

Reliability of a tennis-specific treadmill protocol performed in temperate and hot conditions

DEBNEY, Matthew, TILLER, Nicholas <<http://orcid.org/0000-0001-8429-658X>>, O'HAGAN, Ciara and PURVIS, Alison <<http://orcid.org/0000-0002-3581-4990>>

Available from Sheffield Hallam University Research Archive (SHURA) at:
<https://shura.shu.ac.uk/35694/>

This document is the Accepted Version [AM]

Citation:

DEBNEY, Matthew, TILLER, Nicholas, O'HAGAN, Ciara and PURVIS, Alison (2018). Reliability of a tennis-specific treadmill protocol performed in temperate and hot conditions. *Journal of Sports Sciences*, 36 (Supp 1), 27-28. [Article]

Copyright and re-use policy

See <http://shura.shu.ac.uk/information.html>

1 **Reliability of a tennis-specific treadmill protocol performed in temperate and hot**
2 **conditions**

3
4 Matthew J. Debney*, Nicholas B. Tiller, Ciara J. O'Hagan, Alison J. Purvis

5
6 Academy of Sport and Physical Activity, Sheffield Hallam University, UK

7 * Corresponding author: m.debney@shu.ac.uk @mattdebney

8
9 Laboratory protocols allow for the assessment of physiological function that cannot easily be
10 observed in the field; however, there are currently no suitably reliable protocols for the
11 assessment of physiological responses to tennis match-play. Accordingly, the aims of this
12 study were to design a laboratory-based, tennis-specific treadmill protocol, and determine the
13 between-day reliability of physiological responses in both temperate and hot conditions. The
14 treadmill protocol was designed to simulate the published time-motion (Kovacs 2006, *British*
15 *Journal of Sports Medicine*, 40, 381-386; Filipčič & Filipčič 2006, *AUC Kinanthropologica*,
16 42(1), 41-53) and match-play characteristics (Reid, Morgan & Whiteside 2016, *Journal of*
17 *Sport Sciences*, 34:19, 1791-1798) of professional tennis players. The protocol comprised
18 three sets of nine games, each consisting of six points, with 20 s rest-periods between points.
19 The total match duration was 92.15 min, and treadmill speed ranged from 10 - 20 km·hr⁻¹.
20 Following approval from the institutional research ethics committee, 17 healthy, male
21 amateur tennis players volunteered to participate (age = 24 ± 6 years; mass = 76.6 ± 10.1 kg;
22 stature = 179.5 ± 6.5 cm; $\dot{V}O_2\text{max} = 50 \pm 4 \text{ ml} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$). Participants completed the
23 treadmill protocol twice in temperate (n=12; 20.2 ± 0.6 °C; 48.1 ± 7.4% relative humidity)
24 and/or twice in hot (n=11; 35.9 ± 0.8 °C; 50.2 ± 4.9% relative humidity) conditions, each test
25 performed on separate days. Measures included core temperature (T_c) via rectal thermistor,
26 skin temperature (T_{sk}) via skin thermistors, capillary blood lactate concentration ([BLa]) via
27 an enzymatic method, oxygen uptake ($\dot{V}O_2$) via an online system, heart rate (HR) via
28 telemetry, ratings of perceived exertion (RPE) via the Borg scale, and perceptions of thermal
29 sensation (TSS) and thermal comfort (TC). Physiological Strain Index (PSI) was derived
30 from T_c and HR, and sweat rate (SR) was calculated from pre-to-post-trial nude body mass.
31 Between-day reliability was determined using coefficient of variation (CV) and intraclass
32 correlation coefficient (ICC). In temperate conditions, T_c , T_{sk} , HR, $\dot{V}O_2$, and TSS showed
33 the strongest reliability (all CV <5%, ICC 0.7 – 0.971) when compared to SR, PSI, [BLa],
34 RPE, and TC (CV 5 – 16%; ICC 0.770 – 0.964). In hot conditions, T_c , T_{sk} , HR, $\dot{V}O_2$, and
35 TSS showed the strongest reliability (all CV <5%; ICC 0.862 - 0.984), when compared to
36 SR, PSI, [BLa], RPE, and TC (CV 6 – 19%; ICC 0.829 – 0.935). The tennis-specific
37 treadmill protocol allowed for the reliable assessment of core temperature, skin temperature,
38 heart rate, O_2 uptake, and thermal sensation, both in temperate and hot conditions. These data
39 indicate that the protocol is appropriate for assessments of physiology-based interventions.