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Abstract

The increasing integration of digital technologies in healthcare has expanded the attack
surface for privacy violations in critical systems such as electronic health records (EHRs),
telehealth platforms, and medical device software. However, current vulnerability de-
tection datasets lack domain-specific privacy annotations essential for compliance with
healthcare regulations like HIPAA and GDPR. This study presents C3-VULMAP, a novel
and large-scale dataset explicitly designed for privacy-aware vulnerability detection in
healthcare software. The dataset comprises over 30,000 vulnerable and 7.8 million non-
vulnerable C/C++ functions, annotated with CWE categories and systematically mapped to
LINDDUN privacy threat types. The objective is to support the development of automated,
privacy-focused detection systems that can identify fine-grained software vulnerabilities in
healthcare environments. To achieve this, we developed a hybrid construction methodology
combining manual threat modeling, LLM-assisted synthetic generation, and multi-source
aggregation. We then conducted comprehensive evaluations using traditional machine
learning algorithms (Support Vector Machines, XGBoost), graph neural networks (Devign,
Reveal), and transformer-based models (CodeBERT, RoBERTa, CodeT5). The results demon-
strate that transformer models, such as RoBERTa, achieve high detection performance
(F1 = 0.987), while Reveal leads GNN-based methods (F1 = 0.993), with different models
excelling across specific privacy threat categories. These findings validate C3-VULMAP
as a powerful benchmarking resource and show its potential to guide the development
of privacy-preserving, secure-by-design software in embedded and electronic healthcare
systems. The dataset fills a critical gap in privacy threat modeling and vulnerability detec-
tion and is positioned to support future research in cybersecurity and intelligent electronic
systems for healthcare.

Keywords: privacy-aware vulnerability detection; healthcare cybersecurity; LINDDUN
framework; machine learning threat detection; C/C++ programming; privacy vulnerability
dataset; threat modeling; Electronic Health Records (EHRs)

1. Introduction
In recent times, healthcare service delivery has greatly transformed, and this is driven

by the extensive adoption of technology in the provision of patient care, medical research,
and medical administration. This digital explosion has brought about efficiency, better
patient outcomes, and enabled sustained innovative approaches to healthcare delivery.
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However, it has also introduced significant vulnerabilities that threaten the confidentiality,
integrity, trust, and availability of sensitive healthcare data. Today, there is an increased
reliance on EHRs, interconnected medical devices, and telehealth platforms, which have, in
turn, expanded the attack surface for cyber threats, making robust privacy and security
measures germane. As highlighted by the American Hospital Association, healthcare
providers are faced with evolving cyber threats, like ransomware and phishing attacks, that
can compromise patient safety and privacy, leading to financial losses, reputational damage,
and legal repercussions. The protection of patient privacy, mandated by regulations such
as the Health Insurance Portability and Accountability Act (HIPAA) and the General Data
Protection Regulation (GDPR), stresses the great need for secure and privacy-focused
software in healthcare systems. Therefore, it is important to secure the software that
handles this data to sustain security and privacy by design.

However, even with the recognized importance of security in healthcare systems, ex-
isting datasets for vulnerability detection often fail to address the specific privacy concerns
peculiar to this domain, such as compliance with HIPAA or the specific vulnerabilities in
EHRs and Internet of Medical Things (IoMT) devices. Datasets such as those derived from
the National Vulnerability Database (NVD), as seen in Table 1, provide comprehensive vul-
nerability information but lack detailed mappings to privacy-specific threats, limiting their
utility for healthcare applications [1]. For example, the NVD includes vulnerabilities related
to medical software and devices but does not systematically correlate these with privacy
risks, such as unauthorized access to patient data. Similarly, intrusion detection datasets,
like KDD-Cup’99 and NSL-KDD, while valuable for general cybersecurity research, are
outdated or not tailored to the healthcare context, relying on generic security labels that do
not capture the nuances of privacy threats [2,3]. This gap in existing resources highlights
the important need for a dataset that specifically focuses on privacy-aware vulnerability
detection in healthcare systems.

Table 1. Comparing some available healthcare domain-specific datasets.

Dataset Healthcare Focus Privacy-Specific
Mappings

Correlation with
LINDDUN/CWE

Model
Evaluations

NVD Partial No No Limited
KDD-Cup’99/NSL-KDD No No No General

C3-VULMAP Yes Yes Yes Comprehensive

To fill this gap, we introduce C3-VULMAP, a niche dataset designed to facilitate the
development and evaluation of privacy-focused security models in healthcare. This is
motivated by the recognition that privacy breaches in healthcare can have severe conse-
quences, not only for individual patients but also for public trust in healthcare institutions.
Cyberattacks targeting healthcare systems can lead to unauthorized disclosure of sensitive
patient information, disrupt critical care delivery, and result in significant harm. By focus-
ing on privacy-aware vulnerability detection, C3-VULMAP aims to enable the creation
of more effective security measures that protect patient data while ensuring compliance
with privacy regulations. The dataset is intended to serve as a foundational resource for
researchers and practitioners in creating advanced and specific cybersecurity solutions for
the healthcare sector.

Unlike existing vulnerability datasets, such as Big-Vul, DiverseVul [4], ReposVul [5],
and CVEfixes [6], which primarily focus on general software vulnerabilities, C3-VULMAP
is the first to explicitly address privacy-specific threats within the healthcare domain. While
these prior datasets offer value for generic vulnerability detection, they lack domain-specific
annotations, particularly those aligned with privacy frameworks like LINDDUN, and do
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not explicitly support healthcare-relevant regulatory compliance, such as HIPAA or GDPR.
Moreover, C3-VULMAP introduces a systematic integration of privacy threat modeling
(LINDDUN) with CWEs, a uniquely functional feature absent in previous datasets. In
contrast to traditional datasets that overlook the nuanced implications of vulnerabilities on
patient data privacy, C3-VULMAP contextualizes vulnerabilities within healthcare-specific
data flows and annotates them based on seven privacy threat categories, enabling fine-
grained, privacy-aware detection and analysis. This dual-layered approach enhances both
the granularity and practical relevance of vulnerability detection models trained on the
dataset, distinguishing our work as both technically and contextually novel.

The applicability and scope of C3-VULMAP include a wide range of healthcare soft-
ware and systems, including EHRs, medical device software, telehealth platforms, and
other digital health technologies. Unlike existing datasets, C3-VULMAP includes software
code vulnerabilities with direct implications for patient privacy, annotated with relevant
privacy threats and mapped to corresponding CWE categories. These annotations are
further correlated with the LINDDUN framework, a privacy threat modeling methodology.
This systematic approach allows for a deeper understanding of how specific vulnerabil-
ities can lead to privacy breaches, facilitating the development of targeted and effective
security solutions. The dataset is designed to be applied in several ways, from training
machine learning models for vulnerability detection to informing the design of secure
healthcare software.

The contributions of this work are threefold, addressing both the practical and research
needs in healthcare cybersecurity. First, we present C3-VULMAP, a novel and large-
scale dataset specifically curated for privacy-aware vulnerability detection in healthcare
software systems. It includes over 30,000 vulnerable and 7.8 million non-vulnerable C/C++
functions, making it one of the most comprehensive resources of its kind. Second, we
establish a systematic correlation between software vulnerabilities and privacy threats,
linking each vulnerability in C3-VULMAP to both CWE identifiers and LINDDUN privacy
threat categories. This dual mapping enables a deeper understanding of how specific
code-level weaknesses translate into privacy risks under real-world healthcare scenarios.
Third, we conduct extensive model evaluations using C3-VULMAP, applying a range of
traditional machine learning algorithms, graph neural networks, and transformer-based
models. These evaluations demonstrate the effectiveness of the dataset in enhancing the
detection and prevention of privacy breaches, supporting the development of intelligent,
privacy-preserving, and regulation-compliant healthcare software systems.

By providing a dedicated resource for privacy-aware vulnerability detection, this
dataset paves the way for more secure, trustworthy, and compliant healthcare systems. The
rest of the paper reports a review of related works, followed by an evaluation methodology
and a presentation of the results, as well as an in-depth discussion and the limitations of
the research. The paper closes with a conclusion.

2. Related Works
Vulnerabilities in software are a threat to the integrity of information systems, espe-

cially in healthcare. The rise of machine learning (ML) has prompted the development
of automated vulnerability detection tools, but their effectiveness hinges on the quality
and scope of training datasets [7,8]. Datasets for ML should go beyond the use for general
vulnerability detection and more into privacy threat modeling, an important requirement
in healthcare where patient data confidentiality is paramount [9–11].

2.1. Review of Existing Vulnerability Datasets

Vulnerability datasets are foundational to training ML-based detection tools; even so,
their diversity in scope and methodology presents both opportunities and challenges. Sev-
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eral datasets have significantly contributed to vulnerability detection research, each with
distinctive strengths and limitations. For instance, Big-Vul, a dataset that is prominently
utilized for code-centric analysis [12], has an expansive scope and general vulnerability
focus that limits its direct applicability in privacy-sensitive domains, such as healthcare.
DiverseVul, another remarkable dataset, expands the dataset scale considerably, offering
18,945 vulnerable functions from diverse real-world security trackers, enhancing model per-
formance across varied contexts [4]. However, its lack of explicit integration with privacy
frameworks similarly restricts its utility for privacy-focused applications. The ReposVul
dataset innovatively addresses repository-level complexities, such as tangled patches and
outdated fixes, using large language models (LLMs) for labeling. It covers 236 CWE types
across four programming languages, significantly advancing inter-procedural vulnerabil-
ity detection [5]. However, its approach does not incorporate privacy threat modeling
frameworks. In the CVEfixes dataset, encompassing 5365 CVEs, there is robust support
for predictive modeling and automated vulnerability repair, demonstrating versatility for
general cybersecurity applications [6]. Like the previously mentioned datasets, CVEfixes
neglects specific privacy considerations crucial in healthcare contexts.

Recent analyses emphasize the critical need for contextually relevant datasets. The
authors [8] introduced VALIDATE, used to highlight issues, such as dataset availability
and feature diversity, in vulnerability prediction. Similarly, ref. [13] identified persistent
challenges, including imbalanced samples and the demand for domain-specific datasets,
especially pertinent in sensitive sectors like healthcare [14]. The foregoing is an indication
of the need for specialized datasets that actively integrate privacy considerations with
security in the healthcare domain. This comparative summary of existing vulnerability
datasets is captured in Table 2.

Table 2. Comparative summary of existing vulnerability datasets.

Dataset Vulnerabilities Strengths Limitations Programming
Languages

Big-Vul 3754 Detailed CVE summaries,
severity scores Limited privacy applicability C/C++

DiverseVul 18,945 Diversity of real-world
vulnerabilities

No integration of
privacy frameworks C/C++, Python

ReposVul 6134 Repository-level,
untangled labeling

No explicit privacy
threat modeling C, C++, Java, Python

CVEfixes 5365 Predictive modeling,
automated repairs

Lack of privacy-specific
considerations

Multiple languages
(C, Java)

2.2. Limitations Concerning Privacy Threat Modeling

Given the significant limitation of existing vulnerability datasets in integrating threat
modeling frameworks that could identify and mitigate privacy risks, there is much to be
desired [15]. The absence of privacy-aware datasets hinders the development of detection
tools that comply with regulations, like HIPAA and GDPR, increasing the risk of data
breaches [10]. Further, in healthcare, where the risks are significantly higher, the authors [9]
noted that big data analytics hold great potential for improving patient outcomes but require
robust security measures to prevent unauthorized access. Similarly, ref. [10] highlights the
growing frequency of cyberattacks on healthcare systems, advocating for sociotechnical
solutions that embed privacy considerations.

The integration of privacy threat modeling into system development is an important
approach for addressing the abundance of data protection-related challenges, particularly
as information systems become increasingly pervasive. Among the various methodolo-
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gies available, LINDDUN, an acronym encapsulating seven categories of privacy threats,
Linkability, Identifiability, Non-repudiation, Detectability, Disclosure of information, Un-
awareness, and Non-compliance, offers a robust and systematic framework. Developed
at KU Leuven, LINDDUN provides a structured approach to identifying and mitigating
privacy threats within system architectures, making it particularly suitable for contexts
where data privacy is heralded [16]. Unlike security-focused frameworks, such as STRIDE,
which primarily addresses threats like spoofing and tampering, LINDDUN is explicitly
designed to tackle privacy concerns, thereby filling a critical gap in threat modeling method-
ologies. Its comprehensive categorization of privacy threats and its adaptability across
diverse domains justify its selection as a preferred framework for privacy threat model-
ing, as it ensures a thorough analysis of potential vulnerabilities that might otherwise
be overlooked [17].

The strength of LINDDUN is apparent from its widespread application in recent
academic research, where its versatility and robustness across various sectors are showcased.
For instance, ref. [18] explored the application of LINDDUN GO, a streamlined variant
of the framework, in the context of local renewable energy communities. Its findings
showed how LINDDUN was able to effectively identify privacy threats in decentralized
energy systems, where data sharing among community members could be a significant
risk. Similarly, ref. [19] emphasized the importance of developing robust and reusable
privacy threat knowledge bases, leveraging LINDDUN to enhance the consistency and
scalability of threat modeling practices. Furthermore, ref. [20] tailored LINDDUN to the
automotive industry, addressing privacy concerns in smart cars. By proposing domain-
specific extensions to the methodology, it demonstrated its flexibility in accommodating the
unique challenges of emerging technologies, such as connected vehicles, where personal
data is continuously generated and transmitted.

In addition to its adaptability, the structured approach of LINDDUN has demonstrated
effectiveness in complex, data-intensive environments. For instance, ref. [21] applied LIND-
DUN to model privacy threats in national identification systems, illustrating its utility in
safeguarding large-scale identity management architectures. Its work demonstrates the ca-
pacity of LINDDUN to handle the intricate interplay of personal data in systems that serve
millions of users, where breaches could have far-reaching societal implications. Similarly,
ref. [22] developed a test bed for privacy threat analysis based on LINDDUN, focusing
on patient communities. This application highlights the suitability of the framework for
healthcare systems, where the confidentiality of sensitive medical data is critical.

The choice of LINDDUN is further justified by its targeted focus on privacy threats,
which are often inadequately addressed by security-centric frameworks. While STRIDE
excels in identifying threats to system integrity and availability, it lacks the granularity
required to address nuanced privacy concerns, such as Linkability or Unawareness [23].
The comprehensive threat categories in LINDDUN enable analysts to systematically eval-
uate the privacy vulnerabilities in a system, ensuring that no aspect of data protection is
overlooked. Additionally, its iterative process, which involves mapping system data flows,
identifying threats, and proposing mitigations, aligns well with modern system develop-
ment lifecycles, where privacy must be embedded from the design phase. Moreover, its
adaptability of the framework to diverse domains, from energy systems to healthcare and
automotive industries, further enhances its appeal, as it allows researchers and practitioners
to tailor its application to specific contexts without sacrificing its core principles.

3. Dataset Construction
The construction of the dataset involved a methodical approach to aggregating, fil-

tering, and processing vulnerability data specifically for healthcare systems. Our data
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collection methodology prioritized privacy-centric vulnerabilities while ensuring relevance
to real-world healthcare applications, with particular attention to the nuanced requirements
of healthcare privacy regulations and the technical specificity of medical software systems.

3.1. Modified LINDDUN Process

The foundation of our data collection process was built upon a modified LINDDUN
privacy threat modeling methodology, specifically adapted for healthcare information sys-
tems (HIS). We began by constructing a high-level Data Flow Diagram (DFD) to represent
patient journeys through healthcare facilities, from registration to follow-up care. This DFD
captured the complex interactions between patients, medical staff, and various healthcare
system components, including EHR systems, diagnostic imaging systems, medication
management platforms, vital sign monitoring devices, referral systems, remote monitoring
solutions, and secure messaging infrastructure.

For each DFD element, threat trees from the LINDDUN framework were then used
to systematically evaluate the seven LINDDUN privacy threat categories. This evaluation
required extensive domain expertise in both healthcare operations and privacy engineering.
For example, when analyzing the EHR system process node, we considered how patient
data might be linked across disparate systems (Linkability), how anonymized data could be
re-identified through correlation attacks (Identifiability), and how unauthorized data access
might occur through various attack vectors (Data Disclosure). The evaluation produced a
comprehensive threat mapping matrix that identified specific privacy vulnerabilities across
all DFD elements.

This matrix served as the foundation for mapping privacy threats to corresponding
CWE categories. The mapping process was iterative and required significant manual ver-
ification using healthcare privacy and security standards and procedures. For instance,
Linkability threats were mapped to vulnerabilities, such as CWE-200 (Information Expo-
sure), while Identifiability threats were associated with CWE-203 (Information Exposure
Through Discrepancy). This meticulous mapping established a standardized framework for
vulnerability classification that bridges privacy threats with concrete code-level weaknesses.
While Figure 1 presents a general view, details of the modified approach can be found here.

Figure 1. C3-VULMAP dataset creation.

3.2. Data Aggregation and Sources

The creation of a comprehensive vulnerability dataset required the integration of mul-
tiple high-quality sources that provided diverse and representative vulnerability samples.
We drew upon DiverseVul [4], which contributed a wide range of vulnerability patterns
across different codebases, particularly enhancing our coverage of memory safety issues
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prevalent in healthcare device firmware. ReposVul [5] supplemented this with real-world
vulnerability instances from repository analysis, prioritizing those found in healthcare-
related projects. The StarCoder dataset [24] provided additional context with its extensive
source code collection spanning 86 programming languages, GitHub issues, Jupyter note-
books, and commit messages, yielding approximately 250 billion tokens that informed our
understanding of coding patterns associated with privacy vulnerabilities.

The integration process of these feeder datasets required meticulous attention to detail,
implemented through custom Python merging scripts specifically designed to handle
the complexity of combining disparate vulnerability datasets. Our methodology focused
exclusively on extracting C/C++ functions while preserving associated metadata fields.
The initial automated integration phase employed pandas DataFrame operations with
carefully crafted join conditions that maintained referential integrity between code samples
and their corresponding CWE annotations. Following this automated processing, our
team conducted extensive manual inspection of the randomly sampled integration results,
identifying edge cases where metadata conflicts or inconsistent formatting required manual
handling. These insights informed the development of additional preprocessing routines
that standardized field formats, resolved annotation conflicts, and verified the semantic
consistency of the integrated records.

3.3. Filtering Methodology

Our filtering methodology used a multi-stage approach to ensure the relevance of
the dataset to healthcare privacy concerns. The LINDDUN-CWE alignment filter, derived
from the modified threat methodology, was applied to the aggregated dataset to retain only
functions associated with privacy-relevant CWE categories. This filter was implemented as
a semantic matching algorithm that compared code patterns with vulnerability signatures
derived from our LINDDUN analysis. For example, functions exhibiting patterns consis-
tent with improper anonymization techniques were flagged for retention based on their
relevance to ‘Identifiability’ threats.

Identified privacy-relevant CWEs that were missing are now synthesized with the
OpenAI API, GPT-3.5-Turbo, representing vulnerable and non-vulnerable code functions.
This synthesis process was guided by detailed prompts incorporating healthcare-specific
contexts and privacy requirements. Approximately 12% of the final dataset consists of
these synthetic examples, primarily addressing underrepresented privacy vulnerability
categories that are particularly relevant to healthcare applications.

3.4. Dataset Structure

The final C3-VULMAP dataset comprises 30,112 vulnerable and 7,808,136 non-
vulnerable C/C++ functions, covering 776 unique CWEs. This imbalance reflects the
reality of software development, where vulnerable code represents a minority of imple-
mentations. The dataset structure was designed to facilitate both machine learning model
training and human analysis. Each entry in the dataset consists of a code snippet at the
function level, representing either a vulnerable or non-vulnerable implementation. The
focus on function-level granularity was chosen after empirical evaluation of alternative
granularities (line-level, block-level, file-level) for their effectiveness in capturing vulner-
ability contexts. Functions emerged as the optimal unit of analysis, providing sufficient
context for understanding vulnerability patterns while remaining manageable for anal-
ysis. Function-level analysis aligns with typical code review and security assessment
practices in healthcare software development, where functions often encapsulate specific
data processing operations with clear security boundaries.
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C/C++ was selected because it is considered a programming language for safety-
critical systems [25], and its manual memory management introduces unique privacy
vulnerabilities, like buffer overflows [26], which align with LINDDUN categories and
can cause unauthorized data exposure [27]. In addition, C/C++ remains the dominant
implementation language for performance-critical applications, including medical imag-
ing systems, patient monitoring devices, and laboratory information systems [28]. The
manual memory management inherent to C/C++ introduces unique privacy vulnerability
vectors, such as buffer overflows, use-after-free errors, and memory leaks, which can lead
to unauthorized data exposure [29]. Moreover, the low-level features of C/C++, including
pointer manipulation and direct memory access, expose privacy risk vectors that require
systematic investigation in the healthcare context [30]. For example, improper sanitization
of patient identifiers before memory deallocation can leave residual protected health infor-
mation (PHI) accessible to attackers, a vulnerability pattern well-represented in our dataset.
Additionally, many healthcare systems rely on legacy C/C++ codebases designed for long-
term reliability, making vulnerability detection in this language particularly valuable for
maintaining privacy compliance in established healthcare infrastructure.

3.5. Feature Engineering and Metadata Schema

The dataset consists of a rich metadata schema of nine essential columns that provide
a multi-dimensional characterization of each vulnerability. The ‘label’ column contains
the binary classification of vulnerable (1) or non-vulnerable (0), serving as the primary
target for supervised learning models, while the ‘code’ column contains the actual C/C++
function implementation, preserved with consistent formatting while maintaining the
semantic integrity of the original code.

For vulnerable entries, the ‘cwe_id’ column provides the specific Common Weakness
Enumeration identifier, while ‘cwe_description’ offers a detailed explanation of the vulner-
ability type. The ‘CWE-Name’ column provides the standardized name of the weakness,
facilitating cross-reference with external vulnerability databases and literature. Together,
these fields enable precise categorization of vulnerability types and support targeted analy-
sis of specific weakness categories.

The ‘Privacy_Threat_Types’ column represents a key innovation in our dataset, map-
ping each vulnerability to the corresponding LINDDUN privacy threat categories. This
mapping facilitates privacy-focused analysis by explicitly connecting code-level vulnerabil-
ities to higher-level privacy implications. Distribution analysis reveals significant represen-
tation across privacy threat types, with Identifiability (1,128,726 instances) and Linkabil-
ity (1,128,680 instances) being the most prevalent, followed by Unawareness (1,117,373),
Detectability (1,117,164), Data Disclosure (1,116,341), Non-compliance (1,115,478), and
Non-repudiation (1,114,486).

The hierarchical categorization of vulnerabilities is further supported by the
‘CWE_CATEGORY’, ‘CWE_CATEGORY_NAME’, and ‘CWE_CATEGORY_NAME_
DESCRIPTION’ columns. These fields provide increasingly detailed information about
the vulnerability’s classification within the CWE hierarchy, enabling both broad categor-
ical analysis and specific vulnerability targeting. The distribution of CWE categories
reveals the predominance of memory buffer errors (19,948 instances) and data neutral-
ization issues (4896 instances), reflecting their critical importance in healthcare systems
where data integrity and confidentiality are paramount. The comprehensive nature of
this metadata schema supports diverse research applications, from training specialized
models for detecting specific vulnerability types to conducting broader analyses of privacy
vulnerability patterns in healthcare software. The explicit connection between code-level
vulnerabilities and privacy threats through the LINDDUN framework represents a sig-
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nificant advancement in vulnerability dataset design, directly addressing the need for
privacy-aware security analysis in healthcare applications.

A representative example from the C3-VULMAP dataset is shown in Figure 2. This
sample illustrates a vulnerable C function that poses both memory safety and privacy
risks. The associated metadata captures its vulnerability type (via CWE) and the privacy
implications (via LINDDUN threat categories), enabling fine-grained analysis for privacy-
aware security model training.

Figure 2. A sample annotated entry from the C3-VULMAP dataset.

4. Evaluation Methodology
4.1. Model Selection and Rationale

The C3-VULMAP dataset was constructed using a combination of real-world data and
synthetic augmentation. Real-world code samples were extracted from public vulnerability
datasets, DiverseVul, ReposVul, and StarCoder, while synthetic functions were generated
using large language models (LLMs) to supplement underrepresented privacy-related
CWE categories. No simulator was used in data collection, and thus, the vulnerabilities
reflect actual or realistically constructed implementations.

To assess the effectiveness of vulnerability detection using the C3-VULMAP dataset,
diverse modeling approaches were selected, spanning graph neural networks (GNNs),
transformer-based models, and traditional machine learning (ML) techniques. Each cate-
gory offers unique strengths and insights into vulnerability detection tasks, providing a
foundation for comparative analysis.

4.1.1. Graph Neural Network (GNN)-Based Models

GNNs excel at capturing structural relationships in data, making them ideal for
modeling complex dependencies in source code. We chose Reveal [31] and Devign [32]
for their prominence in vulnerability detection. Reveal uses graph-based representation
to model code semantics and structure, capturing data and control flow dependencies to
identify nuanced vulnerability patterns [31]. Devign enhances this by combining graph
convolutional networks with gated recurrent units, enabling both structural and sequential
learning to detect subtle vulnerabilities across large codebases [32].
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4.1.2. Transformer-Based Models

Transformer architectures, renowned for contextual learning in natural language pro-
cessing, are increasingly vital for code vulnerability detection due to similarities between
code and text. We selected CodeBERT, GraphCodeBERT, and CodeT5 for their effectiveness
in leveraging contextual code representations. CodeBERT, built on the RoBERTa archi-
tecture, captures semantic relationships through masked language modeling, detecting
vulnerabilities tied to semantic issues [33]. GraphCodeBERT incorporates abstract syn-
tax tree-based representations for precise structural–semantic embeddings, improving
detection of complex vulnerabilities [34]. CodeT5, based on the T5 architecture, employs
multitask pretraining for code-related tasks, offering flexibility and accuracy in vulnerabil-
ity detection [35].

4.1.3. Traditional Machine Learning Models

Traditional ML methods provide interpretability and efficiency, serving as valuable
baselines. We selected Random Forest, Logistic Regression, Support Vector Machine (SVM),
and XGBoost. Random Forest captures non-linear relationships via ensemble decision trees,
offering high accuracy and feature importance insights [36]. Logistic Regression provides
transparency, aiding feature identification for vulnerability risks [37]. SVMs handle high-
dimensional data effectively, using kernel flexibility to assess feature interactions [38].
XGBoost leverages gradient boosting for superior predictive performance, with scalability
and interpretability for large datasets [39].

4.2. Experimental Setup

An integrated pipeline across the four modeling paradigms was adopted to ensure
fair and reproducible comparisons. All experiments draw on the same base corpus of
labeled examples. We then partition each dataset into training, validation, and test sets—
typically in an 80/10/10 split—using stratified sampling to preserve label distributions.
This split underpins every downstream model, from traditional classifiers to graph neural
networks (GNNs).

Our neural-text comparison centers on pretrained transformer encoders. We bench-
marked both BERT-base (uncased) and GraphCodeBERT, loading each via the AutoMod-
elForSequenceClassification API from Hugging Face with two-class heads. Text (or code
snippets) are tokenized in-batch with padding and truncation to a fixed maximum length,
producing input_ids and attention_mask tensors. Fine-tuning follows the standard AdamW
optimizer (learning rate ≈ 2 × 10−5) over multiple epochs, with checkpoints saved per
epoch. Model outputs, the pooled sentence-level classification [CLS] embeddings, were
fed through a linear classification head, and we monitored precision, recall, and F1 on the
validation set to select the best checkpoint. In this experiment, code-aware pretraining of
GraphCodeBERT consistently outperformed vanilla BERT on code classification tasks.

In the CodeT5 experiments, we leveraged the Salesforce ‘codet5-base’ Sequence to
Sequence (seq2seq) model repurposed for classification. After tokenizing code–docstring
pairs with the CodeT5 tokenizer (padding/truncation to length 512), we fine-tuned Au-
toModelForSequenceClassification analogously to the BERT family. In the training loops,
cross-entropy loss and back-propagation gradients were computed. The best models were
then saved based on validation F1. Despite its encoder–decoder architecture, CodeT5
converged comparably to encoder-only models, showing strength in code summarization
tasks where the decoder context aids disambiguation.

Finally, our graph-based approach converts each example into a program graph: nodes
represent abstract syntax tree (AST) constructs or tokens, edges encode syntactic and data
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flow relations, and node features comprise one-hot token-type vectors. Training used
standard PyTorch 2.0.1 loops with Adam (learning rate ≈ 1 × 10−3) and cross-entropy loss.

To evaluate performance, we ran inference on the held-out test fold for every model,
compiling an ‘inference table’ of true labels, predicted labels, and model confidences.
From these, we computed accuracy, precision, recall, and F1 via Scikit-learn, alongside
confusion matrices. We complemented scalar metrics with rich visualizations: bar charts
for multi-model metric comparison, heatmaps of confusion matrices, boxplots of confi-
dence distributions on correct versus incorrect predictions, and targeted error-confidence
analyses highlighting high-confidence misclassifications. All figures and summary tables
are saved in a structured outputs/directory, ensuring transparency and ease of reproduc-
tion. Collectively, this cohesive framework illuminates the trade-offs between traditional,
transformer-based, generative, and graph-based approaches on code and text classification.

5. Results
This section presents the performance evaluation of three classes of models, traditional

machine learning (ML), graph neural networks (GNNs), and transformer-based models,
across overall classification, production-scale inference, and granular vulnerability and
privacy threat metrics. The results are derived from a comprehensive evaluation on a
validation set and a production-scale test set of 18,068 cases, with metrics including preci-
sion, recall, F1-score, accuracy, false positives/negatives, and average confidence scores.
Granular performance is reported as mean ± standard deviation (SD) across CWE and
privacy threat categories, with the best-performing threat type highlighted for each model.
The complete performance metrics and other results can be found here.

5.1. Results for Traditional Machine Learning Modules

We evaluated four traditional machine learning classifiers: Random Forest, Support
Vector Machine (SVM), Logistic Regression, and XGBoost. Table 3 presents their overall
classification performance.

Table 3. Overall performance of the traditional ML models.

Model Precision Recall F1-Score

Random Forest 0.985 0.939 0.961
SVM 0.982 0.993 0.987

Logistic Regression 0.985 0.979 0.982
XGBoost 0.978 0.995 0.986

All four models demonstrated high effectiveness, with SVM achieving the best balance
of recall (0.993) and F1-score (0.987), while Random Forest delivered the highest precision
(0.985) but at the cost of lower recall. XGBoost attained the highest recall (0.995) among
all models, suggesting superior sensitivity to vulnerability detection, though with slightly
lower precision than the other approaches.

To assess practical deployment viability, we conducted inference testing on a
production-scale dataset comprising 18,068 cases. Table 4 summarizes these results.

SVM demonstrated the highest overall accuracy (0.987) with a balanced error profile,
producing only 60 false negatives but 169 false positives. XGBoost showed a tendency
toward false positives (205) while minimizing false negatives (49), indicating a more
conservative security posture that favors vulnerability flagging. Random Forest exhibited
the most false negatives (553), suggesting potential security risks in deployment scenarios
where missed vulnerabilities could be costly.
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Table 4. Inference performance summary of the traditional ML models.

Model Accuracy False
Positives

False
Negatives

Avg
Confidence

Random Forest 0.962 129 553 0.827
SVM 0.987 169 60 0.982

Logistic Regression 0.982 132 192 0.966
XGBoost 0.986 205 49 0.978

We further analyzed model consistency across vulnerability categories by computing
the mean and standard deviation of performance metrics for CWE classes (Table 5).

Table 5. Mean ± SD of CWE granular metrics of the traditional ML models.

Model Precision (µ ± σ) Recall (µ ± σ) F1 (µ ± σ)

Random Forest 0.965 ± 0.012 0.964 ± 0.011 0.964 ± 0.011
SVM 0.988 ± 0.005 0.987 ± 0.006 0.987 ± 0.005

Logistic Regression 0.982 ± 0.007 0.982 ± 0.008 0.982 ± 0.007
XGBoost 0.988 ± 0.004 0.988 ± 0.005 0.988 ± 0.004

Both SVM and XGBoost achieved the highest mean F1-scores (0.987 ± 0.005 and
0.988 ± 0.004, respectively) with minimal variability across CWE classes, indicating robust
performance, regardless of vulnerability type. Random Forest showed slightly higher
variability (σ = 0.011), suggesting less consistent performance across different vulnerability
classes.

Finally, we evaluated model performance on privacy threat classification (Table 6).

Table 6. Average privacy threat metrics and best-performing threat type per traditional ML model.

Model Avg Precision Avg Recall Avg F1-Score Best Threat Type F1-Score

Random Forest 0.9632 0.9622 0.9625 Linkability 0.9679
SVM 0.9874 0.9873 0.9873 Linkability 0.9893

Logistic Regression 0.9821 0.9820 0.9820 Identifiability 0.9852
XGBoost 0.9861 0.9859 0.9859 Identifiability 0.9893

SVM again emerged as the top performer with an average F1-score of 0.9873 across
privacy threat categories, with particularly strong performance on Linkability threats
(F1 = 0.9893). Interestingly, XGBoost matched this best-in-class performance (F1 = 0.9893)
except for Identifiability threats, suggesting that different models may possess complemen-
tary strengths for specific privacy threat detection tasks.

5.2. Results for the Graph Neural Networks

Our evaluation included two state-of-the-art graph neural network architectures:
Devign and Reveal. Table 7 presents their overall classification performance.

Table 7. Overall performance of GNN classifiers.

Model Precision Recall F1-Score

Devign 0.9699 0.9912 0.9776
Reveal 0.9821 0.9945 0.9860

Both GNN models achieved exceptional recall (>0.99), with Reveal outperforming
Devign across all metrics. Reveal’s superior precision (0.9821 vs. 0.9699) contributed to its
higher F1-score (0.9860), indicating better overall classification performance.
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For production deployment assessment, we conducted large-scale inference testing,
with the results shown in Table 8.

Table 8. Production inference performance for the GNN classifiers.

Model Accuracy False Positives False Negatives Avg Confidence

Devign 0.9913 103 27 0.503
Reveal 0.9933 74 27 0.502

Reveal demonstrated higher accuracy (0.9933) with considerably fewer false positives
(74 vs. 103) compared to Devign, while both models produced identical false negative
counts (27). Notably, both GNN models exhibited lower average confidence scores (≈0.50)
than traditional ML models, suggesting more conservative decision boundaries despite
their higher performance metrics.

To assess model consistency across vulnerability categories, we analyzed performance
variance across CWE classes (Table 9).

Table 9. Mean ± SD of CWE granular metrics for the GNN classifiers.

Model Precision (µ ± σ) Recall (µ ± σ) F1 (µ ± σ)

Devign 0.984 ± 0.017 0.997 ± 0.004 0.991 ± 0.009
Reveal 0.986 ± 0.018 0.997 ± 0.004 0.991 ± 0.009

Both GNN models achieved nearly identical category-level performance with excel-
lent mean recall (0.997) and F1-scores (0.991). The slightly higher standard deviations in
precision (σ ≈ 0.017–0.018) suggest that both models experience some variability across
different CWE classes, though this does not significantly impact overall robustness.

For privacy threat metrics, we evaluated performance consistency and identified peak
performance areas (Table 10).

Table 10. Mean ± SD of privacy threat metrics, plus best-scoring threat for the GNN classifiers.

Model Precision (µ ± σ) Recall (µ ± σ) F1 (µ ± σ) Best Threat Type F1

Devign 0.986 ± 0.005 0.996 ± 0.002 0.991 ± 0.002 Identifiability 0.9945
Reveal 0.990 ± 0.005 0.996 ± 0.002 0.993 ± 0.003 Linkability 0.9968

Reveal achieved higher mean precision (0.990 vs. 0.986) and F1-score (0.993 vs. 0.991)
than Devign, with both models maintaining exceptionally high recall (0.996). The minimal
standard deviations across all metrics (σ ≤ 0.005) indicate remarkable consistency across
privacy threat types. Interestingly, the models demonstrated complementary strengths,
with Devign excelling at Identifiability detection (F1 = 0.9945) and Reveal performing best
on Linkability threats (F1 = 0.9968).

To provide a more comprehensive view of privacy threat classification performance,
we present average metrics and best-case performance for each model in Table 11.

Table 11. Average privacy threat metrics and best-performing threat type per GNN classifier.

Model Avg Precision Avg Recall Avg F1-Score Best Threat Type F1-Score

Devign 0.9860 0.9962 0.9910 Identifiability 0.9945
Reveal 0.9902 0.9964 0.9931 Linkability 0.9968

Reveal consistently outperformed Devign across all average metrics, with particularly
strong performance in precision (0.9902 vs. 0.9860) and F1-score (0.9931 vs. 0.9910). Both
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models achieved near-perfect recall (>0.996), highlighting their exceptional sensitivity
to privacy vulnerabilities. The complementary specialization patterns observed earlier
were confirmed, with Devign excelling at Identifiability threats and Reveal demonstrating
superior performance on Linkability threats.

5.3. Results for Transformer-Based Models

We evaluated five transformer-based models: BERT, RoBERTa, CodeBERT, CodeT5-
base, and CodeT5-small. Table 12 presents their overall classification performance.

Table 12. Overall performance of transformer models.

Model Precision Recall F1-Score

BERT (bert-base-uncased) 0.974 0.992 0.983
RoBERTa (roberta-base) 0.980 0.994 0.987

CodeBERT (codebert-base) 0.978 0.993 0.985
CodeT5-base 0.976 0.991 0.983
CodeT5-small 0.972 0.990 0.981

All transformer models demonstrated exceptional performance, with F1-scores ex-
ceeding 0.98. RoBERTa emerged as the top performer with the highest precision (0.980),
recall (0.994), and F1-score (0.987) among transformer models. CodeBERT ranked second
with an F1-score of 0.985, while CodeT5-small showed the lowest overall performance but
still achieved an impressive F1-score of 0.981.

For production deployment assessment, Table 13 presents inference performance metrics.

Table 13. Production inference performance for the transformer models.

Model Accuracy False Positives False Negatives Avg Confidence

BERT (bert-base-uncased) 0.9915 85 30 0.912
RoBERTa (roberta-base) 0.9932 60 25 0.925

CodeBERT (codebert-base) 0.9928 70 28 0.918
CodeT5-base 0.9921 75 32 0.908
CodeT5-small 0.9905 102 45 0.890

RoBERTa achieved the highest accuracy (0.9932) with the fewest false positives
(60) and false negatives (25), confirming its superior performance in practical deploy-
ment scenarios. All transformer models exhibited high confidence scores (>0.89), with
RoBERTa again leading at 0.925. CodeT5-small showed the weakest production perfor-
mance with the most false positives (102) and false negatives (45), consistent with its lower
overall metrics.

To assess consistency across vulnerability categories, we analyzed performance across
CWE classes (Table 14).

Table 14. Mean ± SD of CWE granular metrics for transformer models.

Model Precision (µ ± σ) Recall (µ ± σ) F1 (µ ± σ)

BERT (bert-base-uncased) 0.975 ± 0.010 0.993 ± 0.005 0.984 ± 0.007
RoBERTa (roberta-base) 0.981 ± 0.008 0.994 ± 0.004 0.987 ± 0.006

CodeBERT (codebert-base) 0.979 ± 0.009 0.993 ± 0.005 0.986 ± 0.006
CodeT5-base 0.977 ± 0.011 0.991 ± 0.005 0.983 ± 0.008
CodeT5-small 0.973 ± 0.013 0.990 ± 0.006 0.981 ± 0.009

All transformer models demonstrated consistent performance across CWE classes with
low standard deviations (σF1 ≤ 0.009). RoBERTa again led with the highest mean F1-score
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(0.987) and smallest performance variability (σF1 = 0.006), indicating robust performance
across all vulnerability types. CodeT5-small showed the highest variability (σF1 = 0.009),
though still maintaining strong overall performance.

For privacy threat classification, we assessed fine-grained metrics across threat
types (Table 15).

Table 15. Mean ± SD of privacy threat granular metrics for the transformer models.

Model Precision (µ ± σ) Recall (µ ± σ) F1 (µ ± σ)

BERT (bert-base-uncased) 0.983 ± 0.006 0.995 ± 0.003 0.989 ± 0.004
RoBERTa (roberta-base) 0.987 ± 0.005 0.996 ± 0.003 0.991 ± 0.004

CodeBERT (codebert-base) 0.985 ± 0.006 0.995 ± 0.003 0.990 ± 0.005
CodeT5-base 0.986 ± 0.007 0.995 ± 0.003 0.990 ± 0.005
CodeT5-small 0.984 ± 0.008 0.994 ± 0.004 0.989 ± 0.006

All transformer models achieved exceptional performance on privacy threat classi-
fication, with mean F1-scores ≥ 0.989 and minimal standard deviations (σF1 ≤ 0.006).
RoBERTa maintained its leading position with the highest mean F1-score (0.991), followed
closely by CodeBERT and CodeT5-base (both 0.990). The consistently high recall across all
models (≥0.994) highlights their strong sensitivity to privacy vulnerabilities.

Finally, we identified the best-performing privacy threat type for each transformer
model (Table 16).

Table 16. Best-performing privacy threat per transformer model.

Model Best Threat Type F1-Score

BERT (bert-base-uncased) Identifiability 0.9946
RoBERTa (roberta-base) Linkability 0.9962

CodeBERT (codebert-base) Data Disclosure 0.9958
CodeT5-base Identifiability 0.9946
CodeT5-small Data Disclosure 0.9961

Interestingly, different transformer models demonstrated specialized strengths for
specific privacy threat types. RoBERTa excelled at Linkability detection (F1 = 0.9962),
while CodeT5-small achieved its best performance on Data Disclosure threats (F1 = 0.9961),
despite having lower overall metrics. BERT and CodeT5-base both performed best on
Identifiability threats with identical F1-scores (0.9946). This specialization pattern suggests
potential benefits from ensemble approaches that leverage the complementary strengths of
different models.

6. Discussion
Comparing GNN-based, transformer-based, and traditional ML models reveals major

differences in their capacities for vulnerability detection. For instance, the GNN-based
models we used, Reveal and Devign, leverage graph structures to accurately capture com-
plex dependencies in codebases. Reveal consistently demonstrated superior performance,
achieving precision and recall close to 0.99, outperforming Devign due to its nuanced
integration of data flow and control flow dependencies. Devign, while slightly behind,
still provided substantial insights by combining graph convolutional networks with gated
recurrent units, effectively capturing sequential and structural patterns essential for iden-
tifying subtle vulnerabilities [32]. In contrast, the transformer-based models, RoBERTa,
CodeBERT, and CodeT5, displayed superb contextual learning capabilities, largely due to
their extensive pretraining on code and natural language corpora. RoBERTa achieved the
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highest precision and recall, indicating its profound ability to capture subtle semantic issues
within code. CodeBERT and CodeT5, while slightly lower in overall performance, provided
multitask flexibility, which is important for broader software analysis tasks, suggesting the
suitability of transformer-based models for complex, multifaceted vulnerability detection
contexts [33,34].

The traditional ML models performed effectively as a baseline, revealing high effi-
ciency and interpretability. Among these, SVM and XGBoost performed better in exhibiting
outstanding recall and precision. SVM presented a balanced performance, minimizing false
negatives, which is crucial for critical healthcare environments where missing a vulnerabil-
ity might lead to severe consequences. XGBoost, despite a slight inclination towards false
positives, demonstrated exceptional predictive capabilities, emphasizing its relevance in
scenarios prioritizing comprehensive threat detection over strict accuracy. Random Forest
and Logistic Regression, while reliable, highlighted limitations in managing false nega-
tives, underscoring the importance of choosing appropriate models based on the specific
operational priorities within healthcare IT infrastructures [36].

Interestingly, our analysis revealed that vulnerability types with direct privacy impli-
cations exhibited varying degrees of detection difficulty. Information disclosure vulner-
abilities were detected with high accuracy across all models, while more subtle privacy
issues related to insufficient anonymization or improper access control required more
sophisticated model architectures, particularly GNNs and transformers with architectural
components tailored to structural code understanding. This finding aligns with recent
research suggesting that privacy vulnerabilities often involve complex interactions between
code structure, data flow, and application semantics that can be challenging to detect with
simple pattern matching [37]. All the models tested showed strong effectiveness in identi-
fying privacy-specific vulnerabilities, although distinct variations existed in their accuracy
across different privacy threats. Transformer-based models, notably RoBERTa, consistently
demonstrated superior performance across different privacy threats, particularly in Linka-
bility and Identifiability, which is likely because of their nuanced semantic understanding
derived from vast pretraining. Reveal, within the GNN category, particularly excels in
identifying Linkability threats, leveraging its structural sensitivity to intricate privacy issues
deeply embedded within code dependencies. This specificity underscores the value of
employing specialized models tailored to distinct privacy threats rather than generalized
vulnerability detectors, especially within sensitive healthcare contexts.

Furthermore, the performance patterns observed across different CWE categories
were instructive for targeted vulnerability detection strategies. Memory buffer errors,
representing the largest vulnerability category in our dataset (19,948 instances), were
consistently detected with great accuracy across all model types, reflecting the rela-
tively structured nature of these vulnerabilities. In contrast, data neutralization issues
(4896 instances) exhibited greater variability in detection performance, likely due to their
context-dependent manifestation and the diverse implementation patterns for data saniti-
zation in healthcare applications [38].

The targeted construction of C3-VULMAP, specifically integrating healthcare-focused
vulnerability scenarios, provided superior generalization within healthcare software con-
texts compared to generic datasets. The combination of real-world vulnerabilities with
synthetic examples significantly bolstered the ability of the dataset to train models capa-
ble of generalizing across diverse privacy threats, thus achieving robust state-of-the-art
results in healthcare privacy vulnerability detection. The integration of the LINDDUN
framework with CWE profoundly impacted vulnerability detection by providing a struc-
tured and explicit mapping between privacy threats and specific vulnerabilities at the
code level. This integration facilitates deeper interpretability, enabling stakeholders to
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understand not only what vulnerabilities exist but also their potential privacy implications.
Such detailed mappings bridge the gap between abstract privacy concepts and concrete
software vulnerabilities, significantly enhancing the capability to mitigate privacy risks
proactively in healthcare environments. Moreover, they support compliance-driven de-
velopment, guiding software engineers towards more privacy-aware coding practices,
fundamentally transforming how software vulnerabilities are managed and prioritized in
healthcare systems.

When interpreting our results in the broader context of healthcare software privacy,
several key implications emerge. The high accuracy achieved by our models demonstrates
the feasibility of automated privacy vulnerability detection as part of healthcare software
development pipelines, potentially accelerating compliance verification for regulations.
However, the observed specialization of different models for specific privacy threat types
suggests that comprehensive privacy assurance requires multifaceted detection approaches
rather than reliance on a single model architecture. Additionally, the integration of privacy
threat modeling with concrete vulnerability detection bridges the gap between privacy
engineering and security engineering disciplines, addressing the historical disconnect
between these domains that has challenged healthcare software development [35].

Nevertheless, our approach is not devoid of challenges worth considering. For in-
stance, the labeling of C/C++ functions for privacy vulnerabilities required significant
domain expertise in both healthcare operations and privacy engineering. Also, the adap-
tation of the LINDDUN methodology to code-level vulnerabilities presented conceptual
challenges, as privacy threats often manifest across multiple functions or components
rather than within isolated code segments [5]. Additionally, the class imbalance inher-
ent in vulnerability datasets (30,112 vulnerable vs. 7,808,136 non-vulnerable functions)
necessitated careful sampling and evaluation approaches to ensure model robustness in
production environments.

The comparative analysis between GNN-based, transformer-based, and traditional
ML models highlights significant differences in their capacities for vulnerability detec-
tion. GNN-based models, particularly Reveal and Devign, leverage graph structures to
accurately capture complex dependencies in codebases. Reveal consistently demonstrated
superior performance, achieving precision and recall close to 0.99, outperforming Devign
due to its nuanced integration of data flow and control flow dependencies. Devign, while
slightly behind, still provided substantial insights by combining graph convolutional net-
works with gated recurrent units, effectively capturing sequential and structural patterns
essential for identifying subtle vulnerabilities [13]. In contrast, transformer-based models
such as RoBERTa, CodeBERT, and CodeT5 displayed outstanding contextual learning capa-
bilities, largely due to their extensive pretraining on code and natural language corpora.
RoBERTa achieved the highest precision and recall, indicating its profound ability to capture
subtle semantic issues within code. CodeBERT and CodeT5, while slightly lower in overall
performance, provided multitask flexibility, which is crucial for broader software analysis
tasks, suggesting the suitability of transformer-based models for complex, multifaceted
vulnerability detection contexts [33,34].

Traditional ML models served effectively as a baseline, revealing high efficiency and
interpretability. Among these, SVM and XGBoost notably excelled, exhibiting outstanding
recall and precision. SVM presented a balanced performance, minimizing false negatives,
and it is crucial for critical healthcare environments where missing a vulnerability might
lead to severe consequences. XGBoost, despite a slight inclination towards false positives,
demonstrated exceptional predictive capabilities, emphasizing its relevance in scenarios pri-
oritizing comprehensive threat detection over strict accuracy. Random Forest and Logistic
Regression, while reliable, highlighted limitations in managing false negatives, under-
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scoring the importance of choosing appropriate models based on the specific operational
priorities within healthcare IT infrastructures [36,39].

All tested models showed strong effectiveness in identifying privacy-specific vul-
nerabilities, although distinct variations existed in their accuracy across different privacy
threats. Transformer-based models, notably RoBERTa, consistently demonstrated superior
performance across diverse privacy threats, particularly in Linkability and Identifiability,
likely due to their nuanced semantic understanding derived from vast pretraining. Reveal,
within the GNN category, particularly excels in identifying Linkability threats, leveraging
its structural sensitivity to intricate privacy issues deeply embedded within code depen-
dencies. This specificity underscores the value of employing specialized models tailored to
distinct privacy threats rather than generalized vulnerability detectors, especially within
sensitive healthcare contexts [35].

Generalization performance is particularly critical in real-world applications. The
evaluated models, trained on the C3-VULMAP dataset, indicated substantial advance-
ment over traditional datasets, like DiverseVul and ReposVul. The targeted construction
of C3-VULMAP, specifically integrating healthcare-focused vulnerability scenarios, pro-
vided superior generalization within healthcare software contexts compared to generic
datasets. The combination of real-world vulnerabilities with synthetic examples signif-
icantly bolstered the dataset’s ability to train models capable of generalizing across di-
verse privacy threats, thus achieving robust state-of-the-art results in healthcare privacy
vulnerability detection.

Interpreting these results within healthcare software privacy contexts highlights the
necessity of high-performing detection systems capable of pinpointing nuanced vulnera-
bilities critical to patient data integrity and compliance with healthcare regulations. The
remarkable performance of transformer-based and GNN models emphasizes their ap-
plicability in healthcare, given their precision in capturing both semantic and structural
vulnerabilities. Privacy-specific threats, such as Linkability and Identifiability, require
meticulous detection mechanisms, aligning closely with healthcare’s stringent privacy regu-
lations, like HIPAA and GDPR. Therefore, employing advanced detection models becomes
not merely a technical preference but a regulatory imperative for healthcare organizations
aiming to protect sensitive patient data comprehensively.

The integration of the LINDDUN framework with CWE profoundly impacted vul-
nerability detection by providing a structured and explicit mapping between privacy
threats and specific vulnerabilities at the code level. This integration facilitates deeper
interpretability, enabling stakeholders to understand not only what vulnerabilities exist but
also their potential privacy implications. Such detailed mappings bridge the gap between
abstract privacy concepts and concrete software vulnerabilities, significantly enhancing
the capability to mitigate privacy risks proactively in healthcare environments. Moreover,
they support compliance-driven development, guiding software engineers towards more
privacy-aware coding practices, fundamentally transforming how software vulnerabilities
are managed and prioritized in healthcare systems [26].

7. Conclusions
The significance of privacy-aware vulnerability detection cannot be overstated, partic-

ularly in healthcare contexts where privacy breaches can have profound implications on
patient safety and compliance with strict regulatory frameworks. The C3-VULMAP dataset
substantially advances the field by explicitly integrating the LINDDUN privacy framework
with CWE vulnerability classifications, creating a unique and valuable resource tailored
to healthcare privacy concerns. Its combination of real-world and synthetic examples
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provides balanced and comprehensive vulnerability representation, facilitating superior
model training and generalization capabilities.

Given these strengths, further use and collaborative enhancements of the C3-VULMAP
dataset are strongly encouraged. Researchers, practitioners, and policymakers in cyber-
security and healthcare are invited to engage with and contribute to this evolving re-
source, promoting broader adoption and continuous improvement in privacy vulnerability
detection methodologies.

Practical implications from this study highlight considerable challenges and critical
considerations in labeling and detecting vulnerabilities. One notable challenge is ensuring
accurate manual labeling, which remains essential despite advancements in automated
detection methodologies. The reliance on domain expertise for manual labeling poses
significant resource implications, highlighting the reliance on human oversight to validate
automated findings. The integration of synthetic vulnerabilities, although beneficial, also
presents challenges related to ensuring their realism and representativeness. Practical
deployment further demands addressing issues, such as managing false positives, refin-
ing confidence thresholds, and ensuring that detected vulnerabilities are actionable and
relevant, thus necessitating ongoing iterative improvements and adaptations to maintain
robust and accurate vulnerability detection in dynamic healthcare environments.

Expansion to additional programming languages is another important direction, as the
current dataset predominantly focuses on C/C++ due to their prevalent use in safety-critical
applications, like those used in healthcare. Incorporating other widely used languages
like Python, Java, and JavaScript would broaden the applicability of the dataset, providing
comprehensive coverage across diverse healthcare systems and software environments.
In future work, we aim to investigate the integration of the C3-VULMAP dataset into
continuous integration and continuous deployment (CI/CD) pipelines to support real-time,
privacy-aware vulnerability assessment in healthcare software systems. By embedding
trained detection models into automated development workflows, it will enable the early
identification of privacy-related vulnerabilities during the coding and testing phases, en-
suring that threats aligned with LINDDUN privacy categories are detected and mitigated
before deployment. Furthermore, such integration will support continuous monitoring
and automated security feedback, which is especially important in rapidly evolving health-
care environments. We envision adapting C3-VULMAP for lightweight, containerized
tools that integrate with platforms, like Jenkins or GitLab, providing actionable feed-
back to developers and enhancing proactive privacy protection in dynamic healthcare
software environments.
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