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Abstract: Optimization algorithms serve as a powerful instrument for tackling optimization
issues and are highly valuable in the context of engineering design. The coati optimization
algorithm (COA) is a novel meta-heuristic algorithm known for its robust search capabilities
and rapid convergence rate. However, the effectiveness of the COA is compromised by the
homogeneity of its initial population and its reliance on random strategies for prey hunting.
To address these issues, a multi-strategy adaptive coati optimization algorithm (MACOA)
is presented in this paper. Firstly, Lévy flights are incorporated into the initialization phase
to produce high-quality initial solutions. Subsequently, a nonlinear inertia weight factor is
integrated into the exploration phase to bolster the algorithm’s global search capabilities
and accelerate convergence. Finally, the coati vigilante mechanism is introduced in the
exploitation phase to improve the algorithm’s capacity to escape local optima. Comparative
experiments with many existing algorithms are conducted using the CEC2017 test functions,
and the proposed algorithm is applied to seven representative engineering design problems.
MACOA’s average rankings in the three dimensions (30, 50, and 100) were 2.172, 1.897, and
1.759, respectively. The results show improved optimization speed and better performance.

Keywords: multi-strategy adaptive coati optimization algorithm; CEC2017; engineering
design optimization problems; Lévy flight; nonlinear step size inertia factor; coati
vigilante mechanism

1. Introduction
The exponential growth of technology has elevated the importance of optimization

problems within a multitude of disciplines. As critical instruments for resolving these
issues, optimization algorithms have evolved from their traditional iterations to sophisti-
cated intelligent algorithms [1]. Early optimization techniques are predominantly based
on mathematical formulations and analytical approaches, including linear and nonlin-
ear programming, which prove to be effective for straightforward problems. However,
these methods frequently falter in effectively optimizing complex, high-dimensional, and
nonlinear optimization problems [2].

The surge in computing power and the development of big data technology have
prompted researchers to investigate more adaptable and efficient optimization algorithms.
This has led to the emergence of intelligent optimization algorithms [3]. By mimicking
natural biological behaviors and group intelligence, these algorithms are capable of iden-
tifying approximate optimal solutions in the complex search space. Consequently, they
exhibit a robust optimization performance and a high degree of adaptability [4].
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The coati optimization algorithm (COA) [5], introduced by Dehghani in 2023, is a
recently developed meta-heuristic algorithm that emulates the hunting behavior of coatis.
Nevertheless, the initial population of COA is generated randomly, leading to a deficiency
in diversity. In the hunting stage, the algorithm employs a random strategy, which lacks
adaptability. Moreover, the behavior of evading natural enemies also relies on a random
strategy. These factors contribute to an imbalance between COA’s global search and local
optimization capabilities, predisposing it to become trapped in local optima, exhibiting
limited global exploration, and demonstrating poor convergence accuracy. The analysis
indicates that the COA algorithm, akin to other meta-heuristic algorithms (MA), inherits
the common shortcomings associated with this class of algorithms [6].

The COA’s search process consists of two separate phases: exploration and exploitation.
The former phase relates to the algorithm’s ability to navigate global search, a determinant
of its ability to locate the optima. Conversely, the latter phase concerns the algorithm’s
proficiency in navigating the local search space, which affects the rate at which the optimal
values are produced. The COA’s performance is directly proportional to the balance
achieved between exploration and exploitation. Nonetheless, adhering to the “No Free
Lunch” theory [7], it is acknowledged that none of the algorithms can efficiently address
all optimization challenges. A significant challenge with meta-heuristic algorithms is their
tendency to get trapped locally, and most of them struggle to circumvent this pitfall [8].

As optimization algorithms have evolved, a plethora of enhancements has been sug-
gested to improve their efficacy [9]. Shang S et al. [10] optimized the extreme learning
machine using the improved zebra optimization algorithm. Wang C L et al. [11] de-
veloped a sound quality prediction model that incorporates extreme learning machine
enhanced by fuzzy adaptive particle swarm optimization. Zhang et al. [12] introduced
the chaotic adaptive sail shark optimization algorithm, which integrates the tent chaos
strategy. Hassan et al. [13] put forth an improved butterfly optimization algorithm fea-
turing nonlinear inertia weights and a bi-directional difference mutation strategy, along
with decision coefficients and disturbance factors. Zhu et al. [14] proposed an adaptive
strategy and a chaotic dyadic learning strategy implemented through the improved sticky
mushroom algorithm. Yan Y et al. [15] proposed an On-Load Tap-Changer fault diagnosis
method based on the weighted extreme learning machine optimized by an improved grey
wolf algorithm. Gürses, Dildar et al. [16] used the slime mold optimization algorithm, the
marine predators algorithm, and the salp swarm algorithm for real-world engineering
applications. Dehghani, Mohammad et al. [17] used the spring search algorithm to solve
the engineering optimization problems.

Additionally, the COA is attracting considerable interest. Jia et al. [18] introduced a
sound-based search encirclement strategy to enhance the COA, yet they overlooked the
optimization of the initial population’s generation. Zhang et al. [19] enhanced the COA by
applying it to practical engineering issues, albeit employing only a straightforward nonlin-
ear strategy. Barak [20] suggested integrating the COA with the grey wolf optimization
algorithm for tuning active suspension linear quadratic regulator controllers. Baş et al. [21]
proposed the enhanced coati optimization algorithm, a nonlinear optimization algorithm
that improves upon the COA by balancing its exploitation and exploration capacities,
although it does not address the resolution of imbalances through the optimization of the
exploitation phase. Wang et al. [22] utilized the enhanced COA in the context of wind power
forecasting applications. Mu G et al. [23] proposed a multi-strategy improved black-winged
kite algorithm to select features. Zhou Y et al. [24] used an improved whale optimization al-
gorithm in the engineering domain. Meng WP et al. [25] used a Q-learning-driven butterfly
optimization algorithm to solve the green vehicle routing problem.
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Through the above analysis, the problem is solved, the metaheuristic algorithm is
slow to converge and easily falls into the local optimum, and the optimization speed and
performance of the COA are improved. The proposal of a multi-strategy adaptive COA
incorporates strategies such as Lévy flight, a nonlinear inertia step factor, and an enhanced
coati vigilante mechanism to optimize the algorithm’s performance. The Lévy flight
mechanism is employed during the initialization phase to populate the initial solution
positions uniformly, thus generating high-quality starting solutions and enriching the
solution population. Consequently, the problem of the COA’s initial solution, suffering
from poor quality and uneven distribution, is addressed. During the exploration period, a
nonlinear inertia weight parameter is incorporated to balance the local and global search
abilities of the COA. Meanwhile, during the exploitation period, an enhanced coati vigilante
mechanism is implemented to facilitate the COA’s capacity to get away from local optima.

The MACOA searching capability is validated through experimental studies that
employ the IEEE CEC2017 benchmark functions. The MACOA is compared with
10 popular algorithms across various dimensions (30, 50, and 100), respectively. A com-
parative analysis of the convergence curves for all 12 algorithms across these dimensions,
along with an examination of boxplots representing the outcomes from multiple runs and
search history graphs, reveals that the MACOA demonstrates better optimization results
over the other algorithms. To further study the engineering applicability of the MACOA,
seven engineering challenges, including the design of a gear train, a reducer, etc., are used
to test the ability of MACOA’s optimization. The analysis of the experiment results for these
engineering design problems confirms the practical efficacy of the MACOA in optimizing
practical engineering problems.

2. Basic Theory
The COA is inspired by the behavior of long-nosed coatis [5]. Each individual coati is

a candidate solution. They have two natural behaviors in the hunting period: (1) behaviors
when hunting for iguanas, and (2) behaviors when escaping from predators. It can be
interpreted as two phases: exploration and exploitation.

2.1. Hunting for Iguanas (Exploration)

During the exploration phase, the coatis initiate a hunt and attack on the iguana, with
some coatis climbing a tree in order to get close to the iguana. Other coatis wait beneath the
tree to hunt the iguana once it falls to the ground. This strategy enables individual coatis to
relocate to various locations within the search space, which showcases the global search
capability of the COA within the problem space, i.e., exploration.

During the exploration phase, xt
best represents the position of the best individual in the

population, corresponding to the iguana location. Half of the coatis will make their way up
the tree, and the other half will stay in their original location. They will be waiting for the
iguana to come down. The position of the first half is shown in (1):

xt+1
i (j) = xt

i (j) + r · (xt
best(j)− RI · xt

i (j)), i = 1, 2, · · ·, N
2

, j = 1, 2, · · ·, M (1)

where xt
i (j) expresses the position of an individual, t is defined as the number of the current

iteration, and r is in [0, 1]. RI picks 1 or 2 randomly. N is considered the size of the
population. M expresses the size of the dimension.

After the iguana’s fall, it is placed randomly. Then, the coatis, which stay on the
ground, move through the space, searching for the iguana. The position is updated by (2)
and (3) below:

Iguanat
ground(j) = lbj + r · (ubj − lbj) (2)



Biomimetics 2025, 10, 323 4 of 38

xt+1
i (j) =


xt

i (j) + r · (Iguanat
ground(j)− I · xt

i (j)),
i f f itness(Iguanat

ground) < f itness(xt
i )

xt
i (j) + r · (xt

i (j)− Iguanat
ground(j)), else

i =
N
2
+ 1,

N
2
+ 2, · · ·, N (3)

where lbj and ubj express the lower and upper limits of the j-th dimensional variable.
fitness(·) is the formula for calculating fitness. Iguanat

ground expresses the new position
of the iguana after falling. xt

i (j) is the value of the i-th dimensional variable for the i-th
individual under the current iteration.

If the updated location improves the value of the fitness, it is the optional location.
Otherwise, the coati remains in its previous position, i.e., a greedy selection is performed
in (4).

xt+1
i =

{
xt+1

i , i f f itness(xt+1
i ) < f itness(xt

i )

xt
i , else

(4)

2.2. Escaping from Predators (Exploitation)

During the exploitation phase, the updating of the coati’s location was modelled on
the natural behavior of a coati escaping from a predator. A coati escapes when a predator
comes. The action of the coati in one strategy brings it close to another safe position around
its current position, which reflects the local search capability of the COA, i.e., exploitation.

During the exploitation phase, random positions are generated near every coati’s
location, as shown in (5) and (6).

lblocal
j =

lbj

t
, ublocal

j =
ubj

t
, t = 1, 2, · · ·, T (5)

xt+1
i (j) = xt

i (j)− (1 − 2r) · (lblocal
j + r · (ublocal

j − lblocal
j )), i = 1, 2, · · ·, N (6)

where T represents the maximum iteration count. t denotes the current number of iterations.
ublocal

j and lblocal
j express the upper and lower bounds of the j-th dimensional variable,

which are updated with each iteration. r is a random value between 0 and 1.
Finally, one more greedy choice is made, i.e., (4).

3. Proposed Algorithm
Although the COA is highly optimized, its initial population is generated randomly.

Furthermore, COA employs a random strategy during the hunting phase, and its behavior
in avoiding natural enemies is also contingent upon this random approach. These factors
contribute to an imbalance between the global search capabilities and local optimization
abilities of COA, making it susceptible to converging on local optima, exhibiting limited
global exploration capacity, and demonstrating poor convergence accuracy. To address
these issues, we propose the following heuristic strategies.

3.1. Chaos Mapping for Lévy Flight

Conventional random strategies generate populations with certain drawbacks, such as
a lack of population diversity, and their randomness may lead to the possibility that certain
areas are over-explored. Therefore, a mapping process for randomly generated populations
is necessary.

The chaotic mapping mechanism is highly uncertain and sensitive. It can generate
complicated and unpredictable dynamic behaviors to achieve a broader range of exploration
in the search space [26].

Lévy flight is a special random walk model that describes movement patterns with
long-tailed distributions [27]. The mapping is used in optimization algorithms to improve
the randomness, which can assist the algorithm in more effectively exploring the solution
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space. Therefore, the global optimization capability is increased [28]. Lévy flights are
introduced in the initialization process of the MACOA, as shown in (7)–(9).

α ⊗ Levi(β) ∼ 0.01
u

|v|−β

(→
X(t)−

→
Xα(t)

)
(7)

σu =

Γ(1 + β) sin(πβ
2 )

Γ( 1+β
2 )β × 2

β−1
2

 1
β

, σv = 1 (8)

X(t + 1) = X(t) + α ⊗ Levi(β) (9)

where X(t) denotes the location of the i-th coati, and α is the weight of the control step.
u ∼ N(0, σ2

u). v ∼ N(0, σ2
v ). β is a constant, which is 1.5.

3.2. Nonlinear Inertia Step Size Factor

In the global optimization phase, premature convergence can hinder the algorithm’s
ability to identify the global optimal solution. The incorporation of a nonlinear inertia
step factor can mitigate the risk of premature convergence to local optima by dynamically
adjusting the step size, thereby preserving the diversity of the population.

The introduction of a nonlinear inertia step size factor can greatly improve search
efficiency and convergence performance, and the COA can dynamically adjust individuals’
search behavior. This dynamic adjustment mechanism effectively enhances the balance
between exploration and exploitation. It also enhances adaptability and robustness.

Considering that updating a coati’s position is related to a coati’s current position,
a nonlinear inertia step size factor is introduced. The factor adjusts the relationship be-
tween the coati’s position update and the current position information, depending on the
individual coati’s position. Then, the factor is calculated by (10):

ω =
( t

T )
Cn

( t
T )

Cn
+ (1 − t

T )
Cn (10)

where Cn is a constant greater than 1 to control the degree of nonlinearities, which is taken
as 2 in this method.

Initially, the value of ω is small, resulting in the position updates being less influenced
by the current position. This facilitates a broader search range for the algorithm and
enhances its global exploration capability. As the search process progresses, the value of
ω is increasing over time. The effect brought by the current coati position becomes larger,
which assists in obtaining the optimal solution. Furthermore, it enhances the convergence
speed as well as its local exploration ability.

The improved formula for modelling coati positions in the first stage is shown in (11):

xt+1
i (j) = ω · xt

i (j) + r · (xt
best(j)− I · xt

i (j)), i = 1, 2, · · ·, N
2

(11)

3.3. Coati Vigilante Mechanism

In the local optimal search phase, the algorithm usually focuses on a certain region for
detailed search. The vigilante mechanism can assist the algorithm in escaping local optima
by introducing random perturbations or altering the direction of the search to enhance the
algorithm’s exploration.

In the sparrow search algorithm, when part of the sparrows search for food, some of
them act as vigilantes, responsible for monitoring the security of their surroundings and
sounding an alarm when a potential threat is detected.
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This mechanism not only improves the survival rate of the group but also facilitates the
rapid dissemination of information. The introduction of the vigilante mechanism enables
the algorithm to cope with complex optimization problems more effectively. In this way,
the COA can maintain a higher degree of flexibility and dynamism in exploring the solution
space [29].

Introducing the sparrow vigilante mechanism in the exploitation phase enhances the
vigilance ability of the COA to search within an optional range. The coatis on the outskirts
of the population will swiftly relocate to seek a safe area when they realize there is danger.
The coati located in the center will walk around randomly in order to get close to others in
the population. The sparrow vigilant mechanism formula is shown in (12).

Xt+1
i,j =


Xt

best + β ·
∣∣∣Xt

i,j − Xt
best

∣∣∣, i f fi > fg

Xt
i,j + K · (

∣∣∣Xt
i,j−Xt

worst

∣∣∣
( fi− fW )+ε

), i f fi = fg

(12)

where Xt
best represents the global optimal position in the current iteration, and β represents

the step control parameter. β ∼ N(0, 1). K is randomly selected in [−1, 1]. fi is the fitness
value. fg is the greatest global greatest fitness value, and fw is the worst one. ε is a very
small constant.

Equation (12) can be optimized to address the problem of the global search capability.
A dynamically adjusted step factor [30] is introduced, as shown in (13).

Xt+1
i,j =


Xt

best + β(t) ·
∣∣∣Xt

i,j − Xt
best

∣∣∣, i f fi > fg

Xt
i,j + K(t) · (

∣∣∣Xt
i,j−Xt

worst

∣∣∣
( fi− fW )+ε

), i f fi = fg

(13)

β(t) = fg − ( fg − fw) · (
T − t

T
)

1.5
(14)

K(t) = ( fg − fw) · e−20·tan ( t
T )

2
· (2 · rand − 1) (15)

where β(t) is a dynamically adjusted step factor, as shown in (14). K(t) is a dynamically
adjusted step factor, as shown in (15). rand ∈ [0, 1].

The introduction of dynamic step factors β(t) and K(t) enables the algorithm to
adjust the search behavior dynamically. At the beginning of the algorithm, it focuses on
exploration, and the later phase focuses on exploitation. These optimizations improve the
adaptability and robustness of the COA.

3.4. Multi-Strategy Adaptive Coati Optimization Algorithm

The detailed flowchart of the MACOA is presented in Figure 1. The pseudo-code for
MACOA is given in Table 1.
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Table 1. Pseudo-code of MACOA.

Start MACOA.
Input the optimization problem information.

Set the number of iterations T and the number of coatis N.
Initialization of coatis and evaluation of the objective function for the population

using (7)–(9).
For t = 1:T

Update location of the iguana based on the location of the best member of the
population.

Phase 1: Exploration Phase
Calculate the weighted factor ω using (10)
For i = 1:[N/2]

Calculate new position for the i-th coati by (11).
Update position of the i-th coati using (4).

End for
for i = N/2 +1:N

Calculate random position for the iguana using (2).
Calculate new position for the i-th coati using (3).
Update position of the i-th coati using (4).

End for
Phase 2: Exploitation Phase
For i = 1:N

Calculate the new position for the i-th coati using (13).
Update the position of the i-th coati using (4).

End for
Save the best candidate solution found so far

End for
Output of the best obtained solution by MACOA for given problem.
End MACOA.
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4. Experiments
Simulation studies and evaluations of the optimization efficiency for MACOA are

presented. All experiments are conducted on an AMD 64-bit R7 processor operating at
3.20 GHz with 16 GB of RAM, utilizing MATLAB R2018a. This section uses tables that rank
the optimal values produced by the algorithms, iteration curves from 10,000 iterations, and
box plots from 50 experiments for statistical analysis.

4.1. Benchmark Functions and Compared Algorithms

Twenty-nine standard benchmark functions from the IEEE CEC-2017 [31] are utilized
to test MACOA’s capability in addressing various objective functions. A comparison of
MACOA’s performance with eleven well-known algorithms is performed in order to assess
its quality in providing optimal solutions, namely COA, SABO [32], WSO [33], SCSO [34],
GJO [35], TSA [36], WOA [37], GWO [38], TLBO [39], GSA [40], and PSO [41].

The results are presented through four metrics: mean, standard deviation (std), rank,
and execution time (ET). The control parameter values for all compared algorithms are
specified in Table 2.

Table 2. Control parameter values for the algorithms being compared.

Alg. Parameter Value Alg. Parameter Value

COA
r: random number [0, 1]

WOA

a: Convergence
parameter

Linear reduction from
2 to 0.

I: random number {0, 1} r: random vector [0, 1]

SABO

v: random vector [1, 2] l: random number [−1, 1]

ri: random number ri obeys a normal
distribution GWO Convergence

parameter (a)
Linear reduction from

2 to 0.

WSO

fmin 0.07
TLBO

TF: teaching factor TF = round
[(1 + rand)]

fmax 0.75 Random number [0, 1]

τ 4.11

GSA

Alpha 20

a0 6.25 Rpower 1

a1 100 Rnorm 2

a2 0.0005 G0 100

SCSO
rG

Linear reduction
from 2 to 0.

PSO

Topology Fully connected.

SM 2 Cognitive constant C1 = 2

GJO

c1 1.5 Social constant C2 = 2

E0: random number [−1, 1] Inertia weight Linear reduction from
0.9 to 0.1.

β 1.5 Velocity limit 10% of the dimensions
range of the variables.

TSA

Pmin 1

WOA

a: Convergence
parameter

a: Linear reduction
from 2 to 0.

Pmax 4 r: random vector [0, 1]

c1, c2, c3 Random in [0, 1] l: random number [−1, 1]
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4.2. Complexity Analysis

The complexity analysis of the algorithms was carried out using the problem definition
and evaluation criteria of the CEC2017 Special Session and Competition on the Complexity
of Single-Objective Constrained Numerical Optimisation Algorithms [42]. The steps are
as follows:

(1) Calculate the system running time T0 by running the following test procedure:
x = 0.05
for i = 1:10,000
x = x; x = x/2; x = x×x; x = sqrt(x);
x = log(x); x = exp(x); x = x/(x + 2)
end

(2) Calculate the complete computing time with 100,000 evaluations of the same D-
dimensional function, i.e., T1.

(3) Calculate the complete computing time for the algorithm with 100,000 evaluations of
the same D-dimensional function, i.e., T2.

(4) The complexity of the algorithm is reflected by (T2 − T1)/T0.

In this section, the algorithmic complexity analysis of MACOA, along with the other
11 algorithms in running the CEC2017 test function, is performed. In step (2), the maximum
number of iterations is set to 10,000, and the number of dimensions is chosen to be 10. In
step (3), the number of dimensions is set to 30. Table 3 lists the algorithmic complexity
of each algorithm for running the CEC2017 functions. As can be seen from Table 3, the
MACOA algorithm computes the function with increased time complexity compared to
the COA algorithm, but the optimization performance is significantly improved over the
COA algorithm. At the same time, from the point of view of the time complexity values
of different algorithms for calculating the functions in CEC2017, the MACOA algorithm
ranks in the middle in terms of the time complexity.

Table 3. Time complexity comparison between MACOA and the other 11 algorithms based on the
CEC-2017.

MACOA COA SABO WSO SCSO GJO TSA WOA GWO TLBO GSA PSO

F1 852.5946 879.1897 509.3283 444.0638 7430.2372 1488.9901 981.1678 440.2204 951.0089 1595.0824 1734.3884 894.0729

F3 1020.6622 1022.7472 727.0783 551.5746 7199.4453 1278.7816 863.0205 350.4119 845.6234 1071.4026 1526.6804 770.3774

F4 932.7085 920.0671 658.0728 608.8970 7041.9431 1156.2279 829.5889 388.6270 1055.0448 1044.7861 1512.6196 772.6830

F5 1310.3827 1349.9389 977.0681 635.2419 7280.4222 1490.5998 1017.1022 578.9648 1114.7616 1584.5691 1668.7474 1205.1916

F6 3206.2187 3257.6666 1656.9126 1440.9406 8821.8510 2411.9727 1890.8204 1322.9937 1811.5445 3770.2810 2663.4595 2713.9477

F7 1372.0539 1288.7758 782.7713 663.4640 6866.7619 1437.7843 1011.0877 609.0990 1131.4985 1736.4851 1683.8658 1105.1710

F8 1705.4795 1618.2586 989.0674 758.6453 8018.2317 1703.7762 1208.4044 707.0991 1179.3074 1791.3102 1850.4034 1349.2233

F9 1648.6060 1651.0534 1003.9989 787.2143 7871.8631 1683.2607 1213.8018 706.4527 1227.0654 1776.2022 1956.8915 1337.1876

F10 2006.9759 1924.2230 1087.8128 844.9614 7858.7154 1727.0746 1286.4960 774.8843 1269.4878 2099.0346 2061.4072 1556.3573

F11 1429.5288 1345.2243 886.8715 648.1052 7671.3674 1591.8728 1076.9965 568.0270 1047.3130 1996.2238 1802.4607 1151.6052

F12 1707.7202 1715.7395 1056.6301 746.1166 8187.4304 1783.0518 1249.7590 738.4798 1189.7321 2169.5781 2011.4351 1447.6008

F13 1374.9731 1392.5722 916.9523 604.3327 7316.2702 1569.6265 964.5263 527.2179 1048.7610 1713.4424 1966.8551 1244.0637

F14 1495.8066 1510.9372 813.7888 630.3773 6341.5962 1057.0906 998.5398 584.8096 1055.0832 1223.2136 1551.7661 1311.9379

F15 920.7320 829.8522 539.6170 473.1657 6433.9494 1043.8119 831.0791 400.1807 886.7541 997.8084 1593.6538 1014.5658

F16 1377.2076 1422.0340 777.4971 601.3160 7099.0153 1383.3329 847.1459 500.7935 969.4762 1119.9581 1501.5904 1134.0044

F17 2240.5126 2367.8051 1179.4587 933.6498 7030.9006 1617.4542 1273.5408 856.2920 1363.3921 1960.5206 1786.7791 1711.5786

F18 1312.7182 1286.5012 762.6733 508.7210 6978.9989 1253.0395 923.6291 499.2580 1065.1539 1305.9613 1549.2926 1123.3055

F19 9161.5400 9250.5630 4060.2324 3705.0244 11,388.7078 4957.6448 4174.8165 3806.5568 4324.0079 8694.8813 5438.8193 7863.7214

F20 2315.3704 2213.6933 1065.6800 943.9558 6971.1951 1875.7916 2086.3267 1038.4659 1537.5500 2631.3454 2006.6912 2248.4016
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Table 3. Cont.

MACOA COA SABO WSO SCSO GJO TSA WOA GWO TLBO GSA PSO

F21 3899.9581 3845.7128 1697.2727 1524.9139 8402.9694 2783.3509 2117.3766 1609.1512 2042.7549 3562.7031 2991.9178 3465.8951

F22 4347.6517 4271.3248 1957.7470 1801.4333 8400.8835 2624.5653 2143.9029 1751.9575 2144.3526 3972.4113 3071.8435 3872.0125

F23 5243.3880 5095.2869 2343.7899 1945.2220 8023.0986 2870.1215 2572.9783 2019.1846 2638.2351 4842.5077 3447.0625 4812.5093

F24 5859.5971 5815.1403 2703.2262 2198.2537 9893.7107 3412.4870 2958.0299 2381.3381 2782.0250 5347.2745 3702.8456 5184.9546

F25 5234.0871 5325.2122 2328.7195 2169.1695 8902.0796 3287.3585 2627.7942 2089.5291 2537.6093 4462.6248 3028.2297 4218.4649

F26 6053.0398 6210.6052 2721.7291 2488.0499 8755.1673 3203.4136 2870.9227 2351.2427 2835.7235 5087.6332 3515.9223 5614.6762

F27 7363.3117 7377.8585 3176.2489 2678.6598 9494.8237 3698.5370 3358.6715 2957.4788 3373.3546 6099.7269 4054.0289 5826.5099

F28 6043.9795 6153.3206 2753.7941 2444.2012 8661.4358 3284.1057 2925.9665 2448.1554 2955.4936 5578.7806 3508.5614 4854.3631

F29 4402.0849 4255.1172 2049.2857 1816.3831 7972.2670 2373.5016 2140.2642 1814.0077 2068.3372 3796.2073 2672.3020 3387.8230

F30 11,255.9521 11,151.5382 4794.7383 3477.0287 11,783.6397 5529.2351 5132.7099 4466.0694 4932.9687 10,230.8298 6440.0952 10,042.3783

In the space complexity analysis, pop is the population size, dim is the dimension of
the problem, and Max is the maximum number of iterations. From Table 4, it can be seen
that MACOA does not improve the space complexity but improves the accuracy compared
to COA.

Table 4. Space complexity comparison between MACOA and the other 11 algorithms.

Space Complexity Space Complexity

MACOA O(pop × dim) TSA O(pop × dim)

COA O(pop × dim) WOA O(pop × dim)

SABO O(pop × dim) GWO O(pop × dim)

WSO O(pop × dim + Max × dim) TLBO O(pop × dim)

SCSO O(pop × dim + Max) GSA O(Max × pop × dim)

GJO O(pop × dim) PSO O(pop × dim + Max)

4.3. Experimental Results and Analysis

CEC-2017 includes thirty standard benchmark functions of various types, as shown
in Table 5. The test function F2 from the CEC-2017 is not used in this paper because of its
unstable performance (as noted by other authors in their paper [19]). Complete information
and details for these test functions can be found in Reference [31].

The proposed MACOA is subjected to 29 independent experiments at CEC-2017, each
containing 200,000 FEs. Three dimensions of test functions are used in the experiments: 30,
50, and 100.

The box plots in Figure 2 illustrate the distribution of results from 50 experiments.
Based on the box-and-line plot, it can be seen that MACOA produces few outliers compared
to other algorithms and achieves the optimal value for all algorithms in most of the tested
functions. Therefore, MACOA has strong convergence and stability.

The 3D Surface Plots of CEC2017, iterative curves of the comparison algorithms, and
search history plots are shown in Figure 3. According to the search history from Figure 3,
the population distribution of MACOA is mostly located near the global optimal solution,
and the overall convergence performance of the population is good.

Figures 3 and 4 illustrate the convergence curves of MACOA and the compared
algorithms after 10,000 iterations across the 29 benchmark functions from IEEE CEC2017. It
is evident that MACOA exhibits a quicker convergence speed and superior convergence
performance in comparison to other algorithms.

Additionally, the results are presented in Tables 6–8. The results for dimension 30
(m = 30) show that the MACOA is the best algorithm for solving F4, F10, F11, F22, F24~F26,
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F28, and F29 functions. The results of dimension 50 (m = 50) describe that MACOA is the
best optimization algorithm for solving the F1, F4, F10, F11, F16, F18, F22~F26, and F29
functions. From the results for dimension 100 (m = 100), it can be obtained that MACOA is
the best optimization algorithm for solving F1, F4, F10, F12, F14, F16, F17, F22~F26, F29,
and F30 functions. Therefore, MACOA outperforms the comparison algorithms for most of
the tested functions. Overall, MACOA works best in different dimensions (30, 50, and 100)
of the CEC-2017 tested functions.

In comparison to the other 11 algorithms, the MACOA proposed has strong explo-
ration, exploitation, and search capability. It shows improved performance compared to
other optimization algorithms.

Table 5. Summary of the CEC-2017 test functions.

Name No. Functions Fi (x*) No. Functions Fi (x*)

Unimodal
Functions 1 Shifted and Rotated Bent Cigar Function 100 3 Shifted and Rotated Zakharov Function 200

Simple
Multimodal
Functions

4 Shifted and Rotated Rosenbrock’s Function 300
8

Shifted and Rotated Non-Continuous
Rastrigin’s Function 700

5 Shifted and Rotated Rastrigin’s Function 400

6 Shifted and Rotated Expanded Scaffer’s
F6 Function 500 9 Shifted and Rotated Levy Function 800

7 Shifted and Rotated Lunacek
Bi_Rastrigin Function 600 10 Shifted and Rotated Schwefel’s Function 900

Hybrid
Functions

11 Hybrid Functions 1 (N = 3) 1000 16 Hybrid Functions 6 (N = 4) 1500

12 Hybrid Functions 2 (N = 3) 1100 17 Hybrid Functions 6 (N = 5) 1600

13 Hybrid Functions 3 (N = 3) 1200 18 Hybrid Functions 6 (N = 5) 1700

14 Hybrid Functions 4 (N = 4) 1300 19 Hybrid Functions 6 (N = 5) 1800

15 Hybrid Functions 5 (N = 4) 1400 20 Hybrid Functions 6 (N = 6) 1900

Composition
Functions

21 Composition Functions 1 (N = 3) 2000 26 Composition Functions 6 (N = 5) 2500

22 Composition Functions 2 (N = 3) 2100 27 Composition Functions 7 (N = 6) 2600

23 Composition Functions 3 (N = 4) 2200 28 Composition Functions 8 (N = 6) 2700

24 Composition Functions 4 (N = 4) 2300 29 Composition Functions 9 (N = 3) 2800

25 Composition Functions 5 (N = 5) 2400 30 Composition Functions 10 (N = 3) 2900

Search Range: [−100, 100] dim

Table 6. Rank results comparing MACOA and the other 11 algorithms based on the CEC-2017 (the
dimension m = 30).

MACOA COA SABO WSO SCSO GJO TSA WOA GWO TLBO GSA PSO

F1 2 11 7 5 6 8 9 12 4 1 3 10

F3 2 10 4 7 5 8 6 12 3 1 11 9

F4 1 11 8 7 5 6 9 12 4 3 2 10

F5 2 11 7 3 6 4 9 12 1 8 5 10

F6 2 10 7 4 6 3 8 11 1 12 5 9

F7 2 11 7 6 5 4 9 12 1 8 3 10

F8 3 10 7 2 6 5 9 12 1 11 4 8

F9 4 10 7 9 6 5 11 12 1 2 3 8

F10 1 10 9 4 5 6 7 11 3 12 2 8

F11 1 11 8 3 5 7 9 12 4 2 6 10

F12 2 11 6 7 5 8 9 12 4 1 3 10

F13 3 12 6 5 7 8 10 11 4 1 2 9

F14 3 11 9 4 5 7 10 12 6 2 8 1
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Table 6. Cont.

MACOA COA SABO WSO SCSO GJO TSA WOA GWO TLBO GSA PSO

F15 4 11 7 1 8 9 10 12 6 2 3 5

F16 3 11 9 1 5 4 8 12 2 6 7 10

F17 5 12 9 1 4 2 8 11 3 6 7 10

F18 2 11 9 3 8 6 10 12 7 4 5 1

F19 3 11 7 2 8 9 10 12 5 1 4 6

F20 3 10 8 1 5 4 6 12 2 9 7 11

F21 2 9 6 4 5 3 8 11 1 12 7 10

F22 1 11 4 7 5 6 9 12 2 3 8 10

F23 2 8 6 5 4 3 7 10 1 9 11 12

F24 1 11 5 8 4 3 7 9 2 12 6 10

F25 1 11 7 5 4 6 8 12 3 9 2 10

F26 1 11 8 6 5 3 9 12 2 4 7 10

F27 3 11 7 8 6 5 9 2 4 10 12 1

F28 1 12 9 7 6 8 11 3 5 10 4 2

F29 1 11 9 3 5 4 6 12 2 8 7 10

F30 2 11 7 3 6 8 10 12 5 1 4 9

Sum rank 63 311 209 131 160 162 251 319 89 170 158 239

Mean rank 2.172 10.724 7.207 4.517 5.517 5.586 8.655 11 3.069 5.862 5.448 8.241

Total rank 1 11 8 3 5 6 10 12 2 7 4 9

Table 7. Rank results comparing MACOA and the other 11 algorithms based on the CEC-2017 (the
dimension m = 50).

MACOA COA SABO WSO SCSO GJO TSA WOA GWO TLBO GSA PSO

F1 1 11 6 8 5 7 9 12 4 2 3 10

F3 6 11 9 4 1 3 2 12 5 8 10 7

F4 1 11 7 8 5 6 9 12 4 2 3 10

F5 2 11 8 4 6 5 10 12 1 7 3 9

F6 2 9 7 4 6 3 10 11 1 12 5 8

F7 2 11 6 7 5 3 9 12 1 8 4 10

F8 2 11 8 4 6 5 10 12 1 7 3 9

F9 3 10 8 9 4 6 11 12 2 5 1 7

F10 1 10 9 4 5 6 7 11 3 12 2 8

F11 1 11 5 3 6 7 8 12 4 2 9 10

F12 2 12 6 8 5 7 9 11 4 1 3 10

F13 2 12 6 8 5 7 9 11 4 1 3 10

F14 2 12 8 7 5 6 10 11 4 1 9 3

F15 2 11 5 7 6 8 10 12 4 1 3 9

F16 1 12 8 4 7 6 9 11 2 5 3 10

F17 2 11 8 3 6 4 9 12 1 7 5 10

F18 1 11 9 4 6 8 10 12 5 2 3 7

F19 3 12 7 4 5 8 10 11 6 1 2 9
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Table 7. Cont.

MACOA COA SABO WSO SCSO GJO TSA WOA GWO TLBO GSA PSO

F20 3 10 9 1 5 4 7 12 2 11 6 8

F21 2 10 7 4 5 3 8 12 1 11 6 9

F22 1 9 8 3 5 6 7 11 2 12 4 10

F23 1 10 6 5 4 3 7 9 2 8 11 12

F24 1 12 5 8 3 4 6 11 2 9 7 10

F25 1 11 8 6 5 7 9 12 4 2 3 10

F26 1 11 7 5 4 3 9 12 2 8 6 10

F27 3 11 7 8 6 5 9 1 4 10 12 2

F28 3 12 11 8 7 9 10 2 5 4 6 1

F29 1 11 9 3 6 4 8 12 2 5 7 10

F30 2 11 8 5 6 7 9 12 4 1 3 10

Sum rank 55 317 215 156 150 160 250 315 86 165 145 248

Mean rank 1.897 10.931 7.414 5.379 5.172 5.517 8.621 10.862 2.966 5.690 5 8.552

Total rank 1 12 8 5 4 6 10 11 2 7 3 9

Table 8. Rank results comparing MACOA and the other 11 algorithms based on the CEC-2017 (the
dimension m = 100).

MACOA COA SABO WSO SCSO GJO TSA WOA GWO TLBO GSA PSO

F1 1 11 6 8 4 9 5 12 3 2 7 10

F3 5 6 4 3 1 7 10 12 9 11 8 2

F4 1 11 7 8 4 5 6 12 3 2 9 10

F5 2 10 8 4 6 5 11 12 1 7 3 9

F6 2 9 8 4 6 5 10 11 1 12 3 7

F7 2 11 6 8 5 3 9 12 1 7 4 10

F8 2 11 8 4 6 5 10 12 1 7 3 9

F9 2 9 7 8 3 5 11 12 4 10 1 6

F10 1 10 9 4 5 6 7 11 3 12 2 8

F11 4 11 9 6 2 7 3 12 5 1 8 10

F12 1 11 5 7 4 6 9 12 3 2 8 10

F13 2 11 6 8 4 7 9 12 3 1 5 10

F14 1 11 9 6 3 8 7 12 4 2 5 10

F15 2 11 5 8 6 7 9 12 3 1 4 10

F16 1 11 9 4 6 5 8 12 2 3 7 10

F17 1 11 6 7 4 5 9 12 3 2 8 10

F18 2 11 9 6 5 7 8 12 4 1 3 10

F19 2 11 6 7 4 8 9 12 3 1 5 10

F20 2 10 9 1 4 6 7 12 3 11 5 8

F21 2 10 9 5 4 3 6 11 1 7 8 12

F22 1 10 9 3 5 6 7 11 4 12 2 8

F23 1 11 7 5 4 3 8 9 2 6 12 10

F24 1 12 8 6 3 4 7 10 2 5 11 9
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Table 8. Cont.

MACOA COA SABO WSO SCSO GJO TSA WOA GWO TLBO GSA PSO

F25 1 11 7 9 4 8 6 12 3 2 5 10

F26 1 11 9 5 4 3 6 12 2 8 7 10

F27 3 12 8 10 5 6 9 2 4 7 11 1

F28 3 12 9 11 6 8 7 2 5 4 10 1

F29 1 11 7 5 4 6 8 12 3 2 9 10

F30 1 11 5 7 4 6 9 12 3 2 8 10

Sum rank 51 308 214 177 125 169 230 319 88 150 181 250

Mean rank 1.759 10.621 7.379 6.103 4.310 5.828 7.931 11 3.034 5.172 6.241 8.621

Total rank 1 11 8 6 3 5 9 12 2 4 7 10
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4.4. Ablation Experiment

In order to analyze the impact of different strategies on the performance of the algo-
rithm, this section compares three strategies of MACOA through experimental analysis. In
this section, the experiments are conducted using the test function of CEC2017, with all
other parameters kept the same as before, and only the optimal value is used as the evalua-
tion index. The results of the optimization study are shown in Table 9. L refers to Lévy flight,
N refers to the nonlinear inertial step factor, and V refers to the coati vigilante mechanism.
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Table 9. Rank results of the ablation experiment for MACOA with CEC-2017 (dimension = 10).

COA COA + L COA + N COA + V COA + L + N COA + L + V COA + N + V MACOA

F1 8 7 5 3 6 1 4 2

F3 7 8 5 1 6 1 1 1

F4 8 7 6 1 5 4 2 3

F5 7 8 5 6 2 3 4 1

F6 8 7 6 3 5 2 4 1

F7 8 7 5 4 6 2 1 3

F8 7 8 2 3 1 5 6 4

F9 8 7 5 6 4 3 2 1

F10 8 7 6 4 5 1 3 2

F11 8 7 4 6 5 2 1 3

F12 8 7 6 4 5 3 2 1

F13 7 8 6 2 5 4 1 3

F14 7 5 8 4 6 1 3 2

F15 7 8 5 3 6 4 1 2

F16 8 7 3 6 4 1 5 2

F17 7 8 5 1 6 3 4 2

F18 5 8 6 3 7 4 1 2

F19 8 6 7 3 5 4 1 2

F20 7 8 6 3 5 2 1 4

F21 7 6 4 8 5 1 1 1

F22 8 7 1 3 6 5 2 4

F23 8 7 4 1 2 6 3 5

F24 5 8 1 7 4 6 2 2

F25 8 7 4 5 3 2 1 6

F26 7 8 4 1 5 6 3 1

F27 7 8 5 6 2 3 4 1

F28 7 8 3 6 4 2 1 5

F29 8 7 3 4 5 2 6 1

F30 7 8 6 3 5 4 1 2

Sum rank 213 212 136 110 135 87 71 69

Mean rank 7.345 7.310 4.690 3.793 4.655 3 2.448 2.379

Total rank 8 7 6 4 5 3 2 1

From Table 9, it can be seen that the MACOA optimization with the introduction
of the three strategies is the best. The second is COA + L + V with Levi flight and coati
vigilante mechanism improvement. The third is nonlinear inertial step factor and vigilante
mechanism improvement. All algorithms outperform the original COA. However, the
results of COA + V and COA + L + N show that the coati vigilante mechanism works better
than the other two strategies. In conclusion, all three improved strategies positively affect
the original algorithm, proving the effectiveness of the heuristic strategy.
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5. Engineering Problems
A benchmark suite of real-world non-convex constrained optimization problems

and various established baseline results are utilized to analyze the engineering problems.
In these constrained engineering problem designs, we use penalty terms as constraints.
The optimization algorithm will find the global optimal solution under the constraints
to achieve the constrained design. Problem difficulty within the benchmark is assessed
using various evaluation criteria [43]. The algorithms COA, SABO, WSO, SCSO, GJO,
TSA, SRS [44], MPA [45], and TLBO are included for comparative analysis, with each
algorithm executed independently for 50 runs on all problems within the benchmark suite.
Performance is evaluated based on feasibility rate (FR) and success rate (SR). FR represents
the proportion of runs achieving at least one feasible solution within the maximum function
evaluations. Meanwhile, SR denotes the proportion of runs where a feasible solution x
satisfies f(x) − f(x*) ≤ 10−8 within function evaluations. This section uses tables of optimal,
standard deviation, mean, median, worst, FR, and SR values generated by the algorithms,
iteration curves generated by 10,000 iterations, box plots generated by 50 experiments, and
search history for statistical analysis.

5.1. Three-Bar Truss Design Problem

The three-bar truss design problem is to minimize the volume while satisfying the
stress constraints on each side of the truss member. Figure 5 provides the geometry
explanation. Within the benchmark suite, the problem features D = 2 decision variables,
g = 3 inequality constraints, and h = 0 equality constraints. The optimal value of the
objective function is known to be f(x*) = 2.6389584338 × 102 [43].
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Figure 5. (a) Model diagram of the three-bar truss design problem. (b) Schematic of the three-bar
truss design problem.

The design problem for the three-bar truss can be outlined as follows:
Consider

→
x = [x1 x2] = [A1 A2] (16)

Objective function:
f (

→
x ) = (2

√
2x1 + x2) ∗ l (17)

Subject to

g1(
→
x ) =

√
2x1 + x2√

2x2
1 + 2x1x2

P − σ ≤ 0 (18)
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g2(
→
x ) =

x2√
2x2

1 + 2x1x2
P − σ ≤ 0 (19)

g3(
→
x ) =

1√
2x2 + x1

P − σ ≤ 0 (20)

where
l = 100 cm, P = 2 kN/cm3, σ = 2 kN/cm3 (21)

Boundaries:
0 ≤ x1 ≤ 1 (22)

0 ≤ x2 ≤ 1 (23)

From the experimental results in Table 10, it can be seen that MACOA has FR = 2 and
SR = 10. These results show that MACOA’s FR score is second only to MPA, while its SR
value is second only to MPA and TLBO. Moreover, the results of MACOA are significantly
better than COA. Figure 6a illustrates the iteration process of the optimal solutions of the
ten algorithms. The box-and-line plot is displayed in Figure 6b, and it can be seen that
MACOA has strong stability. Figure 6c shows the search history, from which it can be seen
that the search history of MACOA is concentrated around this neighborhood of the global
optimal solution. Overall, these results show that MACOA outperforms COA.

Table 10. Comparative analysis of the three-bar truss design problem.

Alg. Best Std Mean Median Worst FR SR

MACOA 263.89584 0.00001 263.89585 263.89584 263.89588 2 10
COA 263.89604 0.00742 263.90185 263.89927 263.92995 0 0
SABO 263.89935 0.02207 263.92659 263.92195 264.00877 0 0
WSO 263.89587 0.00000 263.89587 263.89587 263.89587 0 0
SCSO 263.89585 0.00012 263.89592 263.89588 263.89662 0 0
GJO 263.89590 0.00052 263.89647 263.89634 263.89842 0 0
TSA 263.89593 0.00111 263.89761 263.89757 263.90125 0 0
SRS 263.89886 2.04942 264.70462 263.97716 270.91394 0 0

MPA 263.89584 0.00001 263.89585 263.89584 263.89587 8 18
TLBO 263.89584 0.00000 263.89584 263.89584 263.89584 0 70
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5.2. Tension or Compression Spring Design Problem

The design of tension or compression springs represents a common optimization
problem in mechanical engineering and structural design. The function of this device is to
store and discharge energy.

Therefore, a spring requires consideration of parameters during the design process.
Within the benchmark suite, the problem features D = 3 decision variables, g = 4 inequality
constraints, and h = 0 equality constraints. The optimal value of the objective function is
known to be f(x*) = 1.2665232788 × 10−2 within the benchmark [43]. Figure 7 illustrates
the pressure vessel configuration.
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Figure 7. Schematic of the tension or compression spring design problem.

The design problem for tension or compression springs can be outlined as follows:
Consider

x = [x1 x2 x3] = [dDN] (24)

Objective function:
f (x) = (x3 + 2)× x2 × x2

1 (25)

Subject to

g1(x) = 1 −
x3 × x3

2
71785 × x4

1
≤ 0 (26)

g2(x) =
4 × x2

2 − x1 × x2

12566 × (x2 × x3
1 − x4

1)
+

1
5108 × x2

1
− 1 ≤ 0 (27)

g3(x) = 1 − 140.45 × x1

x2
2 × x3

≤ 0 (28)

g4(x) =
x1 + x2

1.5
− 1 ≤ 0 (29)

Boundaries:
0.05 ≤ x1 ≤ 2.0 (30)

0.25 ≤ x2 ≤ 1.3 (31)

2.0 ≤ x3 ≤ 15.0 (32)

The experimental results in Table 11 show that MACOA has an FR of 98 and an SR
of 98. These results indicate that MACOA has the highest FR among all the compared
algorithms, and its SR is second only to WSO and MPA. Figure 8a illustrates the iteration
process of the optimal solutions of the ten algorithms. The box-and-line plot is displayed in
Figure 8b. It can be seen that MACOA has very few outliers. Figure 8c shows the search
history. Although most of the search range lies on the boundary, it can be seen that most
of the search history lies around the global optimum. Overall, these results show that
MACOA outperforms COA.
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Table 11. Comparative analysis of the tension or compression spring design problem.

Alg. Best Std Mean Median Worst FR SR

MACOA 0.012612 0.000997 0.012863 0.012665 0.017698 98 98
COA 0.012687 0.002529 0.013488 0.013032 0.030455 0 0
SABO 0.012680 0.000156 0.012801 0.012740 0.013542 0 0
WSO 0.012665 0.000000 0.012665 0.012665 0.012665 0 100
SCSO 0.012665 0.000042 0.012708 0.012703 0.012843 0 2
GJO 0.012667 0.000020 0.012692 0.012687 0.012722 0 0
TSA 0.012670 0.000015 0.012695 0.012692 0.012738 0 0
SRS 0.012710 0.000110 0.012909 0.012885 0.013108 0 0

MPA 0.012665 0.000000 0.012665 0.012665 0.012665 0 100
TLBO 0.012665 0.000001 0.012666 0.012666 0.012670 0 16
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spring design problem.

5.3. Pressure Vessel Design Problem

The pressure vessel design problem focuses on minimizing weight while maintaining
structural integrity under high-pressure operating conditions. This involves optimizing design
parameters, including material selection and wall thickness, within specified constraints to
minimize the overall manufacturing costs. Within the benchmark suite, the problem features
D = 4 decision variables, g = 4 inequality constraints, and h = 0 equality constraints. The
optimal value of the objective function is known to be f(x*) = 5.8853327736 × 103 [43]. Figure 9
illustrates the pressure vessel configuration. The design problem for the pressure vessel can
be outlined as follows:
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Consider
→
x = [x1 x2 x3 x4] = [TS Th R L] (33)

Objective function:

f (
→
x ) = 0.6224x1x2x3 + 1.7781x2x2

3 + . . .
3.1661x2

1x4 + 19.84x2
1x3

(34)

Subject to
g1(

→
x ) = −x1 + 0.0193x3 ≤ 0 (35)

g2(
→
x ) = −x3 + 0.00954x3 ≤ 0 (36)

g3(
→
x ) = −πx2

3x4 +
4
3

πx3
3 + 1296000 ≤ 0 (37)

g4(
→
x ) = −x4 − 240 ≤ 0 (38)

Boundaries:
0 ≤ x1 ≤ 99 (39)

0 ≤ x2 ≤ 99 (40)

10 ≤ x3 ≤ 200 (41)

10 ≤ x4 ≤ 200 (42)

The results in Table 12 show that MACOA has the highest FR value among all the
algorithms, with both FR and SR values of 98. Meanwhile, the SR value of MACOA is
second only to TLBO and MPA. Figure 10a shows the iterative process for the optimal
solution of the ten algorithms. Figure 10b, on the other hand, shows the box plots, from
which it can be seen that the anomalies and quartiles of MACOA are concentrated with
a certain degree of stability. Figure 10c shows the search history of MACOA, from which
it can be seen that most of the search history of MACOA is concentrated near the global
optimal solution region. These results show that MACOA can obtain the best performances.
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Table 12. Results of the pressure vessel design problem experiments.

Alg. Best Std Mean Median Worst FR SR

MACOA 5.885 × 103 6.122 × 102 6.335 × 103 5.934 × 103 7.319 × 103 16 16
COA 7.141 × 103 4.428 × 104 6.047 × 104 5.226 × 104 2.036 × 105 0 0
SABO 6.379 × 103 4.770 × 102 7.134 × 103 7.036 × 103 8.499 × 103 0 0
WSO 5.885 × 103 9.187 × 10−13 5.885 × 103 5.885 × 103 5.885 × 103 0 0
SCSO 5.885 × 103 5.175 × 102 6.327 × 103 6.023 × 103 7.319 × 103 0 0
GJO 5.886 × 103 4.352 5.889 × 103 5.889 × 103 5.915 × 103 0 0
TSA 5.889 × 103 1.169 × 102 5.931 × 103 5.910 × 103 6.716 × 103 0 0
SRS 5.989 × 103 1.741 × 102 6.312 × 103 6.335 × 103 6.804 × 103 0 0

MPA 5.885 × 103 9.187 × 10−13 5.885 × 103 5.885 × 103 5.885 × 103 0 100
TLBO 5.885 × 103 2.282 × 10−8 5.885 × 103 5.885 × 103 5.885 × 103 0 98

5.4. Welded Beam Design Problem

The welded beam design problem is to maximize structural performance while mini-
mizing the beam’s weight by optimizing parameters such as weld dimensions, geometry,
and placement, subject to specific constraints. Within the benchmark suite, the problem
features D = 4 decision variables, g = 7 inequality constraints, and h = 0 equality con-
straints. The optimal value of the objective function is known to be f(x*) = 1.6702177263 [43].
Figure 11 describes the welded beam structure.
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Figure 11. (a) Model diagram of the welded beam design problem. (b) Schematic of the welded beam
design problem.

The design problem for the welded beam can be outlined as follows:
Consider

x = [x1 x2 x3 x4] = [h l t b] (43)

Objective function:

f (x) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2) (44)

Subject to
g1(

→
x ) = τ(

→
x )− τmax ≤ 0 (45)

g2(
→
x ) = σ(

→
x )− σmax ≤ 0 (46)

g3(
→
x ) = δ(

→
x )− δmax ≤ 0 (47)
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g4(
→
x ) = x1 − x4 ≤ 0 (48)

g5(
→
x ) = P − PC(

→
x ) ≤ 0 (49)

g6(
→
x ) = 0.125 − x1 ≤ 0 (50)

g7(
→
x ) = 1.10471x2

1 + 0.04811x3x4(14.0 + x2)− 0.5 ≤ 0 (51)

where

τ(
→
x ) =

√
(τ′)2 + 2τ′τ′′ x2

2R
+ (τ′′ ), τ′ =

P√
2x1x2

, τ′′ =
MR

J
(52)

M = P(L +
x2

2
), R =

√
x2

2
4

+

(
x1 + x3

2

)2
, σ(

→
x ) =

6PL
x4x2

3
(53)

J = 2

{
√

2x1x2

[
x2

2
4

+

(
x1 + x3

2

)2
]}

, δ(
→
x ) =

6PL3

Ex2
3x4

(54)

Pc(
→
x ) =

4.013E
√

x2
3x6

4/36

L2

(
1 − x3

2L

√
E

4G

)
, (55)

P = 6000lb, L = 14in, δmax = 0.25in, E = 30 × 106 psi (56)

τmax = 13600psi and σmax = 30000psi (57)

Boundaries:
0.1 ≤ x1 ≤ 2 (58)

0.1 ≤ x2 ≤ 10 (59)

0.1 ≤ x3 ≤ 10 (60)

0.1 ≤ x4 ≤ 2 (61)

The MACOA results in Table 13 show that both FR and SR are 84, which are signifi-
cantly better than those of COA in both metrics. Figure 12a shows the iterative process of
the optimal solutions found by the ten algorithms. Figure 12b shows the boxplots generated
from 50 experiments, where MACOA is far superior to COA in terms of the number of
anomalies and the median number of anomalies. Figure 12c shows the search history of
MACOA, where most of the search histories are clustered around the lower bound. These
results clearly show the superior performance of MACOA compared to COA.

Table 13. Experimental results of the welded beam design problem.

Alg. Best Std Mean Median Worst FR SR

MACOA 1.662 3.351 × 10−2 1.677 1.662 1.753 84 84
COA 1.735 2.118 × 10−1 2.427 2.488 2.773 0 0
SABO 1.691 5.034 × 10−1 1.981 1.785 3.502 0 0
WSO 1.662 0.000 1.662 1.662 1.662 100 100
SCSO 1.662 2.402 × 10−4 1.662 1.662 1.663 100 100
GJO 1.662 4.905 × 10−4 1.663 1.663 1.665 100 100
TSA 1.666 1.737 × 10−3 1.670 1.670 1.674 48 48
SRS 1.704 2.433 × 10−2 1.754 1.756 1.827 0 0

MPA 1.662 2.243 × 10−16 1.662 1.662 1.662 100 100
TLBO 1.662 2.243 × 10−16 1.662 1.662 1.662 100 100
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GJO 1.662 4.905 × 10−4 1.663 1.663 1.665 100 100 
TSA 1.666 1.737 × 10−3 1.670 1.670 1.674 48 48 
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Figure 12. Convergence curves and box plots of the ten algorithms applied to the welded beam
design problem.

5.5. Speed Reducer Design Problem

The speed reducer design problem is a well-known optimization challenge in engi-
neering design. Within the benchmark suite, the problem features D = 7 decision variables,
g = 11 inequality constraints, and h = 0 equality constraints. The optimal value of the
objective function is known to be f (x*) = 2.9944 × 103 [43]. Figure 13 illustrates the speed
reducer configuration.
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Figure 13. (a) Model diagram of the speed reducer design problem. (b) Schematic of the speed
reducer design problem.

The design problem for the speed reducer can be outlined as follows:
Consider

→
x = [x1 x2 x3 x4 x5 x6 x7] = [b m z2 l1 l2 d1 d2] (62)

Objective function:

f (X) = 0.7854x1x2
2(3.3333x2

3 + 14.9334x3 − 43.0934)−
1.508x1(x2

6 + x2
7) + 7.4777(x3

6 + x3
7) + 0.7854(x4x2

6 + x5x2
7)

(63)
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Subject to

g1(
→
x ) =

27
x1x2

2x3
− 1 ≤ 0 (64)

g2(
→
x ) =

397.5
x1x2

2x2
3
− 1 ≤ 0 (65)

g3(
→
x ) =

1.93x3
4

x2x4
6x3

− 1 ≤ 0 (66)

g4(
→
x ) =

1.93x3
5

x2x4
7x3

− 1 ≤ 0 (67)

g5(
→
x ) =

√
(745x4/(x2x3))

2 + 16.9 × 106

110x3
6

− 1 ≤ 0 (68)

g6(
→
x ) =

√
(745x5/(x2x3))

2 + 157.5 × 106

85x3
7

− 1 ≤ 0 (69)

g7(
→
x ) =

x2x3

40
− 1 ≤ 0 (70)

g8(
→
x ) =

5x2

x1
− 1 ≤ 0 (71)

g9(
→
x ) =

x1

12x2
− 1 ≤ 0 (72)

g10(
→
x ) =

1.5x6 + 1.9
x4

− 1 ≤ 0 (73)

g11(
→
x ) =

1.1x7 + 1.9
x5

− 1 ≤ 0 (74)

Boundaries:
2.6 ≤ x1 ≤ 3.6 (75)

0.7 ≤ x2 ≤ 0.8 (76)

17 ≤ x3 ≤ 28 (77)

7.3 ≤ x4 ≤ 8.3 (78)

7.8 ≤ x5 ≤ 8.3 (79)

2.9 ≤ x6 ≤ 3.9 (80)

5 ≤ x7 ≤ 5.5 (81)

Table 14 shows that MACOA achieves FR = 46 and SR = 46, which are much higher
than those of COA, and although WSO, MPA, and TLBO have slightly better FR and SR
values, MACOA still outperforms other algorithms, including COA. Figure 14a shows the
iterative process graphs for the optimal solutions of all algorithms. Figure 14b shows the
boxplots of 50 experiments, demonstrating that MACOA has far fewer anomalies than COA.
Figure 14c shows the search history of MACOA, with most of the search points clustered
around the boundary and global optimal solutions. The above analysis can conclude that
MACOA is significantly better than COA.
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Table 14. Experimental results of the speed reducer design problem.

Alg. Best Std Mean Median Worst FR SR

MACOA 2.994 × 103 2.679 × 101 3.010 × 103 3.006 × 103 3.164 × 103 46 46
COA 3.029 × 103 4.527 × 1097 1.058 × 1097 3.281 × 103 2.282 × 1098 0 0
SABO 3.220 × 103 4.607 × 102 4.360 × 103 4.343 × 103 5.277 × 103 0 0
WSO 2.994 × 103 0.000 2.994 × 103 2.994 × 103 2.994 × 103 100 100
SCSO 2.995 × 103 4.075 3.000 × 103 3.001 × 103 3.010 × 103 0 0
GJO 2.995 × 103 4.421 3.002 × 103 3.001 × 103 3.013 × 103 0 0
TSA 3.006 × 103 5.336 3.018 × 103 3.019 × 103 3.032 × 103 0 0
SRS 3.041 × 103 2.395 × 101 3.081 × 103 3.076 × 103 3.149 × 103 0 0

MPA 2.994 × 103 0.000 2.994 × 103 2.994 × 103 2.994 × 103 100 100
TLBO 2.994 × 103 6.496 × 10−14 2.994 × 103 2.994 × 103 2.994 × 103 100 100
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Table 14 shows that MACOA achieves FR = 46 and SR = 46, which are much higher 
than those of COA, and although WSO, MPA, and TLBO have slightly better FR and SR 
values, MACOA still outperforms other algorithms, including COA. Figure 14a shows the 
iterative process graphs for the optimal solutions of all algorithms. Figure 14b shows the 
boxplots of 50 experiments, demonstrating that MACOA has far fewer anomalies than 
COA. Figure 14c shows the search history of MACOA, with most of the search points 
clustered around the boundary and global optimal solutions. The above analysis can con-
clude that MACOA is significantly better than COA. 
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Figure 14. Iteration curves and box plots of the ten algorithms applied to the speed reducer
design problem.

5.6. Gear Train Design Problem

The problem of gear train design is a classic engineering design problem. The gear
train design problem is proposed to minimize the gear ratio. Within the benchmark
suite, the problem features D = 4 decision variables, g = 2 inequality constraints, and
h = 0 equality constraints. The optimal value of the objective function is known to be
f (x*) = 0 [43]. Figure 15 illustrates the gear train configuration.
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Figure 15. (a) Model diagram of the gear train design problem. (b) Schematic of the gear train
design problem.

The design problem for the gear train can be outlined as follows:
Consider

→
x = [x1 x2 x3 x4] = [nA nB nC nD] (82)

Objective function:

f (
→
x ) =

(
1

6.931
− x3x2

x1x4

)2
(83)
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Subject to

g1(
→
x ) =

27
x1x2

2x3
− 1 ≤ 0 (84)

g2(
→
x ) =

397.5
x1x2

2x2
3
− 1 ≤ 0 (85)

Boundaries:
12 ≤ x1 ≤ 60 (86)

12 ≤ x2 ≤ 60 (87)

12 ≤ x3 ≤ 60 (88)

12 ≤ x4 ≤ 60 (89)

Table 15 shows that the SR of MACOA is 92%, which greatly exceeds that of COA.
Figures 16a and 16b show the iterative process and the box plot distribution of the optimal
solutions for all the algorithms, respectively. Figure 16c shows the search history of MACOA
over 10,000 iterations, with most of the search regions located in the region where the global
optimum is located. These results further highlight the improved performance of MACOA
compared to COA.

Table 15. Experimental results of the gear train design problem.

Alg. Best Std Mean Median Worst FR SR

MACOA 2.7009 × 10−12 6.8154 × 10−9 2.4924 × 10−9 8.8876 × 10−10 2.7265 × 10−8 0 92
COA 2.7009 × 10−12 4.5433 × 10−7 1.6367 × 10−7 1.8274 × 10−8 2.0226 × 10−6 0 82
SABO 2.7009 × 10−12 1.7358 × 10−11 8.2394 × 10−12 2.7009 × 10−12 1.1661 × 10−10 0 100
WSO 2.7009 × 10−12 6.1753 × 10−12 4.7386 × 10−12 2.7009 × 10−12 2.3078 × 10−11 0 100
SCSO 2.7009 × 10−12 4.2280 × 10−10 2.4751 × 10−10 2.3078 × 10−11 9.9216 × 10−10 0 100
GJO 2.7009 × 10−12 9.4329 × 10−12 8.8140 × 10−12 2.7009 × 10−12 2.3078 × 10−11 0 100
TSA 2.7009 × 10−12 3.2309 × 10−10 1.2633 × 10−10 2.7009 × 10−12 9.9216 × 10−10 0 100
SRS 2.7009 × 10−12 2.3366 × 10−9 2.1648 × 10−9 1.3616 × 10−9 8.7008 × 10−9 0 100

MPA 2.7009 × 10−12 2.8818 × 10−12 3.1084 × 10−12 2.7009 × 10−12 2.3078 × 10−11 0 100
TLBO 2.7009 × 10−12 1.3927 × 10−10 2.9418 × 10−11 2.7009 × 10−12 9.9216 × 10−10 0 100
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5.7. Cantilever Beam Design Problem

The design of a cantilever beam is a classic engineering design problem. Within the
benchmark suite, the problem features D = 5 decision variables, g = 1 inequality constraints,
and h = 0 equality constraints. The established optimal objective function f (x*) is 1.34 [43].
Figure 17 illustrates the cantilever beam configuration.
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The design problem for the cantilever beam can be outlined as follows:
Consider

X = [x1 x2 x3 x4 x5] (90)

Objective function:

f (X) = 0.0624( x1 + x2 + x3 + x4 + x5) (91)

Subject to

g1(X) =
61
x3

1
+

37
x3

2
+

19
x3

3
+

7
x3

4
+

1
x3

5
− 1 ≤ 0 (92)

Boundaries:
0.01 ≤ x1 ≤ 100 (93)

0.01 ≤ x2 ≤ 100 (94)

0.01 ≤ x3 ≤ 100 (95)

0.01 ≤ x4 ≤ 100 (96)

0.01 ≤ x5 ≤ 100 (97)

Table 16 shows that MACOA has both FR and SR of 100. These metrics far exceed
COA and are comparable to the performance of WSO, SCSO, MPA, and TLBO. Figure 18a
shows the iterative convergence process of all the algorithms. Figure 18b shows the boxplot
distribution, from which it can be seen that MACOA has better stability and convergence
than COA. Figure 18c shows the search history of MACOA, where most of the searches
are clustered around the global optimum. MACOA also demonstrates better population
convergence. These results show that MACOA’s performance is very competitive, not only
outperforming COA, but also being on par with other good optimization algorithms.
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Table 16. Results of the cantilever beam design problem experiments.

Alg. Best Std Mean Median Worst FR SR

MACOA 1.33996 0.00000 1.33996 1.33996 1.33996 100 100
COA 1.35535 0.04447 1.42551 1.42357 1.52351 0 0
SABO 1.39712 0.06672 1.54173 1.53902 1.70340 0 0
WSO 1.33996 0.00000 1.33996 1.33996 1.33996 100 100
SCSO 1.33996 0.00000 1.33996 1.33996 1.33997 100 100
GJO 1.33996 0.00001 1.33997 1.33997 1.34001 98 98
TSA 1.34003 0.00012 1.34034 1.34034 1.34072 0 0
SRS 1.34537 0.01040 1.36089 1.35930 1.39957 0 0

MPA 1.33996 0.00000 1.33996 1.33996 1.33996 100 100
TLBO 1.33996 0.00000 1.33996 1.33996 1.33996 100 100
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5.8. Summary of Engineering Problems

Examining the data gathered from tackling the seven engineering problems discussed
above, it is clear that the MACOA algorithm excels compared to other algorithms regarding
feasibility and success rate in most engineering problems. This demonstrates MACOA’s
exceptional capability to solve constrained engineering problems.

6. Conclusions and Future Prospects
The challenge of slow convergence and the tendency of COA to converge to local

optima are addressed in this paper. To mitigate these issues, MACOA is introduced,
which integrates Lévy flight, nonlinear inertia weight factors, and the coati vigilante
mechanism. The Lévy flight mechanism is introduced into the population initialization
phase to improve the quality of initial solutions. Then, the nonlinear inertia weight factors
are introduced in the exploration phase to improve COA’s global search capabilities and
accelerate convergence. Additionally, the coati vigilante mechanism is implemented in the
exploitation phase to enable the algorithm to quickly escape from local optima and address
the imbalance between the exploration and exploitation capabilities of COA.

Experiments are conducted based on the IEEE CEC2017 test functions, comparing
MACOA with 11 other popular algorithms across three dimensions. The analysis of con-
vergence curves, boxplots, and search history results indicates that MACOA achieves the
best performance on 9 test functions with an average ranking of 2.17 in the 30-dimensional
experiment, 12 test functions with an average ranking of 1.90 in the 50-dimensional ex-
periment, and 14 test functions with an average ranking of 1.76 in the 100-dimensional
experiment. Overall, MACOA outperforms all compared algorithms in the CEC2017 test
function experiments.
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In application experiments, MACOA is tested on seven engineering problems. By
analyzing the experimental results, it is clear that MACOA exhibits the best performance
in four of these problems and outperforms COA in all application scenarios. Therefore,
the proposed MACOA significantly improves the performance of COA and holds strong
application value in constrained engineering optimization problems.

Although MACOA is overall effective at present, there are still some areas that need
further improvement. In the standard test function experiments, MACOA did not perform
well on some functions compared to other algorithms. In future work, we will continue
our research on several optimization strategies, particularly the nonlinear strategy in this
study, where the adaptive parameters change with iterations. In addition, we are working
on the challenges of its integration with other complex disciplinary issues. These efforts
will further validate the adaptability and effectiveness of MACOA in different domains.
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