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Abstract 

Industrial food processes such as Ohmic Heating (OH) are gaining popularity due to their lower carbon 

emissions and improved energy efficiency. The effectiveness of OH largely depends on the electrical 

conductivity, physical properties, and rheological characteristics of the food product, with dynamic 

viscosity directly influencing the fluid flow, residence time, and heating rate in a Continuous Flow 

Ohmic Heating (CFOH) system. Therefore, accurate prediction of viscosity during CFOH processing 

is crucial for optimising heating efficiency and maintaining the desired output temperature, ultimately 

reducing energy consumption and operational costs. To address this challenge, this study introduces 

OhmNet - an advanced Neural Network (NN)-based predictive model designed to accurately estimate 

the dynamic viscosity of tikka sauce during OH, offering a robust solution for viscosity prediction in 

CFOH applications. The predictive model has been developed using real-time data obtained from 

heating experiments, where viscosity measurements were recorded using a rheometer at varying target 

temperatures. To achieve the optimal configuration of OhmNet, three different approaches were 

explored: separate network development for each target temperature, a transfer learning-based neural 

network, and a one-hot encoding-based unified neural network model. These approaches were 

systematically evaluated through a grid search for hyperparameter tuning to identify the most accurate 

and robust dynamic viscosity predictive model during Continuous Flow Ohmic Heating. The resulting 

OhmNet model demonstrates high performance and reliability, achieving a Mean Squared Error (MSE) 

of 0.002, a Mean Absolute Error (MAE) of 0.025, and a coefficient of determination (R2) equal to 0.99. 

This optimal configuration of OhmNet offers a powerful tool for enhancing process efficiency and 

control in industrial food processing applications. In the future, the model can be seamlessly integrated 

with advanced process controllers for precise temperature control and power consumption optimisation, 

driving sustainable and energy-efficient food processing applications.  

 

Keywords: viscosity prediction; tikka sauce; Artificial Neural Network (ANN); Ohmic Heating (OH). 

 

1. Introduction 

The physical and rheological properties of food products play a fundamental role in the design and 

optimisation of industrial food processes. These properties are critical not only for ensuring process 

efficiency but also for preserving quality, safety, and organoleptic attributes of final products (Rai et al., 
2005). Among them, viscosity is an essential parameter due to its direct influence on flow behaviour, 

heat transfer efficiency, residence time, and energy requirements during thermal processing (Said Toker 
et al.). These process parameters are especially relevant in the context of emerging processing 

technologies such as Ohmic Heating (OH). 

 

Ohmic Heating is an advanced thermal processing technique that leverages the electrical conductivity 

of food to generate internal heat through resistance. Compared to conventional heating, OH offers faster 
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and more uniform heating, lower energy consumption, and reduced carbon emissions, making it 

attractive for sustainable food production (Silva et al., 2022). A specialised application of OH, known 

as Continuous Flow Ohmic Heating (CFOH), is particularly suitable for processing pumpable food 

products such as soups, slurries, juices, and sauces. In CFOH systems, viscosity becomes a controlling 

factor for key operational parameters, including flow rate, voltage input, target temperature, and energy 

consumption (Manzoor et al.). 
However, viscosity measurement during CFOH remains a challenge. Conventional rheometry is labour-

intensive, offline, and often impractical in real-time settings. While empirical models such as the 

Arrhenius and power-law equations have historically been used to estimate viscosity, they fall short 

when dealing with the non-linear and dynamic behaviour of complex food fluids under real processing 

conditions (Karaman et al., 2014; Peleg, 2017). Likewise, traditional regression models (e.g., linear or 

polynomial) fail to capture the non-Newtonian behaviour of materials like sauces and lack robustness 

across different formulations and heating profiles (Oroian, 2013). 
 

To address these limitations, the food science community has increasingly turned to Machine Learning 

(ML) techniques, particularly Artificial Neural Networks (ANNs), which excel in modelling complex, 

nonlinear relationships between input features and output responses. In the domain of food processing, 

ML models have been applied to predict viscosity across diverse applications, ranging from fruit purees 

to dairy gels and starch-based systems. For example, (Perera et al., 2025) proposed a grey-box soft 

sensor for predicting melt viscosity in polymer extrusion processes by combining physics-based models 

with Recurrent Neural Networks (RNNs), achieving an improvement of approximately 95% over radial 

basis function neural networks (RBFNN). Similarly, a notable study by (Heidari et al., 2016) used 

multilayer perceptron (MLP) networks to predict the viscosity of fruit purees, achieving high accuracy 

by tuning hyperparameters such as the number of neurons and hidden layers (Heidari et al., 2016). This 

study also emphasised the importance of hyperparameter tuning and model architecture optimisation to 

reduce prediction errors and improve model robustness. 

 

Table 1 presents a comparative summary of recent ML-based studies on viscosity prediction in food 

systems. These studies span a variety of food matrices and heating technologies, including conventional, 

microwave, and ohmic heating, and deployed algorithms ranging from feedforward ANNs to hybrid 

physics-informed models. Notably, while ML has been explored for several thermal processing 

methods, applications in OH and especially CFOH remain sparse. Research by (Silva et al., 2020) is one 

of the few studies that investigated ML for OH processes, but focused more on electrical conductivity 

and microbial inactivation than rheological modelling. 

While machine learning models, particularly neural networks, have been previously employed in 

engineering disciplines to estimate viscosity and other fluid properties, their integration into real-time 

Ohmic Heating (OH) applications in the food industry remains largely unexplored. Most existing works 

focus on static rheological models under ideal lab conditions or use simulated data with limited 

industrial relevance. Additionally, despite numerous studies demonstrating the potential of ML 

techniques for viscosity prediction, most of these models are either domain-specific or lack 

generalisability across different processing conditions. Many existing models do not account for the 

dynamic nature of viscosity changes during continuous flow processing, limiting their application in 

real-time monitoring systems. Nevertheless, the challenge is to develop a predictive model that can 

generalise viscosity predictions over a wide range of temperature profiles while maintaining robustness 

and accuracy.  

These trends reveal a clear research opportunity to develop a specialised, ML-based predictive model 

for viscosity in the CFOH process. Such a model must account for the unique heating behaviour of 

ohmic systems, the non-Newtonian nature of food fluids, and the need for real-time adaptability. To 

bridge this gap, this research introduces OhmNet - a feedforward ANN designed to predict the dynamic 

viscosity of tikka sauce during CFOH. This work utilises real-time experimental data collected via a 

Modular Compact Rheometer (MCR 302), calibrated to mimic the flow and thermal dynamics of a 
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pilot-scale CFOH system. The dataset comprises three heating profiles (75°C, 90°C, and 100°C), 

capturing the nonlinear temperature-viscosity trend of non-Newtonian fluids. 

To develop OhmNet, three distinct approaches were considered: 

1. Separate Network Approach: Independent networks were trained on each dataset, optimising 

the model architecture for each temperature range. 

2. Transfer Learning Approach: A pre-trained model was fine-tuned on subsequent datasets to 

transfer knowledge from one temperature range to another. 

3. One-Hot Encoding Unified Model: A single network was trained using combined datasets with 

one-hot encoding to represent different temperature ranges. 

These approaches were systematically trained and evaluated over three different datasets with various 

temperature ranges using hyperparameter tuning to identify the optimal configuration in terms of 

training function, number of hidden layers, and neuron count. Performance metrics such as Mean 

Squared Error (MSE), Mean Absolute Error (MAE), and coefficient of determination (R²) were used to 

evaluate model accuracy. This robust OhmNet may be integrated with data-driven controllers to adapt 

the CFOH voltage inputs according to the variations in process conditions, maintaining high accuracy 

throughout extended operations. 

 

Therefore, this study positions OhmNet as the first data-driven, domain-specific viscosity prediction 

tool for CFOH, capable of real-time integration with process controllers for adaptive voltage regulation. 

By enabling robust and accurate viscosity estimation, OhmNet supports the broader goal of achieving 

sustainable, intelligent food processing systems in the food industry. 

 

 

 

 

 

Study 

(Year) 

Heating 

Methods 

ML Model Input Features Food sample Performanc

e 

Observation/ 

Novelty 

 

(Siejak 

et al., 

2024) 

 

Ambient lab 

 

Decision Tree 

(DT) 

Random Forest 

(RF) 

 

Colour indices 

(L*,a*,b*);  

pH; 

concentration;  

electrical 

conductivity 

 

Pectin solution 

samples 

 

DT: R2 ≈ 

0.999; 

RMSE = 

0.108 

RF: R2 ≈ 

0.998; 

RMSE = 

0.294 

 

 

First ML 

approach for 

pectin viscosity. 

DT/RF vastly 

outperformed 

single neural 

networks.  

Demonstrated 

rapid and 

accurate viscosity 

estimation from 

easy-to-measure 

physical 

properties, aiding 

in quality control. 
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Study 

(Year) 

Heating 

Methods 

ML Model Input Features Food sample Performanc

e 

Observation/ 

Novelty 

 

(Dahl 

et al., 

2025) 

 

High 

moisture 

extrusion 

 

Random Forest 

(RF) 

 

Formulation 

composition 

(pea/faba protein 

%, starch, pectin, 

cellulose, 

carrageenan 

levels); moisture 

content; 

processing 

cluster features 

 

140 

formulations 

of plant-

protein/polym

er mixes (meat 

analog) 

 

Single-

output RF 

accurately 

predicted 

linear 

viscoelastic 

parameters 

(e.g. G′) but 

struggled on 

non-linear.  

Multi-output 

RF (using 

large-

deformation 

inputs) 

achieved R² 

≈ 0.94 on 

non-linear 

viscosity 

parameters 

 

Integration of 

formulation and 

rheology: Used 

clustering & 

variable 

importance to 

reduce features.  

Multi-output RF 

captured 

interdependency 

of rheological 

metrics, yielding 

accurate viscosity 

and yield stress 

predictions for 

complex plant 

mixes. Highlights 

data needs for 

non-linear 

regimes. 

 

(Yang 

et al., 

2025) 

 

Conventional 

(no active 

heating; 

properties 

measured 

post-

processing) 

 

Combined 

optical Monte 

Carlo 

simulation + 

ML ( 

regression/AN

N) 

 

Optical 

scattering and  

absorption 

parameters 

(simulated via 

Monte Carlo); 

particle size and 

concentration 

proxies 

 

Apple puree 

with varying 

particle size 

(light–particle 

interactions) 

 

 

Reported 

high 

predictive 

accuracy 

(noted model 

captured 

viscosity and 

viscoelastic 

moduli 

trends). 

 

Hybrid 

simulation + ML 

approach to infer 

viscosity from 

optical behaviour. 

Provided 

mechanistic 

insight: how 

microstructure 

(particle–light 

interactions) 

affects puree 

viscosity.  

Useful for non-

contact viscosity 

estimation in fruit 

purees. 

 

(Lie-

Piang 

et al., 

2023) 

 

Conventional 

heating 

Spline 

regression 

Random Forest 

(RF) 

 Neural 

Network (NN) 

Ingredient blend 

ratios (pea vs. 

lupin fractions); 

basic 

composition data 

(protein, starch, 

fibre content) 

 

Multi-crop 

protein 

ingredients 

(pea, lupin) – 

various blend 

formulations 

 

All models 

could predict 

key 

functional 

properties. 

The unified 

model (both 

crops) had a 

slightly 

higher error 

than crop-

specific 

models.  

RF was 

effective, but 

needed more 

data for 

complex 

traits. 

 

Predict techno-

functional 

properties 

(viscosity, 

gelation, 

emulsion 

stability, 

foaming) from 

low-refined 

ingredients. 

Showed ML can 

generalise across 

crop types, 

supporting 

sustainable 

ingredient 

selection (trade-

off: ~5–10% 

higher error for a 

universal model). 
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Study 

(Year) 

Heating 

Methods 

ML Model Input Features Food sample Performanc

e 

Observation/ 

Novelty 

 

(Batist

a et al., 

2021) 

 

Conventional 

(milk 

pasteurisation 

& 

fermentation 

for yogurt) 

 

Artificial 

Neural Network 

(feed-forward 

ANN) 

 

Process 

conditions 

(fermentation 

temperature/time

); formulation 

(solids %, 

stabiliser levels) 

 

Non-fat yogurt 

experiments 

under varied 

formulation & 

incubation 

conditions 

 

ANN models 

accurately 

predicted 

texture 

metrics. For 

viscosity 

(“ANN-

VIS”), the 

typical 

prediction 

error was 

low (R² ~ 

0.95 

reported) 

Predicted 

rheology & 

texture in dairy: 

Developed 

separate ANN 

sub-models for 

viscosity (flow 

index) and TPA 

texture.  

Enabled 

optimisation of 

yogurt 

formulation by 

linking 

ingredients/proce

ss to final 

viscosity and 

mouthfeel.  

 

(Rocha 

et al., 

2020) 

 

Ohmic 

Heating 

(pasteurizatio

n of cheese 

curd) 

 

Multiple ML 

methods (e.g., 

PLS, ANN) 

 

Voltage gradient 

(0, 4, 8, 12 

V/cm) vs.  

conventional 

heating, process 

time;  

product 

properties (e.g., 

dispersion 

viscosity profile, 

temperature) 

 

Minas Frescal 

(fresh cheese) 

– ohmically 

heated vs 

conventionally 

heated batches 

 

Developed 

Models 

showed 

“good 

agreement” 

with 

experimental 

results.  

Able to 

identify how 

ohmic 

parameters 

influence the 

viscosity 

profile and 

sensory 

attributes. 

First ML in the 

ohmic processing 

of food. Showed 

ohmic heating 

yields distinct 

rheological 

outcomes, and 

ML could link 

process settings 

to viscosity and 

sensory drivers 

(e.g., juiciness, 

colour). 

Demonstrated 

feasibility of real-

time viscosity 

prediction under 

ohmic treatment 

for process 

optimisation. 

 

(Chen 

et al., 

2019) 

 

Hydrotherma

l (high-

pressure 

thermal 

pretreatment) 

 

Feed-forward 

ANN 

 

Temperature,  

residence time, 

solid 

concentration, 

particle size 

 

Microalgae 

slurry 

(Chlorella) 

undergoing 

hydrothermal 

liquefaction 

 

Reported 

that 

empirical 

correlations 

failed, but 

ANN 

predicted 

viscosity 

well, where 

experiments 

showed non-

linear 

behaviour 

 

Pioneered ANN 

for high-

pressure/high-

temp slurry 

viscosity.  

Enabled real-time 

estimation of 

slurry viscosity 

during biomass 

pretreatment, 

improving scale-

up design.  

Showed ML can 

capture complex 

interactions (e.g., 

thermal cell 

disruption vs. 

viscosity) better 

than classical 

models. 
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Study 

(Year) 

Heating 

Methods 

ML Model Input Features Food sample Performanc

e 

Observation/ 

Novelty 

 

(Perera 

et al., 

2025) 

 

Extrusion 

(polymer 

melt analog 

for food 

extruders) 

 

Hybrid DNN + 

physics (“grey-

box” soft 

sensor) 

 

Extruder settings 

(screw speed, 

barrel temps, 

etc.);  

physics model’s 

viscosity 

estimate as input 

feature 

 

Non-food: 

Polymer melt 

in extruder 

(real-time 

monitoring 

scenario) 

 

NRMSE ≈ 

0.22% 

(virtually 

zero error),  

~95% error 

reduction vs. 

prior pure-

ML model 

(RBF 

network), 

 

Outperforme

d standalone 

MLP and 

LSTM 

networks in 

real-time 

viscosity 

tracking. 

 

Combined a first-

principles 

extrusion model 

with a correcting 

DNN.  

Real-time 

prediction of melt 

viscosity 

achieved. 

Illustrates state-

of-the-art 

approach – 

merging domain 

knowledge with 

ML, which could 

inspire next-

generation food 

process models. 

 

 

2. Materials and Methods 

2.1. Data collection and Preprocessing 

The viscosity (mPa.s) versus temperature (°C) data for the tikka sauce, prepared using a proprietary 

formulation, were collected using a Modular Compact Rheometer (MCR 302, Anton Paar). The 

rheometer was calibrated to match the operating parameters of a pilot-scale Continuous Flow Ohmic 

Heating (CFOH) system to ensure the experimental measurements were representative of real-time 

processing conditions. In particular, the flow rate was fixed at 1 L/min, which had been previously 

validated as the optimal rate for starch activation and effective cooking in the heating chamber. This 

calibration ensured accurate simulation of CFOH dynamics during viscosity profiling. 

Each experimental run involved heating the sauce from ambient temperature to the three final target 

temperatures: 75 °C, 90 °C, and 100 °C. Data were collected over a period of 500 seconds for each run, 

with a sampling rate of 1 data point per second. This yielded approximately 4000 data points per dataset, 

with temperature ranges spanning 20°C to 95°C. The flow rate setting corresponded to a shear rate 

range of 0 – 42.45 s⁻¹, calculated using the relation in Equation 1, which ensured relevance to actual 

fluid dynamics under processing conditions. 

�̇� =
8𝑉𝑓

𝜋𝑅3⁄    (1) 

where 𝑉𝑓 is the volumetric flow rate (m3/s) and R is the pipe radius (m) (Icier & Bozkurt, 2009). 

Temperature-viscosity data pairs collected during each run were used to construct three distinct datasets, 

representing different thermal processing scenarios. This enabled robust training, validation, and testing 

of the predictive model while allowing assessment of its generalisation across varying final temperature 

conditions. The observed data exhibited a smooth, nonlinear decline in viscosity with increasing 

temperature, typical of shear-thinning behaviour in non-Newtonian food materials like tikka sauce. 
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Similarly, the heating rate of the rheometer was set to 8.114 °C/min, determined using the heat transfer 

(Equation 2) to ensure consistency between electrical power input and thermal gain of the fluid during 

CFOH: 

𝑄 = 𝑚𝑐𝑝∆𝜃   (2) 

where Q is the input power (W), m is the mass of substance in the heating chamber at a particular 

instance (kg), 𝑐𝑝 is specific heat (J/kg °C), and ∆𝜃 is the heating rate (°C/min).  

Before being used for model training, all raw viscosity data underwent thorough preprocessing. This 

preprocessing involved identifying and removing outliers caused by transient fluctuations or instrument 

noise. Outliers were identified based on deviations beyond three standard deviations from the local 

trend. Additionally, duplicate records with identical temperature and viscosity values from repeated 

measurements were eliminated to prevent data redundancy and bias. The cleaned datasets were then 

normalised using Min-Max Scaling to map temperature and viscosity values into a standardised range 

of 0 to 1 using Equation 3. This normalisation approach not only mitigated the risk of convergence 

issues during neural network training but also ensured that each feature contributed proportionately to 

error minimisation (Raju et al., 2020).  

𝑝𝑛𝑜𝑟𝑚 =
𝑝− 𝑝𝑚𝑖𝑛

𝑝𝑚𝑎𝑥−𝑝𝑚𝑖𝑛
   (3) 

where, 𝑝𝑛𝑜𝑟𝑚is the normalised data point, 𝑝 is the data point at a particular instant, 𝑝𝑚𝑖𝑛 and 𝑝𝑚𝑎𝑥 are 

the minimum and maximum values for each data point of the variables (temperature or viscosity) in the 

dataset. 

Following normalisation, the cleaned datasets were randomly split into training, validation, and testing 

subsets in a 70%:15%:15% ratio. The training set was utilised to optimise the neural network weights, 

while the validation set was employed for hyperparameter tuning and to prevent overfitting. The testing 

set was kept completely independent to evaluate the final model performance. Each of the three 

temperature-target datasets was split separately following this ratio. In the combined modelling 

approaches (described in subsequent sections), the unified data from all three temperature runs were 

concatenated, shuffled, and split in the same 70:15:15 proportion.  

Figure 1 provides a clear and systematic overview of the entire process, from data collection and 

preprocessing to modelling the neural networks. It also highlights how the predicted viscosity will be 

integrated into the voltage input controller used for the CFOH plant, demonstrating the practical 

application of the developed model. 

 
Figure 1: Schematic diagram of the viscosity prediction model and its integration with the controller. 
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2.2. Neural Network Architecture Design 

To predict sauce viscosity from temperature, a feed-forward artificial neural network (ANN) – termed 

OhmNet was developed. Three modelling strategies were explored to leverage the available datasets: 

2.2.1. Separate Single-Dataset Networks:  

In this approach, three independent ANN models were trained separately, one for each targeted 

temperature dataset (75 °C, 90 °C, 100 °C). Each model was designed to learn the specific viscosity–

temperature relationship corresponding to its respective heating profile. By treating each dataset in 

isolation, this approach allowed the model to capture unique characteristics of each heating profile or 

composition batch. Training separate models provided a performance baseline and served as a 

benchmark to evaluate whether a model trained on one temperature range could generalise to another. 

It is commonly used in applications where data segments differ structurally or contextually (Bhagya 

Raj & Dash, 2022; Liu et al., 2023). Additionally, each of these networks underwent comprehensive 

hyperparameter tuning, exploring configurations with 1, 2, and 3 hidden layers, using different training 

functions and varying the number of neurons in each hidden layer to optimise performance. This 

strategy enables insight into whether a model trained on one condition generalises poorly compared to 

others, justifying the need for more flexible architectures (Abinaya et al., 2024). 

2.2.2. Sequential Transfer Learning:  

Transfer learning has gained traction in domains with limited data, offering a means to reuse learned 

representations from one dataset on another related task (Pan, 2010; Tan et al., 2018). The transfer 

learning paradigm was employed where a single neural network was first trained on the 75 °C dataset, 

then fine-tuned sequentially on the 90 °C dataset, and finally on the 100 °C dataset. In each stage, the 

previously trained network’s weights served as the initial weights for the next dataset, and only a few 

epochs of additional training, with a smaller learning rate, were performed to adjust the model to the 

new data (Abdalla et al., 2019). This progressive fine-tuning allowed the model to transfer learn data 

trends from one heating condition to the next, under the assumption that the general functional 

relationship between temperature and viscosity is similar across datasets. The transfer learning strategy 

aimed to improve data efficiency and generalisation by utilising the largest dataset first and adapting to 

incremental differences in the subsequent datasets (e.g., extended temperature range up to 100 °C). This 

approach leverages the shared underlying rheological structure across different heating runs to improve 

generalisability while reducing training time and overfitting risk (Guo, Y. et al.). 

2.2.3. One-Hot Encoding Unified Model:  

One-hot encoding is a widely adopted technique for representing categorical variables in neural 

networks (Bishop, 1995). This approach combined all data into one large dataset, and a single unified 

ANN was trained to handle all scenarios. To inform the network of which heating profile a data point 

came from, we introduced a one-hot encoded input to represent the dataset identity. Specifically, an 

extra binary input node was added for each of the three conditions (75, 90, 100 °C), set to 1 for the 

corresponding condition and 0 for the others. This way, a sample from the 75 °C-target dataset would 

have the [75°C] indicator = 1 (and others 0), whereas a sample from the 100 °C run would have the 

[100°C] indicator = 1, etc. This one-hot label acts as a contextual flag so that the network can implicitly 

learn any shift or scaling in the viscosity–temperature relationship between the different final 

temperatures. The unified model training used the entire pooled dataset with the one-hot feature, with 

the expectation that it could generalise across the full temperature range (ambient to 100 °C) within one 

network. This approach tests the model’s capacity to internalise a broad temperature–viscosity mapping, 

offering scalability and simplicity if performance remains high (Goodfellow et al., 2016). Figure 2 

illustrates the three modelling strategies for optimising the proposed OhmNet for predicting sauce 

viscosity. 
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Figure 2: Block diagram illustrating the three modelling strategies for viscosity prediction 

All three modelling approaches explored in this study were implemented using a consistent base 

architecture: a multi-layer feed-forward artificial neural network (ANN) with one input neuron 

(temperature) and one output neuron (predicted viscosity). The design allowed for flexibility in depth, 

enabling configurations with one, two, or three hidden layers. The number of neurons in each hidden 

layer was systematically varied using fixed values of 4, 7, and 9, selected to span from a compact 

network to a moderately complex one, given the single-input/single-output structure of the problem.  

The architecture of OhmNet was intentionally kept shallow, with 1 to 3 hidden layers and relatively few 

neurons per layer. This decision was driven by the low-dimensional nature of the dataset, temperature 

being the sole independent variable, and the smooth, monotonic nature of the viscosity-temperature 

relationship typically observed in non-Newtonian fluids like tikka sauce. Given these conditions, 

simpler network architectures proved sufficient to model the nonlinear dependencies effectively while 

maintaining computational efficiency and avoiding overfitting (Tan et al., 2018). A grid search across 

architecture configurations confirmed that more complex networks did not significantly improve 

performance.  

To ensure that the design choices were both empirically justified and theoretically sound, an established 

formula (Equation 4) was used to guide the initial neuron count, Nh: 

𝑁ℎ =  2(√(𝑌 + 2))𝑋   (4) 

where X is the number of input neurons and Y is the number of output neurons (Huang, 2003). 

For our case (X = 1, Y = 1), the equation suggests an initial estimate of 3 – 4 neurons. Based on this, 

the search space was extended to 7 and 9 neurons to capture more complex nonlinearities where needed. 

In multi-layer configurations, symmetric sizes (e.g., [7, 7]) and asymmetric layouts (e.g., [4, 7, 9]) were 

tested. The best-performing architecture was a three-hidden-layer configuration with 7, 9, and 4 

neurons, respectively, demonstrating a strong balance between predictive power and generalisability.  

The activation functions used in the hidden layers were log-sigmoid (logsig), introducing the necessary 

nonlinearity, while the output layer used a purelin (linear) function to support real-valued viscosity 
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outputs. This setup is common in regression-based neural models, particularly where the outputs are 

continuous and unbounded (Mirarab Razi et al., 2014). 

To train the OhmNet models, three widely-used optimisation algorithms were compared: resilient 

backpropagation (trainrp), Levenberg–Marquardt (trainlm), and Bayesian regularisation (trainbr). The 

resilient backpropagation algorithm updates weights based only on the sign of the gradient, which can 

be more robust to noisy gradients. The Levenberg–Marquardt algorithm is a fast second-order 

optimisation method that often yields quicker convergence for moderate-sized networks, and has been 

reported to perform well in viscosity prediction tasks (Afrand et al., 2016). Bayesian regularisation 

modifies the training objective to include a weight penalty, effectively preventing overfitting by 

implementing an automatic regularisation. It typically yields slightly slower training but can improve 

generalisation on limited data (Naidu et al., 2020).  

A grid search was conducted across combinations of layer depths, neuron counts, and training 

algorithms. Each training algorithm was run in batch mode with an initial learning rate set in the range 

of 0.01 to 0.001. We empirically tuned the learning rate and observed that higher values (around 0.01) 

sped up initial learning but risked oscillation, whereas lower values (0.001) gave more stable, albeit 

slower, convergence. Ultimately, a learning rate of 0.005 was adopted as a good compromise for most 

runs, and in cases of transfer learning fine-tuning, an even smaller rate (0.001) was used to gently adjust 

the pre-trained weights. Each network was trained for a maximum of 1000 epochs, with early stopping 

if the validation error did not improve for 20 consecutive epochs to prevent overfitting. Weight 

initialisation was randomised, and we performed 5 repeats for each configuration to mitigate any effects 

of random initialisation on the results. The algorithm outlining the general modelling strategies and the 

optimisation of network design parameters is presented in Table 1. 

This structured and empirically driven approach confirmed that a relatively simple ANN architecture 

could successfully capture the underlying viscosity dynamics of tikka sauce across the CFOH process, 

validating the suitability of OhmNet for real-time predictive control. 

Table 1: Optimisation and development of the OhmNet employing three modelling strategies.  

 Algorithm: OhmNet Development and optimisation 

1 Require: Temperature-viscosity datasets (DT) 

 Preprocess data 

2 Normalise dataset 

3 for i = 1 : DT do                                                                                                              % temperature range (Tr) 

4      for j = 1 : At do                                                                                                          % training approach (At) 

5            for k = 1 : Ft do                                                                                                   % training function (Ft) 

6                  for l = 1 : HL configuration do                                                                     % hidden layer (HL) 

7                       for m = 4 : Nn do                                                                                      % neuron count per layer (Nn) 

8                             NN setup with input (temperature); output (viscosity) 

9                             Initialise NN weights and biases  

10                             Select Tr and Ft 

11                             Split data (0.70:0.15:0.15) 

12                                   for p = 1 : Pm do                                                                           % NN configuration (Pm) 

13                                        Fit NN model to training data 

14                                        Validate the model on validation data 

15                                        Store performance metrics (MSE, MAE, R2) 

16                                   end for 

17                                    Calculate average accuracy metrics on validation data 

18                         end for  

19                   end for 

20            end for 

21       end for 

22 end for 

23 Test the best model on unknown data 

24 Calculate final performance metrics (MSE, MAE, R2) 

25 Compare final performance metrics of all models 
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26 Select optimal configuration 

27 Arrange network models in descending order based on performance metrics 

28 return OhmNet 

2.3. Performance Evaluation and Hyperparameter Optimisation 

To ensure robust and generalisable model development, we implemented a systematic hyperparameter 

optimisation and performance evaluation framework for OhmNet. The architecture search included 

exhaustive combinations of hidden layers (1 to 3), neuron counts per layer (4, 7, and 9), and training 

algorithms—resilient backpropagation (trainrp), Levenberg–Marquardt (trainlm), and Bayesian 

regularisation (trainbr). Each configuration was assessed through a grid search strategy, guided by 

validation performance, to determine the optimal model for each of the three prediction approaches 

explored in this study. This grid search strategy ensured the influence of each architectural choice and 

training method on the performance of the developed ANN. 

Model performance was evaluated using three standard regression metrics: Mean Squared Error (MSE), 

Mean Absolute Error (MAE), and the coefficient of determination (R²). These metrics are widely 

recognised for regression problems in food engineering and rheological property modelling (Icier & 

Bozkurt, 2009; Said Toker et al.). MSE, which penalises larger errors, was used as the primary 

objective during training. MAE provides an intuitive sense of average prediction error in physical units, 

and R² quantifies how well the model captured variance in viscosity (Barradas Filho et al., 2015).  

During training, the objective was to minimise MSE. Validation MSE was monitored for early stopping, 

while final model selection among candidates was based on a combination of the lowest validation MSE 

and the highest validation R² (to ensure the model not only has low error but also captures variance 

well). We also report MAE for an intuitive measure of error magnitude, following common practice in 

viscosity predictions (Icier & Bozkurt, 2009). 

Further, to mitigate the risk of overfitting, especially critical in data-driven rheological modelling, we 

adopted several best-practice strategies . First, each dataset was randomly partitioned into training 

(70%), validation (15%), and testing (15%) subsets. The training set was used for learning model 

weights, the validation set for early stopping and hyperparameter tuning, and the test set for independent 

performance assessment, completely unseen during training or tuning. Early stopping was applied with 

a threshold of 20 epochs, terminating training when validation MSE no longer improved, thereby 

preventing overtraining. 

To account for the stochastic nature of neural network training, we performed Monte Carlo repeated 

averaging. Each network configuration was trained five times with different random seeds and dataset 

splits. This approach is endorsed in the literature as a robust alternative to k-fold cross-validation when 

dealing with time-series or continuous input data structures (Barradas Filho et al., 2015; Peleg, 

2017). The final performance scores were averaged to ensure that results were not artifacts of 

favourable random initialisations. 

Further, architectural simplicity was enforced by restricting models to shallow networks (1–3 hidden 

layers) with modest neuron counts, aligning with prior studies in viscosity prediction of fruit juices and 

food systems, which found minimal performance gains from deeper models while increasing overfitting 

risk (Bhagya Raj & Dash, 2022; Chen et al., 2021; Goyal, 2014). For configurations using the 

trainbr algorithm, Bayesian regularisation was embedded in the loss function to penalise excessive 

weight magnitudes and enhance generalisation. 

Notably, k-fold cross-validation was not employed in this study due to the continuous and 

monotonic nature of the temperature-viscosity data. Arbitrary partitioning inherent to k-fold 

approaches could violate the physical continuity of the data, thus undermining both 

interpretability and learning performance. Instead, our combination of repeated 
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train/validation/test splits, early stopping, regularisation, and conservative architecture design 

provided a principled and effective safeguard against overfitting, while maintaining the 

physical relevance of the data patterns. 

The described performance evaluation and validation strategy aligns with recent literature in 

viscosity prediction using ANNs, where similar practices have yielded highly accurate models 

for fruit juice, nanofluid, and biodiesel systems under varying conditions (Barradas Filho et al., 

2015; Chen et al., 2021; Pourramezan et al., 2024) 

 

3. Results & Discussion 

3.1. Comparative Performance of Modelling Approaches & Configurations 

The OhmNet model was evaluated using three different modelling strategies (Separate Networks, 

Transfer Learning, and One-Hot Encoding) across various network architectures and training 

algorithms. The three modelling approaches exhibited distinct performance trends. Overall, the one-hot 

encoding approach delivered the highest accuracy, followed by the transfer learning approach, with the 

separate-networks approach slightly lagging. This indicates that leveraging a unified network with 

categorical (one-hot) inputs or transfer of learned features can improve generalisation compared to 

training individual networks in isolation. The multi-task learning effect likely improves generalisation 

by knowledge sharing between related tasks (Hu et al.). Table 2 and figure 3 illustrate the performance 

of the best configuration from each approach in terms of mean squared error (MSE), mean absolute 

error (MAE), and R2. 

Table 2: Quantitative results of the best performing networks of the three ANN modelling approaches 

Approach MSE MAE R2 

Separate Networks 0.0035 0.040 0.970 

Transfer Learning 0.0022 0.030 0.985 

One Hot Encoding 0.0020 0.025 0.990 

 

Figure 3: Performance of the best-performing network from each. The one-hot encoding model shows the lowest MSE and 

MAE and the highest R2, indicating superior accuracy. 

Several factors contribute to the superior performance of the one-hot encoding approach. Firstly, the 

unified model was trained on the entire dataset with a categorical indicator, effectively increasing the 

training sample size and allowing the network to learn general viscosity patterns applicable across all 

subsets. Common dependencies could be learned from all data, while the one-hot input neuron enabled 

the network to adjust predictions for each specific category. This resembles a multi-task learning 
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scenario in which related viscosity prediction share representation learning. The result is improved with 

overall prediction accuracy. This is in line with previous findings that combining data from related cases 

can enhance model performance. For instance, Rai et al. developed a single ANN model to predict the 

viscosity of various fruit juices (orange, peach, pear, etc.) as a function of concentration and 

temperature, and achieved a low prediction error using a unified network (Rai et al., 2005). Their unified 

model handled multiple juice types with high accuracy, analogous to the proposed OhmNet one-hot 

network handling multiple categories in one model. In this study, the one-hot network similarly 

benefited from the broader data coverage, yielding high R2 and low error across all categories. 

In contrast, the ‘Separate Networks’ approach showed more variable results. Some individually tuned 

networks achieved a good fit on their specific data, but overall they tended to underperform the one-hot 

model when comparing test-set accuracy across conditions. This is because each separate network was 

trained on a smaller subset of data, making it more prone to overfitting or underfitting for that specific 

scenario.  

The ‘Transfer Learning’ strategy produced intermediate results. The trend learned from one dataset was 

used to initialise training on another. This improved the learning efficiency and final accuracy on 

smaller datasets, narrowing the performance gap relative to the one-hot model. Indeed, the transfer-

learned models consistently outperformed the purely separate models on subsets with limited data, 

confirming that transfer learning is particularly effective when data for certain tasks is limited (Lee & 

Lee, 2023). In our results, transfer learning improved the R2 of the weakest separate network by several 

points (from 0.92 to 0.95), bringing it closer to the unified model’s performance. These trends show 

that under ohmic heating, a unified modelling technique may maximise common patterns in the 

viscosity behaviour of tikka sauce, therefore providing an advantage in predicting accuracy and 

consistency across all configurations. 

Another notable trend is the effect of model complexity (hidden layer configuration) on each approach. 

Increasing the number of hidden layers/neurons generally improved prediction accuracy for all 

approaches, but the magnitude differed. Figure 4 shows the best R2 achieved by each approach as 

network complexity increased from a single hidden layer ([4]) to two layers ([4,7]) and three layers 

([7,9,4]). All approaches saw R2 rise with more complex architectures, reflecting the network’s 

enhanced capacity to capture nonlinear viscosity relationships. Notably, the unified one-hot model 

benefited the most from larger architectures. The R2 increased from 0.950 (1 layer) to 0.990 (3 layers). 

The transfer learning approach also reached high accuracy with the deepest network (R2 = 0.985). 

Whereas, the separate models improved more modestly, with R2 levelling off around 0.96–0.97 at the 

largest architecture, perhaps due to limited data per network. This suggests that the one-hot and transfer 

learning approaches could leverage the added complexity more fully, since they effectively had more 

data or better initial weights to train the larger networks. In contrast, a very complex network in the 

separate approach risked overfitting each small subset, yielding diminishing returns. 
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Figure 4: Trends in prediction R2 (test data) as model complexity increases (1 hidden layer to 3 hidden layers) for each 

approach. 

3.2. Impact of Training Algorithms on Model Performance 

Across all approaches and network configurations, the choice of training algorithm had a notable impact 

on performance. Across all three approaches, networks trained with Levenberg–Marquardt (trainlm) or 

Bayesian regularisation (trainbr) consistently outperformed those trained with the simpler resilient 

backpropagation (trainrp). Models using trainrp converged more slowly and often yielded higher final 

errors (MSE and MAE), suggesting difficulty in optimising the complex mapping of temperature and 

viscosity with this method. In contrast, the trainlm algorithm often achieved the lowest training and 

validation errors among the three, alligning with its reputation for fast convergence and high accuracy 

in function approximation tasks (Pourramezan et al., 2024). 

Many of the best models in our tests were obtained with trainlm, which frequently drove MSE to very 

low values. The trainbr algorithm, while sometimes slightly slower to converge, demonstrated 

comparable generalisation performance. Notably, trainbr-trained networks tended to have less 

divergence between training and testing error, indicating robust modelling. In some experiments, 

trainbr achieved prediction R² values as high or higher than trainlm for the same architecture, echoing 

findings in other studies where Bayesian regularisation provided the most accurate predictions (Guo, Q. 

et al., 2023). 

Figure 5 compares the performance of the training algorithms in terms of average R2 achieved across 

the developed models. The Levenberg–Marquardt algorithm yielded the highest average R2 (0.955) and 

a very high peak R2 (near 0.99) in at least one configuration. This aligns with literature reports that 

trainlm tends to find very accurate solutions for regression problems, often achieving the lowest MSE 

and highest correlation among training methods (Heidari et al., 2016). 

In this study, trainlm drove the models to the lowest MSE values for nearly every network 

configuration, confirming its efficiency in minimising error. For example, using trainlm, the one-hot 

network with [7,9,4] layers reached an MSE of only 0.0020 (Table 1), whereas the same architecture 

trained with trainrp stalled at a higher MSE (0.0030). This gap is consistent with findings by Heidari et 

al., who reported that Levenberg–Marquardt training achieved a lower MSE (on the order of 10-5) for 

nanofluid viscosity prediction compared to gradient-descent-based training (which yielded MSE 10-3), 

corresponding to a high R2 (0.99998 for LM vs 0.9994 for a standard backprop) in their case (Heidari 

et al., 2016). 
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Figure 5: Average test R2 achieved by each training algorithm (trainlm: Levenberg–Marquardt, trainbr: Bayesian 

regularisation, trainrp: resilient backpropagation). 

The Bayesian regularisation training (trainbr) also performed strongly, with an average R2 virtually 

identical to trainlm (Figure 5). Trainbr typically reached slightly higher final error than trainlm when 

models were not overfitting; however, it proved advantageous in scenarios prone to overfitting. In the 

separate-networks approach, the deepest architecture [7,9,4] tended to overfit when trained with trainlm 

(yielding a lower test R2 of 0.93 despite very low training error). Applying Bayesian regularisation on 

that same architecture prevented overfitting by effectively penalising excessive weights, resulting in a 

higher test R2 (0.97). This was the one case where trainbr outperformed trainlm in our results. Such 

behaviour is supported by previous studies, such as, Naidu et al., reported that that trainlm and trainbr 

are the top-performing algorithms for regression tasks, significantly outperforming gradient-descent-

based methods (Naidu et al., 2020). In our context, trainbr’s built-in regularisation improved 

generalisation for complex models, making it the best choice for the separate approach’s largest network 

and yielding the overall best separate-network performance (Table 2). Apart from that scenario, trainbr 

and trainlm were usually within a narrow margin of each other in accuracy, both outperforming trainrp. 

For the viscosity prediction of tikka sauce, using these advanced training functions was crucial to 

minimise error; the choice between them came down to a trade-off between absolute error minimisation 

(trainlm) and slightly better generalisation stability (trainbr). In practical terms, this means that careful 

selection of the training algorithm can yield measurable improvements in model accuracy. 

3.3. Best-Performing Network Configuration (OhmNet) Analysis 

From the extensive grid of experiments, we identified a best-performing configuration (OhmNet). The 

top model was achieved using the ‘One-Hot Encoding’ strategy trained with the Levenberg–Marquardt 

(trainlm) algorithm, with a network architecture of three hidden layers ([7,9,4]), shown in figure 6. This 

particular setup attained the highest R² and lowest error metrics among all tested models. To quantify 

its performance: it reached an R² of 0.990 on the validation/test set, alongside a MSE of 0.0020 and a 

corresponding MAE of 0.025. Moreover, the OhmNet can predict the viscosity for all categories with 

only 0.2% error and capture 99% of the variance in the data. In practical terms, this means the model’s 

viscosity predictions were very close to the experimental measurements across the range of heating 

conditions. Thus, the OhmNet not only excelled in absolute terms on its own test set, but also provided 

a solution applicable to all variations, which is a significant advantage for practical deployment. 
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(a)       (b) 

Figure 6: (a) Schematic architecture of the proposed OhmNet model trained with One-Hot Encoding approach for viscosity 

prediction. (b) Model prediction vs. actual viscosity prediction. The network comprises three hidden layers with 7, 9, and 4 

neurons respectively, trained using the trainlm training algorithm. Log-sigmoid (logsig) activation functions are used in all 

hidden layers, while a linear (purelin) function is applied at the output layer.  

Examining more closely the reasons this arrangement worked so effectively may credit a number of 

elements for its effectiveness. Firstly, the [7,9,4] architecture provides a large number of neurons and 

thus a high capacity to approximate complex nonlinear functions. Viscosity as a function of multiple 

input variables (temperature, composition, etc.) can be highly nonlinear. The deeper network can form 

hierarchical feature representations. First layer neurons might capture the base effects of temperature 

or concentration on viscosity, while deeper neurons capture interactions between variables. Simpler 

architectures ([4] or [4,7]) may underfit these relationships, whereas the [7,9,4] network can fit them 

more accurately given sufficient data. Indeed, we observed monotonic improvements in training and 

validation performance as we increased hidden layer complexity, until the point of reaching [7,9,4]. The 

superior performance of the [7,9,4] topology alligns with neural network theory that a network with 

more neurons/layers can model more complex functions, provided overfitting is controlled. 

Secondly, the one-hot multi-task approach meant that the network was effectively trained on a larger 

dataset covering multiple conditions, which acts as a form of data augmentation and regularisation. The 

shared hidden layers had to learn features that are useful for predicting viscosity under all given 

conditions of formulation in the tikka sauce, leading to more robust feature learning. This explains the 

model’s strong generalisation – it was less prone to fitting noise in any single condition because it 

always had to satisfy multiple scenarios simultaneously during testing.  

Thirdly, using the trainlm algorithm allowed the model to converge to a very accurate solution. The 

Levenberg–Marquardt training facilitated quick adjustment of the large number of weights in the two 

hidden layers, efficiently finding a set of parameters that minimised MSE. We observed that this best 

model converged in relatively few epochs and the final training error was extremely low, indicating that 

trainlm successfully found a near-optimal fit in the weight space for this architecture. Additionally, 

although trainlm tends to overfit if unchecked, in this case, the risk was mitigated by the multi-task 

nature of the one-hot model and by early stopping on a validation set. This high level of performance 

is significant for food process modelling, as it suggests the model can accurately predict viscosity 

changes in tikka sauce during ohmic heating, potentially enabling precise control and optimisation of 

the heating process in real applications. 

Given these reasons, it becomes clear why the OhmNet model excelled. It combined high model 

capacity, ample training data covering all scenarios, and a powerful training algorithm. Each of these 

elements was necessary to optimise all training, validation, and testing conditions. If unoptimised, a 

large network could overfit a small dataset, and an efficient optimiser cannot fix underfitting due to 

insufficient model complexity. However, combined optimisation steps produced a model that fits the 

viscosity data with high fidelity.  
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It should be noted that while the OhmNet model is the overall best, the transfer learning approach’s top 

model was nearly as good, and would be a strong alternative if a unified model were not desired. The 

transfer learning model’s success suggests that if one had to deploy separate models for each scenario 

(for practical or interpretability reasons), training them with an initial phase on a large dataset (or on a 

related task) is highly beneficial. In our case, pre-training on the full combined data and then fine-tuning 

for each specific category allowed the transfer models to almost reach the unified OhmNet model’s 

accuracy. This approach capitalises on a similar principle – shared learning – but in a sequential manner. 

Literature on property prediction models also supports multi-task training or transfer learning that often 

yields better generalisation than isolated training. In materials and food processing domains, where data 

for certain products may be scarce, transfer learning is emerging as a powerful tool to improve 

predictive models (Lee & Lee, 2023).  

3.4. Implications for Neural Network Design in Food Viscosity Prediction 

The findings from this evaluation have important implications for designing neural network models in 

food rheology and similar domains. Integrative modelling approaches like the one-hot encoded OhmNet 

demonstrate clear advantages in scenarios where multiple product formulations or processing 

conditions are involved. Rather than developing and calibrating separate models for each variation of a 

sauce or each operating condition, a single well-designed network can handle all cases by including 

categorical inputs. This not only streamlines model development but, as shown by the performance of 

the one-hot approach, can improve predictive accuracy by pooling data, effectively making the training 

dataset richer and the learned model more robust.  

In practical terms, a food manufacturer aiming to predict viscosity for different recipes of a sauce (mild, 

medium, spicy tikka sauce, etc.) under various heating profiles could deploy one unified OhmNet model 

rather than a suite of specialised models. The unified model would be easier to update and validate, and 

it would ensure consistency in predictions across products. 

The success of the transfer learning strategy also offers a valuable guideline: when facing a new product 

or condition with limited data, the model can transfer knowledge from existing trained models. For 

instance, if a new type of sauce is introduced, instead of training a viscosity model from scratch, one 

could start with the pretrained model (trained on existing sauces) and fine-tune it on the new sauce’s 

data. The results showed that this approach yields better initial accuracy than a standalone model on 

small data and approaches the performance of a fully trained multi-task model. This implies that neural 

network design for food applications should consider knowledge reuse by building a base model on a 

wide range of data (perhaps spanning many products) and adapting it, which can save time and data 

collection efforts while still providing high accuracy. 

Another implication is the importance of choosing appropriate training algorithms and regularisation 

techniques for food property prediction networks. The contrast in performance between trainlm/trainbr 

and trainrp in our study underscores that algorithm choice can make or break a model’s effectiveness. 

For complex, non-linear food processes like ohmic heating, second-order optimisation methods or 

Bayesian regularisation helped in navigating the error surface to find better minima. In practice, this 

means that developers of such models should leverage algorithms known to yield high performance, 

especially if the dataset size is moderate and the problem requires capturing subtle effects. 

Regularisation (trainbr) proved useful in controlling overfitting for larger networks – this suggests that 

techniques like Bayesian regularisation or early stopping, or alternative methods like dropout, could be 

beneficial when expanding network complexity for food viscosity models. Model complexity should 

be matched with training strategy, i.e., if a very large network is used, robust training/regularisation 

becomes crucial; otherwise, a slightly smaller network might be preferable to ensure the model 

generalises well. 
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These results contribute to the broader understanding of applying ANNs in food engineering. They 

demonstrate that an appropriately structured neural network can achieve high predictive accuracy in a 

challenging task like real-time viscosity prediction, which often involves dynamic changes and complex 

physicochemical interactions. This level of performance approaches that of experimental measurement 

accuracy, indicating that such models could be reliably used for process monitoring or control (e.g., to 

adjust heating in an ohmic process to reach a target temperature). The robustness of the best model 

means food technologists can trust its predictions across a range of conditions, making it a practical tool 

in the power control of the advanced process control of OH systems.  

4. Conclusion 

Continuous Flow Ohmic Heating (CFOH) has emerged as a highly efficient and sustainable technology 

for industrial food processing. It offers significant advantages over conventional heating methods, 

including high energy efficiency and reduced carbon footprint. These benefits make CFOH an attractive 

option for large-scale operations aiming to lower energy consumption and environmental impact 

without compromising processing throughput or product quality. 

A key factor in realising the full benefits of CFOH is the precise control of food product quality. 

Viscosity is one of the vital parameters that govern how the product flows and how heat is distributed 

through it during ohmic processing. Accurate real-time viscosity prediction is therefore essential for 

maintaining process efficiency and stability. It enables operators to anticipate changes in flow 

behaviour, adjust pumping rates or electrical input parameters proactively, and ensure consistent 

heating.  

Therefore, in this study, we developed an ANN model called OhmNet to predict the dynamic viscosity 

of tikka sauce under CFOH conditions. Three different ANN training strategies were explored for model 

development to identify the most effective learning approach. These strategies included training 

separate networks for different operating conditions, applying a transfer learning technique to leverage 

knowledge from one dataset to another, and using one-hot encoding to train a single unified network 

capable of handling multiple process scenarios. Each approach provided a unique way to capture the 

complex relationship between processing parameters (such as temperature) and the sauce viscosity. 

Among the tested approaches, the one-hot unified modelling combined with the Levenberg–Marquardt 

backpropagation algorithm (trainlm) and a three-hidden-layer network architecture (with 7, 9, and 4 

neurons in the respective layers) delivered the best performance. This optimised OhmNet configuration 

achieved an impressively low prediction error and an excellent fit to experimental data, as reflected by 

MSE of 0.002, MAE of 0.025, and R² of 0.99. These results indicate that OhmNet can accurately capture 

the rheological dynamics of the sauce during CFOH, outperforming the other training strategies tested. 

The high accuracy and low error metrics suggest that the model generalises well and can reliably predict 

viscosity changes in real time as processing conditions vary. 

The strong performance of OhmNet has important implications for real-time process control in ohmic 

heating systems. Integrating this data-driven predictive model into a closed-loop process controller for 

CFOH setup can serve as a “soft sensor” for viscosity, providing instantaneous estimates without the 

need for manual sampling or off-line measurements. In practice, an OhmNet-based monitoring system 

could continuously feed viscosity predictions into the process controller, which then fine-tunes input 

power and flow rates. This would allow for much finer heating precision, ensuring the sauce reaches 

the desired temperature consistently and uniformly. Moreover, such real-time adjustments help avoid 

energy wastage by preventing overprocessing; the system would use only the necessary amount of 

electrical energy to achieve target conditions, thereby improving overall energy efficiency. In essence, 

deploying OhmNet in this manner enables smarter CFOH operations that can maintain product quality 

while minimising energy usage and processing time. 
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Highlights 

• The proposed One-Hot Encoded ANN model (OhmNet) predicts sauce viscosity accurately 

against changing temperature during Continuous Flow Ohmic Heating (CFOH). 

• Transfer learning improves ANN performance for viscosity modelling. 

• Three neural network strategies were evaluated for CFOH process control. 

• ANN model enables energy-efficient, real-time Ohmic Heating control. 


