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A B S T R A C T

The countermovement jump (CMJ) assessment is widely employed for monitoring sports performance, tradi
tionally relying on heavy and expensive force plates to extract performance variables like jump height and peak 
force. Inertial measurement unit (IMU)-based approaches and mobile applications have been developed to 
analyse CMJ performance with cost-effective devices, but they still require technical expertise and manual an
notations during operation. We developed a new camera-based pipeline that can measure CMJ performance 
automatically by utilising computer vision techniques and biomechanical approaches from video captured by a 
single uncalibrated camera. Human segmentation and pose estimation techniques are used to understand the 
movement of the centre of mass and take-off and landing times. Combined with the biomechanical principles of 
object parabolic motion and inverse dynamics, the force–time data can be estimated for extracting CMJ per
formance variables. We recruited 77 elite athletes (29 females; height: 170.0 ± 9.0 cm; mass: 72.2 ± 17.7 kg) to 
evaluate the developed method against a commercial force platform. The developed method enables fully 
automatic CMJ analysis for both force–time data and performance variables from video captured by a camera 
without calibration. The results showed superior correlations (R > 0.7) and high reliability (%CV < 10 %) for 
most CMJ variables compared to the IMU-based approach. This approach automates CMJ analysis, offering more 
variables than existing mobile apps while reducing the technical demands of IMU-based methods. It streamlines 
assessment, making it ideal for large-scale cohort studies. Grounded in biomechanics, it enhances sports and 
health monitoring, enabling data-driven optimisation of human performance.

1. Introduction

The countermovement jump (CMJ) is a vertical jump initiated by a 
self-selected squat followed by a rapid leg extension (Bishop et al., 
2021). The CMJ assessment is commonly used for testing and moni
toring sports performance (Cormie et al., 2009). The CMJ utilises a 
stretch–shortening cycle (SSC) movement, which amplifies the muscle’s 
pre-stretch state and enhances the subsequent force-generating capacity 
during the propulsion phase through various myogenic and neurogenic 
factors (Claudino et al., 2017; Laffaye et al., 2014; Ruffieux et al., 2020). 
Claudino et al. (2017) highlighted that the average jump height 

obtained from CMJ tests is a sensitive indicator for variations in 
neuromuscular status. In addition to assessing sports performance, CMJ 
tests are also widely used to measure training effects. Chang et al. (2022)
examined the effects of judo training by employing both unloaded and 
loaded CMJ assessments. To ensure valid data for determining sports 
performance and training effects, an accurate and reliable measurement 
method is required.

Conventionally, force plates have been employed to capture ground 
reaction forces (GRFs) for force–time data, enabling performance vari
able extractions such as flight time as well as kinetic and kinematic 
variables, including jump height and peak force (Miranda-Oliveira et al., 
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2022; Toft Nielsen et al., 2019). Toft Nielsen et al. (2019) and Miranda- 
Oliveira et al. (2022) used force plates as a reference method for 
extracting performance variables to validate the estimation from inertial 
measurement units. Despite their capacity to provide accurate and high- 
frequency force values, force plates may not always be accessible 
(Mengarelli et al., 2018). This limitation has restricted their utilisation 
to specific teams and locations. Access to CMJ assessments using force 
plates is often limited for grassroots athletes and the general public 
because of their high cost (£30k − £70k) (Lake et al., 2018).

Recently, some manufacturers have introduced lightweight force 
platforms. Badby et al. (2023) and Lake et al. (2018) conducted vali
dation studies on these lightweight force platforms compared to con
ventional systems. The measurements derived from the lightweight 
system exhibited good agreement with the results obtained from the 
conventional force platforms in both investigations (Badby et al., 2023; 
Lake et al., 2018), indicating small limits of agreement (LoA) and high 
correlations. However, the technique developed by Lake et al. (2018)
typically requires a certain level of technical expertise for operation, 
including tasks such as exporting data and programming to extract CMJ 
performance variables. Furthermore, some lightweight systems remain 
expensive, costing around £10k–£15k (Lake et al., 2018), thereby still 
constraining their practicality for grassroots coaches and the general 
public.

Inertial Measurement Units (IMUs) have been used to measure ac
celeration and sensor location by placing the sensors on the trunk, near 
the centre of mass (CoM), enabling the prediction of force–time data and 
CMJ performance variables. Picerno et al. (2011) compared the CMJ 
height obtained from stereophotogrammetry and IMUs and found no 

significant difference between the two methods when trunk rotation was 
accounted for in the IMU results. Miranda-Oliveira et al. (2022) also 
used an IMU system to analyse CMJ performance and found that the IMU 
system could predict some variables with acceptable accuracy, such as 
flight time (95 % LoA less than ± 0.1 s compared to measurements from 
a force plate). However, accurate and precise data from IMUs require 
technical expertise to carefully place the sensors. Kerns et al. (2023)
showed that inconsistent results in estimating force–time data from 
IMUs can be caused by varying sensor placements.

My Jump 2 and JumPo 2 are validated mobile applications (apps) 
that allow CMJ jump height measurement through a camera (Stanton 
et al., 2015; Vieira et al., 2023). The CMJ height measurements and 
modified reactive strength index (mRSI; defined as jump height divided 
by ground contact time) obtained from these apps have been compared 
with data obtained from conventional force plates (Balsalobre-Fernán
dez et al., 2015; Bishop et al., 2022; Vieira et al., 2023). These studies 
highlight the potential of video analysis for obtaining accurate CMJ 
variable estimations. However, this kind of app requires manual anno
tation, which introduces small human errors into the analysis process. 
Balsalobre-Fernández et al. (2015) reported an inter-observer error of 
0.1 ± 0.4 cm. The manual annotation procedure requires a meticulous 
frame-by-frame review of videos to precisely identify key time points 
such as take-off and landing, resulting in prolonged processing times. 
Additionally, the apps cannot provide force–time data. This limitation 
restricts their utility for kinetic data (e.g. peak force and jumping phase 
identification) in advanced sports performance analysis (McMahon 
et al., 2018).

Currently, no low-cost alternative to force plates efficiently provides 

figure1.tiff

Fig. 1. Images captured by the mobile camera with the force plate setup (top row). The images were processed with computer vision techniques including pose 
estimation and human segmentation. The points represent the joints, and the red lines indicate the lower bound of the human segmentation. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)
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force–time data and performance metrics. While low-cost force plates 
and IMUs show potential, they require technical expertise, forcing users 
to balance accuracy and practicality. Mobile apps offer limited data, 
which is insufficient for sports monitoring. Thus, there is a need for an 
affordable, accessible solution that accurately extracts force–time data 
and CMJ performance variables with minimal expertise.

Recently, computer vision has made significant advances through 
the adoption of deep learning techniques, including detection, seg
mentation, and pose estimation (Chen et al., 2019; MMPose Contribu
tors, 2020). These advancements can complete tasks automatically 
without manual processing and have significantly reduced the post- 
processing time required for sports performance analysis (Papic et al., 
2021). It can be hypothesised that computer vision methods could be 
used to analyse CMJ videos automatically for accurate and reliable GRF 
estimation. Nevertheless, these technologies have not been applied and 
validated for CMJ video analysis. The aims of this study are 1) to develop 
an automatic pipeline that uses computer vision techniques to obtain 
vertical GRFs and time data from a video captured by a single camera, 
and 2) to assess the accuracy and reliability of the developed pipeline by 
comparing it with a commercial force platform.

2. Methods

2.1. Participants

This study was approved by the university ethics committee 
(ER46859363). People with injuries that might affect CMJ performance 
were excluded. In total, 48 male (height: 174.3 ± 7.0 cm; mass: 76.3 ±
17.7 kg) and 29 female (height: 162.8 ± 7.0 cm; mass: 65.5 ± 15.8 kg) 
collegiate athletes from various sports were recruited (see supplemen
tary material 1). All participants provided their informed consent for the 
conducted tests. They received regular sports training and CMJ assess
ment, so they were well-acquainted with the CMJ testing procedure. 
Participants wore appropriate clothing and footwear throughout the 
testing sessions.

2.2. Data collection

Each participant performed single CMJ tests (one jump per trial) 
with repeated trials. Data recording was accomplished using a com
mercial force platform (Hawkin Dynamics; 1000 Hz) in conjunction with 
a mobile phone camera (iPhone Apple iPhone 12 mini model A2176; 64 
GB; iOS 17.1; frame rate: 120 Hz). Fig. 1 shows the images captured from 

figure2.tiff

Fig. 2. Signal process in this study. (a) Butterworth low-pass filter was applied to smooth trajectories of the centres of mass (CoMs) and the lowest points of the 
human body (LPs). (b) The take-off and landing times were determined by the critical points (blue cross marks) of the LP acceleration (LP acc). (c) The reference and 
predicted force–time curves with the critical points for the instance of initiation of the jumping movement (point a), end of unweighting phase time and start of 
braking plus propulsion phase time (point b), take-off (point c) and landing (point d). The two curves were aligned with reference point c. (d) The reference and 
predicted force–time curves normalised between the instance of the jumping movement and the point of take-off. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)
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the mobile phone during the CMJ test. The data collected from the 
Hawkin Dynamics system served as reference data in this study as its 
accuracy has been validated (Dos’Santos et al., 2024). The camera was 
positioned on a tripod at a height of around 120 cm in front of the 
participant, at approximately 2.5 m, to encompass the full CMJ move
ment. The camera axis was perpendicular to the participants’ sagittal 
plane and avoided tilt. The capturing resolution of the mobile phone 
camera was 1920 × 1080 pixels.

Before performing CMJ, participants stood motionless, looking for
ward. They placed their hands on their hips with their right and left feet 
separately placed on the force plates. During the CMJ test, participants 
squatted to a self-selected depth and immediately executed a vertical 
jump (Bishop et al., 2021). Following this, both feet landed on the force 
platform. GRF data and video data were recorded.

2.3. Force plate data processing

Performance variables, including jump height, flight time, mRSI, 
contraction time, unweighting phase time, and peak force, were also 
extracted from the Hawkin Dynamics software via force plate mea
surements. The definition of these variables is listed on https://www. 
hawkindynamics.com/hawkin-metric-database. The braking plus pro
pulsion phase time was calculated by subtracting the unweighting phase 
time from the contraction time. The minimum force during the 
unweighting phase was also recorded by adapting the Python scripts 
provided by Smith (2024).

The Hawkin Dynamics software was used to extract GRF data from 
the force plates. For comparison purposes, the force data were trimmed 
from the start of movement (unweighting phase start point) to the point 
of take-off and then normalised to 100 %. The take-off time point was 
identified as the first point where the vertical force was < 10 N (Smith, 
2024), and the start of movement was determined by subtracting the 
contraction time from the take-off time point.

After processing the data from Hawkin Dynamics, the normalised 
force–time data and the following performance variables were obtained: 
peak force, minimum force, jump height, flight time, contraction time, 
braking plus propulsion (negative impulse) phase time, unweighting 
(positive impulse) phase time, and mRSI. The selection of performance 
variables was guided by a previous study (Miranda-Oliveira et al., 
2022).

2.4. Video data processing

The videos captured by the mobile camera were saved in MOV 
format and processed at every frame and every 4th frame to simulate 
120 fps and 30 fps data processing (see supplementary material 2 for the 
flow chart). Participant detection and segmentation in the videos were 
performed using PointRend (Kirillov et al., 2020), implemented through 
MMdetection (Chen et al., 2019). This choice of human segmentation 
algorithm was informed by promising outcomes in earlier research (Chiu 
et al., 2023). For joint localisation, the ViTPose algorithm (Xu et al., 
2022) was integrated using MMPose (MMPose Contributors, 2020). 
ViTPose was a state-of-the-art approach with high accuracy across 
multiple datasets during this study. Fig. 1 shows an example of human 
segmentation and pose estimation in this study.

The CoMs were determined as the average positions of the left and 
right hip joints. The lowest points of the human body (LPs) were iden
tified as the largest y-values among the segmented individuals within 
the provided images (i.e., human masks). To refine the trajectories of 
both CoMs and LPs, a 4th-order Butterworth low-pass filter with a 4 Hz 
cut-off frequency was applied as shown in Fig. 2(a). The filter setting is 
based on previous studies (Köklü et al., 2023; Sanders et al., 2015) due 
to the similar frame rates and movement characteristics (supplementary 
material 3).

The take-off and landing times were determined by the critical points 
of the LP acceleration, as shown in Fig. 2(b). The flight time can be 

calculated from the difference between these critical time points. The 
flight height (h) was derived directly from the period between the take- 
off and landing instances without determining image scale as shown in 
Equation (1). 

h =
1
8
× g × (flight time)2 (1) 

The vertical velocity of CoM in the take-off moment (vinitial) can be 
estimated from the flight height by Equation (2). 

vinitial =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 • g • h

√
(2) 

where g represents the acceleration due to gravity.
The velocity of CoMs before the take-off need to be estimated from 

pose estimation data for force–time data prediction. To achieve this, the 
image scaling in the vertical direction (r) was determined by the ratio of 
the pixel-based observation of the CoM take-off vertical velocity (vpixel

initial) 
from the pose estimation results with the velocity estimated from the 
flight height (vinitial) by Equation (3). 

r =
vpixel

initial
vinitial

(3) 

The scaling factor (r) was subsequently used to compute the vertical 
velocity of CoMs and vertical acceleration of CoMs (aCoM) with the pixel- 
based observation from the pose estimation results.

The estimation of vertical GRF (ĜRF) was predicted from the vertical 
acceleration of the CoMs and the participant’s body mass (mbody) by 
using inverse dynamics as shown in Equation (4). When the participant 
was in the air, the ĜRF was designated as 0 as shown in Fig. 2(c). 

ĜRF = mbody × (aCoM − g) (4) 

After estimating ĜRF, the force–time data can be obtained.
The peak force was identified as the maximum force value before 

landing. The start of movement was defined as the point where the force 
dropped below 95 % of body weight, adapted from the definition by 
Hawkin Dynamics. Once the movement start time was established, the 
contraction time was calculated as the time difference between the 
movement start and take-off. The normalized force between the move
ment start and take-off was also calculated for comparison.

The boundary between the unweighting and braking plus propulsion 
phases was determined by the point of minimum velocity (McMahon 
et al., 2018). Once this boundary was confirmed, the unweighting and 
braking plus propulsion phase times and the mRSI were determined 
using the same method as for the Force Plate data. The minimum force 
was identified as the lowest force value during the unweighting phase. 
Fig. 2(c) illustrates an example of the estimated force with phase points 
marked. Fig. 2(d) shows the reference and predicted force–time curves 
normalised between the instance of the jumping movement and the 
point of take-off.

2.5. Statistical analyses

Mean absolute error (MAE), Pearson correlation coefficient (R), 
Bland and Altman analysis (Bland and Altman, 1999) and the effect size 
were selected to understand the accuracy of estimated force–time data 
and CMJ performance variables. Technical errors of measurement 
(TEM), coefficient of variation (%CV) and effect size were employed to 
quantify the absolute reliability of CMJ metric estimation for the 
developed pipeline. Additionally, the intraclass correlation coefficient 
(ICC) was used to quantify the relative reliability of CMJ metric esti
mation from the developed pipeline (see supplementary material 4 for 
acceptable thresholds).
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3. Results

The proposed method enables automated CMJ analysis for both 
force–time data and performance variables extraction from camera- 
captured video, without requiring calibration for data collection and 
manual operation for data processing. The statistical characteristics of 
the performance variables are summarised in Table 1 (see supplemen
tary material 5, 6 for normality test result and gender comparison).

Most performance variables estimated from 120 fps and 30 fps videos 
using the developed pipeline showed a high correlation (R > 0.7) with 
reference values obtained from the force platform (Table 2). The MAEs 

for force, peak force, and minimum force exceeded 50 N. Meanwhile, the 
MAEs for flight time, contraction time, unweighting phase time, and 
braking plus propulsion phase time were under 0.1 s. Most performance 
variables exhibited higher correlation coefficients when measured from 
120 fps video compared to 30 fps.

The TEMs and %CVs for most performance variables, including peak 
force, minimum force, jump height, contraction time, and unweighting 
phase time, show better reliability when estimated from 120 fps videos 
than from 30 fps videos (Table 3). The %CV for minimum force (24.72 
%) was notably higher than for other CMJ variables (<15 %). Addi
tionally, ICCs for non-phase time performance variables were higher 
than those for phase time variables (i.e. contraction time, unweighting 
and braking plus propulsion phase time).

4. Discussion

The aims of this study were 1) to develop an automatic computer 
vision based pipeline to obtain vertical GRFs and time data from a video 
captured by a single camera, and 2) to compare the developed pipeline 
with the commercial force platform to determine their accuracy and 
reliability. In this study, we combined existing machine learning models 
with biomechanical principles to develop an automated pipeline for 
analysing jumping performance. The developed pipeline was compared 
with the force platform and showed good accuracy (R > 0.7; effect size 
< 0.63) and reliability for most CMJ variables (%CV < 10 %; ICC >
0.75). The data for this method were captured from a single camera 
without calibration, and the analysis processes were fully automatic. No 

Table 1 
The descriptive statistics for the normalised force and CMJ metrics. (Reference 
= data extracted from force plates; mRSI = Modified Reactive Strength Index).

Metrics/Variables mean ± std 
(reference)

mean ± std 
(120 FPS)

mean ± std 
(30 FPS)

Peak force (N) 1763.03 ±
433.01

1900.47 ±
475.87

1911.80 ±
470.18

Min force (N) 254.94 ±
152.48

294.80 ±
174.97

292.32 ±
174.86

Jump height (cm) 36.2 ± 7.4 38.2 ± 8.4 35.4 ± 8.0
Flight time (ms) 547 ± 60 555 ± 65 533 ± 65
Contraction time (ms) 808 ± 103 764 ± 105 750 ± 108
Unweighted phase time (ms) 371 ± 75 337 ± 79 336 ± 81
Braking plus propulsion 

phase time (ms)
438 ± 58 427 ± 65 414 ± 65

mRSI (m/s) 0.45 ± 0.11 0.51 ± 0.12 0.48 ± 0.12

Table 2 
Accuracy of ground reaction force and CMJ performance variables estimated from the developed pipeline and the IMU-based approach (Miranda-Oliveira et al., 2022). 
The 95 % confidence intervals were displayed in brackets beneath the metric values. (MAE = mean absolute error; R = Pearson correlation coefficient; Lower LoA =
Lower bound of 95 % limit of agreement for Bland and Altman analysis; Upper LoA = upper bound of 95 % limit of agreement for Bland and Altman analysis).

Metrics/ 
Variables

MAE 
(120 
FPS)

R(120 
FPS)

Lower LoA 
(120 FPS)

Upper 
LoA 
(120 
FPS)

Effect 
Size 
(120 
FPS)

MAE 
(30 FPS)

R(30 
FPS)

Lower LoA 
(30 FPS)

Upper 
LoA 
(30 FPS)

Effect 
Size 
(30 FPS)

MAE 
(IMU)

LoA 
(IMU)

R(IMU)

Force (N) 160.09  

(157.87, 
162.45)

0.94 − 402.07  

(− 408.85, 
− 395.42)

433.15  

(424.13, 
441.06)

0.07  

(0.05, 
0.10)

222.66  

(218.97, 
226.44)

0.86 − 650.97  

(− 666.19, 
− 636.15)

612.33  

(601.09, 
623.62)

− 0.06  

(− 0.09, 
− 0.03)

NA NA NA

Peak force 
(N)

157.34  

(140.20, 
176.72)

0.96 − 137.31  

(− 180.15, 
− 96.09)

412.18  

(367.39, 
455.90)

0.98  

(0.79, 
1.17)

171.32  

(153.86, 
190.43)

0.95 − 130.55  

(− 175.02, 
− 86.08)

428.09  

(383.63, 
472.56)

1.04  

(0.85, 
1.24)

331 (− 237.44, 
797.44)

0.49

Min force (N) 91.88  

(77.58, 
105.64)

0.74 − 196.78  

(− 260.07, 
− 135.74)

276.50  

(228.75, 
318.36)

0.33  

(0.05, 
0.69)

95.09  

(81.73, 
109.46)

0.72 − 205.15  

(− 264.23, 
− 149.07)

279.90  

(235.36, 
326.57)

0.30  

(0.01, 
0.65)

76 (− 201.16, 
175.16)

0.76

Jump height 
(cm)

3.0  

(2.6, 3.4)

0.91 − 4.8  

(− 7.0, 
− 2.4)

8.8  

(7.1, 
10.2)

0.57  

(0.19, 
1.20)

2.6  

(2.2, 3.1)

0.88 − 8.3  

(− 10.2, 
− 6.3)

6.6  

(5.1, 7.9)

− 0.22  

(− 0.46, 
0.05)

4.0 (− 8.704, 
10.504)

0.71

Flight time 
(ms)

17  

(14, 20)

0.92 − 43  

(− 64, 
− 20)

59  

(42, 73)

0.30  

(− 0.02, 
1.15)

20  

(16, 24)

0.89 − 71  

(− 91, 
− 49)

44  

(29, 57)

− 0.46  

(− 0.71, 
− 0.29)

24 (− 52.8, 
64.8)

0.74

Contraction 
time (ms)

59  

(50, 70)

0.74 − 191  

(− 245, 
− 146)

103  

(70, 139)

− 0.59  

(− 0.89, 
− 0.38)

66  

(56, 78)

0.74 − 208  

(− 256, 
− 163)

92  

(62, 123)

− 0.76  

(− 1.09, 
− 0.55)

36 (− 104.2, 
72.2)

0.90

Unweighted 
phase time 
(ms)

56  

(48, 64)

0.60 − 169  

(− 195, 
− 140)

102  

(80, 123)

− 0.48  

(− 0.78, 
− 0.24)

57  

(49, 66)

0.57 − 176  

(− 206, 
− 147)

108  

(86, 127)

− 0.47  

(− 0.72, 
− 0.24)

55 (− 125.72, 
195.72)

0.23

Braking plus 
propulsion 
phase time 
(ms)

27  

(23, 32)

0.81 − 86  

(− 112, 
− 65)

65  

(47, 85)

− 0.28  

(− 0.55, 
− 0.03)

33  

(28, 37)

0.82 − 96  

(− 114, 
− 81)

48  

(37, 60)

− 0.65  

(− 0.95, 
− 0.39)

65 (− 196.04, 
94.04)

0.77

mRSI (m/s) 0.07  

(0.06, 
0.07)

0.85 − 0.08  

(− 0.11, 
− 0.05)

0.18  

(0.16, 
0.21)

0.80  

(0.46, 
1.21)

0.05  

(0.05, 
0.06)

0.82 − 0.11  

(− 0.14, 
− 0.09)

0.16  

(0.14, 
0.19)

0.34  

(0.08, 
0.64)

0.08 (− 0.16, 
0.21)

0.73
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sensor placement or manual operation is required for data collection or 
processing. This avoids the need for specialised knowledge to place the 
IMU sensors and manual annotation of the current mobile applications. 
This minimises the requirements of technical expertise and streamlines 
CMJ analysis. The developed pipeline can be an enhanced alternative to 
the current mobile application and IMU-based approaches for extensive 
cohort studies such as large sports performance surveys or regular 
training monitoring.

The developed pipeline leverages computer vision to automatically 
analyse CMJ videos, demonstrating good correlation and reliability 
(Pearson R: 0.91; ICC: 0.85) for jump heigh estimation, though slightly 
worse than the results from My Jump (R > 0.95; ICC > 0.99) as reported 
by Gençoğlu et al. (2023). The segmentation model in the developed 
pipeline occasionally introduces noise around the human boundary, 
leading to minor foot displacement; thus, a Butterworth filter is applied 
to smooth the trajectory. This filtering may introduce slight inaccuracies 
in detecting take-off and landing instances. However, the developed 
pipeline automates the analysis process, removing the need for manual 
annotation as required in My Jump 2 and JumPo 2, and can extract 
additional data, including force–time information and phase time vari
ables. This approach not only minimises inter-observer error but also 
enhances data collection efficiency for large cohorts.

The developed pipeline demonstrated superior accuracy compared 
to IMU-based approaches. The developed pipeline showed stronger 
correlations with force platform reference data for most CMJ variables 
(R > 0.8) compared to IMU data (R < 0.8), as shown in Table 2
(Miranda-Oliveira et al., 2022). Additionally, the developed pipeline 
(120 fps) achieved narrower LoAs and lower MAEs for peak force, jump 
height, flight time, braking plus propulsion phase time, and mRSI than 
IMU-based methods (Table 2). The IMU sensor, attached to the skin, may 

experience prediction errors due to body deformation and muscle- 
damping effects, causing delays in phase identification. In contrast, 
the developed pipeline directly measures acceleration without sensor 
placement on the body. However, the low correlation for phase-related 
variables was likely due to pose estimation jitter affecting force pre
dictions and start-time detection. The filter smooths jitter but may also 
eliminate small movements, leading to start-time detection errors. These 
issues may also contribute to lower ICC values for contraction time and 
phase times. Future research should explore advanced filtering strate
gies to enhance phase identification accuracy and reliability, enabling 
the method to serve as a viable alternative to portable force plates. Deep 
learning-based event detectors could improve accuracy by identifying 
key time points including start-time, take-off, and landing.

Apart from phase-related variables, the developed pipeline requires 
improvement in estimating minimum force (%CV = 24.72 %) to be a 
reliable alternative to force platforms (%CV = 17.06 %). The poor %CV 
of force platform suggests slight movement variations across repeated 
CMJ trials. The pose estimation model, trained using manual annota
tions, may not precisely align with hip anatomical landmarks, leading to 
random errors in the mid-hip position. These discrepancies, especially 
during the unweighting phase when the knee was bent, could introduce 
random error in CoM locations. Variations in pose and movement dif
ferences across trials may further impact consistency. Using a mid-hip 
CoM assumption cannot fully capture peak CoM acceleration, intro
ducing random error in peak force estimation which lead to high MAE, 
effect size and wide LoA (Table 2). Future work should investigate more 
precise CoM estimation methods from human mesh recovery (Tripathi 
et al., 2023) to enhance the accuracy of force–time predictions.

When comparing results estimated with 120 fps versus 30 fps video, 
the higher frame rate shows small MAEs or higher correlations. This is 

Table 3 
Reliability of CMJ performance variables measured from the developed pipeline and the reference method (force plates). The 95 % confidence intervals are displayed 
in brackets beneath the metric values. (TEM = technical error of measurement; %CV = coefficient of variation; ICC = intraclass correlation coefficient; Reference =
data obtained from force plates).

Metrics/Variables TEM 
(120 
FPS)

%CV 
(120 
FPS)

ICC 
(120 
FPS)

Effect 
Size 
(120 
FPS)

TEM 
(30 
FPS)

%CV 
(30 FPS)

ICC 
(30 
FPS)

Effect 
Size 
(30 FPS)

TEM 
(Reference)

%CV 
(Reference)

ICC 
(Reference)

Effect Size 
(Reference)

Peak force (N) 120.62 6.35  

(3.05, 
6.91)

0.94  

(0.91, 
0.96)

0.32  

(− 0.03, 
0.66)

126.78 6.63  

(3.17, 
7.51)

0.94  

(0.90, 
0.96)

0.37  

(0.06, 
0.74)

86.47 4.90  

(1.98, 6.75)

0.96  

(0.94, 
0.97)

0.14  

(− 0.24, 
0.46)

Min force (N) 72.88 24.72  

(13.26, 
24.57)

0.83  

(0.74, 
0.89)

0.10  

(− 0.13, 
0.32)

74.96 25.64  

(13.30, 
25.52)

0.82  

(0.72, 
0.88)

0.02  

(− 0.21, 
0.24)

43.11 16.91  

(8.81, 
17.03)

0.92  

(0.88, 
0.95)

0.23  

(− 0.00, 
0.46)

Jump height (cm) 3.3 8.63  

(3.35, 
10.02)

0.85  

(0.77, 
0.90)

0.14  

(− 0.27, 
0.46)

3.7 10.34  

(4.22, 
11.45)

0.80  

(0.70, 
0.87)

0.20  

(− 0.16, 
0.56)

1.2 3.43  

(1.96, 3.30)

0.97  

(0.96, 
0.98)

− 0.09  

(− 0.32, 
0.14)

Flight time (ms) 28 5.07  

(1.60, 
6.23)

0.82  

(0.73, 
0.88)

0.12  

(− 0.22, 
0.46)

32 6.00  

(2.23, 
7.09)

0.76  

(0.65, 
0.84)

0.17  

(− 0.17, 
0.52)

11 2.00  

(1.12, 1.95)

0.97  

(0.95, 
0.98)

− 0.06  

(− 0.28, 
0.17)

Contraction time 
(ms)

61 7.99  

(3.21, 
10.91)

0.66  

(0.52, 
0.77)

− 0.16  

(− 0.49, 
0.24)

63 8.41  

(3.74, 
10.71)

0.66  

(0.52, 
0.77)

− 0.18  

(− 0.53, 
0.21)

53 6.54  

(3.23, 6.92)

0.74  

(0.62, 
0.83)

− 0.16  

(− 0.56, 
0.22)

Unweighting 
phase time (ms)

46 13.61  

(6.52, 
14.19)

0.66  

(0.51, 
0.77)

− 0.06  

(− 0.42, 
0.36)

55 16.40  

(8.05, 
16.75)

0.53  

(0.35, 
0.68)

− 0.06  

(− 0.41, 
0.37)

45 12.25  

(6.05, 
12.75)

0.63  

(0.48, 
0.75)

− 0.08  

(− 0.31, 
0.15)

Braking plus 
propulsion 
phase time (ms)

36 8.50  

(2.84, 
12.63)

0.70  

(0.56, 
0.80)

− 0.19  

(− 0.53, 
0.16)

33 7.98  

(3.41, 
10.00)

0.75  

(0.64, 
0.83)

− 0.26  

(− 0.60, 
0.09)

23 5.28  

(2.78, 5.31)

0.84  

(0.76, 
0.90)

− 0.21  

(− 0.44, 
0.02)

mRSI (m/s) 0.05 9.26  

(4.53, 
10.31)

0.86  

(0.79, 
0.91)

0.22  

(− 0.18, 
0.59)

0.05 11.35  

(5.72, 
11.61)

0.81  

(0.72, 
0.87)

0.25  

(0.01, 
0.48)

0.03 7.25  

(3.58, 7.83)

0.90  

(0.85, 
0.94)

0.11  

(− 0.27, 
0.52)
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expected, as more frames help reduce jitter issues of pose estimation and 
human segmentation when applying, allowing for more precise phase 
detection. For future applications, using the maximum possible frame 
rate is recommended to improve accuracy and precision. However, high 
frame rates (e.g. 1000 fps) demand significant hardware resources. To 
address this, machine learning-based frame rate upsampling techniques 
(Reda et al., 2022) should be explored and tested as a cost-effective 
alternative.

This study has several limitations. First, data from elite athletes may 
limit the generalizability to the general population, necessitating further 
testing. Second, the pipeline depends on specific camera settings, such as 
capture direction and resolution, which may affect accuracy. Future 
research should optimise these configurations. While computer vision 
models were trained on large datasets, variations in pose, body shape, 
background, and lighting could affect accuracy, requiring further vali
dation in real-world scenarios. Additionally, inaccuracies in CoM esti
mation and phase detection should be addressed through advanced 
models like human mesh recovery and event detection. Users are 
advised to use the pipeline in simple backgrounds with proper lighting.

This study demonstrated that the developed pipeline, integrating 
computer vision, machine learning, and biomechanical techniques, can 
enhance existing mobile applications and IMU-based approaches. Sports 
scientists can use it to collect data outside the lab, enabling long-term 
monitoring of elite athletes who frequently travel for tournaments. 
Additionally, the pipeline has potential for healthcare applications, 
including home and clinical assessments. Streamlining data collection 
facilitates efficient cohort analysis of strength and conditioning vari
ables, supporting data-driven interventions to optimise human 
performance.

5. Conclusions

In this study, we developed an automatic method to analyse coun
termovement jump (CMJ) videos captured by a camera without the need 
for calibration. Our findings demonstrate that our method enables a 
more accurate and reliable prediction of CMJ variables when compared 
to IMU-based approaches. Moreover, it offers supplementary informa
tion (vertical force–time data) that goes beyond what is currently 
accessible through existing mobile applications. This method holds 
significant potential as a valuable alternative to both mobile applica
tions and IMU-based techniques, especially in large-scale cohort studies. 
Nevertheless, further enhancements in CMJ phase detection and CoM 
estimation are required to establish our method as a viable substitute for 
traditional force platforms.
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