
Development and Evaluation of a Multi-Robot Path 
Planning Graph Algorithm

ALWAFI, Fatma A.S., XU, Xu <http://orcid.org/0000-0002-9721-9054>, 
SAATCHI, Reza <http://orcid.org/0000-0002-2266-0187> and ALBOUL, Lyuba
<http://orcid.org/0000-0001-9605-7228>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/35737/

This document is the Published Version [VoR]

Citation:

ALWAFI, Fatma A.S., XU, Xu, SAATCHI, Reza and ALBOUL, Lyuba (2025). 
Development and Evaluation of a Multi-Robot Path Planning Graph Algorithm. 
Information, 16 (6): 431. [Article] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


 

 
 

 

 
Information 2025, 16, 431 https://doi.org/10.3390/info16060431 

Article 

Development and Evaluation of a Multi-Robot Path Planning 

Graph Algorithm 

Fatma A. S. Alwafi 1, Xu Xu 2, Reza Saatchi 1,* and Lyuba Alboul 1,† 

1 School of Engineering and Built Environment, Sheffield Hallam University, Howard Street,  

Sheffield S1 1WB, UK; fatmaalwafi@yahoo.com (F.A.S.A.) 
2 School of Computer Science, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK;  

xu.xu@sheffield.ac.uk 

* Correspondence: r.saatchi@shu.ac.uk 
† Sadly deceased prior to the preparation of this article. 

Abstract: A new multi-robot path planning (MRPP) algorithm for 2D static environments 

was developed and evaluated. It combines a roadmap method, utilising the visibility 

graph (VG), with the algebraic connectivity (second smallest eigenvalue (λ2)) of the 

graph’s Laplacian and Dijkstra’s algorithm. The paths depend on the planning order, i.e., 

they are in sequence path-by-path, based on the measured values of algebraic connectivity 

of the graph’s Laplacian and the determined weight functions. Algebraic connectivity 

maintains robust communication between the robots during their navigation while avoid-

ing collisions. The algorithm efficiently balances connectivity maintenance and path 

length minimisation, thus improving the performance of path finding. It produced solu-

tions with optimal paths, i.e., the shortest and safest route. The devised MRPP algorithm 

significantly improved path length efficiency across different configurations. The results 

demonstrated highly efficient and robust solutions for multi-robot systems requiring both 

optimal path planning and reliable connectivity, making it well-suited in scenarios where 

communication between robots is necessary. Simulation results demonstrated the perfor-

mance of the proposed algorithm in balancing the path optimality and network connec-

tivity across multiple static environments with varying complexities. The algorithm is 

suitable for identifying optimal and complete collision-free paths. The results illustrate 

the algorithm’s effectiveness, computational efficiency, and adaptability. 

Keywords: multi-robot path planning algorithm; robotic graph algorithms; robotic path 

finding; robotic collision avoidance; graph theory; robot navigations 

 

1. Introduction 

Motion planning is commonly encountered in environments where several robots 

operate simultaneously and with multiple obstacles. Collision-free motion planning is an 

important field of robotics, enabling coordinated and efficient operations in various real-

world applications [1]. It is also widely used in industrial automation and search and res-

cue operations such as exploration, object transport, and target tracking [2,3]. Signal pro-

cessing techniques can also enhance multi-robot communication reliability in cluttered 

environments. High-resolution and wide-swath imaging is a fundamental capability of 

future spaceborne synthetic aperture radar systems [4]. A key challenge in motion plan-

ning problems is determining an efficient path from the initial location of each robot to 

the required destination while maintaining connectivity by balancing path optimality and 
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computational efficiency [3,5]. Motion planning is a requirement for ensuring safe and 

efficient movement of robots to complete their allotted tasks [6]. Motion planning consid-

ers the obstacles in the operational environment and the movements of robots in the en-

vironment. Several approaches exist for the navigation of robots; however, path planning 

for multiple robots introduces several challenges, e.g., avoidance of collisions and main-

taining communication [7,8]. The existing methods, such as potential fields, cell decom-

position, and roadmap techniques, often do not address these challenges simultaneously. 

The choice of motion planning depends on the environment and the capabilities of the 

robots. Graph models are more appropriate for robot path and motion planning problems 

as they provide an intuitive, computationally effective approach to map and navigate the 

environment. The environment is a configuration space where robots and obstacles are 

located [9,10]. 

Graph models are foundational in multi-robot motion planning, where the vertices 

represent specific locations or points of interest in the operational environment and the 

edges represent the paths or connections between these locations. This graph structure 

allows the planners to use algorithms to determine the shortest or most efficient route 

between feasible points for the robots to navigate [9,10]. Different roadmaps were sug-

gested to achieve this operation, e.g., visibility graphs (VGs) and Voronoi diagrams (VDs) 

[11–14]. A more popular method used in motion planning problems comprises Voronoi 

cells, each associated with a specific site. The edges are equidistant from two or more sites, 

forming cell boundaries. The cells are entirely convex polygons in 2D and partition space, 

with no gaps. Voronoi edges are not necessarily straight paths but represent boundaries 

of the regions based on proximity. In addition, VD paths are as far away as possible from 

the obstacles [11,14]. Although VDs generate long paths that are far from the obstacles 

(making them relatively safe, i.e., ensuring collision avoidance due to an increased dis-

tance between obstacles and robots), the paths are not optimal [11,13]. VG is also a popular 

method for robot path planning in environments with obstacles. It comprises vertices and 

edges representing direct lines of sight between the points. The nodes typically include 

the obstacles’ vertices, start and end points of the robots’ paths. The edges are straight 

lines connecting visible nodes, with associated weights often representing the Euclidean 

distances. An advantage of using a VG for motion planning is its well-understood and 

straightforward method that produces optimal paths in a two or three-dimensional work-

space [9]. It is also computationally effective and guarantees an optimal path when one 

exists [11,12]. In contrast to Voronoi diagrams, VGs guarantee an optimal path; therefore, 

this study focused on VGs in 2D environments [11,13]. This work proposes and evaluates 

a hybrid approach to solving the multi-robot motion planning problem. It combines VGs 

for path planning, Dijkstra’s algorithm for optimal path finding, and algebraic connectiv-

ity to address path optimisation and maintain robust communication. The approach is 

highly suitable for static 2D environments as the layout is predefined, and robots need to 

coordinate their navigation to avoid collisions and stay connected. The traditional path-

planning methods often focus on optimising path lengths but neglect the significance of 

maintaining communication that is critical for cooperative missions. 

Dijkstra’s and A* algorithms have been widely used to find the shortest path; how-

ever, they differ in how they approach the problem and their efficiency in various scenar-

ios [15,16]. In a weighted graph, the A* algorithm aims to find the shortest path between 

a starting node and a target node with heuristics, especially in environments where a goal 

is defined. The choice of the heuristic function is crucial. It must be admissible, meaning 

it never overestimates the actual cost to reach the goal, ensuring that A* finds an optimal 

path. However, its data storage requirement can be high, as it stores details of all gener-

ated nodes, which can be a limitation for large-scale problems. A heuristic method uses 

assumptions to minimise the complexity of pathfinding. This can be a limitation as it 
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requires multiple variables and coefficients, which the algorithm designer must select. In 

addition, a well-defined manner for determining these variables has not been previously 

reported. As a result, heuristic methods do not provide general solutions. In other cases, 

the variables of a heuristic algorithm might need modification [17]. The A* search algo-

rithm was not considered in this study because when it is combined with the VG method, 

the resultant path might not be optimal. It is challenging to compute the heuristic of A*, 

where the heuristic value is typically a computation of what the straight-line distance to 

the target would be if there were no obstacles. Therefore, there is no method to measure 

the cost of the straight lines that connect the vertices to the goals in an environment where 

the lines pass through obstacles. In addition, if the heuristic cost is not acceptable, i.e., 

higher than the actual cost, the identified path may not be optimal regarding the path 

length [4,11,12]. Therefore, the VG and Dijkstra’s algorithm are chosen for path planning 

in this study. Accordingly, a multi-robot motion planning problem becomes the problem 

of finding the optimal (i.e., the safest and shortest) paths. Furthermore, the VG method 

can help the robots in the system to move to the desired goal (g) location while avoiding 

collisions [11]. To integrate algebraic connectivity into this method for multi-robot motion 

planning, cooperation among robots is optimised by considering the graph’s connectivity 

that represents their paths. Algebraic connectivity is the second-smallest eigenvalue (λ2) 

of the Laplacian matrix of a graph that reflects the extent of a graph’s connectivity. A large 

value for λ2 implies a more robust and well-connected graph that benefits coordination in 

multi-robot systems [10]. 

In this study, the operating environment was a 2D space with polygonal obstacles 

accommodating multiple robots, each with a start location and a goal position. The aim 

was to find collision-free paths for the robots as they moved to their respective goals while 

maintaining a high level of connectivity. This goal was achieved by considering the alge-

braic connectivity of each robot’s communication graph. The paths in the vector environ-

ment model can be represented by the VG [6,9], which has been effective in many appli-

cations because of its simplicity, visualisation, and completeness [9]. The VG method used 

for multi-robot path planning is described as an undirected weighted graph 𝐺(𝑉, 𝐸, 𝑊𝐸), 

where V is the set of vertices representing the configurations of the robots, the starting and 

the endpoints of the robots’ movements, 𝐸 ⊂ 𝑉 × 𝑉, where 𝑉 × 𝑉 = {(𝑣𝑖 , 𝑣𝑗), 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉} is 

a set of edges representing the paths between the vertices. In the expression 𝐸 ⊂ 𝑉 × 𝑉, 

the symbol × denotes the Cartesian product of the set 𝑉 with itself. The Cartesian prod-

uct 𝑉 × 𝑉 is defined as the set of all ordered pairs (𝑣𝑖 , 𝑣𝑗), where both 𝑣𝑖 and 𝑣𝑗  are ele-

ments of 𝑉. Formally, this is expressed as 𝑉 × 𝑉 = {(𝑣𝑖 , 𝑣𝑗), 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉. In graph theory, this 

indicates that E, the set of edges, is a subset of all possible ordered pairs of vertices from 

V. Each edge (𝑣𝑖 , 𝑣𝑗) in E represents a connection from vertex 𝑣𝑖 to vertex 𝑣𝑗. This frame-

work is fundamental in defining the structure of directed graphs, where the direction of 

the edge is significant. 𝑊𝐸 is a function that assigns the weights (i.e., the path length) to 

each edge in E. Depending on the context, these weights can represent various attributes, 

such as distances. The edges denote the physical distance between two points, essential in 

applications such as GPS navigation and logistics. The weights may represent the cost or 

resource requirements associated with traversing an edge, aiding in optimising routes to 

minimise cost. Capacities indicate the maximum flow between the nodes, which is crucial 

in network design and traffic management. This notation is valuable in problems involv-

ing weighted graphs, such as finding the shortest path [7,9,18,19]. Edges join all pairs of 

mutually visible nodes and the edges of the obstacles [19]. Edges exist between two verti-

ces when there is a direct line of sight between them, meaning that the line connecting the 

vertices does not intersect any obstacle. VGs provide a representation of the environment 

that helps identify robots’ obstacle-free paths [20]. The weights of an edge represent the 

Euclidean distances between the vertices [21]. Hence, based on the problem’s 
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requirements, it is essential that the VG covers connectivity effectively to avoid a collision 

and calculates the best path (i.e., the shortest and safest) for the robots [22,13]. Connectiv-

ity is critical for a multi-robot team to coordinate and execute complex missions efficiently 

[10]. Algebraic connectivity ensures that the multi-robot system remains well-connected 

during motions, facilitating communication and coordination. Dijkstra’s algorithm finds 

each robot’s shortest path while adhering to the connectivity constraints. This optimisa-

tion balances between minimising the path lengths and maintaining robust communica-

tion among robots [10]. 

This study’s contributions include a novel integration of the VG and algebraic con-

nectivity, a communication–path optimisation strategy using Dijkstra’s algorithm, and an 

evaluation of the proposed methods in static 2D environments. The contributions also in-

clude a new path adjustment method based on algebraic connectivity for maintaining 

strong communication while optimising path lengths (i.e., an optimisation framework 

that balances path length and network robustness), which addresses the limitations of 

earlier approaches in connectivity maintenance and path efficiency. Combining the VG 

with algebraic connectivity enhances multi-robot systems by ensuring robust communi-

cation and efficient path planning throughout the mission. Our method simultaneously 

optimises path length and communication robustness. This has made it more effective 

where communication between robots is critical, especially in cooperative tasks. Connec-

tivity indicates a more resilient network capable of withstanding individual robot failures 

without losing overall connectivity. Therefore, enhancing algebraic connectivity strength-

ens the communication network, ensuring the robots remain connected during opera-

tions. In the following sections, the related theory is explained, the study’s methodology 

is described, and the results are discussed. 

2. Related Theory 

In this section, the theoretical concepts related to the study are explained. 

2.1. Overview of Multirobot Path Planning Algorithms 

Considering a multi-robot environment, which has a limited, finite communication 

range (R) and is modelled as an undirected weighted graph 𝐺 =  (𝑉, 𝐸, 𝑊𝐸), the follow-

ing is defined: 

• 𝑉 = {1, … , 𝑛} is the set of vertices representing the n robots. 

• 𝐸 ⊆  {𝑉 × 𝑉 } is the set of edges representing paths between the vertices, where 𝑒𝑖𝑗, 

 𝑖 ≠ 𝑗, exists between the vertices if robot 𝑛 (Rn) interacts with robot m (Rm); this means 

the two robots can communicate only if they are within the communication distance 

of each other; in addition, the presence of the edge 𝑒𝑖𝑗  refers to the presence of the 

edge 𝑒𝑗𝑖. Therefore, 𝑒𝑖𝑗=𝑒𝑗𝑖 signifies that the edge is mutual and directionless. This 

characteristic is fundamental to undirected graphs, where edges do not have a spe-

cific direction. 

• 𝑊𝐸  is a function that assigns the weight (length path) to each edge in E. 𝑊𝐸 =

{𝑤𝑖𝑗  | (𝑖, 𝑗)  ∈  𝑉 ×  𝑉} is a set of weights, such that 𝑤𝑖𝑗 =  0, if (𝑖, 𝑗)  ∉  𝐸, and 𝑤𝑖𝑗  >

 0 otherwise. 

If we consider a team of n robots, the set of neighbours of the ith robot can be defined 

as  𝑛𝑖  =  { 𝑗 ∈  𝑉 , 𝑗 ≠  𝑖 |𝑒𝑖,𝑗  ∈  𝐸} , all the robots that can communicate with it. Hence, 

each robot is assumed to be able to interchange data with its neighbours [10,23]. A method 

to represent such an undirected weighted graph is using the Laplacian graph and its al-

gebraic connectivity as an indicator of the system’s connectivity. Algebraic connectivity is 

defined as the second smallest eigenvalue (𝜆2(𝐿)) of the graph Laplacian. Let the graph 

Laplacian 𝐿 ∈  𝑅𝑛×𝑛 be the weighted matrix which combines the adjacency (A) and the 
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degree matrix (D). Here  𝑤𝑖𝑗 ∈   𝑅𝑛×𝑛 is the weight function, which can be seen as a func-

tion of the distance between robots i and j.  𝜆2  is called the algebraic connectivity value 

of the system. The value of the algebraic connectivity is zero (𝜆2 = 0) if the graph has dis-

connected components, i.e., no paths between the vertices or two disconnected compo-

nents [24,25]. If 𝜆2 is very small, it means the graph is nearly disconnected. Non-zero con-

nectivity refers to a path between every pair of vertices (robots in the system) in the graph. 

A higher algebraic connectivity signifies a more robust and well-connected graph with 

many edges, i.e., the value of 𝜆2 ranges between 0 and the number of vertices (N). In ad-

dition, connectivity refers to the number of vertices in the graph if the graph is completely 

connected. Thus, the maximum value of  𝜆2 = 𝑁, and it is obtained when the entries (𝑖, 𝑗) 

of the adjacency matrix are all equal to 1, which means all possible edges are present in it 

[10,23]. 

2.2. Algebraic Connectivity for Communication of Multi-Robot Systems 

The second smallest eigenvalue (𝜆2) is indicated as a constraint to maintain commu-

nication during the motion. It ensures the robots remain well-connected for communica-

tion or coordination during their tasks. This is critical in scenarios where the robots need 

to share information or collaborate to perform tasks. The term 𝜆2  is a function of the 

whole system’s state. It is an important parameter that affects the performance and ro-

bustness properties of dynamical systems working over an information network [23]. Al-

gebraic connectivity maintains connectivity and enables them to execute tasks while main-

taining connectivity within the system. Connectivity is managed by strategically adding 

edges that optimise the network’s structure to maintain robust communication within the 

system. This involves measuring the second smallest eigenvalue of the Laplacian matrix, 

known as the algebraic connectivity, and iteratively adjusting path calculations to ensure 

𝜆2 remains high. A higher algebraic connectivity signifies a more resilient network capa-

ble of withstanding individual node failures without losing overall connectivity. By fo-

cusing on this metric, the system enhances communication robustness while minimising 

path lengths [23–25]. Hence, this enables the robots to obtain complete information about 

the surroundings of the workspace environment to avoid collision and find the best safe 

paths. The weights of the edges control the motion time of robots, where the edges’ 

weights are functions of the inter-robot distances. Consequently, these weights can di-

rectly influence the time taken for a robot to move along a particular path. In robotics, 

motion time refers to the time for a robot to traverse from one location to another within 

the network. For example, edge weights are determined by inter-robot distances; a greater 

distance (and thus a higher edge weight) would typically correspond to a longer motion 

time for robots. This relationship is crucial in optimising robots’ trajectories to ensure ef-

ficient movement and coordination within the system, and it is essential for effective mo-

tion planning and coordination in multi-robot systems [10]. 

We assumed that the obstacles in the workspace environment were convex and static 

and that the distance between any two obstacles was greater than the size of the robots. 

The MRPP algorithm for 2D static environments has broad applications. One of the main 

contributions of this work is leveraging algebraic connectivity to maintain robust commu-

nication during motion planning. Establishing robustness under static environments is 

necessary before dealing with dynamic environments. Static environments provide a con-

trolled framework to validate the principles of the concepts, especially path optimality 

and algebraic connectivity. However, the discussion section outlines techniques to incor-

porate dynamic obstacles into the algorithm. 

We considered two types of collisions: (i) collisions between an obstacle and a robot 

and (ii) inter-robot collisions (i.e., collisions between two robots). Each robot could deter-

mine the presence of an obstacle and measure its relative location and the distance from 
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its boundary within the communication range. Therefore, the aim was to solve the prob-

lem of a team of multi-robots, which began from the first configuration where the team 

was connected (𝜆2 > 0), maintaining connectivity whilst being controlled to avoid colli-

sions until reaching the target configuration. A collision avoidance mechanism was exe-

cuted that prevented robots from colliding with each other. Their communication was 

defined based on the weights of the edges (which determined the quality of the commu-

nication links between the robots), and when 𝜆2 was non-zero, whilst every robot tracked 

its paths to reach its goal location [10,23]. In addition, during the path planning, the 

weights (𝑤𝑖) of the vertices changed and became equal to the moments at which the robot 

(𝑅) passed through these vertices [9]. Therefore, 

 𝑤𝑗  = {
𝑤𝑖 + 𝑤𝑖𝑗 , if (𝑤𝑖 + 𝑤𝑖𝑗) < 𝑤𝑗

           𝑤𝑗 , if (𝑤𝑖 + 𝑤𝑖𝑗) ≥ 𝑤𝑗
  (1) 

where 𝑤𝑖   is the vertex weight, and 𝑤𝑖𝑗 = 𝑒𝑖𝑗    is the edge weight (i.e., the distance be-

tween vertex 𝑣𝑖   and vertex  𝑣𝑗). 

2.3. Collision Avoidance 

To provide collision avoidance, the weights of the edges can be modified during path 

planning, either by path correction, where a robot is not allowed to move on the edge that 

is occupied by another robot, or through controlling the robot’s motion time on some 

edges by controlling the distances between the vertices to free up the paths for other ro-

bots, the paths of which are planned earlier [9]. This means the increased time for the 

robots to traverse the graph edge from vertex 𝑣𝑗. Thus, we have two principal conditions 

that need consideration for path correction and controlling robot motion time to avoid a 

collision. First, two robots cannot cross paths simultaneously on the same vertex of a 

graph. Thus, if this happens, to prevent collisions, let 𝑇𝑅𝑛
 be the arrival time (i.e., the time 

when the robot  passes through vertex  𝑣𝑖  ) and  𝑅𝑛   be nth robots (n = 1,2,…,p, where p 

represents the number of robots). 𝑇𝑅𝑛
 is expressed as follows: 

      𝑇𝑅𝑛
= 𝑤𝑖 + 𝑤𝑖𝑗  (2) 

The travel time between vertices 𝑣𝑖   and 𝑣𝑗  is represented by  𝑤𝑖𝑗 . This formula-

tion is commonly used in multi-robot path planning and scheduling to ensure coordinated 

movements and avoid collisions. 

We assumed that 𝜖 > 0 is the minimum value of safe distance to ensure collision-

free motions. Then,  𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝜖 must provide a safe passage for the robots when cross-

ing the crossroads through increased weight edge (distance) on the graph from vertex 𝑣𝑖 

to vertex 𝑣𝑗 to increase the motion time of the robot on a graph edge by 𝜖 time units, 

corresponding to its motion time change. By other means, ϵ is a small increment, the unit 

of which is typically meters, or the relevant unit of distance measurement used within the 

system. By incorporating 𝜖 into the edge weights of the graph, the weights are iteratively 

adjusted to avoid collisions between the robots by incrementing ϵ to obtain optimal 

weights that improve their performance on the given tasks. This adjustment effectively 

increases the perceived distance between vertices 𝑣𝑖  and 𝑣𝑗 , discouraging the robots 

from occupying the same intersection simultaneously and thereby reducing the risk of 

collisions. Therefore, 𝜖 is a safety value from which two robots will not collide, and the 

weight (𝑤𝑗)  of vertex 𝑣𝑗 is calculated according to Equation (1). It is not permissible for 

any two robots to move together on the same edge in opposite directions. Therefore, if 

any two robots are moving in opposite directions on the graph edge (straight paths) at the 

same time, then the following is true: 

(𝑤𝑖  >  𝑇𝑅𝑛𝑖
) ^ [(𝑤𝑖 +  𝑤𝑖𝑗  )  >  𝑇𝑅𝑛𝑖𝑗

],  then 𝑇𝑅𝑚
> 𝑇𝑅𝑛

 (3) 
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The operation of Equation (3) is elaborated next. Given mth robot ( 𝑅𝑚) and nth robot 

( 𝑅𝑛), the (𝑤𝑖  >  𝑇𝑅𝑛𝑖
) ^ [(𝑤𝑖 +  𝑤𝑖𝑗  )  >  𝑇𝑅𝑛𝑖𝑗

] part in Equation (3) implies that two condi-

tions need to be simultaneously satisfied (the symbol ^ denotes the “AND” operation). 

Equation (3) defines a safety condition for motion planning between two robots that might 

attempt to traverse the same edge, possibly in opposite directions, but do not collide. 

The implication  𝑇𝑅𝑚
> 𝑇𝑅𝑛

 confirms that  𝑇𝑅𝑚
 arrives after 𝑇𝑅𝑛

, and thus no collision 

occurs. Because the motion is already safe, no adjustment to edge weight 𝑤𝑖𝑗  is needed. 

Since the path remains valid, the vertex cost 𝑤𝑗  can be calculated according to Equation 

(1). 𝑇𝑅𝑛
 depends on the distance (𝑑𝑖𝑗 = 𝑤𝑖𝑗) between the edges of the graph. If  𝑇𝑅𝑚

>

𝑇𝑅𝑛
 , this means the distance travelled by 𝑅𝑚 is more than the distance travelled by 𝑅𝑛, 

hence the arrival time of 𝑅𝑚  is  greater than the arrival time of 𝑅𝑛 [8]. Note that this is 

not an obstacle edge. It is a traversable edge in the graph that another robot may tempo-

rarily occupy. Obstacle edges are permanently blocked, whereas this edge is available 

based on timing. 

On the other hand, Equation (4) detects a potential collision between two robots 𝑅𝑚 

and 𝑅𝑛 that may use the same edge of the graph in sequence: 

       𝑇𝑅𝑚
< 𝑇𝑅𝑛

^[𝑇𝑅𝑚
≤

𝑤𝑖(𝑇𝑅𝑛−𝑇𝑅𝑚)  − 𝑤𝑖 ×𝑇𝑅𝑚×𝑤𝑖𝑗

𝑇𝑅𝑛−𝑇𝑅𝑚−𝑤𝑖𝑗
≤ 𝑇𝑅𝑛

] (4) 

In this scenario, a collision occurs because  𝑅𝑛, whose path is being planned, follows 

𝑅𝑚 on the edge and collides with it due to the distance travelled by it being too short. To 

avoid a collision, it is essential to modify the edge weight of the current robot (i.e., reduce 

the movement of the robot whose path is being calculated). This means increasing its ar-

rival time by increasing the distance in this edge as follows: 

 𝑤𝑖𝑗 =
(𝑤𝑖 −  𝑇𝑅𝑛

− 𝜖)(𝑇𝑅𝑛
−  𝑇𝑅𝑚

)

𝑇𝑅𝑛  − 𝑇𝑅𝑚 − 𝜖
 (5) 

This shifts 𝑅𝑛’s trajectory to maintain safe temporal separation from 𝑅𝑚. Then, the vertex 

weight 𝑤𝑗   is defined as in Equation (1). In addition, if 

 (𝑤𝑖  <  𝑇𝑅𝑛𝑖
) ^ [(𝑤𝑖 + 𝑤𝑖𝑗)  <  𝑇𝑅𝑛𝑖𝑗

],  then 𝑇𝑅𝑛
> 𝑇𝑅𝑚

 (6) 

This occurs when two robots move in opposite directions, and 𝑅𝑚, whose path is being 

planned, crosses through the edge before 𝑅𝑛; no collision will occur. Thus. the weight of 

the edge does not need to change. The weight of the next vertex 𝑤𝑗  is calculated as in 

Equation (1). In contrast, if: 

 𝑇𝑅𝑛
< 𝑇𝑅𝑚 ^ [𝑇𝑅𝑛

≤
𝑤𝑖(𝑇𝑅𝑚− 𝑇𝑅𝑛) − 𝑇𝑅𝑛× 𝑤𝑖𝑗

𝑇𝑅𝑚 − 𝑇𝑅𝑛 −  𝑤𝑖𝑗
≤ 𝑇𝑅𝑚

], (7) 

a collision is possible when robot 𝑅𝑛 follows robot 𝑅𝑚, whose path is being planned, and 

collides with it on the edge [9]. To avoid a collision, it is essential to modify the edge 

weight of the current robot (i.e., change the arrival time through increasing the distance) 

according to Equation (5), and then the vertex weight (𝑤𝑗)  is defined as in Equation (1). 

In addition, if: 

(𝑤𝑖  <  𝑇𝑅𝑛𝑖
) ^ [(𝑤𝑖 + 𝑤𝑖𝑗)  >  𝑇𝑅𝑛𝑖𝑗

], (𝑖 =  1, 2, … , 𝑛), then  𝑇𝑅𝑛
< 𝑇𝑅𝑚

 (8) 

A collision is possible when 𝑅𝑛 follows and collides with  𝑅𝑚, whose path is being 

planned, before the crossroads [9]. To avoid a collision, the arrival time of the current 

robot must be increased. So, the edge weight must be changed based on Equation (5), and 

then the vertex weight (𝑤𝑗) is calculated as in Equation (1). 

3. Materials and Methods 

In this section, the procedures followed to obtain the results are described. 
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3.1. Operation of a Mult-Robot Path Planning Algorithm  

To address the motion planning problem for a multi-robot system and find a colli-

sion-free optimal path, the algorithm based on the VG method is proposed. The algorithm 

consists of the main tasks (i)–(vi): 

i. Establish a free workspace map. 

ii. The algorithm defines each robot’s starting position (𝑠𝑖) and goal positions (𝑔𝑖) and 

the number and locations of obstacles. 

iii. All obstacles in the map are modelled as polygons to facilitate efficient and accurate 

pathfinding. A polygon also allows the creation of visibility graphs where the verti-

ces represent the obstacle corners, and the edges denote direct lines of sight between 

them. This framework is essential for determining the shortest collision-free paths. 

Polygonal obstacle modelling aids in expanding the obstacles appropriately to ac-

count for the robot’s size. This process ensures that path planning algorithms con-

sider the robot’s physical footprint, preventing collisions. In addition, robotic sys-

tems can effectively navigate complex environments, ensuring accurate and efficient 

movement, while avoiding collisions. The algorithm analyses the position of each 

obstacle’s vertices. The robots’ start and goal positions are known relative to the ob-

stacles in the surrounding environment. Each robot is considered a dynamic obstacle. 

iv. Using the constructed free space and VG algorithm, the robots can navigate without 

colliding with obstacles. 

v. The workspace environment is divided into two disconnected components of undi-

rected weighted graphs. Then, the best edges are chosen to add between these two 

graph components to find the paths for each robot, based on the measured values of 

algebraic connectivity of the graph Laplacian, which controls the inter-robot connec-

tivity when it is unequal to zero. 

vi. When planning a path for a robot, its vertex weight is changed just as in the single-

robot path planning algorithm. The weights of the vertices of the graph are initialised 

with the maximum possible value, i.e., infinity (∞), whilst the start time value initial-

ises the start vertex (𝑠𝑖 = 𝑤0 =  𝑡0). According to the known edge weights, Dijkstra’s 

algorithm is applied to find the shortest path based on the cost corresponding to each 

edge (distance between the vertices), where the shortest path is the path with the 

minimum length. Therefore, it is required to find a vertex sequence (series way-

points), which denotes the shortest path from the starting point to the goal point. If 

Dijkstra’s algorithm finds the shortest paths, the robot’s path can be changed based 

on the distance, corresponding to the environment model correction. The MRPP al-

gorithm is described as follows: 

Inputs: start positions (𝑠𝑖), goal positions (𝑔𝑖), polygonal obstacles (𝑂𝑖). 

Outputs: visibility graph (VG), optimal paths from 𝑠𝑖 to 𝑔𝑖. 

i. Establish a free workspace map. 

ii. Determine each robot’s 𝑠𝑖  and 𝑔𝑖  positions and the number of obstacles and their lo-

cations. 

iii. Divide the workspace environment into two disconnected components of undirected 

weighted graphs {𝐺1, 𝐺2}. 

iv. Select the best edges (𝑤𝑖𝑗, where i and j represent the edges between two vertices) to 

add between these two components of the graph {𝐺1, 𝐺2}  based on the measured 

value of the algebraic connectivity of the graph Laplacian (𝜆2). 

v. Create the VG. 

vi. Find a vertex sequence (series waypoints) from 𝑠𝑖  to 𝑔𝑖   by using Dijkstra’s algo-

rithm, which denotes the shortest paths. 
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vii. End: path is calculated,  �̂� = {𝑤𝑖 = 𝑤0, … , 𝑤𝑛, 𝑖 = 1, … , 𝑛},  where 𝑤0  = start point 

and 𝑤𝑛 = goal point. 

The operations of the MRPP algorithm are also illustrated in Figure 1. 

 

Figure 1. The operation of the MRPP algorithm. 

The key objective of the MRPP algorithm is to find optimal paths for all robots by 

minimising the path length. It maintains λ2 of the communication graph at a high level to 

ensure the multi-robot system remains connected during the motion and provides colli-

sion avoidance. 

3.2. Procedure to Implement the MRPP Algorithm 

The MRPP algorithm was implemented using the following steps: 

i. Create a VG for the environment, including all the start and goal positions of the 

robots. Each robot can be represented as a vertex, and edges exist between the robots. 

The edges (connections) between these vertices refer to the corresponding robots, are 

within a certain communication range, and can directly exchange information. 

ii. Evaluate connectivity by calculating 𝜆2 and define the communication or interaction 

graph between the robots. The Laplacian matrix L of this graph is constructed, and 

its eigenvalues are determined (𝜆2). Higher algebraic connectivity implies that the 

robots are well-connected, meaning the communication graph is robust to disconnec-

tion for coordinated motion. 

iii. Carry out an initial path planning by using Dijkstra’s algorithm to find each robot’s 

shortest path from start to finish. 

3.3. Description of the Optimisation Process 

During a motion planning process, the algorithm selects paths for the robots that 

minimise their travel distance and ensures that each robot network’s algebraic connectiv-

ity is improved and maintained [24]. The optimisation process involves calculating the 

paths and connectivity at each step as outlined by the steps below. 
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i. If 𝜆2 is small, indicating a weaker network connectivity, the paths can be adjusted to 

improve connectivity. Robots’ paths can be altered to keep them within the commu-

nication range of others. This may involve adding edges to maximise or maintain a 

high level of algebraic connectivity, thereby strengthening the network’s resilience to 

disconnections. The objective of adding edges is to increase robot proximity, increase 

𝜆2, improve connectivity, and ensure the communication graph remains connected. 

ii. Run Dijkstra’s algorithm on the VG for each robot to find the shortest initial paths. 

iii. Repeat the above operations until optimal path lengths are obtained for all the robots 

to reach their targets while maintaining communication. 

4. Results 

The key aim of optimisation is minimising the path length (the total distance trav-

elled by the robots) while maintaining a minimum level of connectivity in the communi-

cation graph. To illustrate how the algorithm operated, a scenario comprising six obstacles 

was considered as shown in Figure 2. The robots are R1–R3, and the associated goals are 

g1–g3. 

 

Figure 2. Scenario of a workspace: R1, R2, and R3 are robots (shown in red); g1, g2 and g3 are the 

corresponding goals (shown in green), and the polygons are the obstacles (shown in blue). 

The workspace scenario depicted in Figure 2 is represented as an undirected 

weighted graph in Figure 3. In this figure, the vertices correspond to specific locations or 

points within the workspace, and the edges represent the possible paths connecting these 

points. The weights assigned to each edge indicate the cost or distance associated with 

traversing that path, facilitating the analysis and optimisation of movements within the 

workspace. 
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Figure 3. Workspace represented as a weighted graph. The weights of the edges indicate the dis-

tance associated with traversing the paths. Vertices 1, 3 and 28 are the positions of robots. The posi-

tions of the goals are 2, 29 and 30. The remaining vertices are vertices of obstacles. 

In this scenario, there are three robots and three goals. The workspace is divided into 

two disconnected components of an undirected weighted graph using a VG, such as in 

Figure 4. 

 

Figure 4. Example of two disconnected components of an undirected weighted graph. 
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The graph 𝐺 = (𝑉𝑖 , 𝐸𝑗) in Figure 3 consists of vertices 𝑉 = {𝑣1, . . , 𝑣30} marked from 

𝑆𝑖 =(𝑣1 = 𝑅1 ,  𝑣28 = 𝑅2 ,  𝑣3 =  𝑅3)  to  ( 𝑔1 = 𝑣30,  𝑔2 =  𝑣2,  𝑔3 =  𝑣29),  and E = {𝑒1, … , 𝑒69 .. 

There are six polygonal obstacles (𝑂𝑖  , 1 ≤ 𝑖 ≤ 6). Each robot has an initial position (𝑠𝑖) 

and the goal position (𝑔𝑖). Here, there are three goals for the three robots. The second 

smallest eigenvalue of the graph in Figure 2 has zero value, i.e., ( 𝜆 2 = 0 ), which means 

the graph is disconnected. The robots ( 𝑅1 = 𝑣1,  𝑅2 = 𝑣28, R3 = 𝑣3) exist in the first com-

ponent that contains vertices {𝑣1, 𝑣3, 𝑣7,  𝑣9,,  𝑣11, 𝑣13,  𝑣15,,  𝑣17, 𝑣19, 𝑣28, 𝑣29} , where ver-

tex ( 𝑣29 = 𝑔3,) is a goal for  𝑅3. Subsequently, 𝑅3 can find a way to reach its target 𝑅3 →

𝑣4 → 𝑣7 → 𝑣29, but  𝑅1  and  𝑅2 do not have paths to reach their targets. The second com-

ponent contains vertices 

{𝑣2,  𝑣4, 𝑣5,  𝑣6,,  𝑣8, 𝑣10,  𝑣12,, 𝑣14,  𝑣16,,  𝑣18,  𝑣20,, 𝑣21,  𝑣22,,  𝑣23, 𝑣24,, 𝑣25,  𝑣26,, 𝑣27, 𝑣30};  vertices 

(𝑣30 = 𝑔1,  𝑣2 = 𝑔2 
) are goals for  𝑅1 and  𝑅2, respectively. When an edge was added be-

tween the vertices 𝑣6 and  𝑣14 ,  𝜆 2 increased to 0.087, and this enabled 𝑅1 = 𝑣1 to find 

a path to reach its target (𝑔1 = 𝑣30 ), whereas if two edges were added, (𝑣8, 𝑣10) 

and (𝑣8, 𝑣17),  𝜆 2 increased to 0.181, which allowed 𝑅3 (𝑅3 = 𝑣3) to find the most suita-

ble path to reach its target (𝑣29 = 𝑔3 ). Furthermore, when the three edges were together 

{(𝑣2, 𝑣10), (𝑣8, 𝑣20), (𝑣2𝑜, 𝑣28).,  𝜆 2 increased to 0.347, and R2  (𝑅2 = 𝑣28) found a path to 

reach its goal (𝑔2 = 𝑣2). When all possible paths were added between the vertices of the 

graph, the second smallest eigenvalue increased, and robust connectivity was created in 

the graph, where 𝜆2 = 6.380. The shortest safe paths were found using Dijkstra’s algo-

rithm, as shown in Figure 5. The shortest paths for the three robots using Dijkstra’s algo-

rithm are shown in Figure 6. 

 

Figure 5. The shortest paths for the three robots using Dijkstra’s algorithm. The numbers next to the 

links are the weights. The blue circles are the vertices of the obstacles. 
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Figure 6. The shortest paths of the three robots shown in Figure 5 determined using Dijkstra’s algo-

rithm. The paths for robots 1, 2 and 3 are shown in yellow, red and green respectively. The red and 

green circles are robots and their goals respectively.   

The MRPP algorithm planned the path for each robot based on a specific sequence or 

priority, i.e., the first path for 𝑅1, the second path for 𝑅3, and the third (last) path for 𝑅2. 

There was an intersection (crossroad) between the paths of 𝑅1 and 𝑅3 and opposite di-

rections on the graph edges (straight roads) between the paths of 𝑅3 and 𝑅2. However, 

no collision occurred as the algorithm planned a path for each robot sequentially (one by 

one). Hence, when planning the following path, it considers all the paths that have already 

been scheduled to prevent collisions and keep 𝜆2 > 0. There was a crossroad when 𝑅1 

passed the edge  (𝑣6, 𝑣14) and 𝑅3 passed the edge  (𝑣10, 𝑣8), but no collision occurred as 

𝑅1  passed before 𝑅3 . The arrival time (𝑇𝑅𝑛
= 𝑤𝑖 + 𝑤𝑖𝑗  )  of 𝑅1  when passing the vertex 

(𝑣6 )  was  𝑇𝑅1
= 𝑤1 + 𝑤(1,6) = 2; once passing the vertex (𝑣14 ), it was  𝑇𝑅1

= 𝑤6 + 𝑤(6,14) =

4; whereas the arrival time of 𝑅3 when passing the vertex (𝑣10 ) was 𝑇𝑅3
= 𝑤3 + 𝑤(3,10) =

4 ; when passing the vertex ( 𝑣8 )—  𝑇𝑅3
= 𝑤10 + 𝑤(10,8) = 7.  Consequently, 𝑇𝑅1

<

𝑇𝑅3
 , which means that the arrival time of 𝑅1 to the vertex 𝑣14  was shorter than the arrival 

time of 𝑅3 to the vertex 𝑣8 , because the distance (edge weight) that 𝑅1  travelled to pass 

the vertex 𝑣6 =  2  was less than the distance (edge weight) that 𝑅3 travelled to pass the 

vertex 𝑣10 = 4 ; thus, when 𝑅1  arrived at the vertex 𝑣14 = 4 , 𝑅3  arrived at the vertex 

𝑣10 ; for this reason, no collision occurred, and a change of the edge weight was not neces-

sary. If   𝑇𝑅1
> 𝑇𝑅3

, then a collision would be possible (i.e., if the arrival time of 𝑅1 on the 

vertex 𝑣6 = 4, then the change of the edge weight is necessary to avoid a collision). In 

addition, there were opposite directions (straight paths) on the edge (𝑣8, 𝑣10) between 

 𝑅3   and 𝑅2 . 𝑅3  passed the edge earlier than the 𝑅2 , where  𝑇𝑅3
= {(𝑤10 + 𝑤10,8) =

( 4 + 3) = 7} and 𝑇𝑅2
= {(𝑤8 + 𝑤8,10) = (9 + 3) = 12}. Thus, the arrival time of 𝑅3 once 
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it passed the edge (𝑣8, 𝑣10) was shorter than the arrival time of 𝑅2 as the distance that 

𝑅3 had passed to arrive at the vertex (𝑣8 = 7) was less than the distance that 𝑅2 trav-

elled to pass the vertex 𝑣8 = 9 . Thus, (𝑤8 < 𝑇𝑅2
) ∧ ( 𝑤10 + 𝑤(10,8) < 𝑇𝑅2

), then 𝑇𝑅2
> 𝑇𝑅3

 . 

In addition, there was a crossroad on the vertex 𝑣8 , where 𝑇𝑅3
= 𝑤10 + 𝑤10,8 = 7 , and 

𝑇𝑅2
= 𝑤21 + 𝑤21,8 = 9; hence, 𝑇𝑅3

<  𝑇𝑅2
, i.e., the arrival time of 𝑅3 to the vertex 𝑣8 was 

before 𝑅2. Accordingly, there was no need to change the edge weight since no collision 

occurred. If 𝑇𝑅3
> 𝑇𝑅2

, then the collision happens, so the change of the edge weight is nec-

essary to avoid a collision. 

4.1. MRPP Algorithm-Based Prioritisation Sequence 

MRPP algorithm determines the path for each robot based on a defined prioritisation 

sequence that considers performance criteria: path length, computation time, and connec-

tivity robustness. Robots are prioritised according to the λ2 value and the weights of pre-

defined edges, reflecting structural importance and potential communication links. This 

sequence ensures that connectivity is maintained and enhanced, reliable inter-robot com-

munication is maintained, and collisions are avoided during coordinated navigation. 

4.2. Comparative Analysis of Multiple Planning Sequences 

This study compared distinct path planning sequences to evaluate how different ro-

bot prioritisation sequences affect performance in the MRPP algorithm. The analysis in-

cluded total path length and the impact of λ2 on connectivity, reflecting the inter-robot 

communication robustness. In the scenario shown in Figure 4 and Table 1, 𝑅3 found a 

path to its target (𝑅3 →  𝑣4 →  𝑣7 → 𝑣29), with a total distance of 20 m, but 𝜆2 =  0, indi-

cating the graph was disconnected. If we added a bridge (edge) between (𝑣 28,  𝑣20), the 

new path for 𝑅2 would be (𝑣 28 →  𝑣20 →  𝑣16 →  𝑣24  →  𝑣18 →  𝑣2), with a total distance 

of 31 m. This would improve graph connectivity to 𝜆2 = 0.038, simultaneously forming a 

weak link graph. Additionally, adding a bridge between (𝑣5 , 𝑣27 ) would allow 𝑅1  to 

reach its goal via (𝑣 1 →  𝑣5  →  𝑣 27 →  𝑣30), with 32 m and 𝜆2  =  0.04, meaning the graph 

would be nearly disconnected. This clearly shows the planning order 𝑅3  →  𝑅2  →  𝑅1 , 

and how each robot’s path and graph connectivity evolved sequentially. 

Table 1. Path planning sequence and connectivity analysis. 

Robot Path Planning Total Distance (m) λ2 

R3 𝑣3 →  𝑣4 →  𝑣7 → 𝑣29 5 + 6 + 9 = 20 0.00 

R2 𝑣 28 →  𝑣20 →  𝑣16 →  𝑣24  →  𝑣18 →  𝑣2 11 + 4 + 7 + 6 + 3 = 31 0.038 

R1 𝑣 1 →  𝑣5  →  𝑣 27 →  𝑣30 11 + 9 + 12 = 32 0.040 

4.3. Multiple Planning Sequences Using the MRPP Algorithm  

As shown in Table 2, the MRPP algorithm recalculated the paths for optimisation, 

examined the best edges to add, and chose vertices (𝑣6, 𝑣14), with an increase of λ2 to 

0.087. This created a robust link between the components because vertices (𝑣6, 𝑣14) had 

more connections in their respective components, enabling 𝑅1 =  𝑣1  to find a path to 

reach its target: 𝑅1 → 𝑣6 → 𝑣14 → 𝑣25 → 𝑣18 → 𝑣24 → 𝑣30 , with a total distance of 18 m. 

Then, it chose to add edges between vertices {(𝑣8, 𝑣10), (𝑣8, 𝑣17). to find an optimal path for 

𝑅3 instead of the first path, while maintaining the communication graph at a high level. 

For 𝑅3, the new path was 𝑅3   =  𝑣3  →  𝑣10  →  𝑣 8 →  𝑣 17 →  𝑣13  →  𝑣29. With a total dis-

tance of 15 m, λ2 increased to 0.181. When the three edges were added together, 

{(𝑣2, 𝑣10), (𝑣8, 𝑣21), (𝑣21, 𝑣28)} increased to 0.347. Then, 𝑅2 =  𝑣28 found a path to reach its 

goal: 𝑅2 =  𝑣28 → 𝑣21 → 𝑣8 → 𝑣10 → 𝑣2 ,   with the total distance of 20 m. The MRPP 
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algorithm chose the first path for R1, the second for R3, and the third (last) path for R2 (i.e., 

R1 → R3 → R2) based on a specific sequence or priority. 

 

Table 2. Path planning sequence and connectivity analysis using the MRPP algorithm. 

Robot Path Planning Total Distance (m) λ2 

R1 𝑣1 → 𝑣6 → 𝑣14 → 𝑣25 → 𝑣18 → 𝑣24 → 𝑣30 2 + 2 + 3 + 2 + 4 + 5 = 18 0.087 

R3 𝑅3 → 𝑣10 → 𝑣8 → 𝑣17 → 𝑣13 → 𝑣29 4 + 3 + 5 + 2 + 1 = 15 0.181 

R2 𝑣28 → 𝑣21 → 𝑣8 → 𝑣10 → 𝑣2 3 + 6 + 3 + 8 = 20 0.347 

The comparative results show that the path planning order using the MRPP algo-

rithm impacted the total path length, distance, and robust connectivity, as evidenced by 

higher λ2 values and their impact on enhancing the robust connectivity. Although there 

was an intersection (crossroad) between the robots’ planned paths and opposite directions 

on the graph edges (straight roads), no collision occurred because the algorithm planned 

the paths based on the planning order. Choosing the correct sequence for robot path plan-

ning significantly impacted the team’s performance. This type of evaluation strengthens 

the reproducibility and robustness of the MRPP algorithm implementations in communi-

cation-sensitive multi-robot environments. 

4.4. Impact of Connectivity (λ2) on the Task Completion Time in the MRPP Algorithm 

In the MRPP algorithm framework, λ2 is a key indicator of the robustness and cohe-

siveness of the robots’ communication network. A higher λ2 means a stronger connectiv-

ity, which can significantly reduce delays caused by communication breakdowns, coordi-

nation conflicts, and replanning due to robot disconnections. In the earlier scenario (Fig-

ure 4), it was shown how improvements in λ2 affect the task completion time under the 

MRPP algorithm. Task completion time without connectivity optimisation resulted in λ2 

= 0, with optimisation—in λ2 > 0. As an illustration, two cases (for both cases, velocity = 1 

m/s) were compared: 

Case 1: without connectivity optimisation (λ2 = 0). Path: 𝑅3 →  𝑣4 →  𝑣7 → 𝑣29. Dis-

tance: 5 + 6 + 9 = 20 m. Time = 20 s. 

Improved edges (𝑣28,  𝑣20), (λ2 = 0.04). Path: R2: 𝑣 28 →  𝑣20 →  𝑣16 →  𝑣24  →  𝑣18 →

 𝑣2. Distance: 11 + 4 + 7 + 6 + 3 = 31 m. Time = 31 s. 

Improved edges (𝑣5,  𝑣27), (λ2 = 0.038). Path: R1: 𝑣 1 →  𝑣5  →  𝑣 27 →  𝑣30. Distance: 

11 + 9 + 12 = 32 m. Time = 32 s. 

Total system task time = maximum (R1,R2,R3) = 32 s, λ2 = 0.038 ⇒ weak connectivity 

→ less coordination, longer paths. 

Case 2: with connectivity optimisation. Improved edges (𝑣6, 𝑣14), (λ2 = 0.87). Path: 

R1: 𝑣1 → 𝑣6 → 𝑣14 → 𝑣25 → 𝑣18 → 𝑣24 → 𝑣30. Distance: 2 + 2 + 3 + 2 + 4 + 5 = 18 m. Time = 18 

s. 

Improved edges {(𝑣8, 𝑣10) and (𝑣8, 𝑣17., (λ2 = 0.181). Path: R3: v3 → v1₀ → v₈ → v1₇ → v13 

→ v2₉. Distance: 4 + 3 + 5 + 2 + 1 = 15 m. Time = 15 s. 

Improved edges: {(𝑣2, 𝑣10), (𝑣8, 𝑣21), (𝑣21, 𝑣28)  ., (λ2 = 0.347). Path: R2: 𝑣28 → 𝑣21 →

𝑣8 → 𝑣10 → 𝑣2. Distance: 3 + 6 + 3 + 8 = 20 m. Time = 20 s. 

Total system task time = maximum (R1,R2,R3) = 20 s. λ2 = 0.347 ⇒ stronger connectiv-

ity, shorter and more efficient paths. 

The percentage reduction in the navigation time was as follows: 

  %𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
𝐶𝑎𝑠𝑒 1 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 − 𝐶𝑎𝑠𝑒 2 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒

𝐶𝑎𝑠𝑒 1 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒
× 100 =

32 − 20

32
× 100 = 37.5% (9) 
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With a robust algebraic connectivity, path lengths reduced, and task completion time 

dropped significantly by about 37.5%. Communication improved, enabling coordinated, 

collision-free paths. This example demonstrates that the MRPP algorithm plans improved 

paths and leveraged λ2 to coordinate robots efficiently. 

To further illustrate the process, the workspace environment was changed (see Fig-

ure 7). 

 

Figure 7. A workspace environment containing three robots shown as red circles and three goals 

shown as green circles. 

To apply the MRPP algorithm, the workspace is represented as an undirected 

weighted graph, then divided into two disconnected components of an undirected 

weighted graph using a VG such as Figure 8. 

 

Figure 8. Two disconnected components of undirected weighted graphs consisting of the three ro-

bots marked as red vertices and the three goals marked as green vertices. 
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The graph 𝐺 = (𝑉𝑖 , 𝐸𝑗)  in Figure 8 consists of vertices  𝑉 = {𝑣1, . . , 𝑣32} , where the 

vertices 𝑣1,  𝑣31, and  𝑣24  represent the initial robot positions 𝑠𝑖   = (𝑅1 = 𝑣1,  𝑅2 =

𝑣31,  𝑅3 =  𝑣24) that are marked with red, while the vertices 𝑣19,  𝑣20, 𝑎𝑛𝑑  𝑣11 represent the 

goal positions ( 𝑔1 = 𝑣19, 𝑔2 = 𝑣20, 𝑔3, =  𝑣11)  that are shown as green; E = {𝑒1, … , 𝑒70 .; 

there are five polygonal obstacles ( 𝑂𝑖 , 1 ≤ 𝑖 ≤ 5). The second smallest eigenvalue of the 

graph has a zero value (λ2 = 0), because the graph has two disconnected components. 𝑅2 

has a path to reach its target, whilst 𝑅1  and  𝑅3 have their targets in the second compo-

nent of the undirected weighted graph. If an edge is added between vertex 𝑣10 and ver-

tex  𝑣15 , then  𝑅3 can find a path to reach its target 𝑔3, and 𝜆2 increases to 0.521. In addi-

tion, if we add edges (𝑣1, 𝑣8), (𝑣8, 𝑣17), and (𝑣17, 𝑣19), this enables 𝑅1 to find a path to 

reach its target 𝑔1, and 𝜆2 increases to 1.275. Additionally, when adding all the possible 

edges between the vertices of the graph, we created robust connectivity in the graph, and 

𝜆 2 increased to 2.855. The shortest paths were found using Dijkstra’s algorithm, as shown 

in Figures 9 and 10. 

 

Figure 9. The shortest paths for robot 1 highlighted in yellow, for robot 2—in green, and for robot 

3—in red (Dijkstra’s algorithm). 
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Figure 10. The shortest paths for the three robots according to Dijkstra’s algorithm. The red lines 

are the robots’ paths to reach their targets. 

Table 3 shows the calculated paths planned for each robot in Figures 9 and 10. The 

MRPP algorithm planned the first path for R3, the second path for R1, and the third path 

for R2. No collision occurred because the algorithm controlled the arrival time of each ro-

bot by holding the weight of the edge (distance) and keeping 𝜆2 > 0. 

Table 3. The calculated paths planned for each robot in Figures 9 and 10. 

Robot and Its Goal Shortest Path Total Distance (m) 

R1 to goal 1 R1 → 𝑣8 → 𝑣17 → 𝑣19 8 + 7 + 5 = 20 

R2 to goal 2 R2 → 𝑣13 → 𝑣5 → 𝑣20 6 + 9 + 3 = 18 

R3 to goal 3 R3 → 𝑣30 → 𝑣10 → 𝑣11 3 + 6 + 10 = 19 

4.5. Simulation Procedure 

This section introduces the simulation setup, parameters, and results of implement-

ing the MRPP algorithm. This algorithm leverages a VG for obstacle avoidance, algebraic 

connectivity to maintain communication cohesion, and Dijkstra’s algorithm for optimal 

pathfinding. 

Simulation environment: the path planning software simulations were conducted in 

a MATLAB/Simulink environment, version 2024 [26], leveraging custom VG generation 

and pathfinding scripts. All the required inputs were supplied to perform and complete 

the path planning process and followed a specific logical order. A 2D environment with 

static polygonal obstacles was devised, representing a workspace with dimensions of 18 

× 12 units, where each unit represented one square metre. The obstacles were defined as 

geometric shapes such as triangles, rectangles, squares, zigzag lines, etc., and the robots 

were modelled as points. 

Parameters: three robots (R1, R2, R3) appearing as three red points were selected. 

Three goals (g1, g2, g3) were represented by green points. The six randomly generated po-

lygonal obstacles (𝑂𝑖 , 1 ≤ 𝑖 ≤ 6) of varying sizes were highlighted in blue with different 

labels. Each robot was initialised at random start points and assigned unique goal posi-

tions. The algorithm’s effectiveness was evaluated in different scenarios with varying ob-

stacles and numbers of robots. The performance metrics included path optimality and 

connectivity maintenance. 
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Motion planning approach: each robot computed a visibility graph to represent pos-

sible paths around obstacles, connecting vertices (obstacles’ vertices and start and goal 

points) with edges representing collision-free paths. Dijkstra’s algorithm was applied to 

find the shortest route to the goal for each robot. Algebraic connectivity was constantly 

measured, ensuring all robots remained within the communication range. Adjustments 

were made to the paths when the connectivity 𝜆2 = 0 or very small. 

4.6. Results for the Simulation Scenarios 

Scenario 1: six obstacles, three robots marked red, and three goals marked green are 

shown in Figures 11 and 12. 

 

Figure 11. The workspace: R1, R2, and R3 (shown in red) are the robots; g1, g2, and g3 (shown in 

green) are the goals. The polygons are the obstacles (shown black). 

 

Figure 12. Workspace represented as a graph containing three robots represented as red vertices 

and three goals represented as green vertices. 
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In the first scenario, three robots were deployed, with the density of the six obstacles 

marked as blue. A VG was established, and each robot’s path was computed using Dijks-

tra’s algorithm. Connectivity was maintained throughout the simulation. All the robots 

successfully reached their goals as illustrated in Figure 13. 

 

Figure 13. Paths planned by the MRPP algorithm (red for R1, green for R2, and yellow for R3). Path 

1 for R1 = 1, 6, 14, 25, 18, 24, 30 (distance = 18 m), path 2 for R2 = 3, 10, 8, 17, 13, 29 (distance = 15 m), 

path 3 for R3 = 28, 21, 8, 10, 2 (distance = 20 m). 

The simulation results using MATLAB show that the robots reached their targets; the 

path of R1 is highlighted as yellow, the path of R2 is highlighted as green, and the path of 

R3 is highlighted as red, as shown in Figure 14. 
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Figure 14. Simulation for scenario 1, illustrating the robots reaching the goal points. The paths for 

robots R1, R2 and R3 are shown in yellow, green and red respectively. The red and green circles are 

robots and their goals respectively. 

Scenario 2: five obstacles, three robots highlighted as blue, and three goals high-

lighted as green, see Figures 15 and 16. 

 

Figure 15. Scenario 2 workspace environment consisting of three robots highlighted in blue and 

three goals highlighted as green, represented as a graph in Figure 16. 
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Figure 16. Workspace represented as a graph consisting of three robots represented as red vertices 

and three goals represented as green vertices. 

In scenario 2, three robots highlighted in blue navigated an environment with obsta-

cles to reach three goals highlighted in green. A VG was generated for each robot. Dijks-

tra’s algorithm was used to measure the distance for each robot. All the robots reached 

their targets while maintaining connectivity, as shown in Figure 17. 

 

Figure 17. Scenario 2: paths planned by the MRPP algorithm, highlighted as red, yellow, and green 

for each robot. Path 1 for R1 = 1, 8, 17, 19 (red, distance = 20 m), path 2 for R2 = 31, 13, 5, 20 (yellow, 

distance = 19 m), path 3 for R3 = 24, 30, 10, 11 (green, distance = 18 m). 
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The simulation results (Figure 18) shows that each robot reached its target without a 

collision. 

 

Figure 18. Simulation results for scenario 2. The green dots are the goals for the robots, and the red 

crosses are the waypoints. 

5. Discussion 

The proposed multi-robot motion planning approach was evaluated through exper-

iments using different environments with randomly placed obstacles and different robot 

configurations. The robots were assigned random start and goal locations, navigating 

through environments with varying obstacles. For each configuration, performance met-

rics included path length and the total distance that each robot travelled: 

• computation of path: calculating paths while maintaining connectivity; 

• algebraic connectivity: a measure of communication robustness among the robots; 

• success rate: robots reaching their targets without collisions or connectivity loss. 

These metrics align with previous studies such as [27], which emphasised path effi-

ciency, robustness, and connectivity in multi-robot systems. The proposed paths con-

tained two main components: a global planner and path optimisation. The global planner 

gathered information about the surrounding environment, such as the robot’s positions, 

targets, and obstacles. Depending on the path analysis, finding the path with minimum 

cost is necessary. When the optimal path was found with prior knowledge of the environ-

ment and static obstacles, a collision-free optimal path was created before the robots 

moved. A finding is that the proposed algorithm significantly improved the generation of 

efficient paths due to connectivity robustness, and the robots reached their goals reliably 

without collisions. 

In tests with three robots for connectivity maintenance, the MRPP algorithm effec-

tively determined paths by analysing all the possible routes and selecting the most suita-

ble one based on the algebraic connectivity measure and the predefined weight evaluation 

function, indicating adaptability. The algorithm planned a sequential path for each robot 

one by one (i.e., path by path), considering all the already planned paths to avoid 
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collisions. The MRPP algorithm provided each robot’s optimal (i.e., short-distance and 

safe) paths. The lengths and motion times of the paths were based on the planning order. 

The choice of the correct sequence for the path planning of the robots had a significant 

impact on the performance of the robot team. In the first workspace scenario, 𝑅3 had a 

path to reach its target (𝑅3 → 𝑣4 → 𝑣7 → 𝑣29), and the total distance was (20 m) (see Figure 

4). However, this path was not optimal and 𝜆2 = 0, meaning the graph was disconnected. 

Thus, for optimisation, the MRPP algorithm re-calculated the path and examined the two 

best edges (𝑣8, 𝑣10)  and (𝑣8, 𝑣17) to add between the graph components and measured 

algebraic connectivity. The algorithm found an optimal path for R3 instead of the first path 

while maintaining 𝜆2  of the communication graph at a high level (for R3, 𝑅3 → 𝑣3 →

𝑣10 → 𝑣8 → 𝑣17 → 𝑣13 → 𝑣29). The total distance was 15 m, and 𝜆2 increased to 0.181; see 

Figure 5. Accordingly, the MRPP algorithm chose a path for each robot to ensure that the 

robots remained connected while performing their tasks and avoid collisions. Ensuring 

connectivity among the robots throughout their paths proved effective with algebraic con-

nectivity. The system maintained an average algebraic connectivity value of 6.380 in Fig-

ure 4, indicating robust and consistent communication links due to recalculations that 

adaptively modified paths. This result is consistent with an earlier study [21], which 

demonstrated that multi-robot systems incorporating recalculation can effectively re-

spond to real-time changes in their environment. This supports prior work by [28], high-

lighting algebraic connectivity’s effectiveness in maintaining communication in multi-ro-

bot networks and where connectivity is essential for coordinated robot actions [29]. 

The results demonstrated the visibility graph’s ability to avoid obstacles effectively 

while ensuring direct paths. This aligns with an earlier finding that reported similar re-

sults when comparing visibility-based methods with grid-based path planning in clut-

tered environments [30]. The VG method considers obstacles’ vertices in the map to be the 

vertices through which robots can reach their required positions. It links the visible verti-

ces with each other, where the visible vertices are vertices with the property that a straight 

line (edge, path) connecting them does not intersect with any obstacles. Therefore, the 

calculated paths contain a set of waypoints (�̂�) with the shortest length. These waypoints 

are determined as a series of consecutive points that begin from the lowest number of the 

first point to the goal; the waypoints are given by �̂� = {𝑤0, … , 𝑤𝑛}, where 𝑤0 is the start-

ing point, and 𝑤𝑛 is the goal point. Hence, waypoints are a set of vertices of obstacles. For 

this reason, the paths have the least distances because they contain a set of waypoints, 

which are a set of vertices found by using VG with a combination of Dijkstra’s algorithm. 

These waypoints do not include the start points and the goal points, so they are always at 

specific vertices of obstacles. Thus, they can produce the shortest paths in terms of the 

Euclidean distance, where the essential condition is for a path to have a lower Euclidean 

distance from the starting point to the goal point in C-space, where each waypoint is a 

vertex of an obstacle. In robotics, the configuration space (often abbreviated as C-space) is 

a conceptual framework that represents all possible positions and orientations of a robot 

within its environment. 

The proposed algorithm provided an efficient and robust solution for multi-robot 

motion planning. The work showcased notable benefits in path optimality and connectiv-

ity, providing reliable routes. This makes it well-suited for environments where efficient 

path planning and dependable connectivity are essential [31]. Consequently, this method 

is more effective for applications that require continuous communication, such as collab-

orative robotics and autonomous logistics [32]. The simulation results also indicated that 

the proposed approach is practical for multi-robot motion planning in different environ-

ments. In comparison, the VG method with Dijkstra’s algorithm generates pathfinding 

and provides efficient optimal paths in pathfinding applications. This approach allows for 

the computation of the shortest paths that navigate around obstacles effectively [33]. In 
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addition, the connectivity constraints provided by algebraic connectivity enable a more 

resilient, robust communication framework, and it serves as an indicator of a network’s 

overall connectedness, facilitating better synchronisation and coordination among robots. 

This improvement in connectivity is valuable for applications requiring continuous com-

munication, such as coordinated robotic systems in automated warehouses [34,35]. Our 

approach exhibited clear advantages in optimal path efficiency and robust connectivity, 

potentially enabling faster, safer, and more efficient operations in real-world applications 

[36]. 

It is possible to extend the MRPP algorithm to function in environments with dy-

namic obstacles. This would involve regenerating the obstacles’ edges to ensure robots 

avoid their positions [37,38]. The edge weights based on precomputed static paths could 

be dynamically adjusted to reflect the dynamic environment. This would include increas-

ing edge weights in regions with high dynamic obstacle density and temporarily remov-

ing or reducing connectivity in areas that become impassable. Adjusting edge weights or 

restructuring the graph in response to environmental changes ensures the robot network 

remains connected and functional. In the MRPP algorithm, λ2 can still be employed in a 

dynamic environment; however, it should be recomputed periodically or maintained us-

ing distributed estimation techniques to adapt to the changes such as obstacle movements 

or communication disruptions [38]. The MRPP algorithm could include real-time replan-

ning capabilities, where robot paths are recalculated as dynamic obstacles move. Algo-

rithms such as D Lite or RRT (rapidly-exploring random trees) with replanning could be 

integrated to adapt trajectories while preserving global goals [39]. A future extension 

could incorporate spatiotemporal graphs and introduce time as an explicit dimension in 

path planning to predict and avoid dynamic obstacles, optimising both spatial and tem-

poral aspects of robot motion (e.g., crossing an area only when it is expected to be clear) 

[38]. 

In this study, the MRPP algorithm was designed for uniform-sized robots using vis-

ibility graphs, assuming the obstacle spacings were sufficient for the navigation of the 

robots. In some environments, however, the size of robots can vary. Incorporating these 

variations requires modifications in the MRPP algorithm to ensure collision-free naviga-

tion. These include (i) the MRPP algorithm inflating obstacles in the configuration space 

based on the size of each robot to account for robot dimensions [40], (ii) the MRPP algo-

rithm implementing priority adjustments where larger robots are prioritised in wider re-

gions while smaller robots are provided greater flexibility, which improves collision 

avoidance and execution time [41], and (iii) considering the developments in Foodiebot 

that include advanced obstacle avoidance mechanisms to facilitate navigation in dynamic 

environments. The MRPP algorithm can benefit from such adaptability, allowing robots 

to adjust their paths in response to unforeseen environmental obstacles or changes [42,43]. 

As the number of robots grows, the MRPP algorithm faces increased graph complex-

ities, which affect computation time, path conflict resolution, and communication de-

mands. Maintaining path optimality and algebraic connectivity (λ2) becomes more com-

putationally intensive. However, there could be a number of adaptions to improve scala-

bility. These include (i) decentralised subgroup planning, whereby the robot team is par-

titioned into smaller groups, the navigation plan for each robot is undertaken locally, and 

updates are shared with nearby peers, thus reducing global computation [44]; (ii) adapt-

ing region-based graph construction, whereby visibility graphs are replaced with region-

restricted graphs to constrain edge growth and simplify λ2 calculations [42]; and (iii) in-

corporating efficient connectivity estimation, whereby incremental or approximate meth-

ods (e.g., distributed spectral estimation) are used to update λ2 without full precomputa-

tion during each planning cycle [45]. 
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The MRPP algorithm’s performance is influenced by obstacle density and workspace 

configuration. A higher obstacle density increases the complexity of the visibility graph. 

This affects both path optimality and inter-robot coordination. To maintain efficiency, the 

MRPP algorithm can incorporate adaptations that scale visibility analysis and maintain 

robust connectivity under spatial constraints. These include (i) application of an adaptive 

graph pruning to limit unnecessary edge evaluations in cluttered environments [42], (ii) 

adaptation of dynamic workspace segmentation to enable local planning in subdivided 

regions, thus improving responsiveness and reducing global complexity [46], (iii) inclu-

sion of connectivity-aware edge evaluation to adjust edge weights based on the local ob-

stacle density to preserve communication and minimise replanning [46], (iv) and integra-

tion of techniques such as particle swarm optimisation and beetle antennae search algo-

rithm to further improve the MRPP algorithm. Precise control over robot trajectories re-

duces the likelihood of collisions, especially in environments with high obstacle density 

or scenarios involving varying-sized robots [42]. 

6. Conclusions 

This article presents a novel path-planning (MRPP) algorithm in a 2D static environ-

ment. Our algorithm successfully balanced path length optimisation with the mainte-

nance of communication between robots. It provided efficient and coordinated navigation 

in environments with obstacles while avoiding collisions. Simulation results demon-

strated the effectiveness of the proposed algorithm, which efficiently navigated multiple 

robots in environments while ensuring robust communication. The MRPP algorithm has 

generated promising results in different scenarios and experiments. Future work could 

involve extending this approach to dynamic environments (i.e., moving obstacles) and 

varying robot sizes. It could also explore computation time reduction by optimising the 

VG construction or implementing parallel processing. 
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