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Providing a robot with the capabilities of understanding and effectively adapting its behaviour based on
human mental states is a critical challenge in Human—Robot Interaction, since it can significantly improve
the quality of interaction between humans and robots. In this work, we investigate whether considering
human mental states in the decision-making process of a robot improves the transparency of its behaviours
and mitigates potential human’s false beliefs about the environment during collaborative scenarios. We used
Bayesian inference within a Hierarchical Reinforcement Learning algorithm to include human desires and
beliefs into the decision-making processes of the robot, and to monitor the robot’s decisions. This approach,
which we refer to as Hierarchical Bayesian Theory of Mind, represents an upgraded version of the initial
Bayesian Theory of Mind, a probabilistic model capable of reasoning about a rational agent’s actions. The model
enabled us to track the mental states of a human observer, even when the observer held false beliefs, thereby
benefiting the collaboration in a multi-goal task and the interaction with the robot. In addition to a qualitative
evaluation, we conducted a between-subjects study (110 participants) to evaluate the robot’s perceived Theory
of Mind and its effects on transparency and false beliefs in different settings. Results indicate that a robot
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which considers human desires and beliefs increases its transparency and reduces misunderstandings. These
findings show the importance of endowing Theory of Mind capabilities in robots and demonstrate how these
skills can enhance their behaviours, particularly in human-robot collaboration, paving the way for more
effective robotic applications.

CCS Concepts: « Human-centered computing — User centered design; User studies; « Computer
systems organization — Robotic autonomy;

Additional Key Words and Phrases: Theory of Mind, Transparency, HRI, False Beliefs, Cognitive Robotics
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1 Introduction

As robots become increasingly part of our daily lives, from manufacturing to personal assistance,
there’s a growing imperative for these machines to understand and respond to human behaviours
more intuitively and human-likely [23]. A robot that acts like a human is easier to interact with,
as humans are naturally good at communicating and interacting with other humans [34, 57]. A
key challenge in this endeavour is the integration of human mental states into robotic behaviour,
a concept often referred to as Theory of Mind (ToM). ToM is a cognitive ability that allows
individuals to understand and attribute mental states to themselves and others, involving beliefs
and desires [21, 51]. When robots can understand and mimic these human mental states, they can
act and behave more appropriately and intuitively to humans [33]. This has several benefits, such as
fostering more effective and natural interactions, improving the user experience, and expanding the
range of tasks that robots can perform [44]. This integration is particularly beneficial in complex
environments because it allows robots to adapt to the situation, and to predict human behaviours
better and vice versa, leading to a more efficient collaboration in shared tasks [17]. Predicting
and understanding others’ behaviours is crucial in many robotics applications, such as assistive
technology, autonomous vehicles and social robotics [17].

The majority of the studies analysing ToM ability consider the ‘False-Belief Understanding’
(FBu), which is the ability of people to infer when others hold beliefs that contradict the reality
[10, 19, 20, 29, 61]. It is also an appropriate measure for evaluating children’s ability to make a
distinction between the environment and the human mind [61]. This ability reflects the understand-
ing that humans, in general, act according to how they represent the world, rather than how the
world actually is [29]. Comprehension of FB situations can also highlight the children’s capacity to
adapt their behaviour, for instance, adopting assistance behaviour towards individuals holding FBs
[19, 20]. Based on the insights gained from those studies, psychologists established a fundamental
experiment called the Sally-Anne (SA) test to measure FB in children [10]. This test involves a
scenario where Sally (i.e., one player) places a ball in her basket and then leaves the room. Subse-
quently, Anne (i.e., a second player) moves the ball from the basket to a box. The child participant,
who has been observing these actions, is then asked to predict where Sally will search for the ball
upon her return. Children with a well-developed ToM system are expected to anticipate that Sally
will look in the basket, adhering to her original belief. Conversely, children with a less developed
ToM system may respond based on their knowledge of the ball’s location. This discrepancy is an
example of a false belief, a misconception or misunderstanding one might have about the beliefs or
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intentions of another person [61]. In Human-Robot Interaction (HRI), the presence of possible
false beliefs can lead to miscommunication or misinterpretation of the robot’s actions, thereby
affecting the overall interaction. Understanding and addressing false beliefs is critical to developing
effective HRIs [17]. Just as the SA test demonstrates the importance of understanding and predicting
others’ beliefs in human-human interactions, the same principles apply to HRIs.

ToM and transparency are inherently connected in HRI, as a robot’s ability to understand and
reason about human mental states directly impacts how clearly its actions can be interpreted. When
robots can accurately model human mental states and adjust their behaviour accordingly, they
create a foundation for transparent interaction. This brings us to the concept of transparency in
HRI, which is closely related to the robot’s ability to understand and communicate about beliefs and
intentions. In HRI, transparency contributes to the clarity with which the human user understands
a robot’s intentions, capabilities and actions. This understanding is enhanced when robots can
demonstrate ToM capabilities, as they can better explain their actions in terms of their understanding
of human mental states and expectations. Despite its recognised significance, a universally accepted
definition of transparency in HRI is still evolving. Current theorising suggests a multi-faceted
approach, integrating elements of Explainability, Legibility and Predictability [1, 3, 27]. Importantly,
transparency also emerges from how these dimensions help the human perceiver build an accurate
mental model of the robot’s functioning [2, 41]. This mental model, in turn, shapes the Expectability
of the robot’s behaviour. Therefore, for a behaviour to be transparent, the robot should not only be
perceived as legible, predictable and explainable but also align with the user’s expectations, which
are rooted in their mental model.

The importance of aligning robot behaviour with human mental models is further emphasised
in recent literature. Matthews et al. [43] suggest that transparent information should be designed
for compatibility with the operator’s mental model. Similarly, a recent paper from Williams et al.
[63] discussed that a robot with ToM could potentially provide a higher level of transparency, as
it can communicate its intentions and decision-making processes more effectively. This leads us
to consider the concept of transparency in the context of HRI since the ability to reason about
false beliefs can increase transparency, thereby reducing the likelihood of miscommunication
or misinterpretation. Some papers reveal that transparency can enable users to see through the
robot and understand its action, making communication with humans more efficient and in-
creasing trust [5]. The robot can also mitigate its errors during a task through explanations,
showing its integrity and recognising its imperfection [4]. When combined with ToM, this approach
can considerably improve the relationship between humans and robots, especially in collabo-
rating settings [46]. This work investigates transparency by conducting an HRI study, leading
to our Research Question (RQ): ‘Can users comprehend the advanced cognitive skills of a ro-
bot equipped with ToM, and does this improve their interactions with it?’. However, existing
methods often fall short in accurately capturing and adapting to the complexity and variability
of human mental states, and usually, they are based on predefined models or assumptions about
human behaviour.

The contributions of this work are (1) the development of a novel method for incorporating
human mental states into robotic behaviour using Bayesian inference within a Hierarchical
Reinforcement Learning (HRL) algorithm, capable of adapting the robot’s behaviour in a multi-
goal collaborative scenario. This model, referred to as Hierarchical Bayesian ToM (HBToM),
enables the robot to collect and deliver multiple items while considering the users’ mental states,
including their beliefs about items’ location and their desires regarding the sequence of item
collection and delivery and (2) the execution of an extensive between-subjects study involving 110
participants, providing empirical evidence for the effectiveness of the method and evaluating the
impact of a robot’s ToM on transparency and false beliefs across various settings.
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2 Related Work

The field of psychology has extensively explored ToM [11, 29, 30, 32, 38, 45], but its inclusion in
robots and its application in the context of HRI has been recognised as one of the ‘grand challenges’
in robotics research [65].

2.1 ToM in Psychology

Psychologist researchers are particularly interested in the development of ToM in children and their
understanding of people’s mental states [10, 11, 29, 45, 61]. As already mentioned, an experiment
widely used as a baseline measurement for FBu is the SA test [10]. Inspired by this experiment,
researchers implemented a modified version of the story, playing with the ability of the children to
participate in the scenario actively. Gopnik et al. [31] integrated a series of exercises to evaluate
children’s performance based on their verbal feedback. There were various dynamic tasks, including
a pretence task where the children were asked the purpose of objects when it was used in different
contexts [42]. Similar to the SA test, Bartsch and Wellman [11] investigated the ability of children
to detect FB in storytelling. The questions were more complex and aimed at the intentions behind
the actions performed by the story’s characters. The purpose was to invoke the children’s capability
to indicate the mental state behind the character’s actions, such as beliefs.

State-of-the-art research does not limit its evaluation to the verbal skills of children but also
their interactions within the environment [19, 20, 52]. Buttelman et al. [19, 20] investigated the
helping behaviours of infants when this one detects FB. Similarly to SA, children watched a toy
in a box being swapped into another box while an adult witnessed or did not witness the swap.
Then, the adult unsuccessfully attempted to open the box where the toy originally was. The infant
was then asked to help the adult to open the box. In response to this request, the infant chose to
open either the box with the toy or the other box. Priewasser et al. [52] conducted a similar study
wherein they exposed the infants to a more complex setting. Other studies focus on participants’
ability to understand FB and manipulate it in specific game scenarios [59].

While these scenarios have provided valuable insights into the development and understanding
of ToM in children, their direct application in HRI scenarios may not be effective and not translate
well to the capabilities and constraints of collaborative human-robotic systems. Especially when the
robot’s design can have an impact on the interactions [40] or the transition from human-human to
human-robot environment, which might add some complexity to the experiment.

2.2 ToM in HRI

Given the diverse range of studies conducted, roboticists have encountered significant difficulties
when attempting to implement suitable experiments for robotic ToM. Ruocco et al. [55] decided
to study the correlation between ToM and trust in HRI through the Investment Game [14]. The
participant had the opportunity to assess the robot’s cognitive abilities by observing its performance
on the SA test. Considering the prior knowledge of ToM capability of the robot, the participant
played the game with the robot by investing coins in the robot during several rounds. The results
revealed that, on average, people invested more money in a robot, demonstrating a higher level
of ToM. However, there was no significant difference in trust over the different rounds. A study
conducted by Romeo et al. [54] provides an interesting perspective by investigating how a robot,
through a collaborative task that mimics ToM, influences users’ behaviours and trust. The study
was conducted in a cooperative maze navigation task with three robot personas: one neutral, one
that explains its reasoning in technical terms and one that mimics ToM. Despite their intriguing
findings, the use of the Wizard of Oz technique to simulate a ToM-like behaviour in the robot
can be seen as a limitation [53]. In another work, Bara et al. [9] ventured into the domain of ToM
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modelling in situated language communication. Their focus was on collaborative tasks in the 3D
virtual block world of Minecraft. They introduced a dataset including several videos and dialogues
of collaborative tasks performed by pairs of human subjects in Minecraft. This dataset provides
information capturing partners’ beliefs of the world and each other as an interaction unfolds.
However, the use of a Feed-Forward Network to infer fellow players’ mental states raises questions
about the applicability of such models in real-world scenarios (e.g., does not incorporate temporal
context in mental state inference) [12, 48].

Another class of approaches in the field of HRI employs Inverse Reinforcement Learning
(IRL). This technique is used to learn an underlying reward function, which is assumed to guide
the human behaviour. This can be seen as a form of ToM, where the robot tries to interpret human
behaviours based on inferred goals. Jara-Ettinger [37] shows that certain relationships exist between
ToM and IRL. For example, it allows interpreting an agent’s reward as its preference and the policy
as its intentions. Sadigh et al. [56] apply IRL by learning the reward function of a human to model
the human’s next action in an autonomous driving scenario. However, this approach assumes that
the agent is a rational planner and, therefore, acts optimally given its reward function. Moreover,
IRL algorithms require numerous demonstrations, and they are often considered a black box to
humans [16]. Despite those limitations, IRL points out that humans tend to act according to plans,
which supports many studies concentrated on the definition of intention in human psychology [24].

In a different approach, Vinanzi et al. [60] developed a robot learning architecture based on
Bayesian Networks (BNs). This architecture, supported by an episodic memory system, is capable
of estimating the trustworthiness of human partners. The results of their study showed that their
architecture achieved the same results obtained by the children participating in the study. This study
focused on integrating ToM for social robots in collaborative settings [28, 49, 54, 55]. Furthering
the discussion on Bayesian models, Baker et al. [7] proposed a Bayesian ToM (BToM) model
in Partially Observable Markov Decision Processes (POMDPs) and Bayesian inference. The
study acknowledges that goals and beliefs need to be inferred simultaneously, which is a significant
insight into the complexity of implementing ToM in robots. Similarly, Hellou et al. [35], building
upon Baker’s work, applied BToM to a simulated dynamic HRI scenario involving false beliefs.
Despite the absence of experiments with humans, their results show that robots can better assist and
collaborate with them when they track the mental states of humans. Those two papers demonstrated
the utility of BNs and POMDPs to study the roles and impact of beliefs and desires in the decision-
making process of users. This can be essential when designing autonomous systems which are
intended to interact with humans.

Involving false-belief situations, Zeng et al. [66] proposed a Brain-Inspired Model of Theory of
Mind (Brain-ToM model), which was implemented in a humanoid robot performing two false-belief
tasks. The model uses a Spiking Neural Network, an Artificial Neural Network where neurons
process temporal inputs and outputs [68]. The tasks included two humanoid robots interacting in a
replicated SA experiment where one robot would develop false belief regarding the possible location
of a ladybird in two boxes. The other robot observing the scene was asked the critical false-belief
question where the initial robot will look after the place of the ladybird was exchanged. The results
from experiments were compared with children’s performance in similar trials to evaluate the
model’s ToM. In another context, Péppel and Kopp [50] focused their work on explaining the
uncertainties of social agents navigating in an unknown maze environment. In doing so, they
implemented a modified version of the BToM to predict an agent’s behaviour by observing its
actions. More specifically, the model was able to provide explanations on the agent’s goal when
its location or the environment’s settings were unknown. To tackle false beliefs in human-robot
collaboration tasks, Favier et al. [28] introduced a Task Planner [18] in a collaborative cooking
scenario between a human and robot. The goal of the task was to prepare pasta within a shared
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environment between the human and the robot, where several situations were simulated. More
specifically, the authors introduced situations where the human’s beliefs might be different from the
actual state of the environment, which could result to a task’s failure. In response to these issues,
the authors extended their original model to detect false beliefs and enable proactive behaviour for
the robot to help the human to achieve the task.

Buehler et al. [17] designed a Human—-Robot sushi-making task to evaluate the influence of a
human-centric communication concept on performance. Their approach integrated ToM into a
communication assistant to support humans in a cooperative setting. By considering the human’s
beliefs, the robot guided them to select the correct ingredient in cases of false beliefs or suggested the
appropriate actions to follow in order to prepare the correct meal. The study found that compared
to conditions without information exchange, participants assisted by the robot could recover from
unawareness much earlier. Despite their positive results, the use of the Wizard of Oz, where a
human operator covertly controls the robot’s actions, presents a limitation since a controlled robot
is serving more as a proxy for a human and less as an independent entity [53].

Given the aforementioned studies and their limitations as discussed above (the reliance on the
Wizard of Oz and the use of simulations devoid of human participants), it becomes evident that there
is a need for further research in this area. Especially in dynamic environments where false beliefs
may arise, it is crucial for the robot to be transparent and provide clear reasoning for its actions. This
attitude can help users to have a better understanding of the current environment’s state, which is
crucial when both humans and robots are working together [28]. Additionally, this transparency
could help build trust between the human and the robot and aid in better collaboration by aligning
the human’s understanding with the robot’s actions [47]. Therefore, developing a ToM cognitive
model for robots should incorporate these aspects. This work aims to explore the development of
ToM cognitive model for robots to enhance their interactions with humans, particularly during
false-belief situations. As highlighted in the papers reviewed above, addressing these specific
scenarios is crucial, especially in the context of collaborative tasks. Through this study, we hope
to gain insights into how humans perceive this robot behaviour in which it exhibits advanced
cognitive abilities enabled by ToM.

3 Technical Approach

Inspired by the BToM concept put forth by Baker et al. [6-8], this work proposes to combine HRL
with a human in the loop by observing the interaction with a modified version of the BToM, a
probabilistic model used to infer a human’s joint belief-desires (see Figure 1). We refer to this
model as HBToM. It combines Bayesian updates and POMDPs to reason about an observer’s
mental states. However, applying POMDPs can become computationally intractable in complex
environments due to the exponential growth of the state space. This complexity arises from the
need to maintain and update belief states over numerous possible world states, which makes it
challenging to scale POMDPs to more complex, real-world scenarios. To address this, we adopt
HRL to solve the POMDPs. With a human in the loop, the interaction is observed through the
HBToM. HRL offers several advantages, such as the ability to learn solutions to sub-problems
that can be reused in solving other related problems. It also structures the problem hierarchically,
enabling the robot to learn over temporally extended transitions and explore over extended periods.
Furthermore, the robot can reason about the instructions given by users based on their initial beliefs
and desires. The agent receives instructions from the observer, who works with it to accomplish
particular objectives. Given the agent’s task and instructions, the model does the following: (1)
updates observers’ beliefs along the collaborative task, (2) learns various possible policies that the
agent could follow based on human desires, (3) jointly infers the beliefs and desires of the observer
all along the collaborative task and (4) extracts these mental states over the entire sequence.
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Fig. 1. The proposed architecture inspired by [6]. The cognitive model uses the interactions with the human
to extract their desires and the environment with the agent’s position to update their beliefs. The inference
of both mental states influences the robot’s decisions by generating the appropriate explanations.

3.1 Update the Observer’s Belief

In the context of inferring the mental states of a human observer interacting with an autonomous

robot, this approach employs the Bayesian inference process. The robot infers the current human’s

belief B and desire D based on its action A and the human’s observation [50]. This can be represented

using Bayes’ theorem in Equation (1):

P(A,O|B, D)P(B, D) )
P(A0) W

Here, P(A, O|B, D) is the likelihood of the human having the observation O when the robot takes
an action A given the human’s belief B and desire D. P(B, D) is the marginal probability of the
belief and desire based on prior beliefs and desires, and P(A, O) is the normalisation probability
over all possible actions and observations. Based on these inferred mental states, the robot provides
explanations to collaborate with humans.

The model updates the observers’ beliefs regarding their observation, defined through an ob-
servation model O. This model considers the robot’s action a € A, where A is the robot’s action
space, the world w € W, where W represents the possible worlds, and the position of the robot
p € P, where P represent the possible positions of the robot in an environment. Considering the
possible observations and the previous observer’s beliefs, the model determines and updates their
beliefs regarding a specific world w, using Bayesian update. For instance, to determine the new
belief b;(w;) of the observer at a time t regarding the world w;, considering the action a;_; to go
from position p;_; to p;, the new observation o;, and the prior belief b;_;, we update the new belief
b, as follows in Equation (2):

P(B,D|A,0) =

bs(w;) o< P(0; | W, pr, r—1,bi—1) P (We, pr | We—1, Pro1, @r—1) br—1(wio1). (2)

In Equation (2), b;(w;) denotes the likelihood that the world w is true at t. P (o; | wy, ps, ar—1, bi—1)
is the likelihood of having the observation o, regarding the robot’s position p;, the current world wy,
the action taken by the robot and the prior belief b;_1. P (wy, pr | We—1, pr—1, ar—1) is the likelihood
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to have the world w; and the robot’s position p; according to the previous world w;_;, robot’s
position p;_1, and the action taken by the robot a;_;. The robot updates the observers’ beliefs
regarding previous information to align their beliefs with the current state of the world and what
they visually perceive.

3.2 Policy Learning with ToM

The proposed model leverages POMDPs to represent the robot’s plan in an environment, taking
into account the observers’ mental states (beliefs and desires). The state space S = {P, B} comprises
the robot’s position P in the environment, and the observers’ belief set B about the world. The
action space is denoted by A, and the reward function R(s, a,s”), where s is the current state, a is
the action taken and s’ is the subsequent state. The transition probability, denoted as P(s’[s, a),
represents the probability of transitioning to state s’ given the current state s and action a.

However, in real-world scenarios, the complexity of collaborative tasks often necessitates the
decomposition of the main goal into composite and primitive tasks. This is where HRL comes into
play in this proposed approach, specifically using the MAXQ algorithm [25, 26]. By structuring the
problem hierarchically, MAXQ enables the robot to learn solutions to sub-problems that can be
reused in solving other related problems.

In a generic scenario, the composite tasks could be any high-level tasks that the robot needs to
accomplish, and the primitive actions could be any low-level actions that the robot can perform.
For instance, consider a scenario where the task is to clean an environment by collecting items and
placing them in their corresponding locations. The composite tasks are two-fold: (1) collect, which
involves going to the item’s location and picking it up and (2) deliver, which involves delivering the
item to its target location. The primitive actions describe the robot’s navigation in the environment:
{Down, Top, Right, Left}; and its interaction with items: {PickUp, Deliver}.

Within our framework, we define these composite tasks as sub-tasks, that enables the robot to
achieve the main goal—collecting and delivering all items to their targeted locations. Additionally,
we compute a complete function C(s, i) to evaluate the value of completing a sub-task in relation
to the remaining sub-tasks. By following the hierarchy, the HRL updates the Q-value for a sub-task
i € {deliver,collect} as follows:

Q(i,s,a) =V(i,s) + C(i,s, a), (3)

where the value function V (i, s) is the actual value in state s during the sub-task i, while C(i, s, a)
is indicating the quality to complete the sub-task i in state s when executing the primitive task a.
At each training step, we establish the new values of the two main functions as follows:

V(i,s) = ZP(S’ | s,a) (R(i,s,a,s") +y-V(is")). (4)
C(i,s,a) =y - ZP(s' |'s,a) max Q(j,s",a’). (5)

In Equation (4), we compute the expected reward when following the sub-task i in the next state
s’ with V (i, s”) discounted with a factor y. Using the complete function C(i, s, a) in Equation (5),
we determine the maximum Q-value for the next sub-task j in state s’, which represents the future
reward when completing the sub-task i and moving to the next one. Both Equations (4) and (5) rely
also on the transition function P(s’ | s, a), which indicates the probability of transitioning from
state s to s” after taking the action a.

For the reward function R(i, s, a, s”), the model computes a reward based on the robot’s distance
to the preferred goal and its maximum distance to the other goals, which are goals of the same
nature (collect or deliver). In our scenario, the robot must collect and deliver items to designated
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locations. Specifically, the robot handles two distinct collection tasks, collect{n}, and two distinct
delivering tasks, deliver{n}, with n € {1, 2} representing the item to be collected and delivered. As
a result, the reward function needs to consider these sub-tasks, and the preferences of the agent.
We calculate the reward when the robot goes from a state s to s” as follows:

R(i,s,a,s") =R(i,a,s") + f(i,s,s", g), (6)

where R(i, a,s”) is the immediate reward when the agent is performing the primitive task a in the
state s, e.g., collecting an item. Additionally, we introduced a shaping reward function f, considering
the agent’s current location to the optimal goal’s position g considering the user’s preference and
the nature of the sub-task i. By doing so, we designed the shaping function to prioritise the user’s
preferences:

flis,s'.9) =y-0(g.5") —0(g,9). (7)

Here, 0(g,s’) = 1 — %, where d(g,s”) denotes the Manhattan distance between the state

s’ and the goal g, and w and h respectively stand for the dimension of the environment and y
is a discount factor. This reward function is designed to guide the robot in learning the correct
action sequence that aligns with the user’s preferences. It was also proven to be powerful means to
improve reinforcement learning performance [62], which is crucial to ensure smooth and efficient
human-robot collaboration.

An essential aspect of this context is that the human is involved in the decision-making process,
selecting the order of sub-tasks based on their preferences. This serves as the foundation for the
model to predict the human’s preferences, indicating the robot the item they would like collected
first, based on their beliefs. As mentioned earlier, the sub-tasks require the robot to collect and
deliver two items (a ball and a teddy bear), executed in a sequence that reflects the user’s preferences
in the collaborative task with the robot (more details about the task provided in Section 4).

3.3 Inference of the Mental States

The policies learned in relation to the observers’ mental states are integrated with Bayesian updates
to jointly infer their beliefs and desires. This approach enables the model to track these internal
states during the interaction. The model utilises a Dynamic BN (DBN) to capture the dependencies
of external and internal factors, such as the robot’s location, observations, desires and beliefs. A
visualisation of these dependencies is illustrated in Figure 2, with the key feature that the Action
variable influences the state of the world, compared to the initial version in [6]. Indeed, the robot
agent can modify the environment by collecting and delivering items. The forward-backward
algorithm [67] is employed to compute the probabilistic values of the beliefs and desires. These
probabilistic predictions are important for tracking the cognitive states of the observers interacting
with the robot, which is a crucial step in this study.

To compute the joint probabilities of the beliefs and desires over a full trajectory sequence up T,
at any time t < T, the model synthesises the outcomes of the forward and backward algorithms:

P (bs,d; | we,sp) o< P (by,dp | Wit s1:) = P (Searer | brs dis Weanir) s

where P (b;, d; | Wi, s1.¢) is the forward distribution and P (s;41.7 | bs, d;, wes1.7) is the backward
distribution. The variables b and d represent the beliefs and desires of the observers, while w
and s represent the real world over time and the robot’s state. This prediction, informed by both
past and anticipated future information, enables the robot to reason about the mental states of
the observers and provides explanations regarding their instructions. These scripted explanations
varied depending on the mental states considered by the model and whether the human held a
false belief or not.
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Fig. 2. A visualisation of the DBN is used to represent the dependencies between each element, including the
mental states (beliefs and desires) and external factors.

3.4 The Task

These hypotheses form the basis of our investigation, and to explore them, this work used the SA
test, which serves as a foundation for our study [10]. In the presented study, a variant of the SA
test was adapted to create and fit in a more collaborative HRI scenario. In our scenario, a human
and a robot share the task of cleaning a room and organising two toys—a teddy bear and a ball—in
their respective designated locations. The human instructs the robot to commence cleaning from a
specific preferable first location or item (as depicted in Figure 3 on the left is the teddy bear, and on
the right is the ball). We used Unity Engine to create the simulation, chosen for its ease of use and
extensive customisation options for the environment. Specifically, we built a pleasing environment
to encourage participants to collaborate with the robot. The environment was built by using the
‘3D Tilemap’ system, available on GitHub!. This technology enabled us to develop the 3D grid
environment for the collaborative task and integrate various elements, including obstacles and toys
(ball and teddy bear). For the robot model, we decided to use an appealing, freely available design in
Unity. As a result, we exploited the 3D model of Wall-E, available for free on Sketchfab?. Through
this system and the integration of the various elements, we could develop our own environment

Thttps://github.com/michaelsgamelab/MGL-3D-Rule-Tiles.
Zhttps://sketchfab.com/3d-models/wall-e-free-download-undetailed-f40a3ch97ce24465973d9a726d0d4463.
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Fig. 3. The environment comprises a robot and two toys, each positioned in specific locations and with
specific targeted location.

for the experiment. Furthermore, the simulation is publicly available on GitHub under an open
source license®.

To introduce a false-belief scenario, we simulated fog in the environment and swapped the
positions of the items (as depicted in Figure 4). A robot with a ToM system would adhere to the
human’s initial preference and start cleaning from the originally specified location or item. Upon
reaching the item, it would recognise that it is not the item initially indicated by the human due to
the swap. The robot always gives explanations of its actions, and since we have a dynamic map
with dynamic preferences, it splits the whole cleaning task into sub-tasks.

4 Hypotheses

To investigate our RQ and the influence of user desires and beliefs on ToM and Transparency during
a collaborative task, and in light of the existing literature [43, 63], we formulated the following
hypotheses:

— Hypothesis 1 (H1): A robot that takes into account the desires and beliefs of the human will be
perceived as displaying the most advanced ToM skill.

— Hypothesis 2 (H2): The robot with the most advanced perceived ToM will also be perceived as
displaying the most transparent robotic behaviour.

— Hypothesis 3 (H3): The robot with the most transparent behaviour will also be perceived by
the humans with the highest levels of trust in the robot.

To investigate our approach and explore the hypotheses, we created the following conditions:

— Condition 1 (C1): The robot considers both the human’s desire (the chosen toy) and be-
liefs. When the human instructs the robot to start cleaning from a specific location or item

3https://github.com/Mehdi-Hellou/Collaborative-Robot-Interaction-Simulation.
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Fig. 4. The experimental environment with added fog, where objects B8 and 7 are rearranged to test
participants’ beliefs according to the initial setting in Figure 3. 7; and 1, denote the location wherein the
items are located.

(left for the teddy bear, right for the ball), the robot complies. If the item has been swapped, it
informs the human, ‘It appears that someone has relocated the teddy bear and the ball. Would
you like me to pick up this item, or should I proceed to the other location?” The robot then
follows the subsequent desires of the human.

— Condition 2 (C2): The robot considers only the human’s beliefs. It proceeds to the first location
and, upon encountering a swapped item, informs the human, ‘It seems that someone has
changed the location of the teddy bear with the ball’. The robot picks the item up, places it in
the specified location and continues with the remaining item.

— Condition 3 (C3): The robot considers only the human’s desire (the chosen toy). When the
human instructs the robot to begin cleaning from a specific location or item (left for the teddy
bear, right for the ball), the robot adheres to the human’s choice. It informs the human, T am
picking up the object that you suggested to pick up first’. The robot picks the item up, places
it in the specified location and continues with the remaining item.

— Condition 4 (C4): The robot disregards both the human’s desire (the chosen toy) and beliefs.
It proceeds to the first location (not selected by the human) and informs the human, Tam
picking up the object’. The robot picks the item up, places it in the specified location and
continues with the other remaining item.

5 Experimental Method

An online between-subject study was conducted to assess the proposed approach. It included a
prior pilot experiment that evaluated task clarity prior to the main investigation. The study was
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advertised via relevant e-mail lists and several social media platforms. Snowball sampling was also
used, with participants being asked to share the study information with interested friends and
colleagues. The ethical committee of the University of Naples Federico II granted approval for this
experimentation.

5.1 Procedure and Measurements

The study was run using the Qualtrics software platform and a virtual environment developed in
Unity 2021. At the commencement of the experimental session, participants were provided with a
comprehensive informed consent document outlining the research’s objectives and methodology.
Upon granting their consent, participants provided responses to demographic inquiries, which
included age, gender, education level, English proficiency, country of residence, prior exposure
to robots and their predisposition towards robots. Then, participants were introduced to the
experimental virtual environment (as depicted in Figure 3).

Following this introduction, an attention verification check was introduced to ensure participants’
engagement in the study. Participants were tasked with indicating the positions of the toys within
the virtual environment. It is worth noting that individuals who did not meet the age requirement
(under 18years old), lacked proficiency in the English language, or failed to pass the attention
verification were excluded from the study. Subsequently, a simulated fog was introduced into the
virtual environment (see Figure 4), marking the beginning of the interaction between the participant
and the virtual robot. The experimental conditions were randomly assigned to each participant,
with each participant exposed to only one condition. To mitigate bias, irrespective of the condition,
the robot posed a question about human preferences regarding the picking of the first item (‘Should
I pick the object on the left or on the right?’), even if it did not consider this input for maintaining
internal validity [36]. The desires (the choice of the first item to be cleaned by the robot) were
communicated through the user’s selection on the virtual environment. Finally, the experimental
session had an approximate duration of 10 minutes.

After the interaction, to evaluate the transparency of robot behaviours, participants’ responses
were collected through various questions. More specifically, participants were asked to answer
7-point Likert scale questions regarding perceived Legibility (understanding immediate intent),
perceived Predictability (anticipating future actions) and perceived Expectability (alignment with
contextual norms or prior expectations), paired with previous work [2], which impact Transparency
as explained previously:

— Legibility: “To what extent did you understand what the robot was doing?’;
— Predictability: “To what extent could you predict the robot’s next movement or behaviour?’;
— Expectability: “To what extent did the robot behave as you expected?’.

To assess whether participants believed the robot exhibited a ToM-like behaviour, participants
were presented with four additional questions. These questions were adapted from a prior study
[13] but included an additional inquiry regarding the robot’s ability to communicate environmental
changes. These questions aimed to gauge the robot’s capacity to recognise alterations in its sur-
roundings and effectively convey these changes to human participants. Such abilities entail both
self-awareness and an understanding of what information humans may find pertinent, which are
facets of ToM. The questions in this category were as follows:

—To assess participants’ perceptions of the robot’s ability to understand their knowledge of the
environment (henceforth, Awareness): “To what extent did you believe the robot was aware of
your knowledge of the map?’;
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—To measure the robot’s success in selecting the intended item that participants initially wanted
(henceforth, Alignment): “To what extent did the robot successfully pick up the item you
initially intended to select?’;

—To evaluate the extent to which the robot accurately grasped participants’ intentions and com-
munication (henceforth, Comprehension): “To what extent did the robot accurately understand
you?’;

—To gauge the robot’s effectiveness in conveying information about environmental changes to
participants (henceforth, Communication): ‘To what extent did the robot help you understand
the environmental changes?’.

Participants were also instructed to complete the Robotic Social Attributes Scale (RoSAS)
Questionnaire [22] to assess their perceptions of the robot’s social attributes. Finally, the Multi-
Dimensional Measure of Trust (MDMT) v2 questionnaire [58] was used to evaluate participants’
levels of trust in the robot.

5.2 Participants

In the conducted online study, a total of 164 participants were initially recruited. After careful
screening, one individual was excluded due to their age falling below the threshold of 18; four
participants were excluded due to insufficient proficiency in the English language, seven were
excluded for failing to pass the attention verification, and an additional 42 were removed from
the analysis due to non-completion of the study. The final dataset for analysis comprised 110
participants, consisting of 71 males, 38 females and 1 participant who chose not to disclose their
gender. No non-binary or other gender identities were reported. This distribution of participants
allowed us to achieve our a priori calculation, which aimed for an effect size of d = 0.25 with a
power of 0.80 at an alpha level of 0.05.

The participants’ age range spanned from 18 to 64 years (M = 30.33, SD = 9.04). They were
drawn from a variety of countries, with the largest representation originating from Italy (34
individuals), France (14 individuals) and the United Kingdom of Great Britain and Northern Ireland
(13 individuals). The study encompassed a total of 21 different countries (Greece, Germany, the
United States of America, Argentina, Spain, Pakistan, Austria, India, Iran, Netherlands, Japan,
Nigeria, Oman, Peru, Portugal, Sweden, Switzerland and Turkey), with respondents hailing from
various regions across nearly all continents. This international participation underscores the global
scope and inclusivity of the study, reflecting a wide range of cultural and regional backgrounds
among the individuals involved.

Participants’ educational backgrounds included a high school degree or equivalent (15 individu-
als), a Bachelor’s degree (26 individuals), a Master’s degree (45 individuals) and a Doctorate (24
individuals). The majority of respondents (72.7%) also stated having prior experience with robots.
Finally, we observed that they did not exhibit negative bias towards robots (M = 1.92, SD = 0.92).

6 Results
6.1 HBToM Model Performance

To evaluate the performance of the model, two types of evaluations were initiated, including (1) the
assessment of the HRL to demonstrate the accuracy of the agent’s planning in this particular scenario
and (2) the analysis of the model to infer both human beliefs and desires. In the first evaluation, the
focus was on assessing the HRL to learn optimal policies according to the preferences. In contrast,
the second evaluation centres on the model’s ability to predict users’ mental states in relation to
the situation. As mentioned previously, the solutions of the POMDPs are essential to infer human
preferences. Following this approach, the scenario was divided into four sub-tasks that the robot
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Fig. 5. The performance of the learning models used to illustrate the agent’s plans according to the observers’
preferences. The left graph depicts the average rewards and steps for the observers preferring the ball over
the teddy bear, while the right graph depicts considering that the human prefers the teddy bear over the ball.

needs to achieve while considering the observers’ mental states: (1) take the first item, (2) deliver
it to its corresponding goal, (3) take the second item and (4) deliver it to its corresponding place.

In Figure 5, we depict the performance of our model through the average rewards received
and steps the agent has taken to achieve the four sub-tasks over 10,000 episodes. The two graphs
correspond to the POMDPs resolution for each preference: 87 when the agent follows the path
for an observer preferring the ball over the teddy bear, and conversely, for the preference 7 8. The
learning is made regarding the following parameters:

—To interpret the observers’ initial belief, we initialise the world in two different settings: (1) 8
isin 7; and 7 in 1 and (2) 7 is in Z; and B in 1.
—Fifty percent of the time, we swapped the toys’ location to create false beliefs for the observer.

Those parameters enable the model to learn about several conditions and to predict the observers’
beliefs and desires in different situations. The results are similar for both desires and demonstrate
the model’s ability to resolve the different sub-tasks considering the desires and beliefs. The model’s
inferring capacity is analysed in the next paragraphs, considering specific conditions.

Afterwards, different situations were compared to validate the cognitive model’s ability to
accurately track and infer mental states. Drawing from the first condition (C1) in the online
experiment, two contexts were characterised where the robot interacts with users by considering
their beliefs and desires. These scenarios fully utilised the cognitive model to demonstrate its
effectiveness in specific situations. In both contexts (Figures 6 and 9), the user asked the robot
to take B, believing that the ball is in I, (step 1). However, the robot detected the presence of 7~
instead and questioned whether the user still wanted this item or preferred to inspect the other
location, I;. Based on the user’s instruction, the model’s prediction is analysed.

More specifically, in Scenario 1 (see Figure 6), the observer asked the robot to check the other
location (step 2), indicating a level of trust in the system. The robot’s model aligns with this
hypothesis by revealing a change in the user’s belief about the swapping event (Figure 7). It
accurately determined that the user’s beliefs now match the actual world setting (8 in I; and 7 in
L). In the final step, the model detected a change in the environment when the robot holds an item
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Fig. 6. Scenario 1: The observer asked the robot to check the other location. I; and I, correspond to the first
and second items’ location.

(step 3) (i.e., a high value for the ball for H, Figure 7) and when the robot successfully delivered
B (step 4). Regarding the user’s preferences (as shown in Figure 8), we deliberately selected two
scenarios in which the user favours the ball over the teddy bear. As expected, in the first scenario,
the robot’s model effectively utilised the user’s beliefs to make accurate inferences about their
preferences, even when they held false beliefs in step 1.

Regarding Scenario 2 (see Figure 9), the observer intentionally ignored the robot’s explanations
and requested it to pick up the item at its current position . In this case, the model captured the
phenomenon of humans holding false beliefs (steps 1 and 2) until they could observe that the robot
had taken the teddy bear instead of the ball (steps 3 and 4) (Figure 10). Similarly to the first example,
the robot’s cognitive model appropriately inferred that the user prefers the ball over the teddy bear
(Figure 11), even when they had false beliefs (steps 1 and 2), or they notice that the robot is holding
the teddy bear instead of the ball (steps 3 and 4).

In both scenarios for the preferences, we notice the cognitive model’s inference in the last
step (step 4) becomes nearly equal for both items, even though the model assigns the appropriate
importance to the ball. We can explain this tendency by the fact that in both policies, when the
observer holds true belief and only one item remains, the robot follows the same behaviour: to take
the last item and deliver it to its corresponding location.

Overall, these results accurately reflect human intentions based on internal cognitive states,
such as beliefs and desires. This highlights the strong connection between beliefs and desires in
determining the intentions of a rational agent, such as a human, and underscores the importance
of using the BDI model to reason on these agents’ mental states [15, 24]. In the next section, we
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Fig. 7. The results of the beliefs’ prediction at each step in Scenario 1 are represented as probability distribu-
tions, illustrating how the model adjusts its predictions over time. I; and I, are the first and second locations
of the items. H indicates whether the robot is holding an item or not.
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Fig. 8. The results of the preferences’ prediction at each step in Scenario 1 are represented as probability
distributions, similar to the belief’s prediction.

will compare how human participants perceived the robot displaying different levels of ToM and
examine the impact on transparency and social skills.

6.2 Transparency Ratings

We also assessed the concept of Transparency, incorporating three fundamental components:
Legibility, Predictability and Expectability. We began by examining the normality of our data
through a Shapiro-Wilk test, which yielded statistically significant p-values for all three factors,
indicating non-normal data distribution. Consequently, we employed an Independent-Samples
Kruskal-Wallis test to evaluate potential differences among the conditions.

Our analysis revealed a statistically significant difference in terms of Legibility among the
conditions, with a test statistic value of H(3) = 11.305, p = 0.010. Post-hoc pairwise comparisons
indicated significant differences between Conditions C3 and C2 (p = 0.049) and between Conditions
C3 and C1 (p = 0.036). However, no statistically significant differences were observed between
other condition pairs after applying the Bonferroni correction for multiple tests. A statistically
significant difference was observed in terms of Predictability among the conditions, with a test
statistic value of H(3) = 14.224, p = 0.003. The only significant pairwise comparison was between
conditions C4 and C1 (p = 0.002), while no other condition pairs showed statistical significance
following the Bonferroni correction. Finally, Expectability demonstrated a statistically significant
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Fig. 9. Scenario 2: The observer ignored the robot’s explanations and requested it to pick up the item at its
current position. I; and I, correspond to the first and second items’ location.
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Fig. 10. The results of the beliefs’ prediction at each step in Scenario 2 are represented as probability
distributions, illustrating how the model adjusts its predictions over time. I; and I, are the first and second
locations of the items. H indicates whether the robot is holding an item or not.
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Fig. 11. The results of the preferences’ prediction at each step in Scenario 2 are represented as probability
distributions, similar to the belief’s prediction.

difference among the conditions, with a test statistic value of H(3) = 24.337, p < 0.001. Post-hoc
analyses revealed significant differences between Conditions C3 and C2 (p = 0.009), C3 and C1
(p < 0.001),C4 and C2 (p = 0.016) and C4 and C1 (p < 0.001). No statistically significant differences
were found between other condition pairs after the Bonferroni correction. To visually represent
the data, we created a Boxplot (Figure 12) comparing the medians and spread of the factors related
to Legibility, Predictability and Expectability in each condition.

Following the approach of Angelopoulos et al. [2], we conducted a factor analysis to evaluate
the construct of Transparency, which integrates Legibility, Predictability and Expectability. The
KMO measure of sampling adequacy, with a value of 0.698, supported the suitability of our dataset
for factor analysis. Subsequently, our factor analysis yielded factor loadings of 0.815 for Legibility,
0.852 for Predictability and 0.828 for Expectability. These factor loadings underscore the significant
contributions of three elements to the overarching construct of Transparency, with Predictability
being the most influential factor, closely followed by Expectability and Legibility. To determine
the relative importance of each component, we normalised the standardised factor loadings and
calculated the following relative importance scores: R(L): 0.327, R(P): 0.341 and R(E): 0.332. Utilising
these weights in a weighted sum formula, we obtained the Transparency score as:

Transparency = 0.327 - Legibility + 0.341 - Predictability + 0.332 - Expectability. (8)

Subsequently, a new Shapiro-Wilk test was conducted to examine the normality of the overall
Transparency data, which indicated a normal data distribution. A Levene’s test showed no strong
evidence of significant variance differences between the groups. Therefore, we proceeded with the
Independent-Samples t-test. A statistically significant difference was observed between C1 and C4
(t(57) = 4.547,p < 0.001), between C1 and C3 (¢(51) = 3.918,p < 0.001) and between C2 and C3
(t(57) = 4.547,p = 0.008) and C2 and C4 (¢(57) = 4.547,p = 0.002). The Transparency scores for
each condition are presented in Figure 13.

6.3 ToM Ratings

We assessed the perception of ToM encompassing four key aspects: Awareness of human knowledge,
Alignment with user preferences, Comprehension and Communicating Environmental Changes.
We initiated our analysis by evaluating the normality of our dataset through the Shapiro-Wilk
test, which yielded statistically significant p-values for the four factors, signifying a non-normal
data distribution. Consequently, we used an Independent-Samples Kruskal-Wallis test to examine
potential differences among the conditions.

The analysis revealed a statistically significant difference regarding Awareness of human knowl-
edge among the conditions, with a test statistic value of H(3) = 12.434, p = 0.006. Post-hoc pairwise
comparisons indicated significant differences between Conditions C1 and C4 (p = 0.007). However,
no statistically significant differences were observed between other condition pairs following the
Bonferroni correction for multiple tests. Similarly, a statistically significant difference was observed
in terms of Alignment with user’s preferences among the conditions, with a test statistic value
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Fig. 12. Boxplot compares the medians and spread of the data by condition for perceived (a) Legibility, (b)

Predictability and (c) Expectability.

of H(3) =9.690, p = 0.021. The only significant pairwise comparison was between conditions C1
and C4 (p = 0.014), while no other condition pairs exhibited statistical significance after applying
the Bonferroni correction. Regarding Comprehension, our analysis revealed a statistically signifi-
cant difference with a test statistic value of H(3) = 38.137, p < 0.001. Post-hoc analyses revealed
significant differences between Conditions C3 and C1 (p = 0.038), C4 and C2 (p < 0.001) and C4
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Fig. 13. Transparency for each condition (* for p < 0.05 and ™ for p < 0.001).
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Fig. 14. Boxplot compares the medians and spread of the data by condition for (a) Awareness and (b)
Alignment.

and C1 (p < 0.001). Finally, Communicating Environmental Changes demonstrated a statistically
significant difference among the conditions, with a test statistic value of H(3) = 30.535, p < 0.001.
Post-hoc analyses revealed significant differences between Conditions C3 and C2 (p = 0.001), C3
and C1 (p = 0.001), C4 and C2 (p = 0.001) and C4 and C1 (p < 0.001). No statistically significant
differences were found between other condition pairs after the Bonferroni correction. Figures 14
and 15 present Boxplots comparing the central tendencies and variability of the data for Awareness,
Alignment, Comprehension and Communication Environmental Changes across each condition,
offering a clear overview of the data distribution for each ToM component.
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Fig. 15. Boxplot compares the medians and spread of the data by condition for (a) Comprehension and (b)
Communication.

Similar to the Transparency assessment, we used a factor analysis approach to integrate four core
components: Awareness of human knowledge, Alignment with user’s preferences, Comprehension
and Communication of Environmental Changes. The KMO measure of sampling adequacy, with a
value of 0.693, indicated the appropriateness of our dataset for factor analysis. The factor loadings
from our analysis revealed a significant contribution of Comprehension, with a factor loading
of 0.879. The remaining components included Communicating Environmental Changes (0.754),
Alignment with user’s preferences (0.709) and Awareness of human knowledge (0.644). To establish
the relative importance of each component, we normalised the standardised factor loadings and
calculated the following relative importance scores: R(Comprehension): 0.293, R(Communication):
0.251, R(Alignment): 0.236 and R(Awareness): 0.215.

ToM score was then computed using these weights in a weighted sum formula:

ToM = 0.215 - Awareness + 0.236 - Alignment + 0.293 - Comprehension + 0.251 - Communication.
©)
Subsequently, a new Shapiro-Wilk test was conducted to assess the normality of the overall ToM
data, which indicated a non-normal data distribution. Therefore, we proceeded with the Independent-
Samples Kruskal-Wallis test. Our analysis revealed a statistically significant difference in terms of
Awareness of human knowledge among the conditions, with a test statistic value of H(3) = 29.857,
p < 0.001. Post-hoc pairwise comparisons indicated significant differences between Conditions C1 and
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Fig. 16. Perceived ToM for each condition (* for p < 0.05 and ** for p < 0.001).
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Fig. 17. Average of the RoSAS questionnaire responses for each condition (* for p < 0.05 and ** for p < 0.001).

C4 (p < 0.001), C1 and C3 (p = 0.045) and C2 and C4 (p < 0.001). ToM scores for each condition are
presented in Figure 16.

To further understand the relationship between perceived Transparency and perceived ToM, a
Pearson correlation analysis was used to measure the relationship between the two variables. The
results of this analysis revealed a statistically significant between perceived Transparency and ToM
(0.607, p < 0.01). This positive correlation suggests that an increase (or decrease) in the perceived
Transparency corresponds to an increase (or decrease) in the perceived ToM. This implies that indi-
viduals who perceive higher levels of Transparency are also likely to attribute a higher level of ToM to
the robot.

6.4 RoOSAS Ratings

Our initial analysis regarding the RoSAS questionnaire involved assessing the internal reliability
across the conditions. We employed Cronbach’s alpha test to evaluate the questionnaire’s Competence,
Warmth and Discomfort factors. The Competence factor demonstrated Cronbach’s alpha values of
acy = 0.70, acy = 0.94, acs = 0.79 and acy = 0.92. For the Warmth factor, we observed values of
act = 0.90, acy = 0.87, acs = 0.80 and acy = 0.91. The Discomfort factor yielded Cronbach’s alpha
values of a¢c; = 0.83, acz = 0.81, acs = 0.89 and acy = 0.88.

To verify the normality of our data, we conducted the Shapiro-Wilk test for each condition in the
RoSAS questionnaire. The results indicated that our data did not adhere to a normal distribution. As a
result, we utilised a non-parametric test, specifically the Independent-Samples Kruskal-Wallis test, to
investigate potential differences among the conditions.

Our analysis revealed a statistically significant difference in terms of Competence among the
conditions, as evidenced by a test statistic value of H(3) = 17.790 and a significance level of p < 0.001.
Post-hoc pairwise comparisons highlighted significant differences between Conditions C1 and C4
(p = 0.003) and between Conditions C1 and C3 (p = 0.005). However, no significant differences were
detected between other conditions on other scales of RoSAS. The scores for each condition are visually
represented in Figure 17.
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Fig. 18. Average of the MDMT questionnaire responses for each condition (* for p < 0.05 and ** for p < 0.001).

6.5 Trust Ratings

As a first step, we evaluated the internal reliability of the MDMT questionnaire for each condition. A
Cronbach’s alpha test for the Performance Trust factor of the MDMT questionnaire was respectively
ac1 =0.79, acy = 0.91, acs = 0.83, acy = 0.92. Finally, the Moral Trust factor had a Cronbach’s alpha
of ac1 =0.93, acy = 0.87, acz = 0.91, acy = 0.94.

The variables were tested for normal distribution using the Shapiro-Wilk test. The data were
normally distributed, p > 0.05. A Levene’s test for assessing the equality of variances for our dataset
was not statistically significant (p > 0.05), suggesting that the assumption of homogeneity of variances
was met for our data. Following this, we used an Independent-Samples ¢-test to compare the means of
our groups. The t-test showed a statistically significant difference between Condition 2 and Condition
4 in the Performance Trust (¢(55) = 2.535, p = 0.014) and Moral Trust factor (¢(55) = 2.877,p = 0.006).
The MDMT scores for each condition are presented in Figure 18.

Subsequent analyses were conducted to elucidate the relationship between perceived Transparency,
operationalised through the variables Legibility, Predictability and Expectability and the Transparency
subscale of the MDMT v2. A Pearson correlation analysis yielded a significant positive correlation
of 0.253 (p < 0.01) between the perceived Transparency and the MDMT Transparency subscale.
This indicates that an increase in scores on the MDMT Transparency subscale is associated with a
corresponding increase in scores on the perceived Transparency measure. Factor analysis further
corroborated this relationship. The KMO measure of sampling adequacy was 0.762, and Bartlett’s Test
of Sphericity was significant (y?(21) = 238.639,p < 0.001), suggesting that the data were suitable
for factor analysis. The rotated component matrix revealed that the MDMT Transparency items
(transparency, genuine, sincere, candid) loaded strongly onto one factor with loadings ranging from
0.686 to 0.844, while the perceived Transparency items loaded onto a separate factor with loadings
ranging from 0.809 to 0.841.

A subsequent regression analysis was performed to predict perceived Transparency based on
the MDMT Transparency subscale. The model was statistically significant, with an F-value of 4.981
and a significance level of p = 0.001. This suggests that at least one predictor among transparency,
genuine, sincere and candid, significantly contributes to predicting perceived Transparency. Notably,
transparency (the item from the MDMT Transparency subscale) had an unstandardised coefficient (B)
of 0.273. The t-value for this item was 3.675, which is statistically significant (p < 0.001), indicating its
significant predictive power for perceived Transparency. However, the genuine, sincere and candid
predictors did not significantly contribute to the model when other variables were controlled for.
Moreover, a new factor analysis incorporating Legibility, Predictability, Expectability and Transparency
yielded a KMO measure of 0.753. The loadings for Legibility, Predictability and Expectability were
0.781, 0.837 and 0.805, respectively, while the loading for Transparency was lower at 0.587, indicating
a moderate positive relationship.
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7 Discussion

The study results shed light on the formulated hypotheses that explore the impact of ToM on Trans-
parency within the scope of collaborative human-robot tasks. Firstly, concerning Hypothesis 1, the
data suggest that the robot designed to consider user desires and beliefs (Condition C1) was indeed
perceived as possessing a more developed ToM system compared to other conditions. This led to
significant improvements in the interactions, particularly in evaluations of social skills and trust.
However, it is noteworthy that the difference in perceived ToM between C1 and C2 was not statistically
significant. This finding indicates that while integrating user desires and beliefs positively impacts
perceived ToM, the extent of this impact may not significantly differ from a condition where only
the user’s beliefs are considered. As a result, we can affirm that our H1 is partially supported by our
results. However, future studies could be conducted to analyse whether significant differences emerge
when comparing the consideration of a unique mental state (beliefs or desire) to the consideration of
both mental states simultaneously.

Secondly, regarding Hypothesis 2, the study results reveal that the robot with the most developed
ToM system (Condition C1) is also perceived as displaying the highest Transparency. It is crucial
to note that the Transparency ratings for Condition C2, which represents a ToM system without
explicit consideration of user desires and beliefs, did not significantly differ from those of Condition
C1. This outcome suggests that while ToM positively influences perceived Transparency, there may be
a threshold beyond which additional enhancements in ToM do not significantly contribute to increased
Transparency, as evidenced by the comparable ratings of C1 and C2. Moreover, Transparency in our
experiment is expressed in a particular manner related to the scenario, which may differ from other
tasks, potentially leading to different results. Similar to H1, our second hypothesis (H2) is partially
supported by our results, indicating that further studies are required to compare the integration of
a single mental state to the integration of both mental states simultaneously.

In addition, for Hypothesis 3, the study findings indicate that humans perceive the robot with the
highest levels of trust to be Condition C2. Notably, Condition C2 significantly differs from Condition
C4 in terms of performance and moral trust of the MDMT v2 scale; therefore, Hypothesis 3 was not
confirmed. This suggests that while Condition C1 was perceived as having the most advanced ToM
system and high Transparency, it was Condition C2 that garnered the highest trust from humans.
This could be due to various factors that are not directly related to Transparency or ToM, and further
investigation is needed to understand these dynamics fully.

Finally, the results showed that a robot equipped with ToM capabilities, such as the ability to infer
when humans hold incorrect beliefs (e.g., in a false-belief scenario), can adjust its actions and offer
explanations that account for the human’s misunderstanding. This improves the robot’s ability to
collaborate in dynamic environments and enhances the user’s ability to follow the robot’s reasoning.
By providing explanations that consider the human’s perspective, the robot’s actions become more
predictable and easier to comprehend, increasing overall transparency. A positive correlation was also
observed between perceived transparency and ToM. This indicates that as a robot’s ToM capabilities
improve, users perceive the robot as more transparent. When the robot can infer and respond to
human beliefs, users find it easier to follow the robot’s reasoning and predict its behaviour.

7.1 Limitations

The study was conducted in an online environment, which inherently lacks the physical presence and
real-time interaction that a traditional, in-person setting would provide. The lack of
physical presence might limit the participants’ ability to fully understand and appreciate the ro-
bot’s behaviours and actions, which could, in turn, negatively affect their ratings of the robot’s trust
levels. Indeed, Kumar et al. [39] in their work showed that the enjoyment and trust levels when
interacting with an in-person robot were higher than in the online experiment. However, previous
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work [64] suggested that online experiments have a similar effect on HRI performance as in-person
experiments. Nevertheless, further research is needed to validate these results in real-world studies.

8 Conclusions

In this project, we aimed to explore the connection between Transparency and ToM in HRI, investigat-
ing how predicting users’ mental states, including beliefs and desires, could enhance the collaboration
between the human and the robot, particularly during false-belief contexts.

Our methodology combined HRL with a modified BToM version, which we referred to as HBToM.
The model was able to track the beliefs and desires of a human agent, thereby improving collaboration
in a multi-objective environment. We analysed four distinct conditions, assessing their impact on beliefs
and desires on the robot’s ToM for achieving higher transparency and trust levels. The findings of this
study suggest that a robot, considering human desires and beliefs, not only enhances transparency but
also mitigates false beliefs. This demonstrates the importance of endowing a robot with ToM, which can
significantly benefit collaboration by improving transparency and trust while also fostering the robot’s
social skills. Specifically, it not only illustrates the robot as an effective machine for goal-oriented
tasks but also as a personalised assistant. Furthermore, a positive correlation was observed between
perceived transparency and ToM. In conclusion, these findings highlight the potential of ToM in
enhancing robot transparency and, consequently, fostering successful HRIs.

Future studies will focus on evaluating the robustness of the proposed approach in more complex
scenarios and real-world settings. The model will be refined to incorporate more complex human
preferences, paving the way for its adoption in real-world settings. We are also planning on analysing
the effect of a robot following users’ beliefs, even when they have false beliefs. We believe that it will
reinforce the impact of robots endowed with ToM.
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