
A meta-reinforcement learning method for adaptive
payload transportation with variations

CHEN, Jingyu <http://orcid.org/0000-0001-7083-0948>, MA, Ruidong, XU,
Meng, CANDAN, Fethi <http://orcid.org/0000-0002-0803-610X>, MIHAYLOVA,
Lyudmila and OYEKAN, John <http://orcid.org/0000-0001-6578-9928>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/35948/

This document is the Accepted Version [AM]

Citation:

CHEN, Jingyu, MA, Ruidong, XU, Meng, CANDAN, Fethi, MIHAYLOVA, Lyudmila
and OYEKAN, John (2025). A meta-reinforcement learning method for adaptive
payload transportation with variations. Neurocomputing, 638: 130032. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

This is a repository copy of A meta-reinforcement learning method for adaptive payload
transportation with variations.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/224499/

Version: Accepted Version

Article:

Chen, J., Ma, R., Xu, M. et al. (3 more authors) (2025) A meta-reinforcement learning
method for adaptive payload transportation with variations. Neurocomputing, 638. 130032.
ISSN 0925-2312

https://doi.org/10.1016/j.neucom.2025.130032

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A Meta-reinforcement Learning Method for Adaptive Payload Transportation with

Variations

Jingyu Chena,1,∗, Ruidong Mab, Meng Xuc, Fethi Candanb, Lyudmila Mihaylovab, John Oyekand

aInstitute of Software, Chinese Academy of Sciences, Beijing, China
bDepartment of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, United Kingdom

cSchool of Information Technology & Management, University of International Business and Economics, Beijing, China
dDepartment of Computer Science, University of York, York, United Kingdom

Abstract

The safe transport of cable-suspended payloads by a group of Unmanned Aerial Vehicles (UAVs) depends on their capacity to

effectively respond to fluctuations in the dynamics caused by external variations, such as wind gusts. For group transportation

with obstacles, internal variations, such as changes in formation, can also alter the space occupancy of the system related to

collision detection. However, traditional adaptive learning methods are challenging to adapt to these two variations. In this paper,

we present a learning-based method for collision-free dual-UAV-payload transportation in the presence of varied wind force and

formation change. It consists of an adaptive trajectory tracking controller based on meta-model-based reinforcement learning

with online adaptation and a novel correction policy, and a path planner that can sample collision-free goal states of the system

for the controller based on the meta-collision predictor. The simulation results demonstrate that the proposed trajectory tracking

controller outperforms state-of-the-art model-free, model-based, and variational inference methods in terms of payload tracking

error reduction and robustness when dealing with the variations mentioned above. Specifically, the proposed controller reduces the

average payload tracking error to less than 0.1 metres in most tasks without obstacles. Furthermore, by following the adapted paths

generated by the path planner, the trajectory tracking controller can effectively track the payload while ensuring collision-free safety

of the dual-UAV-payload system during navigation among obstacles. The success rate of the proposed method is more than 80% in

all scenarios with obstacles. Our project website can be seen at https://sites.google.com/view/meta-payload-fly/ and

the source code is available at https://github.com/wawachen/Meta-load-fly.

Keywords: Reinforcement learning, Meta-learning, Cooperative transportation, Trajectory tracking, Path planning

1. Introduction

In the last few decades, the transportation of cable-suspended

payloads by multiple UAVs has been well investigated. Tak-

ing into account the coupled dynamic effects resulting from

the interaction between a multi - UAV system and a slung

load, previous literature has endeavored to tackle this chal-

lenge through various methods. Some studies adopted a decen-

tralised leader - follower approach [1]. Others have attempted

to address it by applying a full dynamics model on a nonlin-

ear manifold [2]. Additionally, [3][4] explored the utilization

of swarm behaviours to deal with this problem. However, these

approaches rely heavily on expert knowledge regarding the un-

derlying physics of the system. Recently, researchers have in-

creasingly focused on applying model-free reinforcement learn-

ing (MFRL) [5] to realise various robotics tasks such as flight

control [6], navigation [7] [8], hovering [9], landing [10][11].

∗Corresponding author

Email addresses: chenjingyu@iscas.ac.cn (Jingyu Chen),

rma17@sheffield.ac.uk (Ruidong Ma), xumeng@uibe.edu.cn (Meng

Xu), fcandan@uidaho.edu (Fethi Candan),

l.s.mihaylova@sheffield.ac.uk (Lyudmila Mihaylova),

john.oyekan@york.ac.uk (John Oyekan)

In MFRL methods, an explicit model is not required. In-

stead, the optimal policy is learned through extensive inter-

actions with the environment. The applications of MFRL on

cable-suspended transportation has been explored in [12][13].

However, model-free RL methods suffer from low data effi-

ciency and high costs, and they may encounter potential risks

during exploration. On the other hand, model-based reinforce-

ment learning (MBRL), that make use of deep learning [14]

to generate a black-box dynamics model, has found exten-

sive applications in creating data-driven dynamics models for

small legged robots [15], robot arms [16], helicopters [17] and

quadrotors [18][19]. The data-driven methods for system iden-

tification are useful when domain knowledge is scarce or de-

riving system equations is hard. In cooperative payload trans-

portation, the system has highly non-linear and coupling fea-

tures, making precise mathematical modeling very challenging.

Moreover, the cooperation among UAVs requires effective co-

ordination, highlighting the utility of data-driven methods for

this task.

The UAVs involved in payload transportation are often sub-

jected to disturbances such as wind gusts, especially in outdoor

environments. These wind gusts are often unpredictable and

as a result, a non-adaptive controller would not be able to ad-

Preprint submitted to Neurocomputing February 26, 2025

Figure 1: Showing the considered variations wind gust force (Fwind) and the

distance (L) between individuals during payload transportation in this work.

Both variations result in changes to the dynamics and space occupancy of the

cooperative UAV-payload system.

just their parameters to account for such unpredictable changes.

Furthermore, in a dual-UAV-payload system, the distances be-

tween the individual UAVs have an impact on the system dy-

namics [20]. As a result, both the wind gusts and the distance

between the individual UAVs need to be considered in the task

of payload transportation as shown in Fig.1.

In order to address these variations, traditional controllers

have been focused on identifying the unmodeled dynamics of

the system [21][22]. In addition to the dynamics model, the

aforementioned variations also affect the space occupancy of

the UAV-payload system. This is related to collision detec-

tion when planning a navigable path in an environment with

obstacles. In this case, incorrect collision constraints can pose

a threat to the system. Towards solving this, MFRL methods of-

ten adopt the strategy of online searching for collision-free tra-

jectories by massive interactions with the environment [23][24].

In MBRL, an uncertainty collision predictor was learned to es-

timate the risk and penalise the sampling of actions that lead

to catastrophic states. However, when the space occupancy of

the UAV-payload system is changed by the variations, the com-

plexity of collision avoidance increases significantly.

In this paper, we propose a meta-reinforcement learn-

ing method for adaptive payload transportation with collision

avoidance. The proposed method involves effectively tracking

safe trajectories from a path planner using a trajectory track-

ing controller under variations. To account for different state

distributions caused by variations, we transform the learning

of the dynamics model into a few-shot learning problem. This

allows the neural network-based model to be quickly adapted

to a new scenario using a few context samples. The meta-

dynamics model is first trained by offline human demonstra-

tions using meta-learning. Subsequently, the model is adapted

online in a model-predictive-control (MPC) controller to obtain

the optimal action toward goal states. Finally, the optimal ac-

tion from MPC is fine-tuned by a model-free action correction

policy online for better performance. To guarantee collision-

free transportation, the path planner relies on a self-awareness

collision predictor to create safe trajectories for the UAVs to fol-

low. This predictor uses a neural network to determine whether

a given spatial point is occupied by the robot’s body. As a re-

sult, by querying the spatial points from obstacles, we can eval-

uate whether there are any collisions between the UAV-payload

system and obstacles along the sampled trajectories generated

by the rapidly-exploring random tree (RRT) algorithm. This

enables us to avoid unsafe trajectories during the sampling of

collision-free paths.

Specifically, our key contributions include:

• Proposing a design using a virtual leader for meta-model-

based reinforcement learning training with offline hu-

man demonstrations in dual-UAV-payload systems. This

enables online adaptation of the learned meta-dynamics

model for the trajectory tracking of both UAVs and the

payload;

• Incorporating a model-free action correction policy into

meta-model-based reinforcement learning to enhance tra-

jectory tracking performance by mitigating the impact of

inaccurate meta-models. Towards this, we offer two differ-

ent correction strategies for the payload tracking scenario

and the UAV-payload tracking scenario. Our simulation

results demonstrate that the proposed trajectory tracking

controller outperforms state-of-the-art methods in the rel-

evant field.

• A novel path planner that integrates a meta-collision pre-

dictor with the traditional Rapidly-exploring Random Tree

(RRT) algorithm. The planner samples collision-free goal

states, ensuring high-success-rate collision-free payload

transportation via our trajectory tracking controller.

• Self-modeling of a dual-UAV-payload system and its re-

lation to obstacles for collision detection and avoidance

while participating in cooperative payload transportation.

This is unlike previous literature that focused mainly on

geometrical methods.

The rest of the paper is organised as follows: In Section 2,

we briefly introduce the background of meta-model-based rein-

forcement learning and the applications of obstacle avoidance.

The problem is formulated in Section 3. Then, Section 4 il-

lustrates our proposed method based on an adaptive trajectory

tracking controller and a path planner. The experiment results

and discussions are shown in Section 5 followed by the final

conclusion in Section 6.

2. Related Work

In model-based reinforcement learning (MBRL), both the

transition model of the system and the policy are learned and

optimized to improve decision-making. The transition model is

often approximated by non-parametric methods like Gaussian

Processes (GPs) [32] and neural networks (NN) [33]. However,

traditional MBRL methods can struggle with generalizing to

new tasks due to their reliance on a fixed state distribution as-

sumption. Gradient-based meta-learning [34] has been widely

studied in multi-task learning for classification and regression

problems where it adapts the meta-model into a task-specific

one by several gradient steps. Moreover, meta-learning of the

latent variables [27][35] and embeddings [36] can be quickly

adapted for new tasks by an online inference algorithm using

the maximum likelihood estimation of new samples. However,

it may require intractable probability calculations.

2

Table 1: Comparisons between the latest related works and our proposed method

Research

References
Payload Controller Learning Cooperative Disturbance

Obstacle

avoidance

[25] × model-based RL × × ×

[26] × meta-learning & PID × ×

[27] variational inference × ×

[28] × neural network × ×

[29] MPC × × ×

[30] MPC × ×

[31] model-free RL × ×

Ours model-based RL, meta-learning

In order to address the limitations of MBRL, [15] introduced

a meta-learning approach that requires parallel environments to

collect batch data for the online training of the robot’s meta-

dynamics model. Nevertheless, this is difficult to satisfy espe-

cially when computation power is limited. Parallel training can

be replaced by learning different tasks sequentially [37]. How-

ever, it requires longer training times. Therefore, [26] com-

bined an offline meta model with a PID controller to realise on-

line adaptation. Furthermore, [28] found a wind-invariant basis

function by meta-learning and designed a composite adaptive

law based on it to mitigate the aerodynamic effects. In robotics

tasks, most meta-learning methods focus on building a perfect

dynamics model called regression-oriented methods. The alter-

native approach is the control-oriented method in which meta-

learning is applied in a closed control loop to design an adaptive

controller [38]. In this work, we adopt the architecture of offline

meta-training and online adaptation but focus on the solution

for a MPC controller. Prior literature has noted that reducing

the prediction error of the dynamics model does not necessarily

result in higher rewards for downstream tasks [39]. Therefore,

instead of improving the meta-dynamics model, we aim to in-

corporate a model-free policy to correct the optimal actions pro-

duced by the MPC controller. This enables us to counteract the

bias of the adapted model. In [40], they focused on designing

a corrective policy for a simple PID controller using deep rein-

forcement learning for autonomous UAV landing tasks. How-

ever, they did not consider the variations that might arise from

the environment.

Obstacle avoidance can be achieved by reactive methods like

potential field [41], model predictive control (MPC) [42] and

velocity obstacle [43] which effectively handle constraints and

enable real-time planning. Furthermore, path planning algo-

rithms such as A* [44], rapidly-exploring random tree (RRT)

[45] and probabilistic roadmap [46] can sample optimal paths

that guide robots from a given starting point to a desired goal

while considering collision constraints. The safety problem has

been considered in the model-based RL, especially for some

hazardous tasks like autonomous driving [47] and aerial navi-

gation tasks [48]. These works often pre-train a collision pre-

dictor to avoid visiting catastrophic states when sampling the

actions. In MFRL, adding high-risk experiences into the train-

ing can improve the performance of obstacle avoidance [49].

However, the literature has rarely discussed solutions for situ-

ations where the robot’s space occupancy may change due to

variations in the environment. Therefore, we aim to develop a

collision predictor that can be adaptive to variations in the space

occupancy of the system. The recent progress in neural repre-

sentation learning can reconstruct the signed distance functions

very well through the use of a neural network (NN) with pe-

riodic activation functions [50]. The signed distance function

is often utilised to construct the occupancy map for collision

detection. Taking advantage of the code vector [51], we de-

sign a neural network to predict space occupancy by encoding

the state information of the robot system within the workspace.

This process can be regarded as a self-modelling strategy that

has been utilised in the motion planning of humanoids [52].

The most similar work is [53] where authors proposed a visual

representation of a robot arm in 3D space. However, we fo-

cus on the cooperative UAV-payload system with 2D collision

avoidance. Additionally, [54] developed a reachability estima-

tor to facilitate the RRT method for obstacle avoidance. Their

estimator predicts the travelling time to a state but we focus on

the prediction of the space occupancy.

In order to improve the clarity of contributions, as shown in

Tab.1, we have compared our approach with the current state-

of-the-art research. We focused on aspects such as the con-

troller design, whether the approach is applicable to multiple

drones, its consideration of disturbances, and the effectiveness

of obstacle-avoidance capabilities.

3. Problem definition

According to Fig.1, we formulate variations as vd to be the

distance between two UAVs (neighbour distance) and v f to be

the wind force generated by the static wind gusts in the x axis

of the inertial coordinate system. We generate different tasks by

creating various combinations (v f , vd) from a set S := (v f , vd)

for training and validation. The dynamics and space occupancy

of the dual-UAV payload system differ across tasks. The main

objective of this work is to design a learning-based trajectory

tracking controller that can adapt to varied dynamics models

and a path planner that can adapt to varied space occupancy

of the system during the testing tasks. We discuss this further

as follows:

(1). Adaptation to varied dynamics model: We build the dy-

namics model of a UAV-payload system as s′ = f (s, a) where s

is the full state of the system and a is the action. This model f

can be utilised to predict the future state s′ based on the current

3

s and a. Our goal is to track the payload trajectory by finding a

policy a(t) that enables the payload position pl ∈ s to converge

to its reference goal gl(t) based on f . In an environment with

obstacles, we also consider additional constraints to ensure that

the positions of two UAVs, pu1, pu2 ∈ s, converge to their ref-

erence goals gu1(t) and gu2(t) for UAVs. We assume the system

maintains stability after executing each action. To handle the

variations in system dynamics across different tasks, adapting

f into the task-specific model f ′ is required for downstream

control tasks.

(2). Adaptation to varied space occupancy: The collision

predictor ϕ will assist the rapidly-exploring random tree (RRT)

algorithm in evaluating the safety of sampled goal trajecto-

ries g(t) where gl(t), gu1(t) and gu2(t) ∈ g(t). It is defined as

ŝd = ϕ(x|z), where ϕ takes the spatial point x and the sys-

tem’s goal state z as inputs to output a predicted signed distance

function ŝd, which is utilised to evaluate collisions between the

system and obstacles. To ensure that the collision predictor re-

mains accurate across different tasks, it extracts latent infor-

mation from z to adapt to changes in space occupancy of the

UAV-payload system.

(3). Collision-free UAV-payload trajectory tracking: In this

study, we assume that the information of obstacles is known and

perfectly observed. The obstacles O1:m are modeled as cylin-

ders with infinite height. As a result, the collision constraints

only need to be checked between the dual-UAV-payload system

and obstacles in a 2d x−y plane. The global path Pd of the pay-

load is predefined, and the proposed path planner is required

to re-plan a collision-free path Pdc for two UAVs and payload

while fulfilling the safety constraints under different tasks. Fur-

thermore, the reference goal at time t, g(t) ∈ Pdc. Since we

maintain the orientation of each drone, the UAV-payload sys-

tem operates as an omnidirectional vehicle controlled through

3D position tracking, and no additional motion constraints are

required. In non-obstacle scenarios, only the payload is tracked.

However, in the presence of obstacles, full state tracking for the

UAV-payload system is required. The collision-free policy is

achieved by tracking the sampled trajectories Pdc using a con-

troller with acceptable accuracy.

Figure 2: The design of virtual leader. Left: data collection for the offline meta-

model; Right: Real-time adaptation for tracking the payload and UAVs

4. Methodology

4.1. Reinforcement learning setup

We formulate the problem of the UAV-payload system in a

Markov Decision Process (MDP). This UAV-payload system

is actuated by two hexacopters. Here, we consider the tuple

(S , A, S ′,R, P,H) where S is the current state set; S ′ is the next

state set; R is the reward, P is the transition probability of the

environment and H is the horizon. The current state s ∈ S cap-

tures the full state of the system, s = [pl, pu1, pu2,Ω] where

pl ∈ R
3 is the payload position, pu1 ∈ R

3 and pu2 ∈ R
3 are

the positions of two UAVs respectively. Ω is the Euler an-

gle (roll, pitch, yaw) of the payload. A neural network f is

used to approximate the transition probability P(s′|s, a), also

known as the dynamics model. Two UAVs are commanded

to follow a virtual leader situated between them using a po-

sition controller called Lee controller [55], which maintains

a stable formation for the system. When the position of the

virtual leader is given as pv = [xv, yv, zv] in the inertial co-

ordinate, the position of UAV1 and UAV2 are computed by

pu1 = [xv + L/2, yv, zv] and pu2 = [xv − L/2, yv, zv] where L

is the distance between two UAVs. We define the action a ∈ A

as the relative position change with respect to the virtual leader

where a = [δpx, δpy, δpz]. Thus, the reference goal of the vir-

tual leader is updated by pg = [xv + δpx, yv + δpy, zv + δpz].

As shown in Fig.2, we aim to design a policy to command the

position of the virtual leader pg (red points) to ensure that the

centre mass of the payload (blue point) converges to the de-

sirable payload trajectory (orange ring). In the scenarios with

obstacles, the centre mass of the UAVs (blue point) must con-

verge to the desirable UAV trajectories (yellow and green rings)

because of collision constraints.

4.2. Offline meta training for dynamics model

Model-agnostic meta-learning (MAML) [34] is applied to

train the meta-dynamics model f in an offline fashion. We col-

lect the dataset containing states s and actions a defined in the

last section for various tasks. We use a Xbox 360 controller to

change the position of the reference goal of the virtual leader.

For each time step, the position of the reference goal is changed

within ±0.03m in the 3d axis by the joystick signal. Here, sev-

eral random trajectories over the workspace are sampled by the

open-loop human control without taking the position of the pay-

load into account. For each training task, we collect 2500 data

points every 0.15 seconds during the operation of the human.

For each training task S i=1:n
tr , we divide the whole trajectory

Pi into five sub-paths Pi
0
,Pi

1
,...,Pi

5
. Inspired from [56], each

trajectory τi chosen from Pi is further regarded as a new task

where τi = [sτi
(t), aτi

(t), sτi
(t + 1)]t=1:T . We use past K samples

τi(t − K) to predict the future Q samples τi(t + Q). Thus, the

training dataset consisting of total N trajectories is organised

into samples x and labels y as shown in Eq.(1), where t is cur-

rent timestep in trajectory τi, ∀i∈ [1,N] and ∀ t∈ [1,T]. T is

the total timestep in τi. The change of the state transition is pre-

dicted by the concatenation of the current state and action. All

states and actions are normalised into [0, 1].

xτi
= [sτi

(t), aτi
(t)]

yτi
= sτi

(t + 1) − sτi
(t)

(1)

We consider the meta-learning problem as a n-way-(K + Q)-

shot few-shot learning. The initial meta learner is approx-

imated by a feed-forward neural network fθ with parameter

4

Figure 3: The structure of the neural networks for (1) meta-dynamics model

and (2) actor network of the correction policy. [δpl, δpu1, δpu2, δΩ] is the state

change. [ax
c , a

y
c, a

z
c] is action of the correction policy which is different from the

action [δpx, δpy, δpz] of the MPC policy.

θ. The task loss is defined as the mean squared error Lτi
=

MS E(fθ(xτi
), yτi

). In each task τi, the meta network fθ is firstly

updated by the context K samples τi(t − K) (Eq.(2)).

θ′i = θ − α∇θLτi(t−K)(fθ) (2)

Then, the meta loss across all tasks is minimised by the query

Q samples τi(t + Q)(Eq.(3)).

θ = θ − β∇θ

∑

τi∈P

Lτi(t+Q)(fθ′
i
) (3)

where α and β are the learning rates for each step. We randomly

sample n tasks from the dataset (xτi
, yτi

)i=1:N and organise them

into batch data for the training. As shown in (1) of Fig.3, the

meta-model fθ consists of two hidden layers with 256 nodes

and ReLU activation functions.

4.3. Control with online adaptation

At the online test time, we sample a testing task S
j
te from

the task distribution ρ(S te). This task can be in or out-of-

distribution of the training tasks. The online adaptation follows

the same rule Eq.(2) as the offline training. Here, an adapta-

tion buffer Da is incorporated to store the past trajectories. For

each timestep t, we use the past K samples τi(t − K) from Da

to adapt the meta-model θ obtained from the Section 4.2 into

θa. The adapted dynamics model fθa is utilised in the model

predictive control (MPC) for downstream trajectory tracking

tasks. The optimisation of action sequences sampled by the

cross-entropy method (CEM) depends on the adapted model,

where M populations of actions are sampled over a horizon of

T . The cost function J of each stage k is calculated by Eq.(4)

for non-obstacle scenarios and Eq.(5) for obstacle scenarios,

J(sk, ak) = | p̂k+1
l − gk+1

l | + η|ak |
2 (4)

J(sk, ak) = | p̂k+1
l −gk+1

l |+ | p̂
k+1
u1 −gk+1

u1 |+ | p̂
k+1
u2 −gk+1

u2 |+η|ak |
2 (5)

where p̂k+1
l

, p̂k+1
u1

and p̂k+1
u2

represent the predicted positions of

the payload, UAV1 and UAV2 respectively using fθa . ak is the

current action. gk+1
l

, gk+1
u1

and gk+1
u2

are the corresponding goal

positions of the payload and UAVs provided by the path plan-

ner. η is the penalty coefficient for penalising sampled actions

with large values. The action populations with the lowest costs

will be selected. Only the first action of the optimal action se-

quence will be executed for control. The analytical solution of

the optimal action a∗ of the MPC controller is shown in Eq.6

where st+T is the terminal state.

a∗t = arg min
a

(

t+T−1∑

k=t

J(sk, ak) + J(st+T)) (6)

4.4. Action correction by PPO

In order to further improve tracking performance and over-

come adaptation errors, we propose a correction policy πc to

fine-tune the optimal action a∗ from a MPC controller. An ex-

tra corrective feedback ac generated by πc is incorporated and

the final output action for the position controller is shown in

Eq.7.
a∗t = a∗t + ac (7)

We formulate this online action correction problem in the

new MDP which is independent from the MDP defined in the

Section 4.1. The goal is to find a policy ac = πc(sc) to maximise

the long term cumulative reward J(πc) = Eπc
[
∑∞

t=0 γ
tR(st

c, a
t
c)].

This policy operates independently from the previous MPC pol-

icy. As shown in the block B of Fig.4, it uses different input

states that focus on information specific to the MPC controller.

For the tracking tasks without obstacles, the state of the

correction policy is defined as sc = [Os,O
t
g,O

t−1
g ,Oc,Od] ∈ R24

which consists of current system state Os ∈ R
12, current goal

Ot
g ∈ R

3, past goal Ot−1
g ∈ R3, the corrected action Oc ∈ R

3 and

three-channel tracking error Od ∈ R
3 of the payload.

For the tracking tasks with obstacles, the

state of the correction policy is defined as sc =

[Os,O
t
g,O

t−1
g ,O

t
g1
,Ot

g2
,Oc,Od,Od1,Od2] ∈ R

32 where Ot
g1

and Ot
g2

represent the goals of UAV1 and UAV2, respectively,

and Od1 and Od2 represent the tracking errors of the UAV1

and UAV2. Compared to the non-obstacle scenario, additional

states are included in the observation to enable UAV tracking

for collision detection.

The correction action is a three-dimensional feedback sig-

nal ac = [ax
c , a

y
c, a

z
c] where ax

c , a
y
c and az

c ∈ [−0.1, 0.1] metre.

For non-obstacle scenarios, the reward r ∈ R is defined as the

negative Euclidean distance between the goal position of the

payload and the actual payload position. For obstacle scenar-

ios, the reward function is augmented by adding penalties for

the deviations of the UAVs’ positions. We choose an off-the-

shelf algorithm called proximal policy gradient (PPO) [57] to

train the correction policy. This algorithm is based on the actor-

critic architecture and uses the importance sampling technique

to utilise the previous fixed-length samples from a replay buffer

5

Figure 4: Overview of the proposed system with trajectory tracking and path planning. The grey area represents the offline processes that are involved in training

the meta-dynamics model and the collision-predictor. The white area represents the online processes that are involved in adapting to new situations and correcting

actions in real time

Dc to update the policy. For the actor neural network, the pa-

rameter θc of the policy is directly optimised by the clipped

objective function in Eq.8.

J(θc) = E(st
c ,a

t
c)∼Dc

[min(rt(θc)Ât, clip(rt(θc), 1 − ϵ, 1 + ϵ)Ât) + cS πθc (st
c)]

(8)

Where probability ratio rt(θc) =
π(at

c |s
t
c)

πθold
(at

c |s
t
c)

, ϵ is the hyperparam-

eter, S πθc (st
c) is the entropy of current policy and c is the cor-

responding coefficient. In this work, a generalised advantage

estimation (GAE) At in Eq.9 is used to represent the reward

level.

At = δt + (γλ)δt+1 + ... + (γλ)T−1δt+T−1 =

T−1∑

n=0

(γλ)nδt+n (9)

Where the temporal difference error δ is computed by δt =

γV(st+1) + rt − V(st). For the critic neural network, the value

function is optimised by the mean squared error loss Lv =

MS E(V
target
t − V(st)). The actor and critic networks are com-

posed of two hidden layers with 256 neurons and ReLU ac-

tivation functions (The actor policy is shown in (2) of Fig.3).

The output activation function of the actor is Tanh. During the

training of correction policy, the online adaptation is executed

simultaneously to generate the final action. The detailed archi-

tecture of the proposed method is shown in Fig.4.

4.5. Safe transportation by self-awareness collision-predictor

To avoid collisions, we use a strategy that combines offline

collision-free path planning with online trajectory tracking. The

online trajectory tracking controller, which is based on meta-

reinforcement learning, ensures that the tracking error is small

enough to meet safety constraints under different tasks. The

offline planning is responsible for sampling valid collision-free

trajectories for the system, which are checked by the proposed

Figure 5: The collision predictor actively predicts the space occupancy of the

UAV-payload system from its current state to determine whether the corre-

sponding system state will result in a collision. This process can be regarded as

a self-modelling process. The left scenario depicts a collision scenario where

we can see the penetration (blue area) of an obstacle (red area) into the predicted

system body (green area). The right scenario depicts a collision-free scenario.

collision predictor. Moreover, the collision checking for each

goal state (trajectory) should reveal the true safety constraint

before executing any trajectories in the physical world. As

shown in Fig.5, given the state of a UAV-payload system, the

collision predictor ϕ can predict the space occupancy of the

system, specifically the signed distance function (SDF) of the

system. We define the body of the dual-UAV-payload system

in the 2d x − y plane. The 2D signed distance function (SDF)

value sd ∈ R represents the shortest distance from a spatial

point x ∈ R2 to the body of the system. If any spatial points

x are found to be on or inside the surface of the body of the

system, their SDF value is equal to or less than 0. If the spa-

tial point x is outside the boundary of the body, its SDF value

is larger than 0. Therefore, the SDF value can be used to de-

termine the collision of a spatial point. Theoretically, we try to

6

Figure 6: Overview of the collision predictor

approximate the mapping from a 2D location to its correspond-

ing SDF value ŝd = ϕ(x).

4.5.1. Training of the meta-collision predictor

In order to train the predictor, we build a dataset X :=

[(x, z), sd] where x is the 2D spatial points over the workspace,

z is the current state of the UAV-payload system and sd is the

ground truth SDF value. The additional variable z captures the

change in space occupancy when the system state transitions in

different tasks. As z is a code vector, training of the predictor

can be regarded as meta-learning based on the conditional vec-

tor. We used a top-down Kinect camera to collect point cloud

data (spatial points) of the workspace as well as the correspond-

ing system state. The data collection is performed on different

tasks while the UAV-payload system follows random trajecto-

ries controlled by a human operator. During data collection (as

shown in (b) of Fig.6), the camera is centred at the base position

of the payload. We extract the spatial points xpc of the body of

the system and transform them into the inertial coordinate (see

(c) of Fig.6).

In order to obtain the corresponding label sd, we first merge

all the collected spatial points xpc into a 401×401 2D point grid

Msp within the range of the workspace by a nearest-neighbour

tree search technique. Then, points from the collection called

on-surface points are labelled with the occupancy value of 1 and

the rest points in the grid are called off-surface points with the

occupancy value of 0 ((d) of Fig.6). The last step is to calculate

the shortest normalised pixel distance (SDF) to the surface of

the on-surface points for each point in the grid ((e) of Fig.6).

The prediction function ϕ of SDF on all spatial points in Msp

is approximated by a SIREN neural network [50] ŝd = ϕθ(x|z)

and we minimise the mean square error by Lsd f = MS E(sd, ŝd)

in the supervised learning. We choose z = [p
xy

l
, p

xy

u1
, p

xy

u2
] where

p
xy

l
∈ R2, p

xy

u1
∈ R2 and p

xy

u2
∈ R2 are the 2d xy positions of the

payload, UAV1 and UAV2 respectively (because of the 2D col-

lision constraints). In the training, we randomly sample 1500

data points from all on-surface points and all off-surface points

respectively. The architecture of the predictor is shown in (a) of

Fig.6. As we can see, the spatial points are fed into one hidden

sine layer with 128 neurons, and the state vector is processed

by three sine hidden layers with 128 neurons. Finally, these two

outputs are concatenated followed by three sine hidden layers

with 256 neurons.

4.5.2. Collision-free path sampling

A rapidly-exploring random tree (RRT) is utilised to sample

the collision-free goal states of the system guided by the trained

collision predictor. For offline path planning, as only the pay-

load trajectory Pd is given, we recover the code vector z from

each trajectory of Pd. We conducted empirical experiments in

order to calculate the feasible distance between the payload and

two UAVs in the x and y axes of the inertial coordinate under

different testing tasks. This is done to ensure the hovering sta-

bility of the system. By querying the spatial points Po from the

known obstacles, the collision predictor scans each code vec-

tor z of the payload trajectory Pd. For each code vector z, a

SDF grid occ over all the obstacle points Po is formed. If the

predicted SDF value σ in the grid is larger than the distance

threshold α, its corresponding occupancy is set to 0. Other-

wise, the occupancy is 1. The determination of an unsafe pay-

load trajectory point is made if the sum of occupancy of occ

is larger than the collision threshold τ. After the scan, we find

the unsafe payload trajectory segments l j=1,...,n which will lead

to collisions. Then, the RRT method is employed to plan a

collision-free trajectory lc j
based on the starting point ps and

ending point pe of l j=1,...,n in the 2D x − y plane, while keeping

the position in the z axis of the inertial coordinate constant. The

newly sampled point of the payload will also be recovered to

the code vector z and the collision detection process is similar

to the scanning process. The sampled trajectories of the pay-

load will be saved unless it is detected as a collision-free point

by the predictor ϕ. The corresponding 2D positions of UAVs in

code vector z will also be saved for deriving the full collision-

free trajectory Pdc. The whole process of the collision-free path

planning is shown in Algorithm 1. The derived Pdc is executed

by the proposed trajectory tracking controller to achieve safe

transportation under different tasks.

5. Experiments and Results

5.1. Task description

The simulation environment is built in the Gazebo simulator

with the reinforcement learning toolbox openai ros [58] and

robot operating system (ROS). The payload transportation task

with two hexacopters is carried out in a 4 × 4 metre workspace

7

Algorithm 1 Collision-free transportation by path planning

with collision predictor

Input: The global payload trajectory Pd

Output: The collision-free full trajectory Pdc

Require: Obstacles knowledge O1:m

Require: Exploitation coefficient ϵ, step size δd

Require: Collision threshold τ, distance threshold α

1: Check feasibility of each point Pi
d

2: for Point number i = 1, ...,N do

3: Get desirable system state zi from Pi
d

4: Sample spatial points Po from O1:m

5: for Each obstacle point j = 1, ..., n do

6: σ j = ϕ(zi, P
j
o)

7: if σ j > α then

8: occ(j) = 0

9: else

10: occ(j) = 1

11: end if

12: end for

13: if sum(occ) > τ then

14: label Pi
d

as a unsafe point

15: else

16: label Pi
d

as a safe point

17: end if

18: end for

19: Re-plan Pd for corrective trajectory Pdc

20: for unsafe trajectory segments l j=1,...,n do

21: Find start point ps and endpoint pe

22: Calculate lc j = RRT (ps, pe, ϵ, δd, ϕ)

23: end for

24: replace all segments l in Pd by lc to get Pdc

with a maximum height of 2 metres. A bar payload weighing

0.2 kg is connected to the centre mass of two UAVs by two

0.3-metre massless cables. The dimensions of the payload is

0.6 × 0.02 × 0.02 metres. A generated constant wind force is

only applied to all simulated objects in the x axis of the inertial

coordinate. As shown in Tab.2, we design four training tasks

with different combinations of wind force and neighbour dis-

tance.

Table 2: Task configurations

Training tasks 1 2 3 4

Wind force [N] (v f) 0.0 0.3 0.5 0.8

Neighbour distance [m] (vd) 0.6 1.0 0.8 1.2

Testing tasks 1 2 3

Wind force [N] (v f) 0.0 1.0 0.6

Neighbour distance [m] (vd) 0.6 0.8 1.4

The testing tasks contain the tasks that have been seen in the

training (Task 1) or the newly designed tasks outside the train-

ing distribution (Task 2 and Task 3), which aims to examine the

adaptation ability of the proposed algorithm. The space occu-

pancy of the system under different testing tasks is visualised

in Fig.7. Under all the training tasks, the training of the meta-

Figure 7: Space occupancy of UAV-payload system under different testing tasks

Figure 8: Two scenarios with obstacles:(a) Cross (b) Square. The predefined

goal trajectories Pd are represented by black lines.

Figure 9: Two scenarios without obstacles:(c) figure8 (d) Square (without ob-

stacles). Two crowded scenarios:(e) Crowd1 scenario (f) Crowd2 scenario

dynamics model and collision predictor are executed by a lap-

top with Nvidia 3070Ti and Pytorch. Our proposed method is

validated in all testing tasks, where the UAV-payload system is

required to follow the goal paths generated by the path plan-

ner in environments with or without obstacles. In an obstacle-

free environment, the path planner does not process the original

path. Instead, it tracks only the payload trajectory. As shown in

(c) and (d) of Fig.9, the goal paths of figure8 (in the x-y plane

of the inertial coordinate) and square (in the x-z plane of the in-

ertial coordinate) are tracked. In order to distinguish the figure

reference and the goal path, we use italic font style to address

that figure8 is a goal path, not a figure reference.

When obstacles exist, the UAV-payload system needs to track

the collision-free trajectories of UAVs and the payload gener-

ated by the path planner. As shown in Fig.8, two obstacle sce-

narios called cross and square are presented (the height of the

goal path is kept the same to be 0.8 metres). In the square sce-

nario, two obstacles with a radius of 0.2m and 0.3m are placed

at (3.0, 0.5) and (1.0,−1.0) respectively. While in the cross

scenario, only one obstacle with a radius of 0.2m is placed at

the position (2.0, 0.0). Furthermore, as shown in (e) and (f) of

Fig.9, two additional challenging scenarios involving more than

two obstacles are tested. The waypoints of payload paths are

spaced every 0.02 metre evenly and moved forward every time

step after the start of a test. The UAV-payload system starts

at the same location in each path, and the test is terminated

when the last waypoint is reached or if the system fails, such as

by moving out of the workspace or experiencing a catastrophic

crash.

5.2. Results of meta-dynamics model

The training data for offline meta-learning of the dynamics

model consists of the states and actions of the system, which

8

Figure 10: Visualisation of the training data for meta-learning: the upper two

histograms are the pitch angle of the payload and the position x of UAV1. The

bottom two graphs are part of the recorded trajectories and joy actions from

training Task 1

(a) (b)

Figure 11: Offline training of the dynamics model using MAML: (a) the curve

of training loss (b) the curve of validation loss

were recorded from human demonstrations. In order to under-

stand the distribution of training data, we visualise the human

demonstrations from different training tasks in Fig.10. It shows

that the payload’s pitch angle in all training tasks tends to form a

normal distribution. Due to the effects of wind gusts and forma-

tion change, the mean of each distribution is shifted. Tasks with

larger wind forces tend to have larger mean values of the pitch

angle (Tasks 3 and 4 have larger means than that of Tasks 1 and

2). The mean of Task 2 is almost the same as that of Task 1, but

Task 2 has a larger standard deviation, revealing the influence

of neighbour distance. Meanwhile, the mean position of UAV1

is concentrated at a higher value in the task with a larger wind

force because the wind is applied along the positive x axis of

the inertial coordinate. At the bottom of Fig.10, the part of the

recorded trajectories of the UAVs and the payload and joystick

action signals are demonstrated respectively. After conducting

an analysis of the data, we trained our meta-dynamics model.

This model was adapted to various testing tasks with varying

distributions of state or state transitions.

We used MAML [34] to train the offline meta-dynamics

model. This is because we found that its adaptation speed is

fast enough for real-time online reinforcement learning. In our

study, we defined the problem in the context of 4-way-30-shot

few-shot learning. We selected four distinct types of tasks and

set the number of context samples K and query samples Q to

15. The Adam optimiser was utilised with the 0.001 learning

rate for the inner loop (Eq.(2)) and outer loop (Eq.(3)). Dur-

ing each iteration of the outer loop, we performed batch train-

ing on four training tasks, where the batch size was 32. The

total number of training epochs was 50,000, and we recorded

the mean of the training loss of the batch data using the mean

square error (MSE) every 50 epochs. The loss was defined as

the state change, as mentioned in Section 4.2. The validation

data was validated every 500 epochs. We implemented the gra-

dient adaptation 5 times for the training tasks and 3 times for

the validation data. As shown in Fig.11, training loss was dra-

matically decreased to less than 4×10−5. Although the model’s

performance degraded in the validation tasks, the MSE could

drop to less than 2×10−4. We did not observe any superior per-

formance with a different number of gradient steps. Therefore,

in the online adaptation part, we updated the context data by

five gradient steps in order to obtain the adapted parameters for

the dynamics model.

Table 3: Mean squared error (MSE) of the offline model in the testing dataset

Task 1 Task 2 Task 3

Mean 5.47e-05 2.47e-04 3.28e-04

Std 4.45e-05 1.04e-04 1.37e-04

Moreover, we tested the trained meta-model in all the test-

ing tasks. The result was calculated by the mean accuracy of

10 batch data from the samples of different testing tasks (see

Tab.3). In Tab.3, the MSE in the out-of-distribution tasks (task 2

and task 3) is less than 4×10−4. This result shows that our meta-

dynamics model can effectively adapt to the data from testing

tasks, even when the training data differs from the samples en-

countered during online deployment in the testing tasks. To

further validate our proposed algorithm, we implemented on-

line adaptation followed by the MPC controller in testing Task

1. This involves tracking the square and figure8 paths. Dur-

ing one episode of the trajectory tracking task, we recorded the

ground truth position of the payload and the predicted positions

of the payload using the adapted meta-dynamics model. We

then plotted the 3D positions in Fig.12. The results indicated

that the predicted positions match the real positions with small

errors in three axes. However, the predicted y position of the

payload in the square path exhibits relatively large fluctuations.

5.3. Performance analysis in non-obstacle environment

5.3.1. Tracking performance

In the online adaptation, the past 15 samples are extracted

from the adaptation buffer Da to adapt the offline meta-model at

each time step. Given the real-time constraints, we set the pre-

diction horizon T of the MPC to 5. In addition, we used a total

population M of 1000 sampled action sequences in the MPC,

with 10 elite population members for optimal action optimisa-

tion. We tested our algorithm in two obstacle-free paths figure8

and square of the payload. To prove the novel tracking per-

formance of our proposed algorithm, we compared it with the

proximal policy optimisation (PPO), probabilistic ensembles

with trajectory sampling (PETS) [59] as well as fast adaptation

through meta-learning embeddings (FAMLE). These baselines

are state-of-the-art model-free, model-based and meta-learning

9

(a) Task1 and square path (b) Task1 and figure8 path

Figure 12: Online prediction of the payload by the adapted meta dynamics model in scenario (a) and scenario (b)

Table 4: Comparison of tracking error [metres] of the payload in figure8 and Square paths

Path figure8 Square

Task PETS FAMLE PPO MAML Proposed PETS FAMLE PPO MAML Proposed

1 0.23±0.0168 0.17±0.0124 0.16±0.0030 0.18±0.0091 0.09±0.0060 0.23±0.0147 0.18±0.0158 0.18±0.0035 0.18±0.0059 0.08±0.0064

2 0.21±0.0088 0.23±0.0953 0.28±0.0009 0.19±0.0257 0.14±0.0063 0.29±0.1077 0.22±0.0776 0.37±0.0012 0.17±0.0086 0.16±0.0078

3 0.19±0.0068 0.12±0.0078 0.12±0.0029 0.14±0.0085 0.07±0.0036 0.29±0.0649 0.12±0.0179 0.07±0.0009 0.12±0.0075 0.08±0.0121

methods. We removed the correction policy from the proposed

algorithm and retained only the online meta-adaptation part by

MAML in order to evaluate whether the performance degraded.

For each scenario, we conducted one episode of testing and

measured the average tracking error. This error is calculated

as the mean Euclidean distance between the centre of mass of

the payload and the reference goal over all time steps. All re-

sults in Tab.4 are computed using data from 10 repeated exper-

iments. The numbers in red indicate that the task is partly fin-

ished, while the bold numbers represent the best performance

in each scenario.

In the figure8 path, the proposed method outperforms other

methods in all testing tasks, exhibiting the smallest error and

variance. The average tracking error can be less than 0.08 me-

ters, and the performance improved by up to 60% compared to

the worst method (PETS). The performance of meta-learning

methods MAML and FAMLE is almost identical in all tasks,

except for Task 2, where the tracking error of FAMLE is larger

than that of MAML. In most cases, meta-learning methods

are superior to model-free methods. The model-based method

PETS has the largest tracking error in all testing tasks, perform-

ing even worse than the model-free PPO method. This suggests

that the online update of the dynamics model makes a limited

contribution to the tracking performance. Most methods per-

form worse in Task 2, which has the largest wind force com-

pared to other tasks. As meta-learning methods depend on the

prior knowledge of the meta-model, the quality of the training

data from Task 2 may affect its performance in online testing.

In the square path, the proposed method also outperforms

other methods. The performance of FAMLE degrades in Task 2,

while the PPO method performs best in Task 3, indicating that

the model-free method is less stable in adaptive tasks compared

to the proposed method. We observed that the tracking error of

our proposed method did not significantly decrease in Task 2.

Compared to the figure8 path, the square path’s performance is

slightly worse. Fig.13 shows the mean actual payload trajec-

tories for all methods by 10 repeated experiments. The path is

divided into several areas by placing three and four nodes in the

figure8 and square paths, respectively. The sequence of the path

is A-B-C-B-A for the figure8 and A-B-C-D-A for the square. In

some situations, the entire path was not completed, resulting in

only partial plotting (such as FAMLE with Task 1 and Task 2

in the square path). Overall, our action correction policy in our

proposed method further decreases the tracking error based on

online adaptation by MAML in most testing scenarios.

5.3.2. Analysis of correction policy

In order to better understand the correction action in the pro-

posed method, we first compared MAML (the online adapta-

tion method only) with our proposed online adaptation and cor-

rection method in Fig.14. We implemented the experiments in

testing Task 2 with the figure8 path and testing Task 3 with

the square path, respectively. For each path, we plot the ac-

tions, which are defined as the 3D position displacements of

the virtual leader by these two methods over one testing trial,

and show the corresponding tracking error curve. Moreover, at

10

Figure 13: Visualisation of the mean actual trajectories of the payload by all methods in all scenarios.

Figure 14: The comparison of actions between MAML and the proposed method. In the proposed online adaptation and correction, we decompose the action into

the MPC action and the corrective action and visualise them in the second row of each block

11

the bottom of each block, we decompose the action a of the pro-

posed method into the action a∗ (the blue curve) from MPC and

the correction action ac (the red curve), where a = a∗ + ac, and

visualise them. In the first scenario, we can observe the distinct

actions of the two compared methods. The incorporation of the

correction policy can further decrease the tracking error after

the process of online adaptation. A negative value of the correc-

tion action is applied to the action x as the wind pushes the pay-

load in the positive x direction. The action z is decreased by the

correction action compared to the original output of MPC. The

reason may be that the increasing wind force raises the height

of the payload slightly. As for the second scenario, the cor-

rection actions fluctuate significantly compared to the first sce-

nario. Due to the larger neighbour distance in the testing Task

3, the stability of the payload-UAV system changes. Therefore,

the correction action needs to be adjusted frequently to ensure

tracking accuracy. Overall, the action correction policy can im-

prove the performance of the tracking tasks by correcting the

action from the MPC controller in time using the observation

of the system.

5.3.3. Performance in time-varying wind conditions

In order to emulate real-world unsteady wind conditions in

the simulator, we set the neighbour distance to 0.6m and vary

the wind force using a sinusoidal function. The amplitude of

the sinusoidal function was set to 0.2, 0.5, and 0.8, respectively

(different functions are shown in Fig.15). We tested the setup

on a figure8 path without obstacles. The experiments are re-

peated for five times. The mean Euclidean error (the Euclidean

distance between the payload’s center of mass and its goal) dur-

ing the tasks is shown in Fig.16. The average tracking error of

one test iteration is shown in Tab.5.

Figure 15: Sinusodal wind field with different amplitudes

Table 5: Average tracking error in one test iteration

Experiment Amplitude 0.2 Amplitude 0.5 Amplitude 0.8

Mean Euclidean error [m] 0.13 0.17 0.32

Overally, in the simulation, our proposed model trained in

the static uniform wind force can also achieve good perfor-

mance (with less than 0.18 metre) in the time-varying wind field

Figure 16: Mean Euclidean tracking error of the payload in the sinusodal wind

fields

Figure 17: The change of the occupancy space of a validation sample during

the training process

when the amplitude is not very large, which further prove the

potential of our model to be deployed in the real-world with fast

changing wind conditions. However, we still need to improve

the robustness of our algorithm in future work to achieve better

performance in the real-world.

5.4. Performance analysis of collision-free transportation

5.4.1. Results of meta-collision predictor

The collision predictor ϕ is trained for 1000 epochs using the

Adam optimiser with a learning rate of 0.00005. The training

data and validation data from the four training tasks are split

in a 9:1 ratio. The batch size of the training is 55. During

the training, we visualise the occupancy space of a validation

sample using the collision predictor to demonstrate the model’s

improvement compared to the ground truth (see Fig.17). As the

number of training epochs increases, we can observe that the

prediction of the space occupancy of the UAV-payload system

becomes more accurate.

In order to validate the performance of the collision predictor,

we test the derived model on the dataset from the three testing

tasks. The mean squared error (MSE) between the predicted

SDF and the real SDF is 7.28× 10−5 for Task 1, 1.20× 10−3 for

Task 2, and 2.19 × 10−4 for Task 3. For visualisation, we input

a code vector (system state) into the predictor and obtain the

predicted SDF over the grid Msp (the 2D workspace) by query-

ing all the spatial points. Results of visualisation are shown in

Fig.18. The space occupancy of the system is constructed by

the prediction. The determination of the on-surface points fol-

lows the Algorithm 1. We tuned the distance threshold α to

obtain an inflated space occupancy that accounts for potential

tracking deviations from the trajectory tracking controller when

checking for collisions with obstacles. The results in Fig.18

are evaluated on random samples from the testing tasks, which

demonstrate that the collision predictor has acceptable preci-

sion and good performance in adapting to different tasks.

12

Table 6: Statistics performance of the proposed path planner compared with some baselines

Scenario Cross obstacle

Testing task 1 Testing task 2 Testing task 3

Metrics RRT-circle RRT-point Proposed RRT-circle RRT-point Proposed RRT-circle RRT-point Proposed

Success rate 100% 0% 100% 60% 0% 80% 0% 0% 100%

Detour distance[m] 11.28±0.63 8.97±0.79 12.69±0.57 11.28 ±0.63 8.97±0.79 13.94±0.97 11.28 ±0.63 8.97±0.79 15.09±0.22

CPU time[s] 38 14 125 38 14 220 38 14 168

Scenario Square obstacle

Testing task 1 Testing task 2 Testing task 3

Metrics RRT-circle RRT-point Proposed RRT-circle RRT-point Proposed RRT-circle RRT-point Proposed

Success rate 60% 0% 100% 0% 0% 100% 0% 0% 100%

Detour distance[m] 17.61±1.26 18.45±0.11 24.33±0.58 17.61±1.26 18.45±0.11 23.29±1.64 17.61±1.26 18.45±0.11 21.96±1.20

CPU time[s] 39 5 155 39 5 181 39 5 255

Figure 18: Visualisation of the collision predictor by random samples

5.4.2. Results of collision-free transportation

Following the details of the Algorithm 1, we use the trained

collision predictor to derive the collision-free trajectories of the

UAVs and the payload. As shown in Fig.19, we identify the

unsafe segments (red lines) from original paths Pd and re-plan

the collision-free paths by RRT and collision predictor in the

considered square and cross scenarios. As for the parameters

of RRT, exploitation coefficient ϵ and step size δd are set to 0.5

and 0.04 respectively. The collision threshold τ and distance

threshold α are adjusted for different scenarios.

The final obtained collision-free paths Pdc are shown in

the first row of Fig.20. To validate the performance of the

sampling-based path planner, we sampled five paths for each

task and scenario. In order to provide clarity, we only plot

the payload trajectories to demonstrate the differences in the

planned paths across different tasks. The derived collision-free

paths are influenced by the predicted space occupancy of the

UAV-payload system. In Task 1, where there is no wind distur-

bance and the neighbour distance is small, the space occupied

by the system is also small. However, in Task 3, the space oc-

cupancy of the system increases due to the increased neighbour

distance and wind force. As a result, the sampled paths of Tasks

2 and 3 have a longer distance to the obstacle than that of Task

1 because the system with an increased occupied area requires

a detour to avoid the obstacles.

The proposed tracking method tracks the sampled trajecto-

ries from the path planner in the cross and square scenarios with

static obstacles. The offline meta-dynamics model defined and

trained in the last section is reused here. We jointly trained the

correction policy with random trajectories across all three test-

ing tasks. We recorded the real trajectories of the UAVs and

the payload while running the tracking tasks in each scenario.

From the five sampled paths, we chose one path and visualised

the real trajectories and goals in the second row of Fig.20. Ad-

ditionally, we recorded the real height of the payload with a

goal height of 0.8 meters in the third row of Fig.20. Although

there are fluctuations, the tracking of the goals appears to be

within acceptable limits.

As illustrated in Fig.21, our proposed method’s average

tracking errors of the payload are no more than 0.15 meters.

Furthermore, the error of the UAVs is less than the payload and

less than 0.09 meters. Tab.6 shows the statistical results of the

above validations. We compared our proposed path planning

with two non-adaptive baselines to demonstrate the adaptation

capability of the proposed method. The RRT-circle method

samples the paths with a fixed circular collision constraint with

a 0.5-meter radius (the centre of the circle is the mass centre of

Figure 19: The collision detection of the provided two global paths. Safe seg-

ments (A-B, C-D, E-A for scenario 1 and A-B, C-D for scenario 2) and unsafe

segments (B-C, D-E for scenario 1 and B-C for scenario 2)

13

Figure 20: Visualisation of the planned paths and the corresponding real trajectories and height of the system. First row: planned collision-free paths; Second row:

real trajectories of the system; Third row: real height of the payload

Figure 21: Tracking errors of the UAVs and payload

the payload). For the RRT-point method, we ignore the body

constraints of the system and assume it is a point mass. We

recorded the success rate (whether the system collides with ob-

stacles or not), detour distance (the travelling distance minus

the real distance of the planned path), and CPU time (com-

putation time for one collision-free path). All the results are

calculated from five repeated sampled paths.

Overall, the proposed method has a success rate of almost

100% in all scenarios. The RRT-circle method has good perfor-

mance in Task 1 or Task 2. However, it becomes invalid in Task

3 with a 0% success rate. The reason is that the collision con-

straints by a fixed body cannot satisfy the new constraints re-

sulting from variations such as larger neighbour distances. The

RRT-point method fails in all scenarios, which highlights the

importance of the correct constraints of the robot’s space occu-

pancy. Although the proposed path planner takes a longer CPU

time to compute the collision-free path, its success rate is higher

than the RRT-circle or RRT-point, which cannot estimate the

correct space occupancy of the system when detecting the col-

lision. The proposed planner can adjust the collision constraints

by the meta-collision predictor across different tasks and choose

the proper detour to avoid the obstacles. Fig.22 shows screen-

shots of some tasks where the proposed path is tracked by the

proposed adaptive controller to achieve the collision-free trans-

portation.

(a) Cross scenario (b) Square scenario

Figure 22: Screenshot of the collision-free transportation

In Fig.23, we visualise the predicted space occupancy based

on the sampled collision-free paths and the real occupancy

space (blue points) of the system by the top-down Kinect cam-

era during the tasks. The boundary (black lines) of the predicted

occupancy space by the collision predictor is plotted. We can

observe that our controller can track the goal states with small

tracking errors and the collision predictor has a good predic-

tion accuracy. As a result, the difference between the predicted

and real space occupancy of the system is negligible. The black

boundary of the predicted occupancy space perfectly detours

the obstacle. Since it is the inflated space occupancy, the spatial

points of the real space occupancy does not exceed that bound-

ary. The results indicate that the combination of the trajec-

14

(a)

(b)

Figure 23: Visualisation of the predicted space occupancy (only the boundary

of the spatial points is shown in the black line) and the real space occupancy

(blue spatial points collected by the top Kinect camera) during the tracking

tasks in the (a) cross and (b) square scenarios

tory tracking controller and the offline path planner can achieve

good online performance without online interactions with ob-

stacles.

5.4.3. Transportation in crowded scenarios

To further validate the performance of our proposed algo-

rithm, we conduct experiments in scenarios with more than

two obstacles. To adapt to crowded scenarios, we maintain the

neighbor distance at 0.6m to test the proposed algorithm under

different wind gusts (following the original task setup). Screen-

shots of the two crowded scenarios are shown in Fig.24. The

first scenario contains five obstacles, and the second scenario

contains seven obstacles. We can see that although the number

of obstacles increases, the collision-free transportation task can

still be achieved using our proposed algorithm. The average

tracking errors of different scenarios are shown in Fig.25. In

the Crowd1 scenario, the success rates for task 1,2,3 are 100%,

80% and 100% respectively. In the Crowd2 scenario, the suc-

cess rates for task 1,2,3 are 100%, 80% and 80% respectively.

(a) Crowd1 scenario (b) Crowd2 scenario

Figure 24: Screenshot of the transportation in crowded scenarios

Figure 25: Tracking errors of the UAVs and payload in crowded scenarios

6. Conclusion

In this work, we propose an adaptive method based on

meta-model-based reinforcement learning for payload trajec-

tory tracking by two UAVs subject to variations during trans-

portation. A novel correction policy is utilised to fine-tune the

actions from the adapted meta-dynamics model in an online

fashion to improve tracking performance. The superior perfor-

mance of our proposed method enables the dual-UAV system to

follow the predefined trajectories with less than 0.1 meters de-

viation and variance in all tested scenarios. Compared with the

meta-learning method without action correction, the tracking

error of the payload by the proposed method has been reduced

by almost 50%. Compared with other model-based and varia-

tional inference methods, the tracking error of the payload has

been decreased by up to 60%. Additionally, we developed an

RRT method combined with our newly designed collision pre-

dictor in order to obtain a safe collision-free path in different

tasks. The results validate the feasibility of the path planner

15

and reveal the reference paths are adjusted properly to achieve

collision-free transportation. The success rate of the proposed

method is more than 80% and the corresponding average track-

ing errors of UAVs and the payload are less than 0.1 metres and

0.15 metres respectively.

Nevertheless, while learning-based controllers have shown

promise in certain aspects, they still have notable flaws. For

example, they often demand a large amount of data for train-

ing, which can be time-consuming and costly to obtain. The

quality of the offline meta-model heavily relies on the distribu-

tion of the training data. The algorithm struggles with testing

tasks that differ significantly from the training task distribution.

Moreover, the adaptation ability of our framework is hard to ex-

tend to places outside of our predefined workspace. As for the

new path planning method, we believe its performance can be

further improved if we can deploy the collision predictor into

the MPC to achieve the prevention of the risk in an online fash-

ion rather than offline roll-outs with RRT. Regarding the design

of the virtual leader, we discover that the action space can be

designed in a decentralized rather than a centralized manner.

However, as pointed out in [31], the training stability is poor

due to the insufficient exploration of the policy. As a result,

these learning-based designs need to strike a balance between

implementation simplicity, precision and computational com-

plexity [60]. In future work, we plan to extend the number of

UAVs for the swarm system and develop a better mechanism

to combine the model-free and model-based methods towards

decreasing the tracking deviation as well as improving the gen-

eralisation results.

References

[1] M. Gassner, T. Cieslewski, D. Scaramuzza, Dynamic collaboration with-

out communication: Vision-based cable-suspended load transport with

two quadrotors, in: Proceedings of 2017 IEEE International Conference

on Robotics and Automation (ICRA), IEEE, 2017, pp. 5196–5202.

[2] F. A. Goodarzi, T. Lee, Stabilization of a rigid body payload with multiple

cooperative quadrotors, Journal of Dynamic Systems, Measurement, and

Control 138 (12) (2016).

[3] K. Huang, J. Chen, J. Oyekan, Decentralised aerial swarm for adaptive

and energy efficient transport of unknown loads, Swarm and Evolutionary

Computation 67 (2021) 100957. doi:https://doi.org/10.1016/j.

swevo.2021.100957.

URL https://www.sciencedirect.com/science/article/pii/

S221065022100119X

[4] J. Chen, J. Oyekan, Behavioural swarm optimisation for stable slung-load

aerial transportation, in: 2023 IEEE Congress on Evolutionary Computa-

tion (CEC), 2023, pp. 1–8. doi:10.1109/CEC53210.2023.10254023.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,

et al., Human-level control through deep reinforcement learning, Nature

518 (7540) (2015) 529–533.

[6] H. Kim, M. Jordan, S. Sastry, A. Ng, Autonomous helicopter flight via

reinforcement learning, Advances in Neural Information Processing Sys-

tems 16 (2003).

[7] H. X. Pham, H. M. La, D. Feil-Seifer, L. V. Nguyen, Au-

tonomous uav navigation using reinforcement learning, arXiv preprint

arXiv:1801.05086 (2018).

[8] J. Chen, R. Ma, J. Oyekan, A deep multi-agent reinforcement learning

framework for autonomous aerial navigation to grasping points on loads,

Robotics and Autonomous Systems 167 (2023) 104489. doi:https:

//doi.org/10.1016/j.robot.2023.104489.

URL https://www.sciencedirect.com/science/article/pii/

S0921889023001288

[9] T. Sugimoto, M. Gouko, Acquisition of hovering by actual uav using rein-

forcement learning, in: Proceedings of 2016 3rd International Conference

on Information Science and Control Engineering (ICISCE), IEEE, 2016,

pp. 148–152.

[10] R. Polvara, S. Sharma, J. Wan, A. Manning, R. Sutton, Autonomous ve-

hicular landings on the deck of an unmanned surface vehicle using deep

reinforcement learning, Robotica 37 (11) (2019) 1867–1882.

[11] M. B. Vankadari, K. Das, C. Shinde, S. Kumar, A reinforcement learning

approach for autonomous control and landing of a quadrotor, in: Proceed-

ings of 2018 International Conference on Unmanned Aircraft Systems

(ICUAS), IEEE, 2018, pp. 676–683.

[12] A. Faust, I. Palunko, P. Cruz, R. Fierro, L. Tapia, Automated aerial sus-

pended cargo delivery through reinforcement learning, Artificial Intelli-

gence 247 (2017) 381–398.

[13] I. Palunko, A. Faust, P. Cruz, L. Tapia, R. Fierro, A reinforcement learn-

ing approach towards autonomous suspended load manipulation using

aerial robots, in: Proceedings of 2013 IEEE International Conference on

Robotics and Automation, IEEE, 2013, pp. 4896–4901.

[14] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015)

436–444.

[15] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine,

C. Finn, Learning to adapt in dynamic, real-world environments through

meta-reinforcement learning, arXiv preprint arXiv:1803.11347 (2018).

[16] F. Ebert, C. Finn, S. Dasari, A. Xie, A. Lee, S. Levine, Visual foresight:

Model-based deep reinforcement learning for vision-based robotic con-

trol, arXiv preprint arXiv:1812.00568 (2018).

[17] P. Abbeel, A. Coates, A. Y. Ng, Autonomous helicopter aerobatics

through apprenticeship learning, International Journal of Robotics Re-

search 29 (13) (2010) 1608–1639. doi:10.1177/0278364910371999.

[18] S. Bansal, A. K. Akametalu, F. J. Jiang, F. Laine, C. J. Tomlin, Learn-

ing quadrotor dynamics using neural network for flight control, Pro-

ceedings of 2016 IEEE 55th Conference on Decision and Control, CDC

2016 (0931843) (2016) 4653–4660. arXiv:1610.05863, doi:10.

1109/CDC.2016.7798978.

[19] N. O. Lambert, D. S. Drew, J. Yaconelli, S. Levine, R. Calandra, K. S.

Pister, Low-level control of a quadrotor with deep model-based reinforce-

ment learning, IEEE Robotics and Automation Letters 4 (4) (2019) 4224–

4230.

[20] V. Spurny, M. Petrlik, V. Vonasek, M. Saska, Cooperative transport of

large objects by a pair of unmanned aerial systems using sampling-

based motion planning, in: Proceedings of 2019 24th IEEE International

Conference on Emerging Technologies and Factory Automation (ETFA),

IEEE, 2019, pp. 955–962.

[21] L. Qian, H. H. Liu, Path-following control of a quadrotor uav with a

cable-suspended payload under wind disturbances, IEEE Transactions on

Industrial Electronics 67 (3) (2019) 2021–2029.

[22] R. A. S. Fernández, S. Dominguez, P. Campoy, L 1 adaptive control for

wind gust rejection in quad-rotor uav wind turbine inspection, in: Pro-

ceedings of 2017 International Conference on Unmanned Aircraft Sys-

tems (ICUAS), IEEE, 2017, pp. 1840–1849.

[23] J. Zhi, J.-M. Lien, Learning to herd agents amongst obstacles: Training

robust shepherding behaviors using deep reinforcement learning, IEEE

Robotics and Automation Letters 6 (2) (2021) 4163–4168.

[24] J. Ou, X. Guo, M. Zhu, W. Lou, Autonomous quadrotor obstacle avoid-

ance based on dueling double deep recurrent q-learning with monocular

vision, Neurocomputing 441 (2021) 300–310.

[25] N. O. Lambert, D. S. Drew, J. Yaconelli, S. Levine, R. Calandra, K. S.

Pister, Low-Level Control of a Quadrotor with Deep Model-Based Rein-

forcement Learning, IEEE Robotics and Automation Letters 4 (4) (2019)

4224–4230. arXiv:1901.03737, doi:10.1109/LRA.2019.2930489.

[26] E. Yel, N. Bezzo, A meta-learning-based trajectory tracking framework

for uavs under degraded conditions, in: Proceedings of 2021 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),

IEEE, 2021, pp. 6884–6890.

[27] S. Belkhale, R. Li, G. Kahn, R. McAllister, R. Calandra, S. Levine,

Model-based meta-reinforcement learning for flight with suspended pay-

loads, IEEE Robotics and Automation Letters 6 (2) (2021) 1471–1478.

[28] M. O’Connell, G. Shi, X. Shi, K. Azizzadenesheli, A. Anandkumar,

Y. Yue, S.-J. Chung, Neural-fly enables rapid learning for agile flight in

16

strong winds, Science Robotics 7 (66) (2022) eabm6597.

[29] J. Wehbeh, S. Rahman, I. Sharf, Distributed model predictive control for

uavs collaborative payload transport, in: 2020 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2020, pp. 11666–

11672. doi:10.1109/IROS45743.2020.9341541.

[30] N. Rao, S. Sundaram, Integrated decision control approach for cooper-

ative safety-critical payload transport in a cluttered environment, IEEE

Transactions on Aerospace and Electronic Systems 59 (6) (2023) 8800–

8811. doi:10.1109/TAES.2023.3312065.

[31] B. Xu, F. Gao, C. Yu, R. Zhang, Y. Wu, Y. Wang, Omnidrones: An ef-

ficient and flexible platform for reinforcement learning in drone control,

IEEE Robotics and Automation Letters 9 (3) (2024) 2838–2844.

[32] S. Kamthe, M. Deisenroth, Data-efficient reinforcement learning with

probabilistic model predictive control, in: Proceedings of International

Conference on Artificial Intelligence and Statistics, PMLR, 2018, pp.

1701–1710.

[33] K. Chua, R. Calandra, R. McAllister, S. Levine, Deep reinforcement

learning in a handful of trials using probabilistic dynamics models, Ad-

vances in Neural Information Processing Systems 31 (2018).

[34] C. Finn, P. Abbeel, S. Levine, Model-agnostic meta-learning for fast

adaptation of deep networks, in: Proceedings of International Conference

on Machine Learning, PMLR, 2017, pp. 1126–1135.

[35] K. Rakelly, A. Zhou, C. Finn, S. Levine, D. Quillen, Efficient off-policy

meta-reinforcement learning via probabilistic context variables, in: Pro-

ceedings of International Conference on Machine Learning, PMLR, 2019,

pp. 5331–5340.

[36] R. Kaushik, T. Anne, J.-B. Mouret, Fast online adaptation in robotics

through meta-learning embeddings of simulated priors, in: Proceedings

of 2020 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), IEEE, 2020, pp. 5269–5276.

[37] C. Finn, A. Rajeswaran, S. Kakade, S. Levine, Online meta-learning, in:

Proceedings of International Conference on Machine Learning, PMLR,

2019, pp. 1920–1930.

[38] S. M. Richards, N. Azizan, J.-J. Slotine, M. Pavone, Adaptive-

control-oriented meta-learning for nonlinear systems, arXiv preprint

arXiv:2103.04490 (2021).

[39] N. Lambert, B. Amos, O. Yadan, R. Calandra, Objective mismatch in

model-based reinforcement learning, arXiv preprint arXiv:2002.04523

(2020).

[40] L. Wu, C. Wang, P. Zhang, C. Wei, Deep reinforcement learning with

corrective feedback for autonomous uav landing on a mobile platform,

Drones 6 (9) (2022) 238.

[41] Z. Pan, D. Li, K. Yang, H. Deng, Multi-robot obstacle avoidance based

on the improved artificial potential field and pid adaptive tracking control

algorithm, Robotica 37 (11) (2019) 1883–1903.

[42] B. Brito, B. Floor, L. Ferranti, J. Alonso-Mora, Model predictive contour-

ing control for collision avoidance in unstructured dynamic environments,

Proceedings of IEEE Robotics and Automation Letters 4 (4) (2019) 4459–

4466.

[43] J. Van Den Berg, S. J. Guy, M. Lin, D. Manocha, Reciprocal n-body

collision avoidance, in: Robotics Research: The 14th International Sym-

posium ISRR, Springer, 2011, pp. 3–19.

[44] P. E. Hart, N. J. Nilsson, B. Raphael, A formal basis for the heuristic deter-

mination of minimum cost paths, IEEE Transactions on Systems Science

and Cybernetics 4 (2) (1968) 100–107.

[45] S. LAVALLE, Rapidly-exploring random trees: a new tool for path plan-

ning, Research Report 9811 (1998).

[46] L. E. Kavraki, P. Svestka, J.-C. Latombe, M. H. Overmars, Probabilis-

tic roadmaps for path planning in high-dimensional configuration spaces,

IEEE Transactions on Robotics and Automation 12 (4) (1996) 566–580.

[47] J. Zhang, B. Cheung, C. Finn, S. Levine, D. Jayaraman, Cautious adap-

tation for reinforcement learning in safety-critical settings, in: Proceed-

ings of International Conference on Machine Learning, PMLR, 2020, pp.

11055–11065.

[48] G. Kahn, A. Villaflor, V. Pong, P. Abbeel, S. Levine, Uncertainty-

aware reinforcement learning for collision avoidance, arXiv preprint

arXiv:1702.01182 (2017).

[49] F. Hart, O. Okhrin, Enhanced method for reinforcement learning based

dynamic obstacle avoidance by assessment of collision risk, Neurocom-

puting (2023) 127097.

[50] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, G. Wetzstein, Implicit

neural representations with periodic activation functions, Advances in

Neural Information Processing Systems 33 (2020) 7462–7473.

[51] J. J. Park, P. Florence, J. Straub, R. Newcombe, S. Lovegrove, Deepsdf:

Learning continuous signed distance functions for shape representation,

in: Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2019, pp. 165–174.

[52] A. Leylavi Shoushtari, Robot body self-modeling algorithm: a collision-

free motion planning approach for humanoids, SpringerPlus 5 (1) (2016)

1–18.

[53] B. Chen, R. Kwiatkowski, C. Vondrick, H. Lipson, Fully body visual

self-modeling of robot morphologies, Science Robotics 7 (68) (2022)

eabn1944.

[54] H.-T. L. Chiang, J. Hsu, M. Fiser, L. Tapia, A. Faust, Rl-rrt: Kinody-

namic motion planning via learning reachability estimators from rl poli-

cies, IEEE Robotics and Automation Letters 4 (4) (2019) 4298–4305.

[55] T. Lee, M. Leok, N. H. McClamroch, Control of complex maneuvers

for a quadrotor uav using geometric methods on se (3), arXiv preprint

arXiv:1003.2005 (2010).

[56] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine,

C. Finn, Learning to adapt in dynamic, real-world environments through

meta-reinforcement learning, Proceedings of 7th International Confer-

ence on Learning Representations, ICLR 2019 (2019) 1–17arXiv:

1803.11347.

[57] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal

policy optimization algorithms, arXiv preprint arXiv:1707.06347 (2017).

[58] A. Ezquerro, M. A. Rodriguez, OpenAI ROS package, Accessed Jan.5,

2023.

URL http://wiki.ros.org/openai_ros

[59] K. Chua, R. Calandra, R. McAllister, S. Levine, Deep Reinforcement

Learning in a Handful of Trials using Probabilistic Dynamics Models,

Advances in Neural Information Processing Systems 2018-Decem (Nips)

(2018) 4754–4765. arXiv:1805.12114.

[60] S. C. Barakou, C. S. Tzafestas, K. P. Valavanis, A review of real-time

implementable cooperative aerial manipulation systems, Drones 8 (5)

(2024). doi:10.3390/drones8050196.

URL https://www.mdpi.com/2504-446X/8/5/196

CRediT authorship contribution statement

Jingyu Chen: Writing – review editing, Writing – origi-

nal draft, Visualization, Validation, Software, Methodology, In-

vestigation, Formal analysis, Conceptualization. Ruidong Ma:

Methodology, Conceptualization. Meng Xu: Writing – review

editing, Validation. Fethi Candan: Validation, Software. Lyud-

mila Mihaylova and John Oyekan: Writing – review editing,

Funding Acquisition, Resources, Project Administration

Declaration of competing interest

The authors declare that they have no known competing fi-

nancial interests or personal relationships that could have ap-

peared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgment

We would like to acknowledge the support of the En-

gineering and Physical Sciences Research Council (EP-

SRC) funding: DigiCORTEX (EP/W014688/1), NanoMan

(EP/V055089/1) and Researcher in Residence Fellowship with

CPI (RIR16B221020+2) for the work carried out in this

manuscript.

17

Appendix A. Supplementary materials

Algorithm 2 Offline Meta Model-based Reinforcement Learn-

ing with Online Adaptation and Model-free Correction

Require: Training tasks S i=1:4
tr , testing tasks S i=1:3

te

Require: Offline dataset D, adaptation buffer Da

Require: Replay buffer Dc

1: Randomly initialise raw meta-model fθr

2: // Data collection

3: for Each training task S i
tr do

4: Manually collect paths Pi = {Pi
0
, Pi

1
, ..., Pi

5
}

5: D← D ∪ Pi

6: end for

7: // Offline meta learning

8: Update fθr into fθ using offline dataset D

9: Sample a testing task S
j
te ∼ ρ(S te)

10: // Online adaptation

11: Obtain f
j

θ′
from online adaptation

12: for Adaptation timestep t = 1, ... do

13: Evaluate ∇θLt(fθ) by last K samples from Da

14: θ′ ← θ − α∇θLt(fθ)

15: Execute a∗t generated by MPC using f
j

θ′

16: Da ← Da ∪ {s
j
t , a

j
t , s

j

t+1
}

17: end for

18: // Online correction

19: Start training correction policy f
j

c

20: for Training episode i = 1, ...,N do

21: Reset environment

22: for Timestep t = 1, ... do

23: Compute a∗t from MPC with meta-model f
j

θ′

24: Use f
j

c to generate corrective action ac

25: Execute final action at = a∗t + ac

26: Save (s
j
t , a

j
c, s

j

t+1
, r

j
t , d) into a replay buffer Dc

27: if Enough samples are collected then

28: Update policy and reset replay buffer

29: end if

30: if Terminal signal d then

31: break

32: end if

33: end for

34: end for

In this section, we first give the complete algorithm of our

proposed tracking method called offline meta-model-based

reinforcement learning with online adaptation and correction in

Algorithm 2. More details of the setup of the training baselines

in Sec.5.3.1 are introduced below,

Proximal policy optimisation (PPO): A simple model-free re-

inforcement learning algorithm using policy gradient.

Probabilistic ensembles with trajectory sampling (PETS):

A famous model-based reinforcement learning method which

employs the uncertainty-aware neural networks and a sampling-

based MPC [59].

Fast Adaptation through Meta-Learning Embeddings

(FAMLE): An algorithm learns a set of initialised parameters

of the meta-learning for better adaptation when the diversity

of the dynamics distributions among different tasks is too large

[36].

For the implementation of PPO, it is trained by an Adam op-

timiser with the learning rate 3 × 10−4 for both the actor and

critic nets. The discounted factor is 0.99. The smoothing pa-

rameter for GAE is 0.95. Moreover, the clipped range ϵ for the

objective function is 0.95 and the coefficient c of the entropy

is 0.005. The batch size of the replay buffer is 2048, and we

divide it into 32 batches for each training process. The obser-

vation of PPO is changed into s = [Os,O
r
g] where Or

g is the 3D

relative position between the payload and the reference goal.

The dataset for meta-learning in FAMLE is the same as in our

proposed method.

Figure A.26: The training curve of the correction policy

Figure A.27: The training and validation curves of the collision predictor

As shown in Fig.A.26, the training curve of the correction

policy is demonstrated. This policy is trained by the proximal

policy optimisation and the increasing reward shows the im-

provement of the policy. The training and validation curves of

the collision predictor are shown in Fig.A.27. The mean square

error decreases significantly with the increase of the epoch in

both curves. The tracking error curves in all scenarios are

shown in Fig.E.33.

18

Appendix B. Ablation Studies

For the learning-based tracking controller, the ablation ex-

periments are represented by the methods PETS and MAML

as shown in Tab.4. PETS, introduced as a model for approxi-

mating the dynamics function of MPC using a fully-connected

neural network, operates effectively within a single task distri-

bution. However, PETS is limited to this specific task distri-

bution. In contrast, we replace the fully-connected neural net-

work framework with a meta-learning model, MAML, which

is capable of rapid adaptation to diverse task distributions. Fi-

nally, we integrate a correction policy with MAML to formu-

late our proposed design. We calculate the mean error of each

method across all paths and tasks. As shown in Tab.B.7, the

performance of the only meta-learning method surpasses that

of the non-meta-learning method, demonstrating that the meta-

learning framework is more effective than a fully-connected

neural network for adapting to different tasks. Furthermore,

our proposed method, which incorporates the correction pol-

icy, outperforms the only meta-learning method, validating the

effectiveness of our correction strategy.

Table B.7: Ablation experiments of the tracking controller

Ablation Euclidean error [m]

No meta learning 0.24

Only meta learning 0.163

Meta learning with the correction policy 0.103

For the path planner, we conduct ablation experiments by

comparing two non-adaptive baseline methods: RRT-circle and

RRT-point. In the RRT-circle approach, we eliminate the colli-

sion predictor and use a fixed circular collision constraint with

a 0.5-meter radius. In the RRT-point method, there is no col-

lision detection, and the system is represented as a point mass.

We calculate the mean success rate of each method across all

paths and tasks (the only RRT method is represented by the

RRT-circle method). As illustrated in Tab.B.8, the performance

of the only RRT method is inferior due to the absence of colli-

sion detection mechanisms. Our proposed path planner demon-

strates superior performance compared to the only RRT method

by employing a meta-collision predictor that dynamically ad-

justs collision constraints across different tasks.

Table B.8: Ablation experiments of the path planner

Ablation Success rate

Only RRT 36%

RRT with the collision predictor 96%

Appendix C. Challenges on Simulation-to-Reality

The main challenge of real-world experiments lies in setting

up diverse tasks. Specifically, we need to address how to gener-

ate a uniform wind force field and create an environment suit-

able for the dual-drone carrying system. In this section, firstly,

we discuss the feasibility and efficiency of transferring our pro-

posed algorithm from simulation to real-world applications.

• 3D physics simulator: In this work, we implemented the

algorithm in a 3D physics simulator that closely approxi-

mates real-world physics. The control modules are defined

within the Robot Operating System (ROS), allowing for

straightforward integration with real-world hardware with

minimal modifications. Additionally, our approach does

not rely on complex data structures such as images. In-

stead, it uses only vectors for positions and orientations.

Consequently, when transitioning to real-world applica-

tions, the communication time with sensors is unlikely to

increase significantly.

• Computation efficiency of the learning-based tracking

controller: During testing, the MPC controller operates

with a prediction horizon of 5 time steps, and the online

inference speed is approximately 0.0244 seconds per itera-

tion, which meets the requirements for real-world deploy-

ment. The correction policy runs concurrently with the

MPC controller to generate optimal action outputs, with an

inference time of 0.0002 seconds, significantly faster than

the MPC inference time. The PPO algorithm collects inter-

action data and stores it in a replay buffer for subsequent

updates to the actor and critic neural networks. Assum-

ing each time step in the environment has a complexity of

O(1), generating N time steps for the replay buffer has both

time and space complexities of O(N). Policy loss calcula-

tion involves computing the probability ratio between new

and old policies for each sample, with a time complexity

of O(N). Updating the critic involves calculating the mean

squared error (MSE) between the target and current value

functions for each sample, also with a time complexity of

O(N). Although the training updates for the actor and critic

neural networks take approximately 1.2 seconds, this im-

pact is negligible due to the low update frequency.

• Computation efficiency of the path planner: We do not ex-

pect the path planner’s inference speed to meet real-time

requirements, as the goal trajectories will be computed

and finalized before the flight. Additionally, training the

collision predictor requires approximately 2500 timesteps

(about 10 minutes) of point cloud data for each training

task. In real-world applications, a camera like the Intel

RealSense, placed above the workspace, can be used to

capture point cloud data for training the collision predic-

tor and for accessing obstacle information.

Secondly, we address the challenges we encounter and show

some preliminary information for our future real-world experi-

ments. We plan to use two DJI Tello drones with custom grasp-

ing tools to achieve indoor transportation in varied wind con-

ditions. In order to generate wind forces for indoor testing, we

used a fan as shown in Fig.C.28.

However, the wind force produced by the fan is not uniform;

it varies with distance from the fan and is stronger closer to it.

This assumption is different from that used in the simulation

and as a result, caused difficulties in transferring from simula-

tion to the real-world. While our proposed algorithm performs

well in simulation under the assumption of a static and uniform

wind field, real-world conditions involve unknown and rapidly

19

Figure C.28: The setup of the future real-world experiments

changing wind forces. To demonstrate the adaptability of our

algorithm to these time-varying wind conditions, we implement

the additional experiment in simulation, which can be found in

Section 5.3.3.

Appendix D. Noisy observation of obstacles

We considered static obstacles in our work. The observa-

tions of obstacles consisted of a collection of 2D spatial points,

which can be captured by a Kinect camera or other devices that

provide the initial global map of obstacles. Currently, the obser-

vation is obtained perfectly without noise or errors. However,

observation errors can shift the position distribution of obstacles

and may influence collision detection. As shown in Fig.D.29,

we added Gaussian noise with a mean of 0 and a standard devi-

ation of 0.03 to the original observation in the Crowd2 scenario.

This results in an increase in the occupancy of the obstacles.

(a) Original observation (b) Noisy observation

Figure D.29: Adding Gaussian noise to observation of obstacles in the crowd2

scenario.

Figure D.30: Predicted space occupancy of the system with different distance

thresholds

To address noise, we maintain the system state and adjust the

distance threshold α defined in Algorithm 1 to get the inflated

shape of the system, ensuring safety. The Fig.D.30 illustrates

how the coefficient influences the predicted occupancy of the

dual-drone payload system. Increasing the threshold decreases

the safe distance for collision detection, thereby accommodat-

ing the noise in obstacle observations and ensuring collision-

free navigation.

Appendix E. Prediction by the meta-dynamics model

In Fig.12, the prediction of the payload by the adapted meta-

dynamics model during the online tracking has been shown. In

this section, we demonstrate more results regarding the predic-

tion of the UAVs and other states in Fig.E.32. The results show

that the prediction of the position on the x and z axes of the

inertial coordinate is more accurate than that on the y axis. Ad-

ditionally, the prediction of the payload’s pitch angle is more

accurate than those for the roll and yaw angles.

20

Figure E.31: Online prediction of the states in Task1 and square path

Figure E.32: Online prediction of the states in Task1 and figure8 path

21

Figure E.33: Visualisation of the results with different methods in three testing tasks and two paths. The corresponding curves of the Euclidean deviation over all

time steps in one testing trial. These curves serve as supplementary material for Fig.13.

22

Jingyu Chen received the M.Eng.

degree in electrical and electronic engi-

neering from the University of Leicester

and the M.Sc. degree in robotics from

The University of Sheffield. He received

his Ph.D. degree with the Department

of Automatic Control and Systems En-

gineering, The University of Sheffield.

He is currently working in the Institute

of Software, Chinese Academy of Science. His research

interests include reinforcement learning, autonomous system

and generative model.

Ruidong Ma received a B.Eng.

degree in electrical and electronics engi-

neering from the University of Liverpool

and the M.Sc. degree in human and

biological robotics from Imperial Col-

lege London. He is currently pursuing

the Ph.D. degree with the Department

of Automatic Control and Systems En-

gineering, The University of Sheffield.

His research interest includes human–robot collaboration in

complex manual manufacturing processes.

Meng Xu received her B.E. degree

from Northwestern Polytechnical Uni-

versity, Xi’an, in 2018, and her Ph.D.

degree from Queen Mary University of

London. She was also a research asso-

ciate at the University of Sheffield. She

is currently an assistant professor at the

University of International Business and

Economics (UIBE). Her research inter-

ests include spatial intelligence, machine

learning, deep learning, augmented reality, and urban comput-

ing.

Fethi Candan received B.Sc. degrees

in Electrical Electronics and Mechanical

Manufacturing Engineering between

2011-2016, from Bilecik S.E. University,

Bilecik, Turkiye. His M.Sc. degree is

in Control and Automation Engineering

in 2018, Istanbul Technical University,

Istanbul, Turkiye. He received his PhD

degree with the Automatic Control and

Systems Engineering Department, Sheffield, United Kingdom.

Currently, he is working at the University of Idaho as a post-

doctoral fellow at the Department of Mechanical Engineering

and Soil Water Systems. His research interests are in the areas

of control theory, state estimation, unmanned air vehicles,

swarm, intelligent systems, and their real-world applications.

Lyudmila Mihaylova is Professor

of Signal Processing and Control at the

Department of Automatic Control and

Systems Engineering at the University

of Sheffield, United Kingdom. Her

research is in the areas of machine

learning and autonomous systems with

various applications such as navigation,

surveillance and sensor network systems. She has given

a number of talks and tutorials, including the plenary talk

for the IEEE Sensor Data Fusion 2015 (Germany), invited

talks University of California, Los Angeles, IPAMI Traffic

Workshop 2016 (USA), IET ICWMMN 2013 in Beijing,

China. Dr. Mihaylova is an Associate Editor of the IEEE

Transactions on Aerospace and Electronic Systems and of the

Elsevier Signal Processing Journal. She was elected in March

2016 as a president of the International Society of Information

Fusion (ISIF). She is on the board of Directors of ISIF and a

Senior IEEE member. She was the general co-chair IET Data

Fusion Target Tracking 2014 and 2012 Conferences, Program

co-chair for the 19th International Conference on Information

Fusion, Heidelberg, Germany.

John Oyekan is a Chartered En-

gineer (CEng) and Senior Lecturer in

Human-Centred AI for Autonomous

Manufacturing in the Department of

Computer Science. He was previously

a Lecturer in Digital Manufacturing at

the University of Sheffield. He received

a Ph.D degree in Computer Science

and Electronic Engineering from the

University of Essex as well as a MSc

Robotics and Embedded Systems from same. Prior to the Uni-

versity of Sheffield, he was an Engineer at the Manufacturing

Technology Centre in Coventry were he developed software

architectures and algorithms for Autonomous Systems and a

Research Fellow at Cranfield University carrying out research

in Manufacturing Informatics. He has worked in a startup,

government funded catapult, automotive industry and his work

is characterised by both fundamental and applied research in

collaboration with partners in the automotive, aerospace and

manufacturing sectors. He is passionate about translating blue

sky research and thinking into practical solutions for industry

challenges. As an academic, he has over 50 publications

in the areas of swarm robotics, manufacturing informatics,

bio-inspired algorithms and sensing.

23

	Introduction
	Related Work
	Problem definition
	Methodology
	Reinforcement learning setup
	Offline meta training for dynamics model
	Control with online adaptation
	Action correction by PPO
	Safe transportation by self-awareness collision-predictor
	Training of the meta-collision predictor
	Collision-free path sampling

	Experiments and Results
	Task description
	Results of meta-dynamics model
	Performance analysis in non-obstacle environment
	Tracking performance
	Analysis of correction policy
	Performance in time-varying wind conditions

	Performance analysis of collision-free transportation
	Results of meta-collision predictor
	Results of collision-free transportation
	Transportation in crowded scenarios

	Conclusion
	Supplementary materials
	Ablation Studies
	Challenges on Simulation-to-Reality
	Noisy observation of obstacles
	Prediction by the meta-dynamics model

