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ABSTRACT
This study investigates the potential of machine learning models to predict the failure load and mode of double-lap shear bolted 
connections. Five algorithms were evaluated: adaptive boosting, artificial neural network, decision trees, support vector ma-
chines with radial basis function kernel, and k-nearest neighbors. A dataset comprising 221 experimental and numerical tests 
with varying input parameters, including different grades of stainless and carbon steel, was used to train the models. Unlike 
previous studies, the inclusion of diverse materials enabled the development of more generalizable models. To address data 
limitations, reduce biases associated with data split, and mitigate overfitting, k-fold cross-validation was adopted instead of the 
conventional 80/20 split. Results show that both regression and classification models achieved high coefficients of determination 
across most algorithms. Adaptive boosting delivered the most accurate failure load predictions, while artificial neural network 
achieved the highest accuracy in classifying failure modes. The findings highlight the potential of well-trained machine learning 
models to outperform traditional codified methods in accurately predicting the structural response of bolted connections, espe-
cially when trained on diverse datasets.

1   |   Introduction

Joining steel frames in structures using bolted connections 
requires a careful design procedure illustrated in relevant 
design standards such as BS EN 1993-1-8 [1] or ANSI/AISC 
360-22 [2]. The codified design equations considered in these 
standard codes estimate the failure loads of bolted connec-
tions by adopting safety factors that ensure a robust structural 
performance of the designed joints. The procedure consists 
of estimating the final design failure load by using simplis-
tic equations to calculate the failure corresponding to several 
specific modes and then taking the lowest of the obtained val-
ues. The methodology recommended by these standard codes 

results in conservative estimations for the failure mechanism, 
which may not reflect the failure mechanism accurately 
[3, 4]. While past studies generally indicate conservative es-
timations, some studies have demonstrated that standard 
approaches can be non-conservative under specific circum-
stances [5]. Furthermore, the increasing use of bolted con-
nections with different materials including different grades of 
steel and stainless steel broadens the range of possible failure 
mechanisms, thus making codified equations more prone to 
errors. This issue was observed in past studies where authors 
noticed cases of underestimations and proposed and validated 
adjusted design equations that yield a better estimation for the 
specific material used in the test [6–11]. In order to overcome 
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all these issues, innovative techniques such as machine learn-
ing models can be trained and turned into reliable design tools 
suitable for accurately estimating the failure mechanism of 
such a complex structural part.

Machine learning is a specialized tool under the artificial 
intelligence umbrella that leverages collected data to ana-
lyze complex situations or problems. It learns from the data 
to build accurate models that can predict outcomes or gener-
ate meaningful insights [12]. Jiang et  al. [13] and Jiang and 
Zhao [14] utilized eight machine learning models (see list in 
Table 1) to predict the design failure loads and modes of high-
strength and stainless steel bolted connections, respectively. 
These studies collected numerical and experimental design 
data from past papers, trained the models, and tested/vali-
dated them to find the one with the best performance. The 
overall framework adopted by the authors is reported in the 
flowchart of Figure 1. It is worth noting that these authors de-
scribed adaptive boosting (AdaBoost), light gradient boosting 
machine (LightGBM), extreme gradient boosting (XGBoost), 
and cat boosting (CatBoost) as sub-models developed from the 
decision tree algorithm (DT). Jiang et al. [13] found that all the 
models gave a reliable predictions of failure mechanisms, with 
support vector machine learning model (SVM-RBF) yielding 
the highest accuracy of predictions for both failure loads and 
modes. Moreover, the study concluded that as far as failure 
modes prediction is concerned, the accuracy of the models 
surpassed the accuracy of estimations obtained through stan-
dard approaches, which ranged from 67.9 to 85.3%. Similarly, 
Jiang and Zhao [14] found that all machine learning models 
yield high accuracy, with SVM giving the best results.

In a similar study, Zakir Sarothi et al. [15] evaluated the per-
formance of 11 different algorithms to predict the failure of 
double-lap shear bolted connections. In contrast to Jiang et al. 
[13] and Jiang and Zhao [14] the results reported in Zakir 
Sarothi et al. study found that the random forest (RF) model 
gave the highest accuracy of predictions. This suggests that 
the model accuracy may depend on the input variables and 
quality of collected data, as well as the variation of sources 
used for the dataset.

This paper collects a dataset of double-lap shear bolted connec-
tions and uses it to train five different machine learning mod-
els to predict both failure loads and modes using MATLAB 
software [16]. In contrast to the studies mentioned above, this 
work incorporates an expanded set of input variables, includ-
ing material type and yield ratio. These additional variables 
are added to better describe the dataset, which covers various 

material types, including different grades of steel and stain-
less steel. This adjustment ensures that the models effectively 
capture the complexities associated with these diverse materi-
als and material grades.

2   |   Dataset

A combination of 221 experimental and numerical tests data 
were collected from the technical literature (Table 2). The col-
lected data consisted of various types of carbon steel, including 
mild and high-strength grades, and different types of stain-
less steel. Additionally, three types of bolted connections were 
included, based on one, two, and four bolts, respectively, as 
schematized in Figure 2. The number of bolts in a connection 
is here denoted as nb. The considered geometrical variables in-
cluded (see Figure 2) the thickness, t ; length, l; breadth, b; end 
distance, e1; edge distance, e2; horizontal pitch distance, ph; and 
vertical pitch distance, pv. Note that, for illustrative purposes, 
geometrical variables, including the edge distance e2, are shown 
symmetric about the centerline; however, the actual test spec-
imens differ from this idealized symmetry. The arrangement 
of plates with two bolts is not always horizontal. Several spec-
imens have a vertical bolt configuration. Consequently, either 
ph or pv is equal to zero depending on the specific arrangement. 
Furthermore, mechanical properties obtained from both the 
parent material characterization and the tests run using bolted 
connections were considered, namely failure load, Fu; yield ratio, 
Fy ∕Fu; and failure mode. The use of the yield ratio allowed the 
models' ability to distinguish between different material types 
and grades to be enhanced. Other strength-related properties, 
such as fracture strain or elongation at fracture, were excluded 
due to inconsistent reporting across sources. Similarly, elastic 
modulus was omitted given its limited variation and negligible 
influence on model performance. Figure 3 illustrates a general 
test setup for double-lap shear bolted connections. Since in a test 
the two inner plates are virtually identical, it is common practice 

Summary

•	 The static strength of bolted joints with varying con-
figurations is investigated.

•	 Machine learning algorithms are trained and utilized.

•	 The effect of design variables is assessed using ma-
chine learning.

•	 Machine learning algorithms demonstrate higher ac-
curacy levels than standard approaches.

TABLE 1    |    Machine learning models used in previous double-lap 
shear bolted connections failure predictions.

Machine learning model Designation Reference

Decision tree DT [13–15]

Random forest RF

Support vector machine with 
radial basis function kernel

SVM-RBF

K-nearest neighbors K-NN

Adaptive boosting AdaBoost

Light gradient boosting 
machine

LightGBM

Extreme gradient boosting XGBoost

Linear regression LR [15]

Ridge regression RR

Lasso regression LR

Artificial neural network ANN
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to replace one of them with an auxiliary plate with increased 
capacity to ensure one single plate is damaged, with this strategy 
reducing material waste and experiment costs.

The collected data covered three general failure modes including 
block tearing (BT), edge bearing (EB) of the hole, and net-section 
tension (NTS)—see Figure 4. These are the primary failure modes 
as defined in design standards EN 1993-1-8 and ANSI/AISC 360. 
While shear-out is also addressed in ANSI/AISC 360, it can be 

generally considered a form of bearing failure that occurs when 
the end distance is insufficient to prevent tearing along the shear 
planes. Normally, the plates suffer these failure modes at the ul-
timate load, Fu. However, past studies indicate that additional 
failure modes can occur, such as end splitting and out-of-plane 
deformation (curling), particularly during the post-necking stage 
of testing [3, 6–11]. The curling failure was especially observed 
when the weaker plate was placed as an outer rather than an inner 
plate in double-lap bolted connection tests [11]. However, for the 

FIGURE 1    |    Flowchart for constructing the machine learning models. Adapted from [13].

TABLE 2    |    Summary of the literature data on double-lap shear bolted connections.

Source of data Reference Material
Number of 

tests (n)
Bolted connection 

type
Primary 

Failure mode

Experiment [3] Grade S235 Mild steel 19 1-bolt and 2-bolts BT, EB, and NST

Experiment [6] S690QL ultra high-
strength steel

38 1-bolt and 2-bolts EB and NST

Experiment [7] S550Q high-strength steel 8 1-bolt EB and NST

S690Q high-strength steel 8 1-bolt EB and NST

S890Q high-strength steel 8 1-bolt EB and NST

Experiment [8] Grade EN 1.4301 
austenitic stainless steel

3 1-bolt and 2-bolts EB

Grade EN 1.4162 lean 
duplex stainless steel

2 1-bolt and 2-bolts EB and NST

Experiment [9] S550Q high-strength steel 12 2-bolts EB

S690Q high-strength steel 12 2-bolts EB

S890Q high-strength steel 12 2-bolts EB

Numerical modeling [10] Grade EN 1.4162 
duplex stainless steel

84 1-bolt, 2-bolts, 
and 4-bolts

EB and NST

Experiment [11] Grade EN 1.4512 
ferritic stainless steel

15 1-bolt and 2-bolts EB
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uniformity of the dataset and to be able to use learning models 
consistently, only the primary failure modes BT, EB, and NST were 
included. Cases of shear-out were accordingly grouped under EB.

To summarize, the input variables comprised both categor-
ical variables (type of material and failure mode) and nu-
merical variables (nb, t , l, b, e1, e2, Ph, Pv, Fu, and Fy ∕Fu). The 
categorical variables were converted into categorical types in 
the model. This conversion was necessary because machine 
learning models cannot process text directly. By encoding 

these variables as categorical types, the model could correctly 
interpret and distinguish between different categories during 
prediction.

3   |   Machine Learning Models

3.1   |   Review and Pre-Processing of the Dataset

To characterize the correlation between all input and output 
variables of the dataset used in the machine learning models, 
a correlation matrix was created (Figure  5). The matrix illus-
trates the relationships between the variables, with correlation 
coefficients ranging from +1 to −1. A coefficient of +1 indicates 
a perfect positive correlation, meaning that as one variable in-
creases, the other increases proportionally. Conversely, a coef-
ficient of −1 indicates a perfect negative correlation, meaning 
that as one variable increases, the other variable decreases. A 
coefficient of zero indicates no correlation, meaning that the two 
variables have no relation. In the collected dataset, there were 
no coefficients equal to zero, indicating that all variables affect 
each other. An example of a strong positive relation can be seen 
between the thickness, t  and the diameter of the hole, do with a 
coefficient equal to 0.85. This reflects the fact that larger applied 
loads require both thicker plates and larger diameter bolts (and 
thus larger holes) to safely transfer the load. As a result, plate 
thickness, t , is also highly correlated with the failure force, Fu, 
as shown in the matrix. This correlation aligns with the codified 
design equations in Section 4, where the failure force increases 
proportionally with increasing thickness.

Table  3 presents the statistics for the geometrical variables, 
including the percentage coefficient of variation (COV), which 
is calculated by dividing the ratio of the standard deviation to 
the mean. The COV provides a measure of relative variability 

FIGURE 3    |    Test setup for double-lap shear bolted connections.

FIGURE 2    |    Notation for geometrical parameters of the inner plate based on (a) 1-bolt, (b) 2-bolts, and (c) 4-bolts.
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in the data, with higher values indicating greater variation. 
It is evident that the vertical pitch distance pv and the hori-
zontal pitch distance ph show the highest COV. This is largely 
because, in the dataset, these distances are considered zero 

for configurations where they do not exist. Specifically, for 
single-bolted connections, both pv and ph are zero, and for 
double-bolted connections, only pv is zero. The length of the 
plates showed the lowest COV since it is almost consistent 

FIGURE 4    |    Failure modes of double-lap shear bolted connections: (a) block tearing, (b) edge bearing, and (c) net-section tension.

FIGURE 5    |    Correlation matrix of dataset variables. [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3    |    Geometrical variables statistics.

Geometrical variables Minimum (mm) Maximum (mm) Mean (mm) Median (mm) COV (%)

Thickness, t 0.77 12.00 6.39 9.90 0.68

Diameter of hole, do 9.00 30.00 19.69 22.00 0.38

End distance, e1 9.00 106.20 40.40 38.74 0.55

Edge distance, e2 14.00 78.04 36.51 31.08 0.48

Horizontal pitch distance, ph 0 104.00 23.81 0 1.41

Vertical pitch distance, pv 0 70.00 10.58 0 1.73

Length, l 200.00 440.70 285.80 200.00 0.32

Breadth, b 41.44 216.00 98.24 72.00 0.53

https://onlinelibrary.wiley.com/


6 of 15 Fatigue & Fracture of Engineering Materials & Structures, 2025

for the collected dataset. While the length of the plates shows 
low variability, it does not have a significant influence on the 
failure mechanisms, as the primary factors driving failure are 
strongly related to the other geometrical variables and ma-
terial properties. It is evident that since the thickness in the 
dataset ranges from 0.77 to 12 mm, making it have the highest 
COV reaching 0.68%.

Figure 6 displays the frequency (number of occurrences) of dif-
ferent variables of the machine learning dataset. Figure 6a in-
dicates a high frequency of edge bearing failure making it the 
dominant failure mode. In comparison, the net-section tension 
frequency is approximately half that of the edge bearing. The 
low occurrence of block tearing is attributed to the relatively 
low number of 4-bolt configurations, as shown in Figure  6b. 
Additionally, Figure 6c represents the types of materials used, 
with plates produced from duplex stainless steel being the most 
prevalent within the dataset.

3.2   |   Overview of the Used Machine Learning 
Algorithms

This study explored the predictive capabilities of five different 
machine learning algorithms: adaptive boosting (AdaBoost), 
decision tree (DT), support vector machine (SVM), k-nearest 
neighbors (K-NNs), and artificial neural network (ANN). The 
following sections provide an overview of these algorithms, to-
gether with a discussion on the implemented cross-validation 
method.

3.2.1   |   Adaptive Boosting (AdaBoost)

AdaBoost is a robust ensemble learning technique that im-
proves the accuracy of weak learners, which are simple models 
that perform slightly better than random guessing. As illus-
trated in Figure  7, AdaBoost ensembling begins by training a 

FIGURE 6    |    Frequency percentage (%) of input data; (a) failure mode, (b) number of bolts, and (c) material type. [Colour figure can be viewed at 
wileyonlinelibrary.com]

(a) (b)

(c)

https://onlinelibrary.wiley.com/
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weak classifier and then adjusting the distribution of the data, 
where the classifier with the highest errors is given larger date 
to enhance the performance of the next weak classifier in sub-
sequent rounds. Then, the classifiers are combined, and weights 
based on their performance are assigned to create a strong clas-
sifier [18]. Because of its demonstrated robustness, AdaBoost 
is here chosen over other machine learning models, including 
RF, LightGBM, XGBoost, and CatBoost, as they take similar 
approach [19]. In MATLAB, Adaboost sub-models LSBoost and 
RUSBoost are used as they are specified for regression, and clas-
sification models, respectively.

3.2.2   |   Decision Tree (DT)

The DT model (Figure  8) works as a tree-like flowchart that 
starts with a root node connected with internal nodes by 
branches. Each node represents an examination of a particular 
variable, and its corresponding leaf node shows the classifica-
tion. Based on the outcome of these examinations, the process 
moves through the branches to reach the leaf node that provides 
final classification [15]. Although DT is not considered the most 

effective machine learning algorithm, it is selected in this study 
because of its simplicity and interpretability, given by the fact 
that each path from root to leaf can be seen as a clear decision-
making process [20].

3.2.3   |   Support Vector Machine With Radial Basis 
Function Kernel (SVM-RBF)

SVM is a type of machine learning model that separates dif-
ferent classes by hyperplanes to create an optimal classifier 
(Figure 9). The boundaries, known as support vectors, are se-
lected to maximize the margin between the hyperplanes and 
the nearest training data points from each class to reduce the 
classification error [21]. As seen in Figure 10, the purpose of 
the radial basis function kernel (RBF) is to separate classes for 
a nonlinear problem when a linear boundary is not possible 
by transforming the data into higher-dimensional space [22]. 
SVM is selected in this work owing to its proven effectiveness 
in high-dimensional spaces and its robustness against overfit-
ting [23, 24].

FIGURE 7    |    Graphical illustration of adaptive boosting (AdaBoost) machine learning model adapted from [17]. [Colour figure can be viewed at 
wileyonlinelibrary.com]

FIGURE 8    |    Simplified schematic of decision tree (DT) machine 
learning model. [Colour figure can be viewed at wileyonlinelibrary.
com] FIGURE 9    |    Schematic visualization of one-dimensional support 

vector machine (SVM) model. [Colour figure can be viewed at wileyon-
linelibrary.com]

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
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3.2.4   |   K-Nearest Neighbors (K-NN)

The K-NN machine learning model is categorized as a non-
parametric since its technique is based on identifying patterns 
for classifications and predictions, in contrast to other models 
that depend on applying equations to data [25]. K-NN classifies 
the unknown variable based on the characteristics of its near-
est neighbors, where the neighborhood closeness is defined by a 
measure such as the Euclidean distance (Figure 11). Noting that 
major setbacks of this model include the fact that the K value is 
a user-defined input, which can lead to lower accuracy, and the 
high computational cost associated with its use [26].

3.2.5   |   Artificial Neural Network (ANN)

ANN is a computational model inspired by the functioning of 
the human brain (Figure  12). It  consist of layers of intercon-
nected nodes, analogous to neurons, that work together to pro-
cess information and solve complex tasks. The network takes 
in input data, process it through hidden layers, and adjust the 
strength of connections based on detecting patterns in the 
input data [28]. ANN has proven to be reliable tools in various 

applications including structural engineering, as evidenced by 
several studies, see for instance [27, 29, 30].

3.3   |   Training the Data With Cross-Validation 
and Setting Hyperparameters

MATLAB was the software used to train the models. The com-
mon practice of training data is using the hold-out method, split-
ting them by 80% for training and 20% for testing, with this split 
remaining fixed. However, k-fold cross-validation is often ad-
opted as a more robust approach that uses all the data for train-
ing and validation in each iteration, resulting in improving the 
accuracy of results for both prediction and classification models 
[31]. In this study, k-fold cross-validation was implemented for 
all models by partitioning the data into five k-folds. This means 
that in each iteration, one-fold (equivalent to 20% of the dataset) 
was used as the validation set, while the remaining four folds 
were used for training. It is important to note that increasing 
the number of folds to higher than five in cross-validation did 
not lead to significant improvements in models' performance. 
Therefore, the five folds were considered the optimal config-
uration. Each k-fold was evaluated separately, and the final 
performance of the regression and classification models was 
determined based on the validation results from all k-fold tri-
als, specifically reporting the best overall performance across 
multiple cross-validation runs. This approach helps ensure an 
unbiased and robust assessment of model performance by re-
ducing the influence of any single fold that may overperform or 
underperform relative to the others. The hyperparameters used 
to tune the models were selected after multiple trials to ensure 
optimal prediction performance while minimizing the risk of 
overfitting. Table 4 displays the most important hyperparame-
ters for each model.

4   |   Codified Design Estimations

This section presents the equations to estimate the design loads 
of double-lap shear bolted connections obtained from the most-
commonly adopted standard codes, including EN 1993-1-8 and 
ANSI/AISC 360 for carbon steel, and ANSI/AISC 370-21 [32] for 
stainless steel. This allows to highlight the differences and simi-
larities between the standards and give a comprehensive under-
standing of their approaches.

FIGURE 10    |    Schematics of the use of radial basis function kernel (RBF) for nonlinear problem adapted from [22]. [Colour figure can be viewed 
at wileyonlinelibrary.com]

FIGURE 11    |    Representation of the k-nearest neighbors (K-NN) 
model adapted from [26]. [Colour figure can be viewed at wileyonlineli-
brary.com]

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
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4.1   |   EN 1993-1-8

The reference European standard for the design of steel bolted 
connection is code EN 1993-1-8. According to this code, the de-
sign bearing resistance, Fb,EC3 is calculated using Equation (1):

where km is a reduction factor that depends on the steel grade of 
the plate, fu is the nominal ultimate tensile strength of the plate, 
d is the nominal diameter of the bolt, and ab defined as the min-
imum value between e1 ∕do (edge bearing limit), 3 × fub ∕ fu (bolt 
bearing limit), and 3 (plate bearing/shear-out limit). It is evident 
that the lowest value of ab is the value associated with the bear-
ing type that occurs in the connections. The notation �M2 is the 
partial safety factor for the bolt's resistance.

For calculating the design net-section tension resistance, Ft,Rd, 
EN 1993-1-8 refers to Equations (2), (3), (4), (5), and (6):

As seen in Equation (2), the design net-section tension resistance, 
Ft,EC3 of the plate is the minimum value of the design plastic re-
sistance of the gross cross-section, Fpl,EC3 or the design ultimate 
resistance of the net cross-section, Fn,EC3. Equation (3) is used to 
calculate Fpl,EC3, noting that Ag is the cross-sectional area of the 
plate and �M0 is the partial safety factor for the resistance of cross 
sections. For calculating Fu,EC3, Equation (4) is used considering 
that k is a value that depends on the method implemented for fab-
ricating the hole of the plate, and Anet is the net area of the plate 
cross-section, which is calculated by Equation (5) where, ΔAnet is 
the section area deducted considering the presence of the hole/s. 
The value of ΔAnet can be calculated by using Equation (6).

The standard also recommends that Equation (7) is used to es-
timate the design block tearing resistance of a plate with two or 
more bolts, Feff,EC3.

The parameter Ant is the net area subjected to tension, Agv is the 
gross area subjected to shear, Anv is the net area subjected to 
shear, and fy is the yield strength of the plate.

4.2   |   ANSI/AISC 360 and 370

ANSI/AISC 360 and ANSI/AISC 370 are the reference standards 
for the design of carbon steel and stainless steel bolted connections, 

(1)Fb,EC3 = nb ×
km × ab × fu × d × t

�M2

(2)Ft,Rd = min
[
Fpl,EC3;Fn,EC3

]

(3)Fpl,EC3 =
Ag × fy

�M0

(4)Fn,EC3 =
k × Anet × fu

�M2

(5)Anet = Ag − ΔAnet

(6)ΔAnet = nb × do × t

(7)Feff,EC3 =

�
Ant × fu

�
+min

�
Agv × fy
√
3
;
Anv × fu√

3

�

�M2

FIGURE 12    |    Schematic of artificial neural network (ANN). Adapted from [27]. [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 4    |    Hyperparameters for each model.

Machine 
learning 
algorithm Hyperparameter Value

SVM-RBF Regularization parameter 1000

Kernel function coefficient 0.8

DT Maximum number of splits 35

K-NN Number of neighbors 3

AdaBoost Number of learning cycles 30

Learning rate 0.1

ANN Number of hidden layers 20

Number of epochs 50

https://onlinelibrary.wiley.com/
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respectively. Similar to EN 1993-1-8, ANSI/AISC 360 gives a set 
of equations to estimate the failure estimations shear bolted con-
nection, though including additional considerations and different 
partial safety factors. For instance, Equation (8) is used to estimate 
the design bearing capacity, Fb,AISC360 obtained by either includ-
ing a load and resistance factor design (LRFD) in the numerator 
or an allowable strength design (ASD) partial safety factor in the 
denominator, with LRFD and ASD having values of 0.75 and 2, 
respectively. Noting the values of ASD and LRFD are same for all 
design estimation equations presented for carbon steel.

In Equation (8), the coefficient Cb is to be taken as equal to 3 if 
the bolt-hole deformation at the serviceability limit state is not 
considered, or 2.4 if it is a design consideration.

Equation  (9) represents the net-section tension design resis-
tance, Ft,ASCI360 according to ANSI/AISC 360. Note that this is 
the same equations represented in EN 1993-1-8 but with differ-
ent partial safety factors. The values of Npl,ASCI360 and Nn,ASCI360 
are calculated using Equations (10), and (11), respectively.

For block tearing design resistance, Feff,AISC360, as shown in 
Equation (12) that ANSI/AISC 360 uses the same equation used 
in EN 1993-1-8 but with the different partial safety factors. Note 
that the constant factor, which is equal to 0.6, slightly differs 
from EN 1993-1-8.

For stainless steel bolted connections, ANSI/AISC 370 provides 
similar equations. The only slight adjustment, in relation to the 
provisions of ANSI/AISC 360 for carbon steel, is for the bearing 
resistance equation where Cb value is 2.5 fo r l2 ∕do > 1.5 or 2 for 
l2 ∕do ≤ 1.5. Note that the parameter l2 is the distance from the 
centre of the hole to the centre of the adjacent hole or the edge 
of the plate.

Overall, EN 1993-1-8 and ANSI/AISC 360&370 adopt broadly 
similar approaches for calculating design resistance, although 
they differ in the formulation and value of the partial safety 
factors applied. Both standards are intentionally conservative, 
incorporating these safety factors to account for uncertainties 
and to ensure the safe design of structural components. For cer-
tain connection configurations where design predictions were 
not reported in the literature, the missing values were manually 
calculated using the respective code equations without applying 
partial safety factors, in order to reflect the nominal resistance 
and allow for consistent comparison with experimental results. 

As discussed in Section 5, EN 1993-1-8 generally produced more 
conservative estimates than ANSI/AISC 360&370. However, 
due to the omission of safety factors in the manual calculations, 
the predictions based on ANSI/AISC 360&370 in particular 
tended to overestimate the failure loads, especially in the mid-
to-high load range.

5   |   Performance Analysis

5.1   |   Regression Models

The regression models and the codes' estimations were evalu-
ated by three general metrics, namely the mean square error 
(MAE), the root mean square error (RSME), and the coefficient 
of determination (R2), using Equations  (13), (14), and (15), re-
spectively. Noting that notation n in the equations represents the 
amount of data. All reported training metrics for the regression 
models represent the average performance across the training 
folds in the k-fold cross-validation. Validation metrics are cal-
culated based on the aggregated predictions from all validation 
folds, providing an overall assessment of each model's gener-
alization performance. The regression plots are also based on 
these aggregated validation predictions.

As shown in Table 5, the performance of AdaBoost surpassed 
that of the other models and codes across all three metrics for 
both training and validation sets. Notably, AdaBoost achieved 
a high validation R2 value of 0.96, indicating strong agreement 
with experimental results. Figure  13a shows that AdaBoost 
produced a well-fitted regression model when comparing the 
experimental failure loads, Fu with the predicted values, Fest. 
ANN and DT also performed well, with relatively low predic-
tion errors and R2 values of 0.95, indicating good model fitness 
(Figure 13b,c). Although SVM-RBF and K-NN both achieved an 
R2 of 0.90, their error patterns differed. The SVM-RBF model 
exhibited the highest MAE among all models, indicating a con-
siderable average prediction error. As shown in Figure 13d, the 
SVM-RBF predictions are widely scattered around the ideal line, 
with noticeable deviations in both directions across the mid and 
upper load ranges. This dispersion reflects a lack of consistency 
in prediction, despite reasonable correlation with experimental 
values. Similarly, the K-NN model reached the highest RMSE, 
possibly due to poor performance on extreme values. As illus-
trated in Figure 13e, K-NN tended to systematically underesti-
mate the failure loads, particularly at higher values. This bias, 
along with its high error, demonstrates the model's limited 

(8)Fb,AISC360 = nb × Cb × fu × d × t ×
(
LRFD or

1

ASD

)

(9)Ft,ASCI360 = min
[
Fpl,AISC360;Fn,AISC360

]

(10)Fpl,ASCI360 = Ag × fy ×
(
LRFD or

1

ASD

)

(11)Fn,ASCI360 = Anet × fu ×
(
LRFD or

1

ASD

)

(12)
Feff,AISC360 =

[(
Ant× fu

)
+min

(
0.6×Agv× fy; 0.6×Anv× fu

)]

×
(
LRFD or

1

ASD

)

(13)MAE =
1

n

n∑

i= 1

||Fu − Fest||

(14)RMSE =

√√√
√ 1

n

n∑

i= 1

(
Fu−Fest

)2

(15)R2 = 1 −

n∑

i=1

(
Fu−Fest

)2

n∑

i=1

(
Fu−

1

n

∑
Fu

)2
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generalization capability compared to the other machine learn-
ing approaches.

The codified predictions in EN 1993-1-8 consistently underes-
timated the failure loads, as shown in Figure 13f. In contrast, 
the ANSI/AISC 360&370 predictions exhibited greater scatter 
and tended to overestimate several values, especially in the mid-
to-high load range (Figure 13g). This variability contributed to 
its relatively lower R2 and higher error values. Overall, Table 5 
and Figure  13 demonstrate that AdaBoost outperformed both 
code-based approaches in terms of accuracy and consistency, 
with fewer instances of failure load misprediction. The ANN 
and DT models, although comparable to EN 1993-1-8 in overall 
error metrics, provided more balanced predictions with reduced 
underestimation bias.

5.2   |   Classification Models

Figure  14 presents the aggregated performance across the 
validation sets of k-fold cross-validation for the classification 
models, shown in the form of confusion matrices. The diagonal 
blue brackets indicate the correctly predicted failure modes, 
while the light orange brackets highlight the misclassified 
instances. As described in [33], recall refers to the percent-
age of actual failure modes that the model correctly identi-
fies, while precision represents the percentage of predicted 
failure modes that are correct. Accuracy reflects the overall 
proportion of correct predictions across all failure modes. 
Among the models, the ANN demonstrated the best overall 
performance, achieving the highest accuracy of 91.0%, with 
partial but improved classification of the rare BT failure mode 
and strong recall and precision scores for EB and NST. The DT 
and SVM-RBF models also performed well, with accuracies of 
90.0% and 89.1%, respectively, showing consistent results for 
the dominant failure modes EB and NST, but struggling with 
the rare BT failure mode. The K-NN model achieved an accu-
racy of 83.7%, correctly identifying one BT case but showing 
slightly lower recall for the NST failure mode. In contrast, the 
AdaBoost model underperformed, with a reduced accuracy of 
67.9%, primarily due to frequent misclassifications between 
EB and NST and a complete failure to correctly classify any 

BT instances. Overall, the results indicate that ANN, followed 
by DT and SVM-RBF, offered the most reliable classification 
of failure modes, while AdaBoost's performance was notably 
weaker in this task.

6   |   Discussion of Results

The results presented in the previous section show that machine 
learning approaches offer a robust alternative to traditional cod-
ified methods for predicting failure loads and modes in bolted 
connections. While EN 1993-1-8 generally produced conser-
vative estimates, tending to underestimate failure loads, the 
ANSI/AISC 360&370 predictions, particularly when calculated 
without safety factors, were observed to overestimate the fail-
ure loads in several cases. In contrast, regression models such 
as AdaBoost, ANN, and DT, as well as classification models 
including ANN, SVM-RBF, and DT, yielded more accurate and 
balanced predictions. Hence, these machine learning tools have 
a significant potential in the design of bolted connections, where 
accuracy is critical for achieving a design that is both material-
efficient and safe.

The regression and classification analyses provided a clear 
understanding of the performance of the five models used for 
the design predictions of double-lap shear bolted connections. 
AdaBoost stood out as the best-performing model for failure 
load predictions, achieving the lowest prediction errors and 
highest R2 value. The regression analysis highlighted a signifi-
cant variation in the models' performance for predicting failure 
loads, reflecting the complexity of estimations for such a large 
quantity of input variables. For classification, the ANN model 
achieved the highest accuracy, correctly identifying one of the 
few instances of the BT failure mode and performing strongly 
across the other failure modes. The DT and SVM-RBF models 
also performed reliably, while AdaBoost showed the weakest 
classification performance. The difference in model rankings 
between regression and classification tasks suggests that some 
algorithms are better suited to numerical prediction than cate-
gorical classification, depending on how the learning algorithm 
interacts with the data structure. These findings emphasize 
the importance of selecting machine learning models that are 

TABLE 5    |    Evaluation metrics for the models and codes performance.

Machine learning model designation

Train set Validation set

RMSE MAE R2 RMSE MAE R2

AdaBoost 28.82 18.61 0.99 46.21 27.71 0.96

ANN 32.52 18.88 0.98 55.98 33.36 0.95

DT 36.04 19.13 0.98 56.31 32.58 0.95

SVM-RBF 33.57 28.28 0.98 76.30 56.12 0.90

K-NN 69.83 36.97 0.92 77.27 48.21 0.90

Codified design estimations RMSE MAE R2

EN 1993-1-8 56.64 37.70 0.95

ANSI/AISC 360&370 95.18 55.61 0.85



12 of 15 Fatigue & Fracture of Engineering Materials & Structures, 2025

FIGURE 13    |    Comparison between actual failure loads, Fu and predicted values, Fest by machine learning models and design standards. [Colour 
figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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appropriate to the nature of the prediction task to maximize 
reliability.

7   |   Conclusions

This study evaluated the effectiveness of machine learning ap-
proaches as an alternative to traditional codified design meth-
ods for predicting the failure loads and modes of double-lap 
shear bolted connections across various types of steel and stain-
less steel materials. Data from experimental results and numer-
ical analyses were collected from past papers and used to train 
five different models, including adaptive boosting (AdaBoost), 
decision tree (DT), support vector machine with radial basis 
function kernel (SVM-RBF), k-nearest neighbors (K-NNs), and 
artificial neural network (ANN). k-fold cross-validation was 

used, with five folds identified as optimal. Based on the results 
and discussions, the following conclusions are drawn:

•	 Most of the evaluated machine learning models outper-
formed traditional codified approaches in accuracy for fail-
ure load predictions. In particular, AdaBoost, ANN, and DT 
demonstrated strong performance in this task.

•	 AdaBoost achieved the highest R2 value of 0.96 and the 
lowest prediction errors across both training and validation 
sets, indicating excellent fit and generalization.

•	 The ANN and DT models showed comparable performance 
to EN 1993-1-8 in regression, with similar R2 values (0.95) 
and slightly lower MAE. Although not the top-performing 
machine learning models, both ANN and DT outperformed 
the ANSI/AISC 360&370 predictions across all metrics. 

FIGURE 14    |    Confusion matrices summarizing the performance of the classification models for failure mode predictions. [Colour figure can be 
viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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Both models also provided more balanced predictions and 
exhibited reduced underestimation bias compared to the 
conservative trend observed in EN 1993-1-8.

•	 Despite its superiority in regression, AdaBoost was the 
weakest among the machine learning models in classifying 
failure modes. It misclassified nearly all BT cases and con-
fused EB and NST modes, resulting in the lowest classifica-
tion accuracy (67.9%). This contrast highlights its limitation 
in handling imbalanced categorical data and suggests that 
model suitability varies significantly by prediction type.

•	 ANN provided a strong balance between accuracy and ro-
bustness. It not only achieved one of the lowest regression 
errors, rivaling AdaBoost, but also achieved the highest 
classification accuracy at 91.0%. This highlights its adapt-
ability for both numerical and categorical predictions in 
structural engineering applications, such as double-lap 
shear bolted connections.

•	 Although hyperparameter tuning values remained consis-
tent across both regression and classification analyses, the 
models exhibited notable differences in performance. This 
shows that model performance is strongly influenced by the 
type of prediction problem.

•	 Overall, the study revealed that AdaBoost is the most re-
liable model for predicting failure loads, while the ANN 
model demonstrated the best collective performance across 
both regression and classification tasks. Although this 
study is limited to static loading, the machine learning 
framework applied is adaptable and could be extended to 
predict fatigue-related failure, provided suitable cyclic load-
ing data is available.

Data Availability Statement

The data that support the findings of this study are available from the 
corresponding author upon reasonable request.
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