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ABSTRACT

This study conducts a statistical re-analysis of experimental data from the literature to assess the influence of hydrogen on key
mechanical properties, including the medium-/high-cycle fatigue strength and the threshold value of the stress intensity factor
range. The analysis employs linear regression, S-N curve plotting, and Paris’ law regression. The results indicate that hydrogen
has a minimal effect on the endurance limit of steel (estimated at 2 x 10° cycles to failure), in contrast to the reductions in lifespan

observed in the medium-cycle fatigue regime. Regarding crack propagation, the threshold value of the stress intensity factor

range is reduced in the presence of hydrogen, particularly in conventional steel, which is more susceptible to hydrogen embrittle-

ment than stainless steel. Conversely, systematic evaluation of constants linked to Paris’ equation across various material types
revealed considerable variability, suggesting a non-discernible trend in the response to hydrogen.

1 | Introduction

Hydrogen is increasingly valued as a clean energy source,
sparking renewed interest in its impact on the mechanical
properties of various steel grades, including medium-strength,
high-strength, and stainless steels. Regarding the effect of hy-
drogen on the fatigue and fracture behavior of steel, the primary
technical issue is associated with hydrogen embrittlement. This
phenomenon results in the degradation of the material's me-
chanical properties (including strength and ductility), leading
to premature failures during in-service operations. Recognizing
the critical nature of hydrogen embrittlement, this topic has
been systematically studied by the international scientific com-
munity since the early twentieth century. The physical mecha-
nism of hydrogen embrittlement in steels has been thoroughly
explored and systematically discussed in the literature [1-4]. In

essence, when exposed to hydrogen—either through gaseous
environments or electrochemical processes—additional degra-
dation mechanisms can significantly accelerate fatigue damage.
This phenomenon is referred to as hydrogen-assisted fatigue
or hydrogen-enhanced fatigue crack growth. Hydrogen atoms
diffuse into the metal lattice, preferentially accumulating at re-
gions of high triaxial stress such as crack tips. Once inside the
material, hydrogen can reduce cohesive forces between atoms
(hydrogen-enhanced decohesion), facilitate dislocation motion
(hydrogen-enhanced localized plasticity), or promote phase
transformations and embrittlement. These mechanisms lead
to reduced fatigue life, increased crack propagation rates, and
a lower fatigue threshold. The combined effect of cyclic loading
and hydrogen presence can result in premature failure, particu-
larly in high-strength alloys and welded joints where hydrogen
susceptibility is elevated.
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The enormous body of research work on hydrogen effect on the
behavior of steels has been summarized in several review articles
(see, for instance, [5-13] for the associated physical mechanisms
and [14-19] for static behavior and the corresponding physical
mechanisms). However, examination of these articles shows that,
over the years, attention has been mainly focused on summarizing
and describing qualitatively the interaction between hydrogen and
metals, with a particular focus on the underlying mechanisms. In
contrast, to date, no studies have attempted to review quantita-
tively the effect of hydrogen on the fatigue and fracture behavior
of steel. This explains why the underlying mechanisms are not ad-
dressed in the present investigation.

To address this knowledge gap, it is essential to assess the impact
of hydrogen on the fatigue properties of steel through statistical
and quantitative methods. This paper reports on an in-depth
re-analysis of datasets to investigate the fatigue behavior of con-
ventional steel and stainless steel in the presence of hydrogen.
Statistical and quantitative methods (such as linear regression
analysis, S-N curve plotting, unified S-N curve construction, and
Paris’' law regression) were systematically and consistently applied
to post-process experimental results taken from the technical
literature. In this setting, this review primarily focuses on two
main areas: plain material fatigue properties (e.g., endurance limit
and slope of the S-N curve) and the fatigue crack growth proper-
ties (e.g., threshold value of the stress intensity factor range and
crack propagation rate) of steel used in the gas transportation in-
dustry such as stainless steels—e.g., 17-4PH (AISI 630), AISI304,
AISI316, AISI347—or carbon steels—e.g., SCM435 (AISI4135),
API 5L X52 pipeline steel, and Si-Cr steel (AISI 9254). The re-
analyses presented in this paper are aimed to serve as a valuable
reference for researchers, industrialists, and professionals engaged
in hydrogen-related structural engineering issues, enhancing our
quantitative understanding of the effects of hydrogen exposure
on steel structural integrity. In particular, the ultimate aim of this
investigation is not to provide engineers and researchers with de-
finitive reference values for use in design and structural integrity
analysis. Instead, the goal is to identify potential trends in the con-
stants associated with S-N and Paris’ curves when steel compo-
nents operate in hydrogen-rich environments.

Finally, it is worth noting that, although alternative models
could have been used to post-process the experimental results
considered in this review, we deliberately chose to adopt stan-
dard approaches during the design of this study. The selected
models are widely recognized and utilized not only within the
research community but also in industry. While the use of more
advanced models to describe fatigue strength and crack growth
behavior might have yielded different results, such approaches
are not yet universally accepted or included in standard guide-
lines. This explains the reasoning behind the selection of the
models used for data post-processing.

2 | Database

The effect of hydrogen on the fatigue and crack growth behavior
of steel was assessed through an analysis of experimental fatigue
data, which were post-processed in terms of either S-N curves or
crack growth curves. In the following two subsections, the fun-
damental theoretical concepts used in the analyses discussed

below will be briefly reviewed, not only to avoid possible termi-
nological misunderstandings but also to unambiguously explain
the meaning of the adopted symbols.

2.1 | Fatigue Strength of Un-Cracked Metals

The S-N curve, also known as the Wohler (or Basquin) curve,
is a graphic representation of the relationship between the ap-
plied stress and the number of cycles to failure for a material
under specific testing conditions. Figure 1 presents a schematic
representation of an S-N curve for steel on a log-log scale. The
schematic diagram consists of three distinct regimes, namely,
the low-cycle fatigue (LCF) regime, the medium-cycle fatigue
(MCF) regime, and the high-cycle fatigue (HCF) regime.

Low-cycle fatigue occurs under high-stress conditions, where
the material is typically subjected to plastic deformation leading
to a failure within a relatively small number of cycles. For me-
tallic materials, this usually occurs in the range of 1 to 103 cycles
to failure. The fatigue limit is defined as the material-dependent
stress level below which the material under investigation can
theoretically withstand an infinite number of cycles to failure.
For materials with a fatigue limit, the S-N curve in the high
cycle fatigue regime features a horizontal asymptote, with the
corresponding stress amplitude (or range) representing the ma-
terial's fatigue limit [20]. This classic definition predates more
modern findings in the giga-cycle fatigue regime [21]. Modern
research has revealed that many factors can eliminate the fa-
tigue limit, leading to a different reference strength definition
for high-cycle fatigue. Accordingly, when a fatigue limit cannot
be identified unambiguously or when the materials under in-
vestigation do not exhibit a fatigue limit (such as, for instance,
aluminum alloys), a reference strength is estimated at N, cycles
to failure. This usually lies in the range 5 - 10° =107 cycles to
failure [22]. This reference stress is referred to as the “endur-
ance limit.” Given the challenges in defining the fatigue limit for
different materials, in the present investigation, the endurance
limit concept was used, with this high-cycle fatigue reference
strength being estimated at N, = 2 x 10° cycles to failure. In this
context, it is important to clarify that a material being at its en-
durance limit does NOT mean it can endure an infinite number

log o : :
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PeP | HCF
| |
! I
! I
| |
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L 1
Na log Ni

FIGURE1 | Schematic representation of an S-N curve and its asso-
ciated scatter band.

2 of 32

Fatigue & Fracture of Engineering Materials & Structures, 2025



of cycles at that stress level. Rather, the endurance limit signi-
fies that the material can survive up to a specific number of cy-
cles—referred to as N, in this study. However, at the endurance
limit stress level, the material may still fail shortly after reaching
a number of cycles equal to N,. These considerations suggest
that, in this study, the term “endurance limit” is used to denote
a reference strength in the high-cycle fatigue regime and NOT
as a conventional “fatigue limit”—i.e., a stress threshold below
which the material can endure an infinite number of cycles.
From a quantitative review standpoint, one of the key advan-
tages of using the endurance limit is that, when systematically
estimated through statistical analysis, it provides a consistent
basis for comparing and contrasting results from different ex-
perimental trials. Another important implication is that, given
the negative inverse slope and the endurance limit at N, cycles
to failure, it is possible to estimate a different reference high-
cycle fatigue strength for a different number of cycles to failure
if needed. In this study, N, = 2 x 10° cycles to failure was se-
lected as a reference, following recommendations from estab-
lished standard codes and guidelines for fatigue assessment of
welded joints, such as Eurocode 3 and the Recommendations of
the International Institute of Welding.

As far as the effect of hydrogen on the fatigue behavior of metals
is concerned, this paper focuses on experimental results generated
in the MCF regime (i.e., the central region in Figure 1). Data re-
analysis involved calculating the corresponding S-N curve and as-
sociated scatter band in a log-log domain. S-N curves were derived
by fitting a linear function to experimental results, as shown below
[20, 23]:

LogN; =C,+C,Logo @

where Ny is the number of cycles to failure (i.e., the fatigue life-
time), o is the stress level (that can be expressed in terms of ei-
ther range, amplitude or maximum value), and C, and C; are the
intercept and inverse slope of the log-log linear function, respec-
tively. These are constants that vary for different materials, load
ratios and environmental conditions.

In the present study, the linear regression method (LRM) was
applied to fit the mean S-N curve to the experimental fatigue
datasets that were collected. The LRM uses the least squares
approximation [24, 25] to determine the slope and intercept of
the mean curve by minimizing the sum of the square of the dif-
ferences between the observed dependent variable (fatigue life)
and the output of the linear function of the independent variable
(stress levels). Constants Cyand C, are estimated from the exper-
imental results as follows [26]:

2 [IOg(Uz‘)E"i] [log(N;) - @]
C == )

n —
-21 [log(s;) —logo,| g
i=
C, = logN; — C,logo; 3

where n is the sample size andi=1,2 ... n.logo; is the mean of
the log of the stress levels and logN; is the mean of the log of the
number of cycles to failure.

Equation (1) can also be rewritten as suggested by Wohler and
Basquin, i.e., by directly using a power law relationship between
the applied stress and the number of cycles to failure [27]. Given
two reference points having coordinates equal to (¢,, N,)—at
the endurance limit—and to (o, Nf), respectively, Wohler's (or
Basquin's) equation takes on the following form:

o-ka = 0,*N, = constant 4

where k is the negative inverse slope which is linked with con-
stant C, as follows:

k=-¢ (5)

Substituting the negative inverse slope in Equation (1), the mean
S—-N becomes:

logN; = C, — k - logo; (6)

Accordingly, the endurance limit for the predicted mean curve
at the reference number of cycles, N ,, can be expressed as:

10Co] '

A ™

04,50% = [

In Equation (7), subscript 50% is used to explicitly denote that
the endurance limit refers to the mean curve, that is to a fatigue
curve characterized by a probability of survival, Py, equal to 50%.

The reference stress level at N, cycles to failure can be computed
for different probabilities of survival via the standard deviation
of the population, the endurance limit for P,=50% and another
statistical constant, g, depending on the desired survival proba-
bility, confidence level, and sample size [28-31].

Thus, the endurance limit at N, cycles to failure takes on the
following values for P,=P% and P = (1-P) %, respectively:

1

N r ®)

o =0 e —
A,P% A,50% [IOIOE(NA)+qS

N ]; ©)

Ca-Py% =OCason| ——————
A,(1-P)% A,50% [lolog(NA)—qs

where the variance, s, is calculated as:

A (Long—LogNi)2
s2 =1

i

(10)

n—1

The size of the scatter band associated with the data set being
analyzed is defined as the ratio between o4 ;_py, and 6 4 pg. In
the present investigation, the level of scattering was quantified
as follows [26]:

_ %410%

an

0 4,90%
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where 64 14 and o, g, are the endurance limits calculated for
probability of survival Pq equal to 10% and 90%, respectively.

As examples, Figure 2a,b show two S-N curves with the asso-
ciated scatter bands for two datasets taken from the literature
[32, 33] and used in the re-analyses discussed in what follows.
In Figure 2, o, is the stress amplitude and R is the load ratio,
which is defined as the ratio between the minimum, o and
maximum, ¢, stress applied in the fatigue cycle.

min’

max’

The analyses summarized in what follows will focus on compar-
ing parameters derived from S-N curves under conditions with
and without the presence of hydrogen. Key aspects detailed in
Section 3 will include the degree of scatter, T,, the endurance
limit, 64 5, for the predicted mean curve at N, = 2 x 10° cycles
to failure, and the inverse slope,k.

2.2 | Fatigue Behavior in the Presence of Cracks
The crack propagation behavior of steel in the presence of hydro-
gen was investigated using crack growth curves. Figure 3a illus-

trates a schematic diagram of a crack growth curve, also known
as Paris' curve, which graphically represents, using a log-log

SCM435 steel (AISI 4135)
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(b)
FIGURE2 | Comparison between the S-N curve in air and in hydro-
gen for SCM435 steel (AISI 4135) [32] (a) and AISI 316 stainless steel
[33] (b).

scale, the relationship between the crack growth rate, da /dN,
and the stress intensity factor range, A K. In this graph, a denotes
the crack size, and N represents the number of cycles. Based on
the schematic representation of Figure 3a, three distinct differ-
ent regimes are identifiable as follows.

« Regime I. The stress intensity factor range, AK, is below
the threshold value of the stress intensity factor range, AK,,
, meaning that the crack growth rate is so low that, from
an engineering perspective, no propagation is assumed to
occur.

« Regime II. This is the central region of Paris’ diagram,
where the crack growth rate,da /dN, follows a power-law
relationship with AK.

« Regime III. In this region, the maximum value of the ap-
plied stress intensity factor approaches the material's
fracture toughness, K, causing the crack growth rate to ac-
celerate rapidly until a sudden, catastrophic failure occurs
[35].

This paper focuses specifically on the threshold value of the
stress intensify factor range, AK,,, and the crack growth be-
havior in Regime II. As far as Regime II is concerned, for a
given dataset, the associated curve was generated by fitting
the experimental results via the least squares method to de-
termine constants C and m in the following well-known rela-
tionship [36]:

da

X _c.Ak™ 12
aN (12
da/dN=C-AK™
log da/dN i i
Regionl} | |Region i
I
| Kmax=Kc
e
} m } Experimental
/ Trend
\(Region i }
1 I
AKn log AK

AISI 304 Stainless Steel

10
=33 40-HAK2E. 2
daielN ol moist air da/dN=3;3-10-TAKES.
[mieye 6]104__* @ In hydrogen ﬂ
107 /
da/dN=1.3-10"11AK28
108
10°
R=0.1
10-10 7
1 = mi2” 10 100
AKy=4.7 MPa'm AKm=/‘5.9 MPa-mv2 AK [MPa-m™?]

(b)

FIGURE 3 | Schematic representation of a fatigue crack propagation
curve (a) and comparison between the crack growth curve in inert envi-
ronment and in hydrogen for AISI 304 stainless steel [34] (b).
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From a mathematical standpoint, the linear regression proce-
dure followed is similar to that used for post-processing S-N
curves, as previously described.

Since, according to ASTM E647-23a [37], the threshold value of the
stress intensity factor range is determined using data characterized
by da/dN values in the range of 10~° to 107°m/cycle, constants C
and m in Equation (12) were determined by post-processing only
the data points with da/dN values greater than 10-¥m/cycle. This
strategy allowed us, on the one hand, to effectively estimate the
constants C and m by focusing on the region of the Paris diagram
where a linear relationship (in a log-log representation) exists be-
tween da/dN and AK; and, on the other hand, to determine these
constants across the various datasets in a consistent manner, en-
abling meaningful comparisons. Further, to ensure that the data
re-analyzed using Equation (12) exhibited a strong linear relation-
ship within Regime II, the correlation coefficient [38] was calcu-
lated for each individual dataset. In 94% of the regression analyses,
the correlation coefficient exceeded 0.9, with the lowest recorded
value being 0.66. These results confirm that the values of the con-
stants C and m reported in Tables 3 and 4 are associated with a
strong linear relationship between da/dN and AK.

The threshold stress intensity factor range, AK,,, was estimated
using the standard procedure recommended by ASTM E647-23a
[37]. According to these guidelines, the operational definition
of AKj, involves identifying the AK value corresponding to a
finite crack growth rate, da/dN, equal to 107!° m/cycle. More
specifically, AK,, was determined from the best-fit line obtained
via linear regression of log (da/dN) versus log (AK), using all
(da/dN, AK) data points collected for each dataset within the
crack growth rate range of 107° to 107®m/cycle. In line with
the ASTM recommendations, datasets containing fewer than
five experimental points within this growth rate range were ex-
cluded from post-processing for the determination of AK,, .

The re-analyses discussed below were performed by referring
to standard recommendations, as the ASTM standards are the
most widely used in industry. Furthermore, it is important to
highlight that this widely recognized ASTM approach was ad-
opted also due to the absence of a specific standard addressing
the fatigue cracking behavior of metals in hydrogen-rich envi-
ronments. A key advantage of using the ASTM approach is that
AK,, is estimated by extrapolating the stress intensity factor
range value at da/ dN equal to 1071° m/cycle. This methodology
enables consistent comparison of AKj, values across different
investigations. In summary, we chose the ASTM-recommended
approach because, on the one hand, there is no specific standard
for hydrogen-related situations, and on the other hand, it pro-
vides a standardized method suitable for comparing A K}, values
obtained from different experimental trials.

An illustrative example of crack growth curves generated in the
presence and absence of hydrogen is presented in Figure 3b,
with data extracted from Ref. [34]. In line with the ASTM stan-
dard approach, the reported values of AK,, were determined by
post-processing data points in the range of 10° to 107 m/cycle.
In contrast, the constants C and m were determined by consid-
ering data points with da/dN values greater than 10~8m/cycle.
For this specific material and testing conditions, the chart in
Figure 3b shows that the presence of hydrogen led to a reduction

in the AK, value, along with an increase in crack growth rate
in Region II.

2.3 | Construction of the Database

The effect of hydrogen on the fatigue and crack propagation be-
havior of metallic materials was investigated by focusing atten-
tion on both conventional and stainless steel. Welded steel was
also considered in the analysis of fatigue cracking behavior. The
experimental results used to compile this review were selected
from relevant technical literature [32-34, 39-115]. The list of all
the metallic materials that were considered in the present inves-
tigation is reported in Table 1. This table also reports the testing
temperature, as well as the hydrogen pressure during both test-
ing and soaking. The material properties seen in Table 1 include
Young's modulus, E, yield strength, 9, ultimate tensile strength,
OuTss elongation at failure, E » and Vickers hardness, HV.

The fatigue results and fatigue crack growth data were extracted
from the original graphs and plots by using open-access soft-
ware WebPlotDigitizer.

The fatigue data sets considered in the present investigation are
listed in Table 2 for un-cracked metals and in Tables 3 and 4 for
un-welded and welded cracked metallic materials, respectively.

Table 2 summarizes the fatigue behavior of un-cracked steel
in terms of material designation and testing conditions. The
experimental fatigue data for each material were re-analyzed
using linear regression [30]. The resulting S-N curves are
summarized in Table 2 in terms of load ratio, R = Z'"—i", inverse

negative slope, k, endurance limit, 6 4 554, at N, =2-10°cycles
to failure and scatter ratio, T,.

Tables 3 and 4 summarize the fatigue cracking behavior of the
considered un-welded and welded metallic materials, respectively,
in both the absence and presence of hydrogen. For each material,
Tables 3 and 4 detail the hydrogen exposure condition, the load
ratio, R, testing frequency, F, values of constant C and exponent
m in Paris’ equation, Equation (12), and the threshold value of the
stress intensity factor range, AK,, extrapolated at a crack growth
rate of 107! m/cycle as recommended by the ASTM standard pro-
cedure [37]. The comparison of the parameters mentioned above,
along with a discussion of the results, is presented in Section 4.
Finally, it is worth noting that the majority of the fatigue crack
growth tests were conducted using C(T) specimens, with efforts
made to adhere as closely as possible to ASTM recommenda-
tions. This was done while simultaneously managing the addi-
tional complexities introduced by the hydrogen charging process.
Readers are referred to the original sources for a detailed descrip-
tion of the experimental procedures followed.

3 | Hydrogen Effect on the Fatigue Behavior of
Un-Cracked Steel

As far as the fatigue behavior in the presence of hydrogen is con-
cerned, the materials investigated included both conventional
steels and stainless steels. The associated S-N curves parameters
are summarized in Table 2. The re-analyzed data were divided
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TABLE 4 | Summary of the results from the post-processed fatigue crack growth curves generated by testing welded steel (threshold value of the
stress intensity factor range extrapolated at da/dN=10"m/cycle; constant C was determined by measuring AK in units of MPa-m'/2 and da/dN in

units of m/cycle).

Ref. Material Environmental condition R F [Hz] C m
[49] API 5L X70 girth welds 100% gaseous CH, 0.3 0.1 1.95107% 45
1% gaseous H, balance CH, 0.3 0.1 2.511075 5.5

10% gaseous H, balance CH, 0.3 0.1 5.37107% 6.1

5% gaseous H, balance CH, 0.3 0.1 46410712 39

API 5L X70 longitudinal seam welds 100% gaseous CH, 0.3 0.1 1.641071% 27

1% gaseous H, balance CH, 0.3 0.1 299107 48

5% gaseous H, balance CH, 0.3 0.1 193107 57

10% gaseous H, balance CH, 0.3 0.1 3.56:10712 3.8

API 5L X70 girth weld HAZ 100% gaseous CH, 0.3 0.1 2.66-10712 3.1

5% gaseous H, balance CH, 0.3 0.1 1.01-1071* 3.5

1% gaseous H, balance CH, 0.3 0.1 1.56-10712 4.0

10% gaseous H, balance CH, 0.3 0.1 1.86-10712 3.9

API 5L X70 longitudinal seam welds HAZ 100% gaseous CH, 0.3 0.1 3.3710712 33

5% gaseous H, balance CH, 0.3 0.1 8.09-107 6.1

1% gaseous H, balance CH, 0.3 0.1 3.89.10712 3.2

10% gaseous H, balance CH, 0.3 0.1 4.32:1078 47

[86] A106 Gr B steel pipe (AISI 1020) Test in air 0.1 1 1.29-10712 3.8
Test in gaseous NaCl 0.1 1 1.96:107% 2.5

Test in mixed gaseous NaCland H,S 0.1 1 2.10-107° 2.3

[87] AISI 304 stainless steel welds Test in air 0.1 20 1.35107* 4.5
Test in gaseous H, 0.1 20 41810712 31

[88] AISI 316 stainless steel welds Test in air 0.1 20 6.94-1074 4.2
Test in gaseous H, 0.1 20 6.4310712 31

[89] API 5L X80 pipeline steel welds Test in air 0.1 20 14610711 2.7
Test in gaseous H, 0.1 20 1.22:107° 2.1

[90] API 5L X80 pipeline steel welds Test in gaseous N, 0.1 1 1.0710712 3.7
Test in gaseous H, 0.1 1 1791071 3.0

[91] API 5L X100 pipeline welds Test in air 0.5 1 31510712 3.2
Test in gaseous H, 0.5 1 1.87:1072¢ 174

into four groups by steel type (i.e., conventional and stainless
steel) and load ratio (i.e., R=0.1 and R=-1).

Given these four groups of data, a comparative analysis was
conducted to compare behaviors in hydrogen and inert environ-
ments, focusing on fatigue quantities k and o4 544 In the ratios
used for the reanalyses as reported in Table 2 and Figure 4, the
subscript “H” indicates the presence of hydrogen.

Figure 4a,b depict the correlation between endurance limit,
0 4509, Negative inverse slope, k, and ultimate tensile strength,

oyrss for conventional and stainless steels subjected to load ra-
tios of —1 and 0.1. The or¢ values used in these figures were
obtained from tests conducted in the absence of hydrogen.

Figure 4a details the effect of hydrogen on the inverse slope,
k, of the S-N curve, where the ratio of k for hydrogen-treated
to hydrogen-untreated materials is plotted against o5 Each
data point represents the ratio of the k-value in the presence
of hydrogen to the k-value in the absence of hydrogen for one
of the selected materials. As shown, hydrogen generally in-
creases k, resulting in a flattening of the S-N curve. This is
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FIGURE 4 | Effect of hydrogen on the negative inverse slope (a) and
on the endurance limit (b).

evident from the majority of data points being above a ratio of
1in Figure 4a.

Figure 4b illustrates the relationship between endurance limit in
the presence, 6 4 5o4,_p» and in the absence, 6 4 544, of hydrogen for
both conventional and stainless steels under a stress ratio of —1 as
well as of 0.1. As far as conventional steels are concerned, the con-
centration of the o4 syq,_g t0 6 4 504 ratios around 1 indicates that
hydrogen has a negligible effect on the endurance limit, regard-
less of the R value. Conversely, for stainless steels, the increased
negative slope of the fatigue curves observed in a hydrogen envi-
ronment results in a modest increase in endurance limit values.
Consequently, the 6 4 59¢,_p t0 0 4 594, Tatios are slightly above unity.

It is important to reiterate that all the analyses discussed above
are based on the endurance limit estimated at N, = 2 x 10° cy-
cles to failure. The first key consideration is that, as it is not a
fatigue limit, fatigue cracks can still initiate at stress levels
lower than o, 504 and o4 soq_g- Furthermore, altering the num-
ber of cycles to failure used to define N, would inevitably affect
slightly the trend observed in Figure 4b. However, leveraging
Equation (4), the results summarized in Figure 4b can be readily
recalculated for different N, values.

Unifying fatigue design curve in hydrogen - R=-1
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Unifying fatigue design curve in hydrogen - R=0.1
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FIGURE 5 | Unifying S-N design curves under a load ratio equal to
—1 (a) and to 0.1 (b).

By focusing attention on Figure 2, the fatigue behavior in
the presence of hydrogen is further illustrated by comparing
the S-N curves and scatter bands for hydrogen-treated and
untreated conditions for SCM435 steel (AISI 4135) [32] and
ATISI316 stainless steel [33]. Quantitative analysis reveals that
while the endurance limits remain largely unaffected at 2 x 10°
cycles to failure, the S-N curves exhibit significant flattening,
indicating reduced fatigue life in the medium-cycle fatigue
regime for hydrogen-exposed steels. This suggests a shorter
fatigue life in the medium-cycle fatigue regime for hydrogen-
treated steels compared to untreated steels at the same stress
amplitude.

Based upon this experimental evidence, the subsequent step in
the reasoning was to attempt to determine a unified S-N curve
that can assess the impact of hydrogen, particularly within the
MCF regime. This approach aimed to standardize fatigue anal-
ysis under hydrogen exposure by normalizing results via the o,
to oy ratio, where o, represents the applied stress amplitude
and o denotes the material's ultimate tensile strength in the
absence of hydrogen. The results of this normalisation process
for a load ratio, R, of —1 as well as of 0.1 are summarized in
the S-N log-log charts of Figure 5a,b, respectively. The diagram
of Figure 5a demonstrates that fatigue life in the MCF regime
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under R=-1 can be estimated using a fatigue curve with a neg-
ative inverse slope, k, of 2 and an endurance limit to ultimate
tensile strength ratio of 0.03 for a probability of survival, P, of
95% and 0.02 for P of 99%. Similarly, The S-N curve in Figure 5b

indicates that fatigue life under R=0.1 can be predicted using a
fatigue curve with a negative inverse slope, k, of 2.6. For a 95%
probability of survival, the endurance limit to ultimate tensile
strength ratio is 0.02, whereas for P¢=99%, the ratio reduces
to 0.01. In conclusion, while the two S-N curves reported in
Figure 5 provide a safe basis for estimating fatigue life, they are
characterized by an excessive level of conservatism. This high-
lights the need for bespoke experimental investigations as the
only effective way to significantly reduce this high degree of
conservatism.

4 | Effect of Hydrogen on Fatigue Crack
Propagation in Steel

Tables 3 and 4 summarize the post-processed literature data for
un-welded and welded steel, respectively. These tables present val-
ues of AK|;, C, and m for different materials with and without hy-
drogen. Unfortunately, due to the stringent conditions required to
determine AK,, in accordance with ASTM recommendations [37],
it was only possible to determine the threshold value of the stress

intensity factor range for a limited number of materials.

The results reported in Table 3 and 4 indicate that hydrogen sig-
nificantly influences fatigue crack growth behavior in metallic
materials, but clear trends or patterns are difficult to identify.
These tables clearly demonstrate that the effect of hydrogen on
fatigue cracking is influenced by the material’'s morphology and
properties, load frequency, and, seemingly, the hydrogen charging
technique as well [116]. Therefore, for practical applications, if hy-
drogen's impact must be evaluated through experiments, it is im-
portant to avoid hydrogen charging techniques that are excessively
damaging compared to in-service conditions.

To further clarify the above crucial aspects in a quantitative way,
the effects of hydrogen on crack propagation were evaluated for
stainless steel, carbon steel, and welded steel, with a particular
focus on the threshold stress intensity factor, AK,,, as well as
on exponent m and constant C in Paris' equation, Equation (12).
The determined values for these parameters are summarized in
Tables 3 and 4. The results of the post-processing work are pre-
sented in Figures 6 and 7, where the o, represents the values
obtained from tests performed in the absence of hydrogen.

Figure 6 presents the ratio of the threshold stress intensity fac-
tor range for hydrogen-treated materials, AKy,_j, to untreated
materials, AK,, plotted against the ultimate tensile strength,
oyrs- Each data point corresponds to a specific dataset for con-
ventional steel or stainless steel. The horizontal baseline at a
ratio of 1 indicates no change in the threshold value of the
stress intensity factor range due to the presence of hydrogen.
The diagram in Figure 6 confirms that, regardless of material
type or oyrg value, the limited data points all fall below the
reference line, indicating that hydrogen generally has a det-
rimental effect on the threshold stress intensity factor range.
However, while the detrimental effect is clear, no consistent
trend in terms of reduction magnitude emerges. The lack of
a clear trend may also be attributed to the threshold value of
the stress intensity factor range in Figure 6 being determined
through extrapolation according to the ASTM E647-23a guide-
lines [37], rather than being experimentally determined.
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Figure 7a,b present an analysis for the constant C and exponent
m (against o;;¢) in Paris’ equation for conventional steel, stain-
less steel, and welded steel. Constant C is a material-specific
parameter that determines the magnitude of the crack growth
rate for a given AK value. A higher C value indicates a material
more prone to faster crack propagation under identical loading
conditions, reflecting its inherently lower resistance to fatigue.
m represents the slope of the curve on a log-log plot of da /dN
vs. AK. It quantifies the material's sensitivity to variations in the
stress intensity factor range. A steeper slope, m, suggests that
small changes in AK, result in significant variations in crack
growth rate, indicating that the material is highly sensitive to
fatigue loading conditions.

In the charts reported in Figure 7a,b, the subscript H denotes
constants determined by testing hydrogen-treated specimens.
Data points exhibit significant scatter, with values ranging both
above and below 1 regardless of material type or o g value.
This indicates that there is no clear general trend in how hy-
drogen affects the crack growth exponent m and constant C: for
the exponent m, 47% of the data points are above the baseline,
while 53% fall below 1. In contrast, for constant C, 66% of the
data points are above the baseline, with 34% of the remaining
points below 1.

5 | Conclusions

This review presents a comprehensive quantitative analysis of
hydrogen's effects on the fatigue strength and fatigue crack
propagation behavior of metallic materials. By systematically
re-examining a large dataset of experimental results collected
from the literature, we provide a unified framework to sum-
marize how hydrogen influences the structural integrity of
metals. Regarding the conclusions reported below, it is crucial
to reiterate that the fatigue behavior of uncracked metals in
the high-cycle fatigue regime was assessed in terms of the en-
durance limit estimated at N, = 2 x 10° cycles to failure, rather
than the fatigue limit. This distinction implies that when the
stress level is set equal to the endurance limit, the material
is expected to survive at least up to 2 x 10° cycles, but not an
infinite number of cycles. For cracked materials, the threshold
value of the stress intensity factor range, AK,,, was extrapo-
lated at a crack growth rate, da/dn, equal to 107° m/cycle,
following the ASTM standard approach [37]. It is worth not-
ing that this approach is not specifically tailored for hydrogen-
soaked metals. The use of the endurance limit and A K}, values
determined according to the ASTM methodology [37] enabled
a consistent and systematic comparison of datasets obtained
from various experimental campaigns.

Key findings from this analysis can be summarized as follows.

+ Overall, hydrogen has a negligible effect on the endurance
limit of steel estimated at N, = 2 x 10° cycles to failure, re-
gardless of material type or load ratio.

« Hydrogen generally increases the inverse slope of the S-N
curve, flattening it, regardless of material type or load ratio.
As a result, for a given stress level, a hydrogen environment
reduces fatigue life compared to an inert environment.

« In the absence of specific experimental results, the effect
of hydrogen on the fatigue behavior of metallic materials
can be assessed using the unifying fatigue curves shown in
Figure 5.

« Hydrogen reduces the threshold value of the stress inten-
sity factor range of carbon steels, stainless steels, and steel
weldments.

« A systematic evaluation of Paris’ constant C and exponent
m across all material types revealed significant scatter,
indicating no clear trend in their response to hydrogen.
However, the presence of hydrogen generally tends to cause
an increase in exponent m for conventional steel and a de-
crease in exponent m for welded steel. Further, the presence
of hydrogen tends, on average, to increase the value of con-
stant C.

« The mechanistic phenomena occurring in metallic mate-
rials subjected to fatigue loading and exposed to hydro-
gen are inherently complex, with multiple degradation
physical processes acting simultaneously. The specific
characteristics of these mechanisms can result in vary-
ing degrees of damage. This complexity explains why, in
experimental setups, the influence of hydrogen on the
fatigue and fracture behavior of metallic materials is sig-
nificantly affected by the hydrogen charging method em-
ployed. Consequently, the experimental approach must
replicate, as closely as possible, the conditions experi-
enced during in-service operation.

Nomenclature

a crack length

da/dn fatigue crack growth rate

k inverse slope of the S-N curve

m Paris’ law exponent

C Paris’ law constant

E Young’s modulus

E; elongation at failure

F testing load frequency

HV Vickers hardness

N number of cycles

Nf number of cycles to failure

N, reference number of cycles to failure
P, probability of survival

R load ratio (R=0,,;,, / 6 jnax)

T, scatter ratio

AK range of stress intensity factor

AKy, threshold value of the stress intensity factor range
o, stress amplitude

o, yield stress

oy endurance limit amplitude

Oas0%  endurancelimitamplitude for a probability of survival of 50%
ours ultimate tensile strength
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