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Abstract

The challenges and increasing number of elderly individuals requiring remote monitoring
at home highlight the need for technological innovations. This study devised an eHealth
mobile application designed to detect abnormal movement behavior and alert caregivers
when a lack of movement is detected for an abnormal period. By utilizing the built-in
accelerometer of a conventional mobile phone, an application was developed to accurately
record movement patterns and identify active and idle states. Fuzzy logic, an artificial
intelligence (AI)-inspired paradigm particularly effective for real-time reasoning under
uncertainty, was integrated to analyze activity data and generate timely alerts, ensuring
rapid response in emergencies. The approach reduced development costs while leveraging
the widespread familiarity with mobile phones, facilitating easy adoption. The approach
involved collecting real-time accelerometry data, analyzing movement patterns using fuzzy
logic-based inferencing, and implementing a rule-based decision system to classify user
activity and detect inactivity. This pilot study primarily validated the devised fuzzy logic
method and the functional prototype of the mobile application, demonstrating its potential
to leverage universal smartphone accelerometers for accessible remote monitoring. Using
fuzzy logic, temporal and behavioral symmetry in movement patterns were adapted to
detect asymmetric anomalies, e.g., abnormal inactivity or falls. The study is particularly
relevant considering lonely individuals found deceased in their homes long after dying. By
providing real-time monitoring and proactive alerts, this eHealth solution offers a scalable,
cost-effective approach to improving elderly care, enhancing safety, and reducing the risk
of unnoticed deaths through fuzzy logic.

Keywords: eHealth; elderly care; remote monitoring; activity detection; behavioral analysis;
symmetric movements; fuzzy logic; accelerometer

1. Introduction
The well-being of the growing elderly population is becoming an increasingly im-

portant social and governmental concern [1]. A significant proportion of frail and lonely
older adults prefer to stay in their own homes rather than moving to residential care
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establishments, as relocation could be both financially burdensome and psychologically
distressing [2]. Aging can cause various complications, particularly for those living alone.
Studies indicate a rising trend of older adults found deceased in their homes in England and
Wales, unnoticed long after passing away. These so-called “undefined deaths” have been
steadily increasing since 1980, linked to social isolation, austerity measures, and societal
fragmentation [3]. As reported by a study, “many people would be shocked that someone
can lie dead at home for days, weeks, or even longer without anyone raising an alarm” [4].
This growing crisis highlights a critical need for technological developments that can detect
abnormal inactivity and provide timely alerts to caregivers.

Advancements in mobile technology offer potential solutions to this issue. Mobile
phones are widely used across populations and contain built-in sensors, such as accelerom-
eters, which, when combined with appropriate software, can monitor movement and
detect anomalies in daily activity patterns [5,6]. Despite these opportunities, existing
Internet of Things (IoT) deployments for healthcare, including innovative smart home
environments and sensor networks specifically aimed at elderly monitoring, often present
limitations [7,8]. These systems, while providing continuous data collection and alert
capabilities, frequently face hurdles related to installation complexity, power manage-
ment, and user acceptance, particularly for solutions requiring dedicated infrastructure
beyond a conventional mobile phone [9]. While recent advances in intelligent monitoring
have leveraged powerful AI-driven models such as hybrid deep learning architectures
(e.g., convolutional neural networks and long short-term memory neural networks) to
improve anomaly detection [10–12], there remains a significant research gap for a highly
accessible, unobtrusive, and computationally efficient system suitable for real-time moni-
toring directly on conventional smartphones.

This study addresses this gap by introducing a novel remote monitoring system
designed to enhance the safety and well-being of elderly individuals living independently.
A key innovation of this system is its integration of fuzzy logic, an artificial intelligence
(AI)-inspired approach, to analyze movement data and accurately detect abnormal patterns,
such as prolonged inactivity. Fuzzy logic has been widely applied in various domains,
including wireless computer networks, for identifying irregular patterns [13,14]. Our
approach uniquely harnesses fuzzy logic due to its interpretability, low computational
footprint, and suitability for real-time processing directly on standard mobile devices. This
makes our system exceptionally cost-effective, non-wearable, and user-friendly, operating
unobtrusively in the background without requiring undue technological expertise from
users. Proactive remote monitoring not only enhances the safety and well-being of elderly
individuals but also provides peace of mind for caregivers and family members, ensuring
timely intervention in critical situations.

The primary objective of this pilot study is to develop and validate a functional
prototype of a smartphone-based remote monitoring application that utilizes a novel fuzzy
logic methodology to classify and detect abnormal movements, specifically prolonged
inactivity. This system is intended to automatically dispatch timely alerts to designated
caregivers or family members, thereby providing a simple, cheap, and easy solution to
prevent unnoticed medical emergencies and directly address the concerning issue of elderly
individuals dying unnoticed at home for extended periods.

The remainder of this paper is organized as follows: Section 2 provides a compre-
hensive review of related studies on elderly monitoring and anomaly detection. Section 3
details the methodology of our proposed fuzzy logic-based system. Section 4 presents and
discusses the experimental results. Section 5 includes a discussion of our findings. Section 6
outlines the study’s limitations and suggests future directions, while Section 7 concludes
the paper.
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2. Literature Reviews
2.1. Remote Patient Monitoring

Remote patient monitoring (RPM) is a modern healthcare tool that enables healthcare
providers and caregivers to track a patient’s health from a distance. Utilizing devices like
smartphones, wearable sensors, or other technologies, RPM collects vital health data, such
as heart rate, blood pressure, or activity levels, and transmits it to healthcare providers in
real time. This capability aids in the early detection of potential problems, allowing for
timely intervention before conditions worsen. For patients, particularly those with chronic
conditions or recovering from illness, RPM offers a convenient way to maintain a connection
with their care team, reducing the need for frequent hospital visits. It can be an effective
means to improve health outcomes and make healthcare more accessible [15]. Technological
advancements have increasingly enabled patients to engage in normal daily activities at
home while still being monitored through modern communication methods [3,16].

RPM systems facilitate timely emergency responses, contributing to reduced untimely
deaths and healthcare costs through various communication technologies [17]. Remote
monitoring has proven useful in predicting diseases like diabetes and hypertension [18],
and in overseeing physiological signs [19], pulmonary disease [20], chronic illnesses [21],
and human activities [22]. These systems target diverse subgroups, including individuals
diagnosed with chronic illnesses, those with mobility issues or other disabilities, post-
surgery patients, neonates, and elderly patients [15,16].

However, the main challenges with existing RPM approaches include variability in
the accuracy of data collected by devices, which can lead to potential misdiagnosis or
missed alerts. Patients, especially older adults or those with limited technological skills,
may struggle to use RPM devices effectively. Furthermore, RPM can increase the workload
for healthcare providers, potentially leading to burnout or inefficiencies. While RPM shows
promise, long-term data on its comprehensive effectiveness in improving health outcomes
or significantly reducing healthcare costs remains limited. RPM devices may also face
technical challenges such as restricted battery life, connectivity issues, or inconsistent per-
formance in diverse environments. Prior studies have additionally demonstrated that the
accuracy of these methods can decline significantly when applied to both institutionalized
and independent elderly individuals [17]. To address these shortcomings, research trends
in RPM are increasingly focusing on solutions that leverage readily available technology
for specific needs like movement detection and analysis in home environments. By explor-
ing approaches that utilize built-in sensors of conventional mobile phones and integrate
advanced logic for activity analysis, studies aim to provide user-friendly, cost-effective,
and non-intrusive solutions tailored to the elderly population, thereby enhancing the
effectiveness and accessibility of remote patient monitoring.

2.2. Mobile Apps for Remote Monitoring

Traditional monitoring systems often rely on body-attached sensors, which can limit
patient mobility and affect daily activities. This discomfort may distort physiological
readings, especially among elderly patients, potentially misrepresenting their actual health
conditions [17]. To overcome these limitations, the use of mobile devices equipped with
a variety of built-in sensors—such as GPS, vision, audio, light, temperature, direction,
and acceleration—has created significant opportunities for data mining applications in
health monitoring [23–25]. Accurate body motion tracking with sensors typically requires
strategic placement, ideally near the body’s center of mass (e.g., breastbone, lower back,
or waist) to maximize data accuracy [22]. Despite the potential of RPM, current devices
often present challenges, including prohibitive costs that limit accessibility. Furthermore,
their designs may not adequately address the diverse needs, experiences, and limita-
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tions of individual users, hindering effective adoption and long-term use. Smartphones,
equipped with accelerometers and gyroscopes, offer a readily available option, and their
common placement in pockets allows for effective motion tracking. However, further
research is needed to establish their comprehensive accuracy and reliability for diverse
monitoring applications.

The development of mobile applications for RPM running on tablets and smartphones
eliminates the requirement for expensive, dedicated hardware [26]. Such applications
also enable patients to report symptoms and notify medical teams promptly if conditions
worsen, facilitating timely healthcare decisions and reducing the need for in-person visits
and associated delays [26]. Several frameworks exist for mobile application development.
Researchers have developed RPM applications using Java under the ADT (Android De-
velopment Toolkit by Google) [27]. Despite its advantages, Java has limitations, such as a
lack of inherent cross-platform integration [28]. This limitation can be addressed by using
cross-platform frameworks like Xamarin or React-Native, maintained by Microsoft and
Facebook, respectively [29]. For example, the Xamarin framework enables developers
to create high-performance, native-like mobile applications for Android and iOS from
a single C# codebase, significantly reducing development time and effort. It also offers
seamless integration with the .NET ecosystem and access to native APIs, ensuring robust
and feature-rich applications [29].

2.3. Accelerometry Operation

Research in activity monitoring increasingly focuses on non-invasive sensors, which
overcome the limitations of invasive counterparts, such as subject discomfort [30]. Re-
searchers, such as [25], have investigated the utilization of multiple sensors, including
microphones, accelerometers, GPS, and cameras, embedded in commercial smartphones for
recognizing activities and enhancing mobile social networking applications. Among these,
the accelerometer sensor, integrated as part of a mobile device, is particularly appealing
due to its unobtrusive nature, its ability to gather data without extra equipment, and its
potential for precise interpretation [24].

Human activity detection using a triaxial accelerometer typically involves three stages:
pre-processing, feature extraction, and classification [31]. Feature extraction commonly
involves deriving acceleration peaks, variance, fundamental frequencies’ magnitudes,
intensity, and position relations [24,31]. Studies in this area often utilize magnitude ac-
celerometry features to predict human movement or its absence, classifying it as normal
or abnormal.

The ubiquity of smartphones presents a compelling opportunity for RPM, particu-
larly given the advancements in accelerometer technology integrated within these devices.
Leveraging existing hardware like smartphones reduces the burden on both patients and
healthcare systems by eliminating the need for specialized, often costly, equipment [32].
The increasing integration of mobile devices, connected objects, and sensors into health-
care applications highlights the viability of smartphone-based monitoring for diverse
patient populations [33]. This technological availability plays a crucial role in enabling the
scalability and feasibility of remote monitoring programs [33].

Modern smartphone accelerometers, although not classified as medical-grade devices,
can offer effective operation for numerous remote monitoring applications, especially those
focused on gross motor activity, falls, and certain movement disorders [34]. Numerous
studies have directly compared smartphone accelerometry data with data obtained from
research-grade wearable sensors or gold-standard motion capture systems. These stud-
ies often assess metrics such as fall detection accuracy, step count accuracy, and activity
recognition accuracy. For instance, research has shown that smartphone accelerometers can
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achieve high sensitivity and specificity in fall detection algorithms [34]. Similarly, studies
have explored the use of these accelerometers for monitoring physical activity levels, gait
patterns, and even subtle tremors in patients with conditions like Parkinson’s disease [35].
While it is essential to acknowledge the limitations of smartphone accelerometers in de-
tecting very fine movements or subtle changes, the level of accuracy they provide is often
sufficient for many remote monitoring applications. A balanced discussion of these limita-
tions strengthens the argument for their use by demonstrating a thorough understanding
of the technology, including ongoing efforts to improve reliability and reduce issues such
as false fall alerts through advanced techniques like deep learning [36].

The real-time or near real-time data acquisition capabilities of smartphone accelerom-
eters enable rapid detection of critical events, such as falls, and can trigger timely in-
terventions. Smartphone processors are powerful enough to handle accelerometry data
and execute algorithms in real-time, facilitating immediate feedback and alerts. Further-
more, the inherent connectivity of smartphones allows for seamless data transmission to
healthcare providers or caregivers. For example, systems can be designed to automatically
detect a fall and send an alert to designated contacts [37]. Real-time activity data can
also be used to provide personalized feedback and reminders to encourage adherence to
exercise programs.

2.4. Fuzzy Logic in Activity Detection

As discussed by researchers [31], the classification stage is crucial in detecting human
activity. Researchers [23] employed the k-nearest algorithm (KNN) to detect five human
activities like phone detached, idle, walking, running, and jumping. The KNN classifier,
although straightforward and widely employed, can achieve performance comparable to
that of more sophisticated classifiers [37]. Researchers such as [37,38] employed convo-
lutional neural networks (CNNs) for predicting six human activities, including jogging,
walking, going upstairs, going downstairs, sitting, and standing. Deep learning models
like CNNs have demonstrated notable accuracy potential but necessitate more training
data and computational resources.

To address limitations observed in existing RPM approaches, fuzzy logic has emerged
as a promising method for interpreting accelerometry data. Fuzzy logic offers advantages
in modeling complex systems with imprecise data by allowing variables to have degrees of
truth, which enhances its suitability for real-world applications. Fuzzy logic can perform
well with smaller datasets because it relies on fuzzy rules and membership functions
rather than extensive training datasets. It can generalize effectively even with limited
data, making it suitable for applications where data collection is challenging or expensive.
Additionally, fuzzy logic systems are interpretable, allowing experts to understand and
refine the rules and membership functions to improve system performance [39]. Collected
data can undergo analysis using fuzzy logic to identify human activities. In cases where
anomalies are detected, alerts would be promptly sent to the emergency contact people
added in the mobile application. This approach leverages fuzzy logic’s capability to
interpret and respond to complex, uncertain data patterns, ensuring timely intervention
and enhanced monitoring effectiveness [40].

In summary, while many studies highlight the growing field of Remote Patient Moni-
toring (RPM), offering broad insights into its potential, they often do so without delving
into specific, cost-effective solutions for individual behavioral monitoring using readily
available technology. For instance, reviews like Shaik et al. [41] broadly cover how AI
and technologies such as IoT wearables can transform RPM. Holtz et al. [42] focus on the
promise of RPM from a strategic, policy, and infrastructure standpoint, discussing its role
in addressing healthcare inequities. Similarly, systematic reviews by Tan et al. [43] examine
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the impacts of various RPM interventions, including smartphone apps and wearables, on
patient safety, adherence, and cost-related outcomes during care transitions. While these
papers provide valuable overviews and impact analyses, they do not focus on the specific,
practical needs our study addresses. For example, systems like the one in Zhang et al. [44]
do use smartphones, but they often rely on external wearable sensors for physiological data,
which adds cost and complexity. Another advanced approach by Chinnaperumal et al. [45]
integrates complex AI with 5G networks for secure medical data acquisition, focusing on
high-tech infrastructure. In sharp contrast to these approaches, our study does not use
any separate IoT devices or external wearables. Instead, we uniquely leverage only the
built-in accelerometer of a standard smartphone, making our system highly affordable and
accessible. Our research further distinguishes itself by applying fuzzy logic—an AI method
well-suited for real-time decision-making under uncertainty—to precisely detect abnormal
inactivity (lack of movement). This specific focus directly addresses a critical, often over-
looked, safety concern: preventing unnoticed deaths of lonely individuals, thereby offering
a practical, user-friendly, and life-saving application within the broader RPM landscape.

3. Methods
This study employed quantitative and experimental methodologies to develop and

validate a smartphone-based remote patient monitoring system. Our primary goal was to
create a user-friendly and cost-effective eHealth solution capable of detecting abnormal in-
activity and potential falls in elderly individuals, triggering timely alerts to caregivers. This
section details the system’s architecture, mobile application development, data acquisition,
the core fuzzy logic-based anomaly detection algorithm, and the notification system.

3.1. System Overview and Architecture

Our proposed system operates on a conventional mobile phone, leveraging its built-in
accelerometer to continuously monitor user activity. Figure 1 illustrates the overarching
workflow. The system collects movement data in real-time, processes it using a fuzzy logic
module, and then dispatches immediate alerts to designated caregivers if abnormal activity
(prolonged inactivity or a fall) is detected. If activity is deemed normal, the system remains
unobtrusive and takes no action.

 
Figure 1. Workflow of the proposed system.

The mobile application was developed using the ASP.NET Xamarin framework (ver-
sion 5.0.0, Microsoft Corporation, Redmond, WA, USA) with C# as the primary program-
ming language, and deployed on Samsung Galaxy 5G smartphones (Samsung, Suwon,
Republic of Korea), with testing specifically conducted on models such as the Galaxy A53
5G, A73 5G, and M54 5G running Android version 12.0.0. It integrates a Python-based
fuzzy logic engine (Python 3.10.x, Python Software Foundation, Beaverton, OR, USA) for
intelligent decision-making, utilizing scikit-fuzzy (version 0.4.1), a common Python fuzzy
logic library. Accelerometer data, collected by the Xamarin.Essentials.Accelerometer API
(version 1.7.0, Microsoft Corporation, Redmond, WA, USA), are processed to extract the
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Signal Magnitude Vector (SMV) and timestamp. These data points are stored locally on
the phone’s internal memory using SQLite (version 3.39.x, open-source). The stored data
then serves as inputs to the Python fuzzy logic engine, which analyzes movement patterns
based on predefined static rules to classify user activity and detect anomalies.

3.2. Mobile Application Development and Features

The mobile application was developed with user-friendliness and continuous, unob-
trusive monitoring in mind, particularly for elderly users. We used the ASP.Net Xamarin
framework with C# as the primary programming language, allowing for cross-platform
development targeting Android devices. Testing was conducted on various Samsung 5G
smartphones (e.g., Galaxy A53 5G, A73 5G, and M54 5G) running Android version 12.0.0,
all equipped with built-in accelerometers and gyroscopes.

Designed for minimal user interference, the app operates seamlessly in the background,
continuously collecting accelerometry data and performing activity analysis without requir-
ing constant interaction. Upon installation, users grant necessary permissions and receive
essential information about the app’s functionality. The application’s interface, exemplified
by Figure 2, prominently displays participant details (name, age, and gender) at the top,
along with real-time motion activity graphs for the current day. To facilitate long-term
health management and trend analysis, it also generates historical motion activity graphs
for one week, one month, and three months. In these activity graphs, green lines illustrate
a detected moving state (activity level plotted on the y-axis against time on the x-axis),
while red lines signify an idle (not moving) state. This aggregated activity information is
subsequently fed into the fuzzy logic module for classification and alert decision-making.
Figure 3 presents the interface for managing caregiver contact details, including name,
phone number, email address, and relationship to the monitored individual.

 
Figure 2. Activity and participant details.
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Figure 3. View/edit caregiver contacts.

Further enhancing user control and safety, Figure 4 shows all configured caregiver
(emergency) contacts, providing a comprehensive overview of designated recipients for
alerts. Additionally, the application includes a prominent emergency button (shown in
red in Figure 5), enabling elderly users to manually send immediate alerts to caregivers in
critical situations.

 

Figure 4. Caregiver (emergency) contacts.
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Figure 5. Emergency button.

3.3. Accelerometer Data Acquisition and Local Storage

Accelerometer data, essential for monitoring user activity, are collected using Xam-
arin.Essentials.Accelerometer (version 1.7.0, Microsoft Corporation, Redmond, WA, USA),
which provides processed x, y, and z values along with corresponding timestamps. These
raw accelerometer data are pre-processed to extract the Signal Magnitude Vector (SMV),
calculated using

SMV =
√

x2 + y2 + z2 (1)

For real-time monitoring, accelerometer data are collected at one-minute intervals
(every 60 s). For each one-minute interval, only the highest Signal Magnitude Vector (SMV)
recorded within that minute was retained. This single, highest SMV value per minute then
served as the primary input feature for the fuzzy logic classification system.

A key advantage of this design is that all data are stored locally on the smartphone
using SQLite, a lightweight, open-source, serverless database engine. This approach elimi-
nates reliance on cloud storage, which may be susceptible to Internet connectivity issues,
and significantly enhances data privacy and security by keeping sensitive information
confined to the user’s device, reducing the risk of unauthorized access.

The SQLite database stores the three-dimensional acceleration data, the calculated
SMV, and the corresponding timestamps. This method optimizes storage demands while
preserving meaningful information for analysis. The database is designed to hold up to
three months of historical acceleration data, enabling long-term activity tracking and pattern
analysis valuable for identifying behavioral trends or sudden changes. To maintain optimal
performance and storage capacity, data older than three months are automatically deleted.
This design balances data privacy, local storage constraints, and real-time processing
efficiency, ensuring the application remains responsive on mobile devices.
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3.4. Fuzzy Logic-Based Activity and Anomaly Detection

The developed mobile application, integrated into conventional smartphones, con-
tinuously monitors user activity using its built-in accelerometer to collect movement data.
This data is then processed via a fuzzy logic module to detect abnormal activity, such
as prolonged inactivity or falls, enabling informed alert decisions. The system’s overall
workflow is presented and generally explained in Section 3.1 and visualized in Figure 1.

This section details the fuzzy logic system, which forms the core AI for classifying
activity levels and detecting anomalies. The system operates on a static set of fuzzy rules
and membership functions, optimized for real-time performance on resource-constrained
mobile devices. The system utilizes two primary fuzzy inputs: the Signal Magnitude
Vector (SMV), derived from accelerometer data as described in Section 3.3, and the time of
day input.

Before the main fuzzy logic processing, an initial classification algorithm processes raw
accelerometer data to identify immediate abnormal movements (like falls) and categorize
general activity states (moving or still). Figure 6 presents the flowchart for this developed
classification algorithm (where µ = Mean).

Figure 6. Flowchart of developed classification algorithm (µ = Mean).

The process of detecting activity and potential anomalies starts by continuously gath-
ering raw movement data from the smartphone’s built-in accelerometer. This raw data
is immediately used to calculate the Signal Magnitude Vector (SMV), which is a single
number representing the overall strength or intensity of the user’s movement at any given
moment. The system first performs a quick check: If this SMV value instantly jumps
above 8, it is considered a sudden, strong impact, like a fall, and an “Abnormal movement
detected” alert is triggered right away for a quick response. If the SMV does not jump
above 8, meaning no immediate fall is detected, the system then begins to monitor activity
over time. It continuously collects SMV data and watches if one minute has passed. If not,
it keeps gathering more data until a full minute is complete. Once a minute has passed, the
system calculates the average (or mean, represented by µ) of all the SMV values collected
during that minute. This average SMV provides a smoother picture of the user’s activity
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level during that time. Finally, this average SMV (µ) is compared to a set crisp threshold
to define the user’s preliminary activity state. If the average movement (µ) is above this
crisp threshold, the user is classified as “Moving”, indicating they are active. If the average
movement is at or below the crisp threshold, the user is classified as “Still”, indicating a
period of inactivity. This initial classification of “Moving”, “Still”, or “Abnormal movement
detected” provides the basic information that feeds into the more advanced fuzzy logic
system. In the fuzzy logic module (as detailed in upcoming sections describing fuzzy sets
and rules), these states and SMV values are further processed to determine nuanced activity
levels and trigger alerts based on complex conditions, such as prolonged inactivity.

3.4.1. Fuzzification

Fuzzification is the process of converting crisp, numerical input values (like SMV or
time of day) into degrees of membership for predefined fuzzy sets. For this system, standard
Triangular and Trapezoidal membership functions were employed, as commonly found in
Python fuzzy logic libraries like scikit-fuzzy. The parameters defining the precise shape and
range of these membership functions were initially established using an “Intuition method”
and subsequently refined through manual adjustment based on empirical observations and
optimization of detection performance.

Activity Level Fuzzification (SMV Input)

The initial SMV (Signal Magnitude Vector) input undergoes fuzzification, transform-
ing its precise numerical values into degrees of membership across three overlapping
fuzzy sets: Low, Medium, and High activity levels. This process allows for a more natural
representation of activity and enables smoother transitions between states compared to
rigid thresholds. These fuzzy sets and their defining parameters are empirically chosen
based on best practices in activity monitoring to accurately reflect varying human move-
ment intensities. Table 1 details the type of membership function used for each set and
provides their specific parameters, along with a “Corresponding General SMV Range” for
approximate clarity.

Table 1. Illustrative parameters for activity level membership functions.

Fuzzy Set Membership Function Type Defining Parameters (SMV Values) Corresponding General
SMV Range

Low Trapezoidal [0, 0, 0.5, 1.5] SMV ≈ 0 to 1.5
Medium Triangular [1, 4.5, 8.5] SMV ≈ 1.5 to 8.5

High Trapezoidal [8, 9, 20, 20] SMV ≈> 8

For example, the “Low” fuzzy set uses a Trapezoidal function with parameters
[0, 0, 0.5, 1.5], meaning SMV values from 0 to 0.5 have full “Low” membership, grad-
ually decreasing to zero by 1.5. The “Medium” fuzzy set, a Triangular function with
parameters [1, 4.5, 8.5], primarily covers typical daily activity, with its full membership
peaking at an SMV of 4.5. Lastly, the “High” fuzzy set, also a Trapezoidal function with
parameters [8, 9, 20, 20], is specifically designed for high-intensity movements indicative
of a fall, gaining full membership from an SMV of 9 upwards. These overlapping fuzzy
definitions allow the system to make more nuanced and robust decisions.

Time of Day Fuzzification

The “Time of Day” input is fuzzified into three distinct fuzzy sets: Night, Day, and
Evening. This process allows the system to apply different logic based on the typical
behavioral patterns expected during various periods of a 24 h cycle. These sets utilize static
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membership functions defined by specific time boundaries, transforming a precise hour
into a degree of belonging to “Night”, “Day”, or “Evening”. Table 2 provides illustrative
examples of the parameters for these membership functions.

Table 2. Illustrative parameters for time of day membership functions.

Fuzzy Set Membership Function Type Example Parameters (Hours 0–24)

Day Trapezoidal [22, 23, 5, 6]
Evening Triangular [7, 13, 19]

Night Trapezoidal [17, 19, 22, 24]

These membership functions define how each hour of the day contributes to the
“Day”, “Evening”, or “Night” categories, with overlaps allowing for smooth transitions
between periods. For example, the “Day” fuzzy set uses a Trapezoidal membership function
with parameters [22, 23, 5, 6]. This means its membership begins to increase from 22:00
(10 p.m.), reaches full (100%) membership between 23:00 (11 p.m.) and 5:00 (5 a.m.), and
then gradually decreases to zero by 6:00 (6 a.m.).

The “Evening” fuzzy set uses a Triangular membership function with parameters
[7, 13, 19]. For this set, membership starts at 7:00 (7 a.m.), reaches its peak (100%) at 13:00
(1 p.m.), and then drops to zero by 19:00 (7 p.m.).

Lastly, the “Night” fuzzy set, also a Trapezoidal function, has parameters [17, 19, 22, 24].
Here, membership begins to increase from 17:00 (5 p.m.), reaches full membership between
19:00 (7 p.m.) and 22:00 (10 p.m.), and then gradually decreases to zero by midnight (24:00).
These specific fuzzy definitions enable the system to adapt its behavior and alert strategies
to different periods of the day as defined by these sets.

3.4.2. Fuzzy Inference System (FIS)

The fuzzified inputs are fed into the Fuzzy Inference System. This system employs a
Mamdani-type inference engine, which is widely used for its interpretability. It processes
the inputs using a static set of nine predefined “IF-THEN” fuzzy rules. These rules, detailed
in Table 3, combine the fuzzified activity level (Low, Medium, High) and time of day (Night,
Day, Evening) to infer the appropriate output, such as “Normal Activity”, “Inactivity
Detected”, or “Fall Detected”.

Table 3. Fuzzy rules used by the tool.

Rule Activity Level Time of Day Activity Output Action

1 Low Day Abnormal Start 4 h timer
2 Medium Day Normal None
3 Low Evening Abnormal Start 4 h timer
4 Medium Evening Normal None
5 Low Night Normal None
6 Medium Night Possibly Normal None
7 High Day High Abnormal Start 3 s timer
8 High Evening High Abnormal Start 3 s timer
9 High Night High Abnormal Start 3 s timer

The “Action” column in Table 3 defines the system’s immediate response based on the
inferred activity output. For instance, the “Start 4-h timer” action is triggered when the
system detects a “Low” activity level during “Day” or “Evening” hours (Rules 1 and 3).
Instead of immediately triggering an alert, the system initiates a 4 h inactivity timer. This
means the system will wait for four continuous hours of low activity; if movement does



Symmetry 2025, 17, 988 13 of 22

not resume within this 4 h period, it indicates prolonged inactivity, and an alert will then
be dispatched to caregivers. This timer helps to avoid false alarms for short periods of rest,
ensuring alerts are only sent for genuinely concerning extended inactivity.

Conversely, the “Start 3 s timer” action is specifically triggered when a “High” activity
level is detected, regardless of the time of day (Rules 7, 8, and 9). A high activity level
is indicative of a sudden, forceful movement, strongly suggesting a fall. Upon detecting
such high activity, the system immediately starts a 3 s monitoring timer. During these 3 s,
the system re-confirms the fall event; if the high activity is sustained or validated within
this very short window (e.g., no immediate recovery movement), an emergency alert is
rapidly sent to caregivers. This brief timer ensures quick verification while prioritizing
swift notification for critical events like falls.

3.4.3. Defuzzification

Defuzzification is the final stage of the fuzzy logic process, as illustrated in the over-
all architecture shown in Figure 7. Its primary function is to convert the aggregated
fuzzy output from the Fuzzy Inference System (FIS), which represents the inferred state
(e.g., degree of “Inactivity Detected”), into a single, crisp, and actionable decision that the
system can execute. For this specific system, the Centroid (Center of Area) method was
employed for defuzzification. This method calculates the center of gravity of the combined
output fuzzy set, effectively yielding a precise numerical value that then directly triggers
the appropriate actionable response.

Figure 7. Architecture of the fuzzy logic system.

This crisp numerical output then dictates the system’s subsequent actions, as defined
by the fuzzy rules detailed in Table 3. For instance, if the fuzzy logic system identifies
a “Low” activity level during “Day” or “Evening” hours (corresponding to Rules 1 and
3 in Table 3), the defuzzified output triggers a 4 h inactivity timer. This timer ensures
that an alert is only sent to caregivers if the user remains continuously inactive for this
full four-hour period, providing a contextual buffer to avoid false alarms during normal,
extended rest. Conversely, if a “High” activity level is detected, indicating a potential
fall (corresponding to Rules 7, 8, and 9 in Table 3), the defuzzified output instantly ac-
tivates a 3 s monitoring timer. This brief timer allows for immediate verification of the
high-intensity event; if normal activity does not resume within these three seconds, care-
givers are promptly notified of a potential emergency, prioritizing rapid response for
critical situations.
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3.5. Alert Notification System

When abnormal activity is detected based on the fuzzy logic output and timer thresh-
olds, the system automatically dispatches alerts to designated emergency contacts. These
alerts are sent via email using SMTP (Simple Mail Transfer Protocol) to all contacts specified
by the individual during the application’s setup. Additionally, an SMS notification is
dispatched to the primary carer’s phone number. Figure 8 provides an example of an email
alert dispatched by the system upon detecting an abnormality.

Figure 8. Email alert sent to emergency message when abnormality is detected.

4. Results
This section presents the experimental findings and performance validation of the

developed smartphone-based remote monitoring system. The system was rigorously tested
with six volunteer participants, comprising university staff and MSc students, who installed
and used the application on their mobile phones over a continuous two-month period.
These tests were designed to evaluate the system’s effectiveness in detecting both abnormal
events (such as falls) and prolonged periods of inactivity, triggering timely alerts when
appropriate. In total, 123 fall scenarios and 138 idle scenarios were tested across the six
participants, as detailed below in Table 4.

Table 4. Number of idle and fall scenarios tested for each user.

User Number of Fall Scenarios Tested Number of Idle Scenarios Tested

1 20 28
2 22 26
3 28 20
4 20 18
5 15 22
6 18 24

Total scenarios 123 138

4.1. Evaluation Metrics and Overall Performance

The performance of the eHealth mobile application was primarily evaluated using a
confusion matrix, which provided a statistical summary of the model’s classification results,
highlighting errors and their categories. This matrix is often referred to as the error matrix.
Figure 9 illustrates the confusion matrix for the abnormal detection (ABD) system, defining
its key components:
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Figure 9. Confusion matrix.

• True Positive (TP): The number of abnormal instances correctly classified as abnormal.
• False Positive (FP) (Type I Error): The number of normal instances incorrectly classified

as abnormal.
• True Negative (TN): The number of normal instances correctly classified as normal.
• False Negative (FN) (Type II Error): The number of abnormal instances incorrectly

classified as normal.

Accuracy represents the percentage of correct predictions across all samples and is
calculated as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

The overall performance for both fall and idle detection is summarized in Table 5.

Table 5. Accuracy calculation for fall and idle detection.

Detection Type True Positives
(TP)

False Positives
(FP)

True Negatives
(TN)

False Negative
(FN) Detection Type

Fall 92 10 15 6 87.70%
Idle 104 7 22 5 91.3%

4.2. Activity Monitoring and Behavioral Trends

The application effectively captured and visualized users’ daily, weekly, and monthly
physical activity patterns throughout the two-month study. Figure 10 illustrates a represen-
tative report of weekly and monthly active hours for User 1, demonstrating the system’s
capability to track long-term behavioral trends over periods greater than 24 h.

In the “Weekly Active Hours” graph (the top visualization in Figure 10), each vertical
bar represents a day of the week. The numerical value displayed at the top of each bar
indicates the total active hours for that specific day. Within each bar, the bright green
sections consistently represent periods where movement was detected, signifying that
the user was actively using or carrying the phone. The lighter, transparent (or uncolored)
sections within the bars indicate periods of detected inactivity. Users can navigate through
different weeks’ reports using the “PREV” and “NEXT” buttons.

The “Monthly Active Hours” graph (the bottom visualization in Figure 10) displays
the active hours per day over a period of approximately one month, presented as a line
graph. The area shaded in green underneath the line also signifies periods of detected
movement, allowing caregivers and users to visualize overarching activity trends and
patterns across several weeks or a full month. This comprehensive visual data significantly
aids in monitoring activity trends over time, supporting the early detection of significant
changes in behavior or health status that might indicate a change in health.
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Figure 10. Weekly and monthly report.

4.3. Inactivity Detection Performance

The system’s ability to identify prolonged periods of user inactivity was a primary
focus of its evaluation. Through quantitative analysis of the 138 idle scenarios tested,
the system achieved a high classification performance. As detailed in Table 5, the idle
detection demonstrated 104 True Positives, 7 False Positives, 22 True Negatives, and 5 False
Negatives, resulting in an overall accuracy of 91.3%.

The integrated fuzzy logic effectively managed alert triggering based on contextual
rules. For instance, in accordance with Rule 1 from Table 3, the system consistently triggered
an alert when continuous low activity (inactivity) was detected for four consecutive hours
during daytime (07:00–18:00). Conversely, adhering to Rule 5 (Table 3), no alerts were
dispatched for similar four-hour inactivity periods occurring during nighttime (after 22:00),
accurately recognizing typical sleep patterns. The system further demonstrated robustness
by automatically resetting the inactivity timer if movement resumed within the four-hour
threshold, preventing unnecessary alerts. While the system performed well in classifying
expected scenarios, false positives did occur, predominantly when participants’ normal
behaviors deviated from the predefined fuzzy rules. For instance, in one observed case,
a participant who took a longer-than-usual mid-day rest (exceeding the 4 h inactivity
threshold during daytime) triggered an alert despite being entirely normal. This highlights
the inherent challenge of distinguishing genuine anomalies from individual behavioral
variations with static rules.

4.4. Fall Detection Performance

Fall detection, a critical aspect of the system’s functionality, was rigorously tested
through 123 simulated emergency scenarios. In these controlled tests, the system demon-
strated strong performance. As presented in Table 5, the fall detection achieved 92 True
Positives, 10 False Positives, 15 True Negatives, and 6 False Negatives, resulting in an
overall accuracy of 87.7%. In all simulated fall events that were correctly detected (falling
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under the 92 True Positives), the system successfully triggered an emergency alert within
three seconds of a detected high-intensity movement.

Figure 11 provides a visual representation of the system’s daily activity monitoring,
including an example of a detected fall. At the top of the interface, essential participant
details are displayed, providing immediate context for the activity data. The main “Daily
Activity Graph” visualizes the “Activity Level” on the Y-axis against “Time” on the X-axis,
presented in a 24 h format (e.g., from 20:00 to 24:00). In this graph, continuous green lines
represent periods of normal, sustained activity, while sharp red peaks distinctively indicate
sudden, forceful changes in movement characteristic of a detected fall, as seen around
23:40 in the example. These sharp red peaks are direct visual evidence of the high-intensity
movements that trigger the fall detection mechanism. The corresponding fuzzy rules—Rule
7 (daytime), Rule 8 (evening), and Rule 9 (nighttime) from Table 3—were instrumental
in ensuring that the system immediately bypassed the four-hour inactivity threshold for
these critical events, directly triggering a 3 s monitoring period for fall confirmation and
subsequent alerts.

 

Figure 11. Daily activity.

4.5. Alert Notification Efficacy and Robustness

Upon the detection of a confirmed anomaly (either prolonged inactivity or a fall),
the system consistently dispatched timely alerts to designated emergency contacts. These
notifications were sent via email (using SMTP) to all registered contacts and via SMS to the
primary carer’s phone number. Figure 12 provides a representative example of an email
notification triggered by the system upon detecting an abnormality, demonstrating the
seamless and automated nature of the alert mechanism.
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Figure 12. Email notification to caregiver triggered at midnight.

Furthermore, the system’s robustness was confirmed in various normal usage scenar-
ios. Participants intentionally remained idle for short durations before resuming movement
within the set threshold, and the system correctly identified these as non-alert scenarios.
This ensured that unnecessary alerts were not triggered during routine, short periods of
stillness, thereby enhancing user experience and minimizing false positives. The quan-
titative results, as detailed in Section 4.1 and Table 5, serve as a strong validation of the
proposed fuzzy logic methodology and the prototype application’s capability to identify
abnormal motion patterns using built-in smartphone accelerometers. These figures, derived
from controlled and simulated scenarios with six participants over a two-month period,
demonstrate the system’s technical feasibility and real-time detection potential within the
scope of this pilot study.

5. Discussions
This section interprets the findings of the eHealth mobile application, considering its

implications for remote elderly monitoring. The system represents a significant advance-
ment by leveraging readily available mobile phone sensors and fuzzy logic, offering a
continuous and non-invasive health monitoring solution. Unlike often expensive and un-
comfortable wearable IoT devices, our system’s reliance on built-in mobile accelerometers
provides a cost-effective and highly accessible approach for tracking daily activity. We
opted for fuzzy logic over more complex machine learning models due to its proven effi-
ciency and capability for offline data processing, which enables real-time decision-making
without constant Internet connectivity.

One key challenge observed during testing was the occurrence of false alerts. As
detailed in the Results Section, these arose when individual activity and sleep behaviors
deviated from the static, predefined fuzzy logic rules. For instance, a participant taking an
unscheduled, longer-than-usual mid-day rest could trigger an alert despite being entirely
normal. This highlights the inherent difficulty in distinguishing genuine anomalies from
typical individual behavioral variations with fixed rules, pointing towards the need for
more adaptable systems.

The pilot study’s results, demonstrating an 87.7% accuracy for fall detection and 91.3%
for idle detection, validate the technical feasibility of our fuzzy logic-based methodology.
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These figures confirm the prototype application’s capability to accurately identify abnormal
motion patterns using conventional smartphone accelerometers. The findings highlight
the potential of remote patient monitoring (RPM) systems in enhancing elderly care by
enabling real-time prolonged inactivity detection and rapid emergency responses, offering
a more accessible and scalable alternative to traditional wearable devices.

6. Limitations and Future Directions
A primary limitation of the current study is the small experimental sample size, in-

volving six volunteer participants over a two-month period. This pilot study was primarily
designed to validate the feasibility of the fuzzy logic-based methodology and the functional
prototype of the eHealth mobile application. While these initial results are promising for
confirming the method’s working principle and the app’s operational capabilities, a com-
prehensive assessment of its long-term efficacy in enhancing health outcomes or ensuring
sustained user adaptation necessitates further work.

Despite the advantages of smartphone-based remote monitoring, we acknowledge
inherent technical constraints such as battery life, reliance on network connectivity for
alerts, and potential sensor performance variability in diverse environments. Our de-
sign deliberately minimizes battery drain by utilizing one-minute interval data sam-
pling and performing all core activity detection and fuzzy logic processing locally on
the device. This approach reduces continuous power demands and reliance on constant
Internet connectivity.

Future research necessitates expanding the cohort significantly by recruiting a larger
and more diverse group of elderly participants to enhance the generalizability of findings
and gather more extensive long-term data on various activity patterns. Alongside this,
comprehensive usability studies with diverse elderly individuals are crucial to further
assess the app’s ease of use and refine its interface, complemented by the development of
accessible user guides. Future work will also investigate optimized power management
techniques and strategies for handling prolonged connectivity outages, such as localized
on-device alerts for the user, and explore cloud storage for long-term data retention.

Expanding on the adaptive fuzzy logic, future developments will focus on integrat-
ing AI-driven learning to dynamically adjust fuzzy rules based on individual behavioral
patterns over a one-week period, thereby significantly reducing false alerts and improv-
ing accuracy and personalization. Furthermore, a critical next step involves conducting
comprehensive comparative experiments with state-of-the-art deep learning-based activity
detection methods, such as convolutional neural networks (CNNs) and long short-term
memory (LSTM) networks. This will allow for a robust evaluation of our fuzzy logic ap-
proach against these advanced techniques in terms of accuracy, robustness to diverse user
behaviors, and computational complexity, especially considering the resource constraints
and real-time processing requirements of mobile devices. The integration of more advanced
fuzzy logic techniques, such as an adaptive neuro-Fuzzy Inference System, can further
improve the tool’s operation. Future enhancements will also include activity trend graphs
(daily, weekly, and monthly) to provide caregivers and healthcare professionals with deeper
insights into an individual’s activity patterns, supporting personalized and preventive care.
Finally, exploring integration with iOS devices and expanded activity detection features
will enhance accessibility and effectiveness.

7. Conclusions
This pilot study successfully demonstrated the technical feasibility and preliminary

effectiveness of a secure eHealth mobile application for remote elderly monitoring. By
utilizing triaxial accelerometers from conventional smartphones, it provides a non-invasive,
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cost-effective, and user-friendly solution for continuous health tracking. The system, lever-
aging fuzzy logic, efficiently detected activity patterns and identified prolonged inactivity
or potential falls, ensuring timely alerts to caregivers or emergency contacts. The promising
results from this initial study, conducted with six participants over two months, vali-
date the core methodology and the functional prototype’s capability to classify activities
and trigger alerts, thereby laying a foundational step for future extensive evaluations.
This mobile-based approach offers a highly accessible and scalable alternative to tradi-
tional wearable IoT devices, potentially reducing healthcare costs and the burden on care-
givers while offering enhanced safety, improved healthcare outcomes, and peace of mind
for families.
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