single method of data collection was employed in this 
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study, utilising a mobile phone camera to record videos of participants' 
gait at a specific location. In situations where data need to be collected 
under highly consistent conditions, using a single data collection 
method is more likely to ensure uniformity in the data. Moreover, this 
study focuses on achieving continuous authentication using just one 
technique and device, making the use of multiple methods unnecessary. 
Drawing on the analysis of mainstream public gait databases in the 
literature review, gait data were collected from 10 participants, with an 
equal gender balance, due to the small scale of the study. In line with 
the sample sizes used in public gait databases and considering the 
limited number of participants, 40 gait video samples were collected 
from each participant. To further enhance the dataset, a sliding window 
technique was applied during the data processing stage, expanding the 
total dataset size and ensuring that the study's data were more com-
prehensive. 

Data collection for this study took place between 25 July and 5 
August 2024, following ethical approval to ensure that the experiment 
was conducted by ethical guidelines. The data collection period was 
intentionally kept brief and used a cross-sectional experimental design. 
A consistent time of day i.e. afternoon was selected for data collection. 
This approach minimised the influence of external factors, such as 
weather, and maintained consistent light levels. Additionally, collecting 
data in the afternoon ensured that participants were awake and en-
ergised, reducing the likelihood of unconventional gait patterns re-
sulting from fatigue. 

2.2. Data analysis 

The test site for this study was set up in a relatively quiet, flat area 
within a typical building. This location was chosen to ensure participant 
safety and to minimise disturbances or potential injuries from un-
expected events during the experiment. Moreover, an indoor site was 
selected to simulate real-world application scenarios, as care robots 
typically operate in hospitals or users' homes, making the test en-
vironment a good match for their intended working conditions. 
However, the data collection process in this study involved user 
privacy, which posed certain challenges in recruiting volunteers. 
Ideally, a participant pool of 20 individuals would have been optimal, 
but due to privacy concerns, there was insufficient willingness to par-
ticipate. To address these concerns and protect user privacy, the data 
collection process did not capture the lower half of the participants' 
faces. Masks were provided to safeguard their identities. Ultimately, ten 
participants were successfully recruited, which was sufficient to meet 
the data requirements of this study. All participants in this study were 
non-participatory, meaning they did not actively influence the experi-
mental process. This approach was adopted to minimise any potential 
subjective impact from the participants, thereby ensuring the objec-
tivity and consistency of the data. The decision to use quantitative 
methods for data analysis in this study is grounded in the same ratio-
nale with data collection. Quantitative analysis effectively minimises 
errors in the analytical process. Specifically, well-established and 
widely accepted scoring criteria exist for evaluating the performance of 

machine learning algorithms. By calculating the same performance 
metrics for different models, the differences between each model can be 
more accurately and objectively assessed. This approach also facilitates 
easier comparison of this study's results with those of another research. 
Furthermore, the use of a standardised quantitative analysis method 
allows for the accurate reproduction of research results, enabling pre-
cise control of variables when optimising the research process to 
identify more effective optimisation strategies. Deductive reasoning 
was applied in this study. Based on a review of relevant literature, the 
hypothesis was formed that gait data processed using MoveNet could be 
used to identify users, thus enabling its application in the continuous 
authentication of care robots. The data collection and analysis steps 
were designed around this hypothesis to test its feasibility. 

2.3. Method of data collection 

The data for this project was collected through experimental 
methods, with the primary objective of obtaining a sufficient number of 
video recordings of the participants' gait. The data collecting process 
achieved the first research objective. The experiments were typically 
conducted between 1:00 and 4:00 PM, a time when the light intensity at 
the experimental site was adequate, and the participants were in op-
timal condition. The experimental process began with meeting the 
participants at the site and signing relevant documents, including the 
informed consent form. Participants were then instructed to start at a 
designated point A and walk in a natural and comfortable manner to the 
end point B. A video camera was positioned at video point C, directly 
aligned with the straight path from point A to point B. Each participant 
made 40 round trips between points A and B, maintaining a consistent 
walking pattern throughout. The camera recorded only the participant's 
complete walk from point A to point B, capturing frontal gait footage as 
the participant faced the camera directly. Any clips where the partici-
pant glanced to the side or made extraneous hand and leg movements 
were excluded from the final dataset. This process resulted in 40 frontal 
gait videos per participant, yielding a total of 400 videos for the sub-
sequent training and evaluation of the machine learning algorithms. In 
this study, the speed of walking of the users are not captured, but all the 
participants walk in their usual and normal walking style on the flat 
surface of the environment described in Fig. 3. 

Additionally, three of the ten participants were selected to record an 
extra 10 videos each, following the same method, for testing purposes. 
The researcher also recorded 10 test gait videos to be used for un-
authorised person identification testing. The test site was set up in a 
relatively quiet, windowed hall within an ordinary building. This setup 
ensured normal lighting conditions and minimal disturbances, allowing 
the experiment to proceed without interference from others. The hall 
was approximately 70 square metres in size, unobstructed, and carpeted 
for noise reduction, providing ample space for the experiment while 
ensuring the participants' safety by preventing obstructions or falls. The 
straight-line distance between the start points A and the end point B, 
used in the experiment, was 6 m, reflecting the typical application 
scenario for care robot deployment in a room as shown in Fig. 3. In an 

Fig. 3. Data Collection Experiment Environment.  
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average home, 6 m generally represents the maximum unsegregated 
distance within a room, which aligns with the care robot's requirement 
to recognise users within this range. Additionally, the distance from end 
point B to camera position point C was 1.6 m, ensuring that the parti-
cipant was close enough to remain fully visible within the video frame 
when stopping at point B, without any body parts extending beyond the 
frame. 

A standard Android mobile phone was used as the camera for this 
study. This choice was made because MoveNet is designed to run on a 
wide range of devices, and the study aimed to minimise the hardware 
requirements for the care robot. By using a mobile phone camera with a 
commonly available and lower-end hardware configuration, the study 
ensured that the solution would be more accessible and widely ap-
plicable. The video format was set to MP4, the most common format, 
with a resolution of 1080p, 30 fps, and a 16:9 aspect ratio. These set-
tings were configured and recorded using the phone's default camera 
software. This approach ensured sufficient clarity while keeping the 
video quality and file size manageable, enhancing the scalability and 
broader applicability of the research solution. During filming, a nine- 
panel auxiliary grid was used within the camera frame, aligned with 
wall and floor markers, to maintain a consistent background and ensure 
that participants were positioned identically in each recording. 
Moreover, the camera was set on a fixed hight (1.4 m) tripod to ensure 
stability. Immediately after recording, all video files were uploaded to 
the university’s cloud storage, where they were encrypted for security. 
The local files were deleted, with temporary downloads only occurring 
as needed for analysis. 

Participants were recruited from individuals known to the re-
searcher, with efforts made to ensure an equal number of participants 
from different physiological sexes. The study did not include partici-
pants of varying ages or those with physical impairments, because in-
viting vulnerable groups would not have met the ethical requirements 
of this study. All 10 participants were aged between 20 and 30 years, in 
good physical and mental health, with no apparent illnesses or dis-
abilities. There were no specific dress code or hairstyle requirements for 
the participants, as the gait videos collected were intended for a ske-
leton-based gait recognition study. Additionally, to validate MoveNet's 
single-user posture tracking capabilities, the experiment did not prevent 
others from passing through the test site. However, if someone walked 
in front of a participant during video recording, that segment was ex-
cluded and re-recorded to ensure the data continuity. As of the sub-
mission of this paper, no participant has requested to withdraw from 
the study. 

2.4. Method of data analysis 

The data analysis method in this study was divided into four steps: 
feature extraction and creation using MoveNet, data preprocessing, 
training and evaluation of different machine learning algorithms, and 
model validation in a ROS environment using test data as shown in  
Fig. 4. All steps of the data analysis were executed through Python 3, as 

it is the most widely used programming language in the field of ma-
chine learning and is also the language recommended for MoveNet's 
official data preprocessing methods. The data analysis code utilised 
several common and essential Python libraries, including TensorFlow, 
scikit-learn, pandas, OS, matplotlib, and numpy. 

The dataset generation steps from the input video source are de-
scribed in Fig. 5. During the feature dataset generation phase, the col-
lected video files were batch-imported into the program and processed 
individually. Each video generated a separate dataset in CSV format. 
For each video, the frames were extracted as static images and pro-
cessed sequentially. The MoveNet model was then invoked to determine 
the coordinates of the shoulder and hip keypoints within the image. The 
excess portions of the image were cropped to ensure that the skeleton 
size of the person in each frame remained consistent, thereby mini-
mising coordinate discrepancies caused by changes in the person's 
distance from the camera. MoveNet subsequently identified and out-
putted the X and Y coordinates of 17 keypoints in the current frame, 
along with their confidence scores. These keypoints were then used to 
calculate and generate new feature values. In this study, a new feature, 
focusing primarily on the distances between keypoints are considered. 
Considering the use of a 2D skeleton model, speed data during walking 
was not included due to its potential inaccuracy. These additional 
features enhanced the discriminative power of the user's gait data, 
improving the model's ability to accurately identify individuals. Once 
all features were generated, the data was recorded in a CSV file, with 
each row representing a frame and the user ID label placed in the first 
column. The data was then checked to exclude rows with low con-
fidence scores or zero-valued features. 

All gait video files were processed by six different MoveNet models, 
generating separate CSV datasets for each model. These datasets were 
subsequently used for the next step: machine learning training and 
evaluation. After identifying the most performant model, it was re-
trained and evaluated using the datasets generated by the six different 
MoveNet models, with the scores compared to select the most suitable 
MoveNet model for this study. This approach ensures a comprehensive 
evaluation of model performance and identifies the selection of the best 
MoveNet variant for continuous authentication in care robots. Also, this 
approach achieved the second research objective. During the machine 
learning training and evaluation phase, this study selected eight com-
monly used machine learning algorithms based on the findings from the 
literature review on gait recognition and the application of MoveNet. 
These algorithms were compared to assess their performance, with the 
highest-scoring algorithm being selected for further use. The eight al-
gorithms are Support Vector Machine (SVM), Random Forest, k-Nearest 
Neighbour (k-NN), Naive Bayes, Neural Networks (NN), Convolutional 
Neural Networks (CNN), Recurrent Neural Networks (RNN), and Long 
Short-Term Memory (LSTM). More details structure of the structure and 
hyperparameters of NN, CNN, RNN and LSTM are given in the Fig. 6,  
Fig. 7, Fig. 8 and Fig. 9 respectively. The hyperparameters used for 
optimising NN: Adam (learning rate = 0.001), Loss function: catego-
rical cross-entropy, Batch size: 32, Epochs: upto 50 epochs are 

Fig. 4. Block Diagram of Feature extraction, Data Pre-Processing, Training and Validation Process.  
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experimentally validated. The CNN reached saturation with an opti-
miser of: Adam (learning rate = 0.0001), Loss function: categorical 
cross-entropy, Batch size: 32 and Epochs: upto 50 epochs as per ex-
perimental validation. The best fit of learning rate for RNN and LSTM is 
0.001, however the dropout rate for LSTM is 0.20 (to prevent over-
fitting) while the rest of the other network parameters are the same as 
that of NN and CNN. In regard to the random forest as shown in Fig. 10, 
randomised search technique using RandomisedSearchCV with 
n_iter= 50, cv= 5, verbose= 2, n_jobs= −1, scoring= 'f1_weighted', 
and random_state= 42 are considered for hyperparameters. 

Following the recommendations from the literature review, the 
dataset generated by MoveNet Thunder was firstly utilised for com-
paring these machine learning algorithms. At the beginning, the entire 
dataset was imported into the application, and a standard sliding 
window with a window size of 10 was applied to further augment the 
feature set. The choice of a window size of 10 was made to capture 
temporal patterns in the gait data, which helps in better understanding 
the dynamics of movement over a short sequence of frames. Next, the 
data was pre-processed using encoding and scaling techniques before 
being split into training and testing sets. Each of the eight machine 
learning algorithms was then used to train models on the prepared data, 
followed by an evaluation of their performance. All generated models 
were evaluated using standard machine learning metrics: accuracy, 
precision, recall, F1 score, and the confusion matrix. These metrics are 
widely recognised for assessing the performance of machine learning 
models. In addition to these metrics, the time taken for prediction of 
each model was also considered to assess the processing speed of the 
models. This comprehensive evaluation approach ensured that both the 
accuracy and efficiency of the models were thoroughly analysed. 

Finally, the test programme was created and executed as a node in 

the ROS environment on Linux. First, a data processing node was im-
plemented using code consistent with the data preprocessing and da-
taset generation steps, employing the highest-scoring MoveNet model 
to generate datasets from the test video files while omitting the label 
column. This process simulates how a care robot would extract data 
from the footage captured by its camera. Next, an identity recognition 
node was activated, which called the dataset file and applied the 
highest-scoring machine learning model. The same data preprocessing 
steps used during the training phase were employed to predict and 
output the identity and associated probabilities for each data entry. This 
mimicked the process of a care robot identifying a user. The accuracy 
and potential issues of the model were then assessed by comparing the 
predicted results and their associated probabilities. This evaluation was 
crucial for determining the feasibility and effectiveness of the proposed 
solution in real-world applications. 

3. Results and analysis 

The gait dataset in this study comprised 10 adults between the ages 
of 20 and 30, with an equal distribution of five biological females and 
five biological males. The gait videos varied in duration, with the fastest 
participant taking approximately four seconds to walk from point A to 
point B, and the slowest participant taking around eight seconds. Using 
the sliding window method, these videos generated a total of 135,873 
data points, averaging 13,587 data points per participant and the data 
distribution of the participants are shown in Fig. 11. The participant 
with the least amount of data contributed 10,356 data points, while the 
one with the most contributed 17,956. 

MoveNet offers six models for joint point data extraction for a single 
person: MoveNet lightning (MoveNet lightning int8, MoveNet lightning 

Fig. 5. Proposed MoveNet Dataset Generation Flow Diagram.  

Fig. 6. The NN Framework used for the Proposed System.  

R. Zhang, S. Keishing, J. Marchang et al.                                                                                                                                   Intelligent Sports and Health 1 (2025) 160–178 

167 



f16), MoveNet thunder (MoveNet thunder int8, and MoveNet thunder 
f16). According to MoveNet's official performance table, of the four 
models listed in Table 1, the Lightning int8 model is the smallest in size 
and operates the fastest, while the Thunder f16 model is the largest in 
size and operates the slowest. Although official performance values for 
the Lightning Standard and Thunder Standard models are not provided, 
it is reasonable to assume that the Lightning Standard model is the 
smallest and fastest overall, while the Thunder Standard model int8 has 
a size larger than the Lightning f16 but smaller than the Thunder f16, 
with a speed slower than the Lightning f16 but faster than the Thunder 
f16. 

To evaluate the performance of datasets generated by different 
MoveNet models, the same Neural Network model is used for training 
and assessing each dataset with 50 epochs. The results from the neural 
network model revealed that in terms of evaluation time, the Lightning 
model had the longest prediction time at 1.06 s as shown in Table 2. 
The Lightning f16 model, with a prediction time of 0.96 s, was the 

fastest among the Lightning series. The Lightning int8 model was only 
0.04 s faster than the Lightning model, while the remaining three 
models had similar prediction times. When examining the metrics of 
accuracy, precision, recall, and F1 score, all models yielded identical 
results when rounded to four decimal places. Even the unrounded 
metrics showed only slight differences. Considering these four metrics 
as a whole, the Lightning f16 and Thunder models demonstrated the 
highest performance, both achieving scores of 99.9%. Following closely 
were Lightning, Thunder int8, and Thunder f16 models, each with 
metrics hovering around 99.8%, with minimal differences between 
them. The Lightning int8 model, however, had the lowest scores across 
all metrics, at 99.64%, showing a 0.36% difference compared to the 
highest-performing models. 

Additionally, confusion matrix heatmaps were generated for the 
evaluation results of the neural network models trained on datasets 
produced by different MoveNet models. Due to the large number of 
heatmaps, only the confusion matrix heatmaps for the highest-scoring 

Fig. 7. The CNN Framework used for the Proposed System.  

Fig. 8. The RNN Framework used for the Proposed System.  
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models, Lightning f16 and Thunder, are presented in Fig. 12 and Fig. 13 
respectively. These two models show some differences in accuracy 
when classifying different users. Firstly, the recognition accuracy for all 
users is very close for both the Lightning f16 and Thunder models, with 
both achieving over 99.68% accuracy. However, the accuracy variance 
among different users is more pronounced with the Thunder model, 
where the lowest accuracy is 99.68% and the highest is 100%. In 

contrast, the Lightning f16 model shows a smaller range between the 
lowest and highest accuracies, with a difference of 0.29%. Although 
Thunder has a slightly higher average accuracy at 99.9%, compared to 
99.895% for Lightning f16, the two models exhibit nearly identical 
accuracy rates when classifying the same users, with differences typi-
cally below 0.1%. Only two users showed larger discrepancies, with 
accuracy differences of 0.13% and 0.32%. In the first case, Thunder 
achieved higher accuracy, while in the second case, Lightning f16 
outperformed Thunder. 

3.1. Machine learning models 

Ss In the machine learning model evaluation phase, the dataset 
generated using MoveNet Thunder was employed to train and evaluate 
all the machine learning models. The evaluation process involved cal-
culating prediction time, accuracy, precision, recall, F1 score, and 
plotting the confusion matrix. In this part, all the neural network 
models were trained with 10 epochs. Among all the machine learning 
models, the shortest prediction times were achieved by Random Forest, 
SVM, Naive Bayes, and NN, all of which completed the predictions in 
under 1.5 s as shown in Table 3. KNN, CNN, and RNN also performed 
the predictions in less than 30 s, while LSTM was the slowest, taking 
around 68 s. In terms of accuracy, precision, recall, and F1 score, the 
differences of them across most models were relatively small, generally 
within a 2% range. However, SVM stood out as the model with the 
lowest performance, with an F1 score of only 13.23%. It also exhibited 
the largest disparity among the four metrics. The four best-performing 
models—Random Forest, KNN, NN, and CNN—achieved nearly 

Fig. 9. The LSTM Framework used for the Proposed System.  

Fig. 10. The Random Forest Architecture Framework used for the Proposed 
System. 

Fig. 11. The Users’ data volume Distributions.  

R. Zhang, S. Keishing, J. Marchang et al.                                                                                                                                   Intelligent Sports and Health 1 (2025) 160–178 

169 



identical scores across all four categories. Random Forest emerged as 
the top performer with a highest F1 score of 99.93%, followed by CNN 
and NN with scores of 99.89% and 99.86%, respectively. Despite being 
the most complex model, LSTM yielded only moderate performance, 
with an F1 score of 89.41% and an accuracy of 89.67%. 

The Random Forest model accurately identified 4 users with 100% 
precision, with an additional 4 users achieving accuracy rates exceeding 
99.9%, and the lowest accuracy recorded at 99.78% and the confusion 
matrix of the features are shown in Fig. 14. In contrast, the KNN model 
did not achieve 100% accuracy for any user; its recognition accuracy 
generally ranged between 99.7% and 99.8%, with only one user ex-
ceeding 99.9%. KNN’s confusion matrix is highlighted in Fig. 15. While  
Fig. 16 and Fig. 17 represents the confusion matrixes of NN and CNN 
respectively. The NN model, while achieving accuracy rates of 99.9% or 
higher for five users, did not reach 100% accuracy for any user. Aside 
from one user with a minimum accuracy of 99.54%, all other users were 
recognised with accuracy rates of 99.75% or above. The CNN model, on 
the other hand, accurately identified two users with 100% precision 
and three users with accuracy rates above 99.9%, with the lowest ac-
curacy still reaching 99.72%. 

For providing a more intuitive comparison, this study conducted 
further training on the two best-performing neural network models, 
namely the NN and CNN models as shown in Fig. 18 (NN model with up 
to 50 epochs), Fig. 19 (CNN model with up to 50 epoch), Fig. 20 (NN 
with no sliding window) and Fig. 21 (CNN without sliding window with 
only 10 epoch due to quick saturation) and evaluating them after 50 
epochs of training. Additionally, the learning curve of the NN model 
was closely examined. The performance of the NN model aligned with 
the data provided in the MoveNet evaluation section. Compared to its 
performance at 10 epochs, the NN model's prediction time increased by 
only 0.02 s after 50 epochs. The learning curve demonstrated that the 
NN model's training accuracy rapidly improved during the initial 0–10 
epochs, after which it gradually increased from 99.86% to 99.9% be-
tween epochs 10 and 50, with minimal growth observed between 
epochs 32 and 50. 

In contrast, after 50 epochs of training, the accuracy of the CNN 
model decreases to 99.68%, falling short of the accuracy achieved by 
the KNN model. Analysis of the learning curve reveals a pattern similar 
to that observed in the training accuracy curve of the NN model, where 
both models exhibit a rapid increase in accuracy during the initial 0–10 
epochs, followed by a deceleration in the rate of improvement. 
However, the validation accuracy of the CNN model demonstrates 
greater instability and consistently remains lower than its training ac-
curacy. 

Subsequently, the three highest-performing machine learning 
models—Random Forest, NN, and CNN—were retrained and re-eval-
uated without the inclusion of sliding windows. During this process, the 
NN model was trained using the optimal 50 epochs, while the CNN 
model was trained using the most effective 10 epochs. 

For the Random Forest model, the exclusion of sliding windows 
resulted in a reduction of 0.2 s in prediction time. However, its accuracy 
decreased to 99.86%. After the exclusion of sliding windows, the ac-
curacy and other performance metrics of the NN model experienced a 
slight decline, decreasing to 99.82%. Nevertheless, the validation ac-
curacy depicted in the learning curve exhibited greater stability. 
Furthermore, in comparison to the version that utilised sliding win-
dows, the validation accuracy was relatively closer to the training ac-
curacy. 

Following the exclusion of sliding windows, the accuracy and other 
performance metrics of the CNN model declined to 99.53%. However, 
its learning curve also showed improvement, with the validation ac-
curacy demonstrating a generally stable upward trend. The perfor-
mance ranking of these three models underwent some changes fol-
lowing the exclusion of sliding windows: Random Forest remained the 
top performer, followed by NN, with CNN ranking last. 

In the final ROS environment testing, two MoveNet 
models—MoveNet Lightning f16 and MoveNet Thunder—were utilised, 
alongside three machine learning models: Neural Network, CNN, and 
Random Forest. Each of these machine learning models was tested in 
two versions: one using a sliding window and one without. Each model 
was tested in combination with both MoveNet models, resulting in a 
total of 12 tested models. The testing dataset comprised data from four 
authenticated users and one unauthenticated user, with the amount of 
data across users being roughly equal. 

The Random Forest models were the first to be eliminated. Although 
all Random Forest models correctly identified the unauthenticated user 
in 19%−22% of the datasets, they only succeeded in recognising one of 
the authenticated users. Among the remaining eight models, the fastest 
prediction time was achieved by the CNN model using the MoveNet 
Thunder dataset, completing the prediction for all data in just 0.71 s. 
The next fastest was the CNN model using the MoveNet Thunder da-
taset with an added sliding window, which took 0.74 s. This was fol-
lowed by two CNN models—one using Thunder and the other using 
Lightning f16 without applying a sliding window—both of which 
completed their predictions in under 1 s. In terms of accuracy, the best- 
performing model was the Neural Network (NN) without a sliding 
window using the Thunder dataset. This model correctly classified 
19.59% of unauthenticated users and identified a higher percentage of 

Table 1 
MoveNet models performance [29].        

Model Size mAP Latency (Second) 

Pixel 5 – CPU 4 threads Pixel 5 - GPU Raspberry Pi 4 – CPU 4 threads  

MoveNet.Thunder (f16 Quantised) 12.6MB  72.0  0.155  0.045  0.594 
MoveNet.Thunder (int8 Quantised) 7.1MB  68.9  0.100  0.052  0.251 
MoveNet.Lightning (f16 Quantised) 4.8MB  63.0  0.060  0.025  0.186 
MoveNet.Lightning (int8 Quantised) 2.9MB  57.4  0.052  0.028  0.095 

Table 2 
MoveNet models performance with Neural network (NN).        

Model (MoveNet) Prediction Time ( Second) Accuracy Precision Recall F1 Score  

Lightning  1.060  99.88%  99.88%  99.88%  99.88% 
Lightning int8  1.020  99.64%  99.64%  99.64%  99.64% 
Lightning f16  0.960  99.90%  99.90%  99.90%  99.90% 
Thunder  0.980  99.90%  99.90%  99.90%  99.90% 
Thunder int8  0.980  99.80%  99.80%  99.80%  99.80% 
Thunder f16  0.990  99.89%  99.89%  99.89%  99.89% 
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the four authenticated users, ranging between 14% and 19%. The next 
best was the CNN model without a sliding window using the Lightning 
f16 dataset. Although it identified 21.69% of unauthenticated users, it 
also recognised five authenticated users, with four of these users having 
relatively high identification percentages, ranging from 14% to 22%. 
The CNN model using Thunder, despite classifying 42.69% of users as 
unauthenticated, identified four authenticated users with significantly 
higher proportions, ranging from 15% to 19%. Other models that 

successfully identified four users with similarly high proportions were 
the CNN model without a sliding window using Thunder and the two 
CNN models using Lightning f16. 

4. Discussion 

In this study, the training and testing data are collected from young 
and healthy group of people and not from the elderly section of the 

Fig. 12. MoveNet Lightning F16 model confusion matrix heatmap using NN.  

Fig. 13. MoveNet Thunder model confusion matrix heatmap using NN.  
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society. The aim is to study if our body movement data can be used to 
verify user’s identity. So, it does not matter if the movement data was 
generated from young adults or elderly people for the study. The study 
has proven that movement data of people are unique, and they can be 
used as a method for user verification. This study paved a way for non- 
intrusive way of data collection for user verification. In the field of 
biometric verification process, most of the time, the user had to directly 
provide the biometric data to the reader (e.g. fingerprint) or follow 
guidelines to scan biometric data (e.g. scan the retina or face in front of 
the camera) or transmit the biometric data (e.g. heart rate variability 
data or gait data through smart wearable) etc. However, in this study, 
the person must simply walk and the camera in front captures the 
movement data and analyse the 17 data points of the body along with 
the distances of each data points to verify the user identity. It means 
that, you can freely walk in a normal pace without any restrictions. The 
17 data points of the MoveNet are flexible in terms of collection and it 
doesn’t matter if the user walk towards the camera by facing the camera 
or walk away from the camera by facing the face away from the camera 
e.g. the eyes, nose, ears and other data points of the body are estimated 
at a right positions of the body by the MoveNet irrespective of the 
person facing towards camera or away from the camera as shown in  
Fig. 22. Such a verification system is robust, flexible and easy to adopt. 
It doesn’t require remembering (e.g. like password and passcode) or 
carrying (e.g. swipe card) or following any strict guidelines during 
biometric data provision process (e.g. scanning fingerprint or looking 
into the camera for face detection and recognition) etc. Thus, such a 
verification system will of great use for the elderly people because it 
doesn’t involve remembering passcodes or carrying IDs or cards for 
verification, it is non-invasive, doesn’t need wearables or sensors, or 
active user input. Therefore, such a verification system will be of great 
value not only for user verification but for continuous monitoring of the 
elderly users e.g. in care homes, hospitals, homes, etc. 

In this study, data is collected with a fixed camera as participants 
walk toward it. However, in real-world settings, varying camera angles 
can cause inconsistencies in capturing the 17 key body movement data 
points. These variations may reduce data accuracy and reliability, po-
tentially affecting the effectiveness of identity verification. Unstable or 
shifting viewpoints could lead to errors in recognising movement pat-
terns essential for verifying users. Therefore, maintaining a consistent 
camera angle is crucial for accurate data collection and model perfor-
mance. This highlights a key challenge in translating controlled 

experimental setups to practical, real-life applications in user verifica-
tion systems. The following section of the discussion focuses on the 
performance of the models used in the movement analysis for user 
verification. 

The performance evaluation of the different MoveNet models in this 
study generally aligns with the official data. The MoveNet Thunder 
series models demonstrated higher overall accuracy compared to the 
MoveNet Lightning series. However, the Lightning series exhibited 
longer prediction times than the Thunder series. This discrepancy may 
be attributed to the lower precision of the datasets generated by the 
Lightning series, which could have necessitated additional prediction 
time for the models. MoveNet is primarily designed for pose estimation 
and classification, without specific adaptation for identity verification. 
This may explain why the performance of the Lightning series models 
fell below the expected benchmarks. The MoveNet Thunder model's 
performance aligns with the conclusions drawn from the literature. In 
most literatures, the researchers addressed that it is consistently re-
cognised as the best-performing model, particularly well-suited for in-
tegration with machine learning algorithms. This study confirms the 
MoveNet Thunder model's superiority in generating high-precision da-
tasets. However, contrary to some previous research, the MoveNet 
Lightning f16 model demonstrated comparable performance with the 
added advantage of a shorter prediction time compared to the Thunder 
series. Although this finding deviates from conventional expectations, it 
may be due to the Lightning f16 model's optimisation for computational 
efficiency in lower-resolution environments. While the MoveNet 
Thunder series typically excels in accuracy, the other two Thunder 
models underperformed relative to the Lightning f16 when processing 
lower-quality video data. This inconsistency might stem from the 
Thunder models being optimised for high-quality video inputs, whereas 
the Lightning series models are better equipped to handle lower-re-
solution or noisier inputs. The Lightning f16 model, in particular, 
proved to be well-suited to the scale and accuracy requirements of this 
study's application scenario. Consequently, both the lightweight 
MoveNet Thunder from the Thunder series and the highly accurate 
MoveNet Lightning f16 from the Lightning series demonstrated strong 
performance and efficiency. 

In terms of prediction time, the performance of the machine 
learning models generally corresponded with their algorithmic com-
plexity. Simpler models like SVM, Naive Bayes, and NN had the shortest 
prediction times, while the most complex model, LSTM, took the 

Table 3 
Machine learning models performance with Thunder model.        

Model Prediction Time (Second) Accuracy Precision Recall F1 Score  

SVM  00.790  21.73%  16.29%  21.73%  13.23% 
Random Forest  00.800  99.93%  99.93%  99.93%  99.93% 
KNN  15.380  99.74%  99.74%  99.74%  99.74% 
Naïve Bayes  01.420  77.95%  79.83%  77.95%  77.24% 
NN  00.950  99.86%  99.86%  99.86%  99.86% 
CNN  25.000  99.89%  99.89%  99.89%  99.89% 
RNN  30.030  93.18%  93.25%  93.18%  93.16% 
LSTM  67.870  89.60%  89.60%  89.67%  89.41% 

Table 4 
Machine learning models performance in testing stage.                

Model MoveNet Time (Second) Unauthenticated in %  

NN Lightning f16  3.657  8.49  10.77  2.22  3.00  15.13  1.36  19.53  4.11  17.72  20.64  5.53 
NN - NoSW Lightning f16  1.415  21.69  11.53  1.09  6.65  22.71  0.41  14.67  6.69  15.24  15.10  5.91 
CNN Lightning f16  1.697  0.49  22.92  4.15  6.04  6.95  2.61  18.27  2.90  15.05  9.09  12.02 
CNN NoSW Lightning f16  0.887  51.50  24.93  0.03  0.03  5.48  1.46  20.76  4.97  15.82  9.60  10.98 
NN Thunder  0.815  6.70  6.47  2.57  2.45  13.83  10.32  25.26  3.91  14.61  8.82  11.76 
NN - NoSW Thunder  0.891  19.59  15.43  0.78  8.31  14.38  7.96  19.12  3.43  17.83  5.79  6.98 
CNN Thunder  0.736  42.69  7.24  2.16  4.91  15.19  4.17  19.14  4.97  15.83  19.65  8.74 
CNN NoSW Thunder  0.709  51.87  11.39  2.15  4.55  7.49  14.59  23.12  3.32  17.38  7.24  8.76 
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longest. Interestingly, the prediction time for the simpler KNN model 
was relatively long, whereas the more complex Random Forest model 
had the second-shortest prediction time. This difference is likely due to 
the inherent workings of these models. KNN requires minimal compu-
tation during the training phase, as it primarily involves storing the 
training data, but during the evaluation phase, it needs to compute the 
distance between all test samples and the training data, which becomes 
time-consuming with high-dimensional datasets [22]. In contrast, 
Random Forest builds its decision tree structures during training, 

allowing it to make predictions quickly by parallel processing the de-
cision trees during evaluation [25]. Similarly, the simpler SVM and 
Naive Bayes models also exhibited lower performance in terms of ac-
curacy, while the more complex models generally achieved higher 
scores. However, KNN, despite its simplicity, demonstrated relatively 
good accuracy. This aligns with findings in the literature review, where 
KNN was frequently used in gait recognition research. KNN’s method of 
classifying by calculating the distance between prediction data and 
training data might be particularly well-suited to gait data, where each 

Fig. 14. Random forest model confusion matrix heatmap with thunder.  

Fig. 15. KNN model confusion matrix heatmap with thunder.  
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individual's gait and body distance data are unique, making the dif-
ferences in distances more pronounced and leading to better perfor-
mance compared to some complex models. 

Interestingly, Random Forest, which was not commonly used in the 
literature reviewed, outperformed other models in terms of accuracy 
during both training and evaluation phases. This may be due to the 
model's capacity to process high-dimensional data effectively and its 
resilience in dealing with noise, which could account for its high 

accuracy [25]. However, since Random Forest is relatively a "black box" 
algorithm, further research would be necessary to fully understand why 
it achieved the highest accuracy. Following Random Forest, the CNN 
and NN models performed well, which corroborates their frequent use 
in related studies, highlighting their suitability for applications like gait 
recognition. In this study, the gait and body distance data were input as 
a series of static frames, with the dataset emphasising spatial features, 
making NN and CNN particularly applicable. On the other hand, more 

Fig. 16. NN model confusion matrix heatmap with thunder.  

Fig. 17. CNN model confusion matrix heatmap with thunder.  
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complex models like RNN and LSTM exhibited lower accuracy, possibly 
because these models are designed to capture temporal features, 
making them more effective for datasets with dynamic temporal char-
acteristics. If the dataset had emphasised the temporal variations in gait 

and body distance data, these models might have performed better. 
After increasing the number of training epochs, the accuracy of the NN 
model improved, while the accuracy of the CNN model decreased. This 
could be due to the CNN's more complex structure, which might have 
overfitted to the relatively simple dataset, leading to a decline in ac-
curacy after too many training cycles [24]. In contrast, the simpler NN 
model benefited from additional training, becoming more adept at 
identifying features and improving its accuracy. The learning curves for 
both models revealed significant fluctuations in validation accuracy, 
with less alignment with the training accuracy, suggesting potential 
overfitting. The dataset in this study had relatively few labels but many 
features, and the application of a sliding window may have exacerbated 
the discrepancy between the number of labels and features [13]. When 
the sliding window was removed, the accuracy of all three models de-
creased, likely due to the significant reduction in sample size. However, 
the validation accuracy curves in the learning curves of the NN and 
CNN models became noticeably smoother and more closely aligned 
with the training accuracy curves. This suggests that removing the 
sliding window might have effectively mitigated the issue of data 
overfitting. 

During the validation phase, an unexpected issue arose: while the 
Random Forest model was reasonably accurate in identifying un-
authorised users, it mistakenly classified all authorised users as the 
same individual. This suggests that the Random Forest model may not 
be well-suited for gait recognition, although a more detailed analysis is 
required to confirm the underlying reasons for this outcome. The best 
performance was achieved by the NN model without a sliding window, 
using the Thunder dataset, which is consistent with earlier analyses. 
The Thunder-based model outperformed the Lightning f16 version in 
terms of accuracy and prediction speed. This might be attributed to 
Thunder providing a more precise dataset, resulting in faster prediction 
times. On average, models using the Thunder dataset predicted faster 
than those using Lightning f16, solidifying MoveNet Thunder as the 
most suitable MoveNet model for this study. Furthermore, the NN 
model, which avoided overfitting and had a simpler structure, proved 
more adept at gait and body distance recognition, offering higher pre-
diction speeds and the highest accuracy rates. The NN model without a 
sliding window, using Lightning f16, yielded the second most accurate 
results, reinforcing NN as the most suitable machine learning algorithm 
for this study. However, the CNN model with a sliding window gen-
erally outperformed the NN model with a sliding window, and the CNN 
model without a sliding window performed better than its sliding 
window counterpart. This indirectly highlights CNN's potential for ap-
plication in this study. With a larger dataset and more optimised CNN 

Fig. 18. NN model 50 epochs learning curve with thunder.  

Fig. 19. CNN model 50 epochs learning curve with thunder.  

Fig. 20. NN model 50 epochs without sliding window learning curve with 
thunder. 

Fig. 21. CNN model 10 epochs without sliding window learning curve with 
thunder. 
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model construction, CNN could potentially demonstrate even higher per-
formance. Overall, the accuracy demonstrated by the Thunder-based NN 
model without a sliding window in identity recognition is sufficient to 
confirm that MoveNet can indeed be utilised for gait and distance re-
cognition as a viable continuous authentication solution for care robots. 

5. Future direction and conclusion 

The study highlights the potential of using MoveNet for gait re-
cognition in continuous authentication for care robots and outlines 
several future research directions:  

1. Multi-Factor Authentication: Combining gait recognition with other 
biometric technologies (e.g., facial and voice recognition) could 
enhance accuracy and security in user identification for care robots.  

2. Exploring Other Pose Estimation Models: Testing alternatives like 
OpenPose, PoseNet, and BlazePose may lead to more effective 
identity verification solutions. This could also drive the develop-
ment of healthcare-specific pose estimation models.  

3. Enhancing Auxiliary Functions: Expanding the system to recognize 
attributes like gender or age could improve user categorization, 
ensure privacy, and enable personalized care plans.  

4. Broader Applications: Leveraging pose estimation models for tasks 
beyond user identification—such as posture recognition, emergency 
monitoring, and real-time assistance—could improve daily care and 
safety. Integration with existing algorithms could reduce costs and 
enhance robot usability. 

This study explores the feasibility of using MoveNet, a pose esti-
mation tool, for continuous user authentication in care robots through 
gait and body points distances recognition. Key achievements include 
evaluating different MoveNet models, collecting gait data, applying 
machine learning algorithms, and testing in a ROS (Robot Operating 
System) environment. Key Findings:  

a) MoveNet Models: The Thunder and Lightning f16 models performed 
best in generating datasets for user identification.  

b) Machine Learning: Neural networks, particularly CNNs, showed 
potential in recognizing gait and body distance features for au-
thentication.  

c) Impact: This system can enhance care robots' security and usability, 
especially for elderly and vulnerable users. 

The study demonstrates MoveNet's capability for non-intrusive, 
continuous user verification. Addresses a gap in research on using pose 
estimation for gait recognition. Highlights the integration potential of 
MoveNet into broader care robot functionalities. However, it has lim-
itations on the testing Environment (Conducted under controlled con-
ditions) and algorithm Scope (Limited real-time video stream and ad-
vanced ML development). So, in the future a further work to include 
and incorporate diverse participants and realistic environments, expand 
to multi-factor authentication, experiment with other pose estimation 
models and further integrate authentication with care robots' overall 
functionality. Thus, the study underscores the promise of MoveNet for 
secure, seamless interaction in care robots, contributing to advance-
ments in robotics and other domains requiring continuous, non-in-
trusive user verification. 
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