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ABSTRACT In complex networks, predicting the formation of new connections, or links, within complex
networks has been a central challenge, traditionally addressed using graph-based models. These models,
however, are limited in their ability to capture higher-order interactions that exist in many real-world
networks, such as social, biological, and technological systems. To account for these multi-node interactions,
hyper-networks have emerged as a more flexible framework, where hyperedges can connect multiple nodes
simultaneously. Traditional link prediction methods often treat all common neighbors equally, overlooking
the fact that not all nodes contribute uniformly to the formation of future links. Each node within a network
holds a distinct level of importance, which can influence the likelihood of link formation among its neighbors.
To address this, we introduce a link prediction approach leveraging hypercentrality measures adapted from
traditional centrality metrics such as degree, clustering coefficient, betweenness, and closeness to capture
node significance and improve link prediction in hyper-networks. We propose the Link Prediction Based
on HyperCentrality in hyper-networks (LPHC) model, which enhances traditional common neighbor and
jaccard coefficient of hyper-network frameworks by incorporating centrality scores to account for node
importance. Our approach is evaluated across multiple real-world hyper-networks datasets, demonstrating its
superiority over traditional link prediction methods. The results show that link prediction in hypercentrality-
basedmodels, particularly those utilizing hyperdegree and hyperclustering coefficients for common neighbor
and jaccard coefficent approaches in hyper-networks, consistently outperform existing methods in terms of
both F1-score and Area Under the Precision-Recall Curve (AUPR), offering a more precise understanding
of potential link formations in hyper-networks. The proposed LPHC model consistently outperforms the
existing HCN and HJC models across all datasets, achieving an overall improvement of 69% compared to
HCN and 68% compared to HJC.

INDEX TERMS Hyper-networks, link prediction, centrality measures.

I. INTRODUCTION
In network science, predicting the formation of connections
within a network presents a significant research challenge.
Traditionally, this problem has been addressed through graph-
based models, where nodes represent entities and edges
denote pairwise relationships. However, many real-world
networks exhibit more intricate, higher-order interactions
that cannot be fully captured by pairwise connections

The associate editor coordinating the review of this manuscript and

approving it for publication was Hocine Cherifi .

alone. Such networks are prevalent in domains like social,
biological, and technological systems [1], where interactions
often involve multiple entities simultaneously. To model
the complexity of these interactions, hyper-networks have
emerged as a powerful extension of traditional graphs,
where hyperedges connect multiple nodes at once, offering
a more comprehensive framework for representing complex
relationships. In complex networks, several critical tasks
pose significant challenges, such as centrality measures,
influence maximization, community detection, and link
prediction, all of which have been extended to the domain of
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hyper-networks. This paper focuses specifically on the task of
link prediction in hyper-networks efficiently utilizing hyper-
centralitymeasures. Link prediction [2] in hyper-networks [3]
introduces unique challenges due to the multidimensional
nature of connections.

Unlike simple graphs, where the prediction task focuses on
pairs of nodes, one can predict future hyperedges from hyper-
networks, which may involve several nodes at once. How-
ever, many real-world complex networks require pair-wise
interaction prediction. In a collaborative research hyper-
network [4], nodes represent researchers and hyperedges
represent groups of -authors who published a paper together.
In such networks, recommending meaningful collaborations
to a specific author involves predicting pairwise interaction
of that author with others. Although they may occasionally
work with larger groups, these broader collaborations are
less frequent and less stable than their core pairwise
relationship. Similarly, in biological hyper-networks [5] like
protein-protein interaction (PPI ) hyper-networks, pairwise
interactions are essential for cellular processes. Direct
interactions between two proteins, such as enzyme-substrate
binding are critical for functions. While hyperedges capture
multi-protein complexes, core biological functions often rely
on stable pairwise protein interactions. Hyperedge predic-
tions, though useful, may miss these fundamental direct
interactions. Therefore, we intend to predict future interaction
between two nodes taking the hypernetwork which provides a
rich input.

Chen et al. [6] provided a comprehensive survey on hyper-
link prediction, classifying various methods available for
link prediction in hyper-networks, including similarity based
approach, probabilistic models, matrix-based approaches,
and deep learning techniques. In this work, we focus
specifically on local similarity measures, which leverage the
immediate neighborhood and structural features of nodes
to predict future links in hypergraph. In a hyper-network,
local similarity measures typically evaluate how likely two
or more nodes are to be part of the same hyperedge based
on their shared connections. These measures aim to capture
the likelihood that nodes, which share neighbors in the
hypergraph, will be co-participants in a hyperedge in the
future. Some common adaptations of local similarity-based
measures for hypergraphs include: common neighbor, Jac-
card coefficient along with many others. Nasiri et al. [7]
extends the Local RandomWalk (LRW) method to multiplex
networks, proposing the Multiplex Local Random Walk
(MLRW) to predict links by leveraging inter-layer and intra-
layer structural information. Berahmand et al. [8] introduces
SDAC-DA, a semi-supervised deep clustering method for
attributed networks that combines dual autoencoders and
end-to-end optimization to enhance clustering performance.
Sheikhpour et al. [9] proposes HSDAFS, a semi-supervised
feature selection method using hypergraph Laplacian-based
discriminant analysis and mixed l2,1-norm regularization to
capture high-order relationships and enhance feature sparsity.

Shen et al. [10] explores the synchronization of fractional
uncertain reaction-diffusion complex networks using an
adaptive scheme and output-strict passivity lemma.

In similarity based link prediction approaches for hyper-
networks, the focus is primarily on the neighborhood
structure, where common neighbors between sets of nodes
are typically considered to have equal significance [11].
However, this assumption neglects the fact that common
neighbors contribute differently to the formation of future
hyperedges. The multidimensional nature of hyperedges,
which can connect multiple nodes simultaneously, introduces
varying levels of influence among nodes. As a result,
common neighbors do not equally impact the likelihood
of new hyperedges forming. To address this complexity,
node importance, quantified through centrality scores can
be integrated into the common neighborhood framework,
offering a more refined approach to link prediction.

The study presented in this work aims to consider the cen-
trality scores [12] of common neighbors to improve the
accuracy of predicting future links. Before introducing the
proposed method, we review existing centrality measures for
link prediction in graphs [13] and outline their adaptations to
the context of hyper-networks.

The structure of this paper is as follows: Sec.II review
related work and discuss existing methods related to link
prediction and centrality measures, both in graphs and hyper-
networks. In Sec.III, we present the methodology, including
the hypercentrality measures used, the calculation of average
hypercentrality, and the definition of similarity scores. Sec.IV
outlines the experimental setup, including hyper-networks
sampling and the datasets used, and presents the evaluation
results. Sec.V provides a detailed discussion of the results.
Finally, Sec.VI concludes the paper and proposes potential
directions for future research.

Table. 1 outlines the notations used throughout this work.
The following section briefly describes the related work.

II. RELATED WORK
This section presents the essential technical background,
definitions, and relevant information for this work. The
definitions are outlined as follows.
Definition 1 (Hyper-Network): A complex

hyper-network [14] is denoted as H = (V ,E), where
V = {v1, v2, ..vn} represents a set of |V | nodes, and
E = {e1, e2, ..em} represents a set of m hyperedges. Each
hyperedge Ei is a non-empty subset of the power set of V ,
i.e., Ei ∈ (2V − φ)
Unlike standard graphs, where an edge connects exactly

two nodes, a hyperedge in a hyper-network can connect any
number of nodes. In this work, the terms ‘‘hyper-network’’
and ‘‘hypergraph’’ are used synonymously. Similarly, the
terms ‘‘edges,’’ ‘‘links,’’ and ‘‘connections’’ are treated as
interchangeable throughout this work.

A hyper-network with V vertices and E hyperedges can
be represented using an incidence matrix I [H ], where the
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TABLE 1. Notations utilized in this research.

rows correspond to the vertices and the columns represent the
hyperedges. Thismatrix captures the relationship between the
vertices and hyperedges in the hyper-networks. The incidence
matrix of a hyper-networks is mathematically defined as
follows:
Definition 2 (Incidence Matrix I (H )): Given a hyper-

network H = (V ,E), the incidence matrix [14] is a matrix
of size |V | × |E |. The rows of the matrix correspond to the
vertices |V |, and the columns correspond to the hyperedges
|E|. Each entry Ive in the incidence matrix I (H ) is defined as
follows:

Ive =

{
1 : if node v is part of hyperedge e
0 : otherwise

(1)

For example, consider a hyper-network from Fig. 1 with
nodes V = {A,B,C,D,E,F,G} and hyperedges E =

{e1, e2, e3, ande4}. Here we define the hyperedges as follows:
• Hyperedge e1 connects nodes A, B and D.
• Hyperedge e2 connects nodes B and C .
• Hyperedge e3 connects nodes A, B, C , and E .
• Hyperedge e4 connects nodes A, D, E , F and G.

The incidence matrix corresponding to Fig. 1 is constructed
by assigning a value of 1 to entries where a node is part of a
hyperedge, and 0 otherwise. This matrix is depicted in Fig. 2.

A. LINK PREDICTION IN HYPER-NETWORKS
Link prediction in hyper-networks involves predicting future
hyperedges among multiple nodes, where relationships
involve more than two nodes, unlike traditional graphs.
Hyperedges connect several nodes at once, and the goal is
to identify which groups are likely to form new connections
based on the hyper-networks’s structure. Kumar et al. [15]
addresses the challenge of hyperedge prediction, a complex
problem with applications in fields like social networks

FIGURE 1. Hyper-network with 7 nodes (A, B, C, D, E, F and G) and
4 hyperedges (e1, e2, e3 and e4).

FIGURE 2. Incidence matrix of hyper-network I(H).

and metabolic systems. The authors proposed HPRA
(Hyperedge-Prediction using Resource-Allocation), a novel
algorithm that predicts hyperedges of any size without
requiring a predefined candidate set. Extensive experiments
demonstrate that HPRA achieves significant improvements
over existing methods, effectively recovering missing and
predicting future hyperedges.

Though hyper-networks capture complex relationships
involving multiple entities through hyperedges, pair-wise
interactions remain fundamental in several real-world sce-
narios. For instance, in academic collaborations, papers often
have multiple authors forming hyperedges. Pair-wise interac-
tions model direct collaborations between author pairs, pro-
viding insights into author-specific partnerships, influence,
and local collaboration patterns. Similarly, in Recommender
Systems such as Netflix or Spotify, users interacting with
multiple items (movies, songs) form hyperedges. However,
the product recommendations to the users are pair-wise
relationships between users and items. One more moti-
vating scenario appears in Epidemic Modeling. In disease
transmission, groups of individuals participating in shared
events like weddings or conferences create hyperedges. But,
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pair-wise interactions are significant in identifying who
infected whom, supporting effective intervention strategies.
Therefore, we aim to develop a framework for pair-wise
interaction prediction in hyper-networks.

Our work is majorly inspired from the work of [16] which
focuses on local similarity measure. Local similarity-based
link prediction leverages the immediate neighborhoods of
nodes to compute similarity scores, typically based on shared
connections. The authors propose link prediction measures
in hypergraphs directly, without converting them to pairwise
graphs. The advantage of this method is thhat it preserves
the inherent structure of hypergraphs, thereby maintaining
the original complexity and information integrity, unlike
traditional approaches that rely on transforming hypergraphs
into simple graphs. The work in [16] defines two measures
HCN (Common Neighbor in Hyper-network), HJC (Jaccard
Coefficient in Hyper-network), which are briefed below.

a) Common Neighbor in Hyper-network (HCN ):
The authors [16] generalized common neighbors to
hyper-networks by calculating the average of the
pairwise CN indices between the nodes in each
hyperlink. The Link Prediction in hyper-networks
using Common Neighbors HCN is specified in the
below Eq.2.

HCN (u, v) =
2

se1 ∗ se2

∑
u∈e1;v∈e2;x∈e1∩e2

|x| (2)

where, u, v are nodes with in the Hyper-network, e1 and
e2 are hyperedges, and se is the size of the hyperedge.

b) Jaccard Coefficient in Hyper-network (HJC): The
authors of [16] extended Jaccard Coefficient to hyper-
networks setting. The HJC is a normalized version of
HCN , computed by dividing the number of neighbors
shared by both nodes by total number of distinct
neighbors of either node. Mathematically, HJC is
expressed as:

HJC(u, v) =
HCN (u, v)

|0(u) ∪ 0(v)|
(3)

The Common Neighbor (CN) measure is simple and
computationally efficient, making it effective for capturing
local structural information in dense networks or tightly-
knit communities. However, it has limitations, as it treats
all common neighbors equally, failing to account for node
importance or influence. CN is less effective in sparse
networks or those with long-range dependencies, as it does
not consider global structural information. The Jaccard
Coefficient (JC), in contrast, provides a normalized similarity
score by balancing common neighbors with the union of
unique neighbors, making it more robust in networks with
diverse connectivity patterns or imbalanced neighborhood
sizes. Despite this, JC struggles in sparse networks where
large unions lead to low scores and is sensitive to small
intersections, reducing its effectiveness in weakly clustered
networks. Additionally, JC is computationally more intensive
than CN due to the union calculation. To address these

challenges, we plan to extend these measures to incorporate
global structural properties, improving their predictive accu-
racy across diverse network scenarios.

In all these measures, all the common neighbors are treated
equal. However, these common neighbors do not contribute
uniformly to the formation of future links. Each node within
a network holds a distinct level of importance, and this
significance is believed to influence the likelihood of link
formation among neighbors. Accordingly, this study aims
to incorporate node significance, represented by centrality
scores, to enhance the common neighborhood framework.
We begin by briefly reviewing existing centrality measures
in graphs, discuss how these measures are adapted to the
hyper-networks context. We present our proposal of how this
information can be utilized to predict future hyperlinks in the
following section.

B. HYPERCENTRALITY MEASURES
In graph theory, centrality measures are commonly used
to assess the importance or influence of individual nodes
within a network. Centrality in traditional graphs measures
the importance of a node based on its connections, focusing
on pairwise relationships. Four of the most widely applied
centrality measures are degree centrality [17], clustering
coefficient [18], [19], betweenness centrality [20], and close-
ness centrality [21]. These measures offer valuable insights
into the structural role of nodes and their contributions to
the overall network dynamics. Degree centrality, one of the
simplest centrality measures, is defined as the number of
direct connections a node has, with higher values indicating
nodes that can spread information or exert influence more
effectively. The clustering coefficient measures the degree
to which a node’s neighbors are interconnected, reflecting
the node’s participation in closely knit groups. Betweenness
centrality quantifies the extent to which a node lies on the
shortest paths between other nodes, highlighting its role in
facilitating information flow across the network. Closeness
centrality, on the other hand, is the inverse of the total shortest
path distances from a node to all other nodes, indicating
how efficiently a node can access other parts of the network.
However, these measures do not capture more complex
group interactions or multi-node connections found in real-
world networks. Hypercentrality measures in hyper-networks
address this limitation by considering hyperedges that can
connect multiple nodes simultaneously.

Hypercentralities allow for the identification of key
nodes and relationships within the more complex topol-
ogy of hyper-networks, where influence, connectivity, and
centrality are defined by higher-order interactions rather
than just pairwise connections. Roy et al. [22] proposes
utilizing Shapley value-based centrality within the framework
of node centrality, while preserving hypergraph structure.
Li et al. [23] introduces a novel link prediction approach
for social networks utilizing hypergraphs, which effectively
capture both pairwise and higher-order relationships, thereby
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enhancing the accuracy and performance of link prediction
tasks. Ihsan et al. [24] proposed entropy-based centrality
measures for hyper-networks, utilizing local similarities to
capture centralities.

Aksoy et al. [25] extend traditional graph metrics to s-
metrics (high-order hypergraph walks) for hypergraphs by
leveraging their s-connected components. This is achieved by
first computing the s edge-adjacency matrix, which is then
used to construct the corresponding graph representation of
the hypergraph. Existing graph metrics can subsequently be
applied to this graph representation. Essentially, the authors
generate an s-line graph corresponding to the hypergraph,
enabling the application of standard graph-based methods.
By default, the parameter s is set to 1, though it can be
fine-tuned to better suit specific applications.

Centrality measures in graphs and hypergraphs differ
due to the structural properties of their connections. While
graphs model pairwise relationships (edges), hypergraphs
capture higher-order interactions (hyperedges), enabling
richer representations of complex systems. Table. 2 contains
a detailed comparison of centrality measures in both contexts.

In this study, we intend to utilize hyper-centrality mea-
sures; therefore, a brief discussion on centrality measures
within hyper-networks is presented below.

a) HyperDegree Centrality (HCd ): The hyperdegree
of a node is the number of hyperedges the node
is part of. Unlike traditional graphs, where edges
connect two nodes, hyperedges in hypergraphs can
connect multiple nodes simultaneously. However, each
hyperedge is counted only once for each node it
connects, regardless of how many nodes are part of
the hyperedge. The underlying notion is that a node’s
influence in a hyper-network increases if it participates
in more hyperedges, as this indicates a broader range
of connections and involvement in various relationships
within the network. The Degree Centrality of a node u
in a hyper-networks is mathematically expressed as:

HCd (u) =

e∑
v=1

Iue (4)

where I is the incidence matrix of hyper-networks.
Iue represents the existence of node u in hyperedge e.
The total Degree Centrality of node u is obtained by
summing the edges in which it is participating.

b) HyperClusteringCoefficient (HCcc):Clustering Coef-
ficient in hyper-networks is a measure of the tendency
of nodes to form tightly connected groups, or clusters,
within the hyper-networks [25]. Unlike traditional
graphs, where clustering focuses on the likelihood
that a node’s neighbors are also connected to each
other, in hyper-networks, clustering involves assessing
how nodes participate in hyperedges that create group
interactions. The idea is to measure how likely it is for
two nodes that share a hyperedge to also be connected
by other hyperedges. The mathematical definition of

clustering coefficient in hyper-networks is given in Eq.5.

HCcc(u) =

∑
e1,e2

|e1 ∩ e2|(k(u)
2

) (5)

where k(u) is the set of hyperedges containing u,
(k(u)

2

)
is the total number of possible pairs of hyperedges
involving u and |e1 ∩ e2| is the size of the intersection of
hyperedges containing u.

c) HyperBetweenness Centrality(HCb): Betweenness
Centrality in hyper-networks identifies nodes that act as
key connectors within the network [25]. Nodes with a
high number of shortest paths passing through them are
more important, as they play a critical role in facilitating
communication and interactions across different parts of
the hyper-networks. The betweenness in hyper-networks
can be computed for nodes or edges. In this work,
we consider only centrality of nodes. The HB for a node
u is calculated using the formula:

HCb(u) =

∑
i̸=u̸=j

σi,j(u)
σi,j

(6)

where σi,j(u) represents the number of shortest paths
from node i to node j that pass through node u. and σi,j
denotes the total number of shortest paths from node
i to node j. In traditional graphs, distance is defined
as the number of edges in the shortest path between
two nodes. However, in hyper-networks, hyperedges can
contain multiple nodes, which changes how we measure
distance. In its simplest form, the distance between
two nodes is defined as the number of hyperedges you
must traverse to connect them. If two nodes are in
the same hyperedge, the distance is 1. If they are not
directly connected by a hyperedge, you need to traverse
intermediate hyperedges, and the distance increases.

d) HyperCloseness Centrality(HCcl) Closeness Central-
ity in hyper-networks quantifies how near a node is
to all other nodes [25]. Unlike in traditional graphs,
where distance is usually defined by the shortest path
between two nodes, in hyper-networks, this concept is
adapted to account for the fact that hyperedges can link
several nodes simultaneously. The closeness centrality
is computed for nodes or edges. If edge is set to True,
it computes the closeness centrality for edges; otherwise,
it computes for nodes. And also we can fix the size of the
egdes, within the hyper-networks. The HC for a node u
is calculated using the formula:

HCcl(u) =
|V | − 1∑

u̸=v∈V d(u, v)
(7)

Here d(u, v) is the distance between nodes u and v, |V |

is the total number of nodes within the hyper-networks.
This study aims to adapt the centrality measures to the

more intricate structure of hyper-networks, hypothesizing
that centrality-based approaches can provide deeper insights
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TABLE 2. Centrality measures in graphs Vs hypergraphs.

into the underlying patterns of connectivity. The authors
of [13] proposed a novel link prediction method using
similarity scores based on average centrality measures on
traditional graphs to improve prediction accuracy. This work
is inspired from the work of [13] to extend the methodology
to hyper-networks.Metrics like degree, clustering coefficient,
betweenness, and closeness are adapted to account for
thesemulti-node connections, offering amore comprehensive
understanding of node influence in settings with group
interactions. By integrating node centrality metrics into the
link prediction framework, the proposed method seeks to
capture the multifaceted relationships inherent in hyper-
networks, thereby enhancing predictive performance. The
following section explains the proposed approach in detail.

III. PROPOSED METHOD
This work extends the traditional concept of link prediction in
graphs [2] to hyper-networks, with a particular emphasis on
hyperedges of size 2. This choice is motivated by the richer
and more informative data provided by hyperedges of size 2,
enabling more accurate and interpretable outcomes.In this
work, we extend this concept to address the problem of link
prediction in hyper-networks as follows.
Definition 3 (Link Prediction in Hyper-networks (LPH)):

Given a hyper-network H = (V ,E), V representing set of
vertices, and E denoting set of hyperlinks, the task of LPH
involves forecasting the potential appearance of pairwise
links that are not currently present in H but are expected to
emerge in the future.

In this work, we propose a novel approach of predicting
links in hyper-networks leveraging node centrality scores.
This approach is termed Link Prediction Based on Hyper-

Centrality (LPHC). LPHC aims to improve the accuracy of
link prediction by focusing on common nodes with higher
influence within the network structure. We use Common
Neighbor as well as Jaccard Coefficient as link prediction
measures in this work. Both of these majorly rely on common
neighbors.

The LPHC algorithm has the following steps:

1) Calculating the HyperCentrality score for each node
within the hyper-networks. In this work we use four
centrality measures discussed in later Sec.III-A.

2) Subsequently, the average centrality of all nodes is
determined as shown in Eq.8.

AHCHC(H ) =

∑
u∈V (H ) HC(u)

|V |
(8)

In Eq.8, HC(u) denotes the HyperCentrality score
of node u, determined using hyper-networks cen-
trality measures provided in the Sec.II-B. In Eq.8,
the generalized form of the average HyperCentrality
score AHC(H ) can be adapted based on the specific
centrality measure used. For instance: If the Hyper-
Centrality measure corresponds to hyperdegree, then
apply AHCd (H ), if it is hyperbetweenness then apply
AHCb(H ) in place of AHCHC(H ).

3) To predict a potential link between two nodes, u
and v, the method initially identifies their common
neighbors in the hyper-networks. In the next step,
only those common neighbors whose HyperCentrality
scores surpass the average centrality are taken into
account in computing link prediction scores. Use these
common neighbors to compute link prediction scores.
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FIGURE 3. LPHC: Link Prediction based on HyperCentralit.

In this work, we employ two link prediction measures,
which are detailed in Sec.III-B.

The proposed method is depicted in Fig. 3 and summarized
in Algorithm.1.

A. HYPERCENTRALITY MEASURES
We use various hyper-networks-specific centrality measures,
including hyperdegree, hyperbetweenness, hypercloseness,
and hyperclustering coefficient, in place of HC. The detailed
equations for each of these hypercentrality measures are
provided in the Table. 3, illustrating how they are adapted for
hyper-networks to effectively capture node influence.

B. LINK PREDICTION MEASURES BASED ON
HYPERCENTRALITY

a) HyperCentrality based Common Neighbor
(LPHCCN ) : To compute the similarity score
between two non-adjacent nodepairs (u, v) in a
hyper-networks based on the average centrality,
we generalize the concept of common neighbors
to hyperedges. The Link Prediction Based Hyper-
Centrality for hyper-networks SCHHCM can be
defined in Eq.9:

LPHCCN
HC (u, v) =

2
se1 ∗ se2

∑
u∈e1;v∈e2;x∈e1∩e2
and HC(x)≥AHC(H )

|x| (9)

where, e1 and e2 are hyperedges, and se is the
size of e, x denotes the common neighbor between
hyperedges, HC(x) denotes the hypercentrality
score of common neighbor x,AHC(H) is the average
hypercentrality which is in defined in Eq.8.
This equation computes the link prediction score
by counting the number of common neighbors that
has a centrality value greater than or equal to the
average centrality of the hyper-network. HC can
be adapted to other HyperCentrality measures such
as hyperclustering coefficient HCcc, hyperbetween-
ness centrality HCb, and hypercloseness centrality
HCcl , as outlined in rows 2, 3, and 4 of Table.
3, respectively, which leads to the calculation of
LPHCCN .

b) HyperCentrality based Jaccard Coefficient
(LPHCJC ) :

In traditional graphs, the Jaccard Coefficient is
calculated based on the neighbors of two nodes,
representing the similarity between these nodes
as the ratio of their shared neighbors to their
total neighbors (union). In hypergraphs, the Jaccard
Coefficient is an adaptation of the traditional Jac-
card Coefficient used in graphs, but it accounts for
the complexity of hyperedges, which can connect
multiple nodes simultaneously. For hypergraphs,
the Jaccard Coefficient is modified to compare
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TABLE 3. The proposed link prediction measure based on HyperCentrality (LPHCHC(u, v )).

the sets of hyperedges that connect two nodes,
instead of just pairwise neighbors. In this case, the
Jaccard Coefficient between two nodes u and v in a
hypergraph is defined as:

LPHCJC
HC(u, v) =

|LPHCCN
HC (u, v)|

|0(u) ∪ 0(v)|
(10)

where 0(u) is the set of hyperedges that node u and
node v participates in, LPHCJC

HC(u, v) is the number
of hyperedges shared by both u and v, and |0(u) ∪

0(v)| is the total number of hyperedges that contain
either u and v, or both. LPHCJC can also be defined
using various HyperCentrality measures similar to
the ones in Table. 3

The effectiveness of the proposed method is assessed
through experimental evaluation on five distinct hypernet-
works. Comprehensive details of this evaluation are presented
in the subsequent section.

IV. EXPERIMENTAL SETUP
We employed five datasets to demonstrate the effective-
ness of the proposed approach, with each dataset sam-
pled from hyper-networks taken from ARB respository
‘‘https://www.cs.cornell.edu/ arb/data/email-Eu/’’.

• National Drug Code Directory NDC [26]: In NDC-
classes, nodes are class labels assigned to drugs, where
each node corresponds to a specific label associated
with a drug. Hyperedges are formed by simplices, where
each simplex represents a set of nodes (class labels)
connected together by a drug.

• email-Eu: In the email-Eu dataset, the nodes represent
email addresses within a European research institution,
and a hyperedge is created by grouping together the

sender and all recipients involved in a specific email.
‘‘https://www.cs.cornell.edu/ arb/data/email-Eu/’’

• Drug abuse warning network (DAWN) drugs [26]:
In DAWN, nodes represent the drugs (illicit substances,
prescription medications) reported by patients during
emergency department visits whereas Hyperedges are
the simplices, where each simplex corresponds to a set
of drugs used by a patient during a specific visit.

• cat-edge-geometry-questions: In this hyper-networks
dataset, Nodes correspond to individual geometry-
related questions and Hyperedges are created by group-
ing questions that are conceptually connected, meaning
they share common topics, linking multiple questions
(nodes) within a single hyperedge.

• hyperegdes-contact-high-school [27]: In this nodes
represent the people at the high school who were
interacting with each other and hyperedges are the
maximal cliques of interacting individuals, captured as
simplices, where each hyperedge connects all the people
who interacted with one another.

The hypernetworks are huge in size. Therefore, we have
sampled the networks to reduce the size based on the
hyperedge distribution. The hyperedge distribution is defined
as a function that gives the number of hyperedges of each
possible size (or cardinality). This describes how many
hyperedges contain a given number of nodes. Fig. 4 depicts
the hyperedge distribution. In the hyperedge distribution
visualizations, the x-axis represents the hyperedge size,
which corresponds to the number of nodes involved in a
single hyperedge. Although the hyperedge size on x-axis can
extend beyond 8, we observe that 95%of the nodes participate
in hyperedges of size 8 or less. To enhance visualization
clarity, the x-axis is therefore restricted to a maximum size
of 8, enabling amore focused and interpretable representation
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Algorithm 1 LPHC: Link Prediction Based on Hyper-
Centrality
Input:H = (V ,E): hyper-networks where V is node list and
E is hyperedge list.
Output: LPHC_Scores: A set of key-value pairs where keys
represent non-adjacent node pairs inH and the corresponding
values denote the Link Prediction score of the pair.

0: Initialization: LPHC_Scores = φ // LPHC_scores
contains key-value pairs where keys are the non-
adjacent node pairs and values are their LPHC scores.

0: for every vertex uinV do
0: Find HC(u) // Calculate Centrality of node u
0: end for

0: Compute AHC(H ) =

∑
u∈V

HC(u)

|V |
// Average Centrality

of hyper-networks H
0: for every vertex u in V do
0: Compute the 0(u) // Find the neighbors of node u
0: for every vertex vinV do
0: if (u, v) /∈ E then
0: Compute the 0(v) // Find the neighbors of

node v
0: Compute N = 0(u) ∩ 0(v)
0: for every x ∈ N do
0: if HC(u) ≤ AHC(H) then
0: Remove x from N
0: end if
0: end for
0: Calculate lp_score_uv using nodes in N

using various link prediction measures
discussed in Sec.III-B

0: Add ((u, v) : lp_score_uv) to LPHC_Scores
0: end if
0: end for
0: end for

return LPHC_Scores
0: =0

of the most common hyperedge sizes. The y-axis denotes
the count of hyperedges for each respective hyperedge size,
illustrating how many hyperedges of a given size exist within
the dataset. In most datasets, we observe that the majority of
hyperedges consist of pairs of nodes (hyperedge size 2), while
larger hyperedges (size 3, 4, and beyond) are progressively
less frequent. This distribution reflects the dominance of
pairwise interactions in hypergraphs.

While our research explores hypergraphs, where hyper-
edges can connect multiple nodes, we initially concentrate
on non-adjacent node pairs (cardinaltiy of hyperedge size 2).
This focus is justified by the fact that a significant proportion
of the datasets—approximately 60-70% comprises hyper-
edges that involve exactly two nodes. As demonstrated in the
Fig. 4, hyperedge size 2 consistently dominates maximum

TABLE 4. Datasets with nodes and hyperedges after sampling.

datasets, suggesting that pairwise interactions are the most
prevalent form of connections in these hyper-networks. Given
this dominance, it is both efficient and insightful to begin our
analysis with hyperedges of size 2.
Sampling the Hyper-Networks: The sampling methods

incorporated to the hyper-networks are given below. The
edges are first grouped by size, based on the number of nodes
they connect. This allows for separate handling of hyperedges
of different sizes during the sampling process. A user-
controlled fraction of hyperedges from each size group is
selected for the final sampled hyper-networks (e.g., 0.5 for
50% sampling). To ensure that the sampled hyper-networks
remains meaningful, at least one hyperedge is chosen from
each group, and isolated nodes (those no longer connected
to any hyperedge) are removed. Given the computational
complexity of processing large hyper-networks, this sampling
approach reduces the hyper-networks’s size, enabling effi-
cient analysis within time and memory constraints, while
preserving the key relationships between nodes. Grouping
hyperedges by size and sampling proportionally ensures the
sampled hyper-networks retains a distribution similar to the
original.

The study has been conducted on a PC equipped with an
11th generation Intel(R) Core(TM) i7-8700 CPU, featuring
six cores, twelve logical processors, and a base clock speed
of 3.20 GHz. The machine ran Windows 10 Education
with 16 GB of RAM, and Python was utilized for the
investigation.

A. EVALUATION METRICS
To evaluate the performance of the proposed methods,
40% of the network data is reserved for testing, while the
remaining 60% is used for training the proposed measures.
The effectiveness of the link prediction method, based
on hypercentrality measures, is assessed using a range of
performance metrics. Although a wide range of metrics
is available, this study focuses on the F1-score and the
Area Under the Precision-Recall Curve (AUPR). These
metrics have been selected due to their ability to provide a
comprehensive evaluation ofmodel performance, particularly
in the context of imbalanced datasets, where the balance
between precision and recall is crucial. The details are
outlined below:

• F1-score: [28] [29] The F1-score is the harmonic mean
of precision and recall, providing a single metric that
balances both. It is particularly useful in scenarios
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FIGURE 4. Hyperedge distribution across multiple datasets in hyper-networks.

where there is an uneven class distribution or when
both false positives and false negatives carry different
costs. The F1-score ranges from 0 to 1, with a
higher score indicating better performance. It is defined
mathematically as:

F1 − Score = 2 ×
Precision× Recall
Precision+ Recall

(11)

where Precision is the ratio of correctly predicted
positive instances to the total predicted positives.Recall
is the ratio of correctly predicted positive instances to
the actual positives.
The F1-score is particularly valuable when there is a
need to find a balance between precision and recall, such
as in imbalanced datasets where one class is much more
frequent than another.

• Area Under the Precision-Recall Curve (AUPR:) [30]
The Area Under the Precision-Recall Curve (AUPR) is a
performance metric used primarily for binary classifica-
tion tasks, particularly in cases with highly imbalanced
data where the positive class is much rarer than the
negative class. The AUPR quantifies the area under
the precision-recall curve, which plots precision on the

y-axis and recall on the x-axis at different threshold
levels for classifying positive instances. A higher AUPR
value indicates better model performance, as it suggests
that the model maintains a good trade-off between
precision and recall across different thresholds.

There are currently no evaluation measures specifically
tailored for HyperNetworks. Commonly used metrics include
Area Under the Curve (AUC), F1-Score, Precision, and
Recall. Among these, we focus on AUC for Precision-
Recall (PR) curves, as it is particularly suited for highly
imbalanced real-world graphs, making AUPR a more appro-
priate choice. While accuracy, the proportion of correctly
predicted instances can also be employed, it is less commonly
used due to its limitations in handling imbalanced data.
This metric assesses the similarity between predicted and
actual hyperedges based on node overlap. However, it is
not applicable in this study, as our work is restricted to
hyperedges of size 2.

V. RESULTS AND DISCUSSION
The proposed LPHC model simulations are performed on the
top 20,000 node pairs, with results averaged across 10 data
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TABLE 5. Average F1-scores of LPHCCN
HC for the top-20000 node pairs.

points to enhance accuracy. The HyperCentrality based
link prediction measures examined include Hyperdegree
Centrality using Common Neighbor HCd , HyperClusterring
Coefficient based Common Neighbor HCcc, HyperBe-
tweenness Centrality based Common Neighbor HCb, and
HyperCloseness Centrality based Common Neighbor HCcl
and compared our measures with latest Link Prediciton in
hyper-networks (HCN and HJC) measures. The F1-score and
AUPR values presented in Table. 5 and Table. 7 represent the
common neighbor-based hypercentrality measures calculated
for node pairs. Similarly, the F1-score and AUPR values in
Table. 6 and Table. 8 reflect the Jaccard coefficient-based
hypercentrality measures for node pairs across various top
‘K’ scenarios, where ‘K’ denotes the number of top-ranking
node pairs selected from each dataset. Similarity scores were
analyzed for the top 2000, 4000, 6000, 8000, 10000, 12000,
14000, 16000, 18000, and 20000 node pairs, with results
averaged over 10 data points. The final results represent the
average performance across these selected node pairs.

In Table. 5, the data analysis shows that the proposed
HCCN

cc model consistently outperforms other LPHC mea-
sures across all datasets and scenarios, as well as the latest
HCN method. For example, in the NDC-classes dataset,
the HCCN

cc model demonstrates a 4.2% improvement over
HCCN

d , a 7.3% improvement over HCCN
b , and a 12.6%

improvement over HCCN
cl . When compared to the HCN, the

HCCN
cc shows an impressive 89.5% improvement. In the case

of the email-Eu dataset, the HCCN
cc model exhibits signif-

icant performance improvements. It demonstrates a 6.3%
increase over HCCN

d , and a 7.5% improvement over HCCN
b .

Additionally, the model achieves a 9.7% enhancement over
HCCN

cl . Most notably, when compared to the HCN method,
the HCCN

cc model delivers an impressive 77.8% improvement
in performance. For the DAWN dataset, the HCCN

cc model
demonstrates an average improvement of 3.73% over HCCN

d ,
HCCN

b and HCCN
cl . Additionally, the HCCN

cc model shows

a significant 67.4% improvement when compared to the
HCN method. For the cat-edge-geometry-questions dataset,
the HCCN

cc model demonstrates an average improvement of
19.11% over the other proposed measures. Additionally, the
improvement of HCCN

cc over HCN is 30.24%. Similarly, for
the hyperedges-contact-high-school dataset, HCCN

cc shows
an average improvement of 4.38% over HCCN

d , HCCN
b and

HCCN
cl , with a significant improvement of 44.54% over HCN.
The columns of LPCCN

C (u, v) in Table. 5 present the
performance of centrality-based CN , where the hypergraph
is transformed into a standard pairwise graph, and traditional
centrality measures are applied for link prediction. For
example, in the NDC-classes dataset, CCN

cc achieves an F1-
score of 0.211, considerably lower than the proposed HCCN

cc
score of 0.898. This pattern holds across other datasets, with
graph-converted centrality measures consistently lagging
behind their hypergraph-based counterparts, emphasizing the
critical role of preserving hypergraph structures to capture
high-order relationships inherent in hyper-networks.

The analysis clearly demonstrates that the proposedHCCN
cc

model consistently outperforms other methods. It not only
captures direct interactions, as measured by HCCN

d , but also
incorporates the broader network structure by focusing on
common neighbors. This approach enhances its robustness
in identifying meaningful relationships between node pairs.
Unlike other measures that prioritize local interactions
or shortest paths, HCCN

cc emphasizes connectivity through
common neighbors, thereby improving its predictive ability,
particularly in scenarios where nodes belong to densely
connected hyper-networks.

In Table. 6, the Jaccard coefficient-based hypercentralities
HCJC

cc offer an alternative approach to link prediction in
hyper-networks by focusing on the normalized overlap of
common neighbors. While this method provides a useful
metric for assessing the relative proportion of shared neigh-
bors, it does not outperform the common neighbor-based
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TABLE 6. Average F1-scores of LPHC JC
HC for the top-20000 node pairs.

TABLE 7. AUPR of LPHCCN
HC for the top-20000 node pairs.

hypercentralities seen in the previous table. For instance,
in the email-Eu dataset, the HCJC

d model achieves the highest
score of 0.856, yet it still falls short compared to the common
neighbor-based HCCN

cc score of 0.891 from the previous
analysis from Table. 5. Similarly, across other datasets in
Table. 6, HCJC

HC tend to exhibit lower F1-scores, suggesting
that the normalization process can dilute the impact of
direct relationships, which are more effectively captured by
common neighbor-based measures. The normalization effect
of the Jaccard coefficient becomes particularly less effective
in densely connected hyper-networks, such as DAWN
and cat-edge-geometry-questions, where multiple common

neighbors more strongly indicate future connections. In such
networks, the direct count of common neighbors without
normalization appears to be a more accurate predictor of node
interactions.

The performance of LPCJC
C (u, v) in Table. 6 corresponds

to Centrality-based JC after converting the hypergraph into
traditional graph. Across all datasets, the converted graph
measures, such as CJC

cc , consistently under perform compared
to their hypergraph-based counterparts, with significant gaps
in F1-scores. For example, CJC

cc trails behind HCJC
cc in every

dataset, underscoring the advantage of directly leveraging
hypergraph structures. This demonstrates that preserving the
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TABLE 8. AUPR of LPHC JC
HC for the top-20000 node pairs.

high-order relationships in hypergraphs is crucial for accurate
link prediction.

Overall, the results from Table. 6 indicate that while
Jaccard coefficient-based hypercentralities are valuable for
measuring neighborhood overlap, they generally underper-
form when compared to common neighbor-based hyper-
centralities. This suggests that in hyper-networks where
common neighbors play a key role, using direct common
neighbor counts without normalization provides a more
reliable framework for predicting links and modeling inter-
actions.

The analysis of the AUPR results, as presented in Table.
7, reveals that in the NDC-classes dataset, the HCCN

d model
achieves the highest AUPR score of 0.024. It outperforms
HCCN

cc and HCCN
b by 9.1%, and HCCN

cl by 14.3%. Fur-
thermore, HCCN

d demonstrates an improvement of 82.5%
over the existing HCN measure. In the email-Eu dataset,
the HCCN

d model outperforms all other proposed measures,
achieving an average improvement of 57.52%. Additionally,
HCCN

d demonstrates a 94.6% improvement over the existing
HCN measure. For the DAWN dataset, HCCN

cc surpasses the
other proposed measures with an average improvement of
17.15%, and further shows a 30.9% improvement over HCN.
In the cat-edge-geometry-questions dataset, HCCN

cc also
outperforms the remaining measures, delivering an average
improvement of 15.37%, while demonstrating a substantial
97.5% improvement over HCN. Finally, in the hyperedges-
contact-high-school dataset, HCCN

cc again leads with an aver-
age improvement of 58.33%, and shows an impressive 98.3%
improvement over the HCNmethod. In both the NDC-classes
and email-Eu hyper-networks, the interactions are likely
dominated by direct, pairwise relationships between nodes,
which are best captured by the hyperdegree centrality HCCN

cc .
This measure focuses on the number of hyperedges a node

participates in, which becomes crucial when interactions
are primarily based on the presence or absence of direct
connections. In DAWN, cat-edge-geometry-questions and
hyperedges-contact-high-school datasets, node interactions
tend to be more collaborative, involving groups of nodes
rather than just pairwise connections. This makes HCCN

cc ,
which measures common neighbors, a better fit for capturing
the essence of group-based relationships compared to HCCN

b ,
which focuses solely on individual node participation. These
datasets may also exhibit a higher level of redundancy in
node connections, where a single node can connect to others
through multiple shared neighbors.

Among the converted measures in Table. 7, CCN
cc con-

sistently achieves the highest AUPR across all datasets.
However, when compared with the proposed HCCN

cc and
other hypergraph-based measures, the proposed methods
demonstrate significantly better performance. This highlights
the superiority of directly leveraging hypergraph structures
over converting them to pairwise graphs, as the latter
approach fails to fully capture the inherent high-order rela-
tionships within hyper-networks. HCCN

cc effectively captures
this redundancy, making it more robust in such network
structures compared to other centrality measures.

In Table. 8, the Jaccard coefficient-based hypercentralities
(HCJC

HC ) offer an alternative approach to link prediction by
normalizing common neighbors between nodes. The Jaccard
coefficient achieves this by dividing the number of shared
neighbors by the total number of neighbors, providing a
more balanced perspective on shared relationships. However,
this normalization can also diminish the influence of highly
connected nodes, weakening its predictive power, particularly
in datasets where strong, direct interactions are dominant.
For example, in the NDC-classes dataset, the HCJC

d model
achieves a score of 0.018, which is still lower than the
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HCCN
d score of 0.024, a difference of 33.33%, as observed in

Table. 7. The normalization inherent to the Jaccard coefficient
weakens its ability to capture the direct connections that
are essential in this dataset. Similarly, in the email-Eu
dataset, the HCJC

d model achieves a score of 0.109, but this
remains lower than the common neighbor-based score of
0.121, which is 11% higher, again highlighting the limitation
of normalization in capturing strong pairwise interactions.
In more collaborative hyper-networks, such as DAWN,
cat-edge-geometry-questions, and hyperedges-contact-high-
school, the HCJC

HC show some improvement, particularly
in measuring relative overlap in node neighborhoods. For
instance, HCJC

cc achieves competitive scores of 0.302 in cat-
edge-geometry-questions and 0.088 in DAWN. However,
even in these collaborative networks, the normalization pro-
cess reduces the impact of nodes with overlapping neighbors,
limiting the Jaccard coefficient’s ability to effectively capture
dense subgraph structures.

In Table. 8, among the converted graph measures, CJC
d

consistently achieves the highest AUPR values across all
datasets, closely followed by CJC

cc . However, when compared
to the proposed LPHCJC

HC hypergraph-based measures, the
proposed methods demonstrate significantly superior per-
formance. This highlights the critical advantage of utilizing
hypergraph structures directly, as converting them into
pairwise graphs results in the loss of essential high-order
relationships, thereby reducing prediction accuracy.

In hyper-networks where redundancy and multiple over-
lapping neighbors play a crucial role (e.g., cat-edge-
geometry-questions), the normalization applied by the Jac-
card coefficient tends to downplay the importance of nodes
with multiple common neighbors. By contrast, common
neighbor-based measures more fully capture the extent
of shared neighbors, leading to superior performance in
networks characterized by dense, redundant structures.

A. EVALUATING THE IMPACT OF VARIOUS
HYPERCENTRALITY MEASURES ON LINK PREDICTION
PERFORMANCE
In this section, we examine the role of hypercentral-
ity measures like hyperdegree, hyperclustering coefficient,
hyperbetweenness, and hypercloseness in link prediction
performance, focusing on their effectiveness with Common
Neighbors (CN) and Jaccard Coefficient (JC). Results from
Table. 5-Table. 8 reveal distinct trends for these measures
across datasets.

Hyperdegree Centrality (HCd ) shows consistently strong
performance in terms of AUPR (Refer Table. 7), particularly
in dense networks like email-Eu and NDC-classes. It effec-
tively captures the influence of frequently participating nodes
in smaller, dense hyperedges, contributing to robust link
prediction results.

Hyperclustering Coefficient (HCcc) consistently outper-
forms others in terms of F1-score across all datasets. In Table.
5 HCcc achieves the highest F1-score across all datasets.
Its strength lies in capturing localized clustering dynamics,

making it highly effective for networks with strong intra-
community structures, such as NDC-classes and hyperedges-
contact-high-school. Hyperclustering Coefficient (HCcc)
consistently outperforms others in terms of F1-score (Table.
5) across all datasets. Its strength lies in capturing localized
clustering dynamics, making it highly effective for networks
with strong intra-community structures, such as NDC-classes
and hyperedges-contact-high-school.

Hyperbetweenness Centrality (HCb) and Hypercloseness
Centrality (HCcl) demonstrate competitive but slightly lower
performance compared to HCd and HCcc. HCb excels in
datasets like DAWN, where long-range dependencies are
prominent, as it captures the control nodes exert over commu-
nication pathways, making it particularly useful in globally
connected networks. In contrast, HCcl is less impactful
in sparse datasets like cat-edge-geometry-questions, as its
reliance on shortest paths reduces its efficiency in networks
with larger hyperedge sizes.

Overall, the hyperclustering coefficient HCcc emerges as
the best performer across datasets, particularly in terms of
F1-score and AUPR, due to its ability to capture dense intra-
community relationships. Dataset-specific trends highlight
the importance of tailoring hypercentrality measures to the
structural characteristics of hypergraphs.

VI. CONCLUSION AND FUTURE WORK
In this paper, we introduced a link prediction framework
that leverages hypercentrality measures to address the
complexity of multi-node interactions in hyper-networks.
By adapting traditional centrality metrics—such as degree,
clustering coefficient, betweenness, and closeness to the
hyper-networks domain, we developed the a novel link pre-
diction model by taking the rich input of hypergraphs, which
effectively enhances traditional link prediction techniques
by incorporating node significance through centrality scores.
Our empirical results, evaluated across several real-world
datasets, demonstrate that hypercentrality-based models,
particularly those utilizing hyperdegree and hyperclustering
coefficients, consistently outperform existing link prediction
methods in terms of both F1-score and AUPR. This suggests
that hypercentrality measures provide a more accurate and
nuanced approach for predicting link formation in hyper-
networks, especially in networks characterized by dense
connectivity or strong clustering.

As part of future work, we aim to extend our investigation
beyond the hyperdegree HCd , hyperclustering coefficient
HCcc, hyperbetweenness HCb, and hypercloseness HCcl
measures used in this study. Additionally, instead of consid-
ering all non-adjacent node pairs, we plan to examine the
effect of restricting the prediction to node pairs within a hop
distance of 2, 3, and beyond. An important direction for future
work is to extend the current model, which is focused on
non-adjacent node pairs of size 2, to include larger hyperedge
sizes, such as non-adjacent node triplets (size 3), quadruplets
(size 4), and beyond. This extension would enable the model
to capture and analyze more complex group interactions,
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enhancing its applicability to hyper-networks with diverse
structural properties and larger hyperedges. Additionally,
we aim to incorporate node and edge attributes to further
enhance the model’s predictive capabilities. These extensions
will allow for a more comprehensive understanding of link
prediction in hyper-networks, further refining our model’s
effectiveness in real-world applications.

Deep learning approaches have significantly advanced
the field of link prediction in hypergraphs by effectively
modeling and leveraging the intricate relationships present in
complex networked systems. Neural Hypergraph Link Pre-
diction (NHP) [31], Heterogeneous Hypergraph Representa-
tion Learning (HHRL) [32] represent notable advancements
in this domain. We intend to extend our research in this
direction as part of our future work.

Rights Retention Statement: For the purpose of open
access, the author has applied a Creative Commons Attri-
bution (CC BY) license to any Author Accepted Manuscript
version of this paper arising from this submission.
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