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Abstract: Deep learning has revolutionised medical image analysis, offering the possibility
of automated, efficient, and highly accurate diagnostic solutions. This article explores
recent developments in deep learning techniques applied to medical imaging, including
convolutional neural networks (CNNs) for classification and segmentation, recurrent neural
networks (RNNs) for temporal analysis, autoencoders for feature extraction, and generative
adversarial networks (GANs) for image synthesis and augmentation. Additionally, U-Net
models for segmentation, vision transformers (ViTs) for global feature extraction, and hy-
brid models integrating multiple architectures are explored. The Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) process were used, and searches on
PubMed, Google Scholar, and Scopus databases were conducted. The findings highlight
key challenges such as data availability, interpretability, overfitting, and computational
requirements. While deep learning has demonstrated significant potential in enhancing
diagnostic accuracy across multiple medical imaging modalities—including MRI, CT, US,
and X-ray—factors such as model trust, data privacy, and ethical considerations remain
ongoing concerns. The study underscores the importance of integrating multimodal data,
improving computational efficiency, and advancing explainability to facilitate broader
clinical adoption. Future research directions emphasize optimising deep learning models
for real-time applications, enhancing interpretability, and integrating deep learning with
existing healthcare frameworks for improved patient outcomes.

Keywords: artificial intelligence; artificial neural networks; medical image analysis; deep
learning; image classification and pattern recognition

1. Introduction
The use of imaging for diagnosis in healthcare is substantial, amounting to about

USD 100 billion globally per year [1]. Mounting pressures on healthcare facilities and the
market for imaging diagnosis have led to increasing demands for diagnostic excellence in
the clinical setting due to the rising number of clinical images, greater image complexity,
and faster results demanded by clinicians. As a result, the need for new technologies is
centred on providing solutions that will increase the effectiveness of the clinical process,
improving healthcare systems, and provide accurate diagnosis for patients while improving
care quality. Therefore, there has been high demand for technologies that can aid in the
automation of workflows associated with the use of medical imaging for diagnosis, leading
to advances in the use of artificial intelligence (AI) methods such as deep learning to assist
radiologists in analysing complex image datasets [2].
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1.1. Deep Learning Overview

Deep learning is a subfield of machine learning that leverages artificial neural network
(ANN) architecture to acquire knowledge from large datasets and perform intricate opera-
tions. One of the main advantages of deep learning techniques is their ability to mimic the
information processing complexity of the human brain [2,3]. The field has been studied
since the 1980s, but gained prominence in recent years. This is because of access to large
datasets for model training, improved algorithm development, and increased processing
power of microprocessors. The structure of an ANN is an interconnection of nodes (some-
times referred to as processing elements or neurons) that can span up to multiple layers,
depending on the intricacy of the tasks and capabilities of hardware resources. Each node
gathers information from the previous layer and then transmits to the subsequent layer
based on the configured characteristics and set parameters. The values of the parameters
used are normally initially randomised, but then iteratively updated during training based
on a set learning rate [4]. A deep learning network extracts deeper and intricate information
as its number of architectural layers increases, resulting in optimised performance with
large datasets and training iterations. This in turn ensures precise recognition of patterns in
the data [3].

1.2. Deep Learning in Medical Imaging, Classification, and Segmentation

Deep learning has seen extensive applications in medical image analysis. It has been
used for different medical imaging modalities, including X-ray radiographs, computed
tomography (CT), ultrasound (US), and magnetic resonance imaging (MRI) scans, to
provide predictive diagnosis and treatment. Subtle and intricate patterns presented by
these medical images are effectively identified by the adapted deep learning approach,
thereby providing a means to automate the feature extraction process. Image feature
extraction or selection is a process that can be performed manually by a qualified specialist,
but this can be time-consuming and subjective. When deep learning models are properly
trained, they have an ability to accurately identify lesion or tumours, examine membranes
and tissues for differences, and undertake diverse medicine-related tasks, thereby providing
accelerated diagnostic outcomes. Therefore, deep learning is emerging in the realm of
medical image analysis assisting with diagnosis. A summary of deep learning applications
is shown in Figure 1.
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Figure 1. A summary of deep learning usage with medical images.

1.3. Challenges in Utilising Deep Learning in the Medical Field

Despite the significant advancements and capabilities of deep learning techniques in
medical image analysis, there are certain limitations and challenges in their implementation
and acceptance. For instance, most deep learning algorithms often lack explainability, i.e.,
they typically operate as black boxes [5]. In the medical field, where decision-making
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processes are required for diagnosis and provision of treatment, the deep learning method
of convolutional neural networks (CNNs), for instance, does not provide an insight into the
manner by which it came up with a decision. Other challenges that applications of deep
learning techniques can face include the following

• Overfitting during training. Overfitting causes poor accuracy when training deep
artificial neural networks in recognising images not included during their training
dataset (i.e., unseen or test images), even though the images in the training set could
have been correctly recognised [6–10]. It has several possible causes that include in-
sufficient training examples to facilitate adequate generalisation and excessive model
parameters for the architecture. However, there are techniques that could be valuable
to deal with overfitting. One technique is known as dropout [6,11–14], whereby some
nodes in the architecture are temporarily left out during training. Another approach
is to artificially extend the number of examples in the training dataset through a
process known as data augmentation [15–17]. A comparison of different image data
augmentation methods was reported in [18]. The technique has been applied to mam-
mograms [19] and CT images [20]. Augmentation can be performed by manipulating
the images through processes such as kernel filters, geometric transformation, ran-
dom erasing, and mixing images. It can also be carried out through deep learning
approaches such as adversarial training, neural style transformers, and generative
adversarial networks [7]. An issue with performing data augmentation is selecting
the best approach for a given set of images [21]. An exploration of the influence of
different data augmentation techniques on the explainability of deep learning methods
was reported in [22].

• Image annotation. Many deep learning algorithms are supervised, i.e., they require
labelled images indicating their categories during their training phase. The labelling
requires annotation of images by qualified medical practitioners. Because deep learn-
ing requires large datasets for training, this process can be time-consuming. However,
there have been reports of automated and interactive image annotation methods that
can assist with this operation, e.g., [23–28].

• Noisy images. Medical images can be noisy. Noise distorts the quality of images
being used to train deep learning networks [29] and can reduce their ability to learn
effectively.

• Interpretability. This is an area of great research interest to render decision-making
by deep learning artificial neural networks more transparent, i.e., moving away from
so-called black box behaviour to more interpretable decision-making. The issue of
interpretability has been explored in many studies, e.g., [30–36]. Interpretability can be
considered from multiple perspectives, e.g., user orientation for explanations provided,
visualisation through graphs, charts rules etc, user comprehensibility through compre-
hensive reasoning, simplicity of explanations, local interpretation of a single datum
and global interpretation of overall data, consistency in explanations, transparency in
decision-making, and ethics and fairness in revealing bias and discrimination [31].

• Data sharing complexities and small datasets. Medical data gathered by a single
institution may be insufficient to allow effective training of deep learning algorithms,
and thus sharing across many institutions would be required. This, however, could be
challenging due to regulatory, technical, and privacy concerns [37] and financial and
time constraints, and limited availability of patients can limit the dataset. However,
valuable techniques have been devised to address small-dataset problems in deep
learning [38,39].
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• Ethical issues. There are numerous ethical issues requiring careful consideration, e.g.,
patient anonymity, consent/assent, data handling and protection, data sharing, and
vulnerable participants [40–43].

• Trust. There is an ongoing issue of relying on critical medical diagnostic results
generated when the manner of their generation is not sufficiently transparent [4].

• Computational requirements and environmental issues. Training deep learning algo-
rithms typically requires high computational capabilities and long durations. Many
general-purpose computers do not have the means of delivering the required compu-
tational resources, and there is also the issue of the environmental aspects of using so
much electricity to perform the required deep learning training [44,45].

This article explores deep learning techniques for medical image analysis, highlighting
their roles in assisting diagnostic tasks. It examines CNNs for classification and segmen-
tation, recurrent neural networks (RNNs) for sequential data, autoencoders for feature
extraction, and generative adversarial networks (GANs) for data augmentation. It also
discusses U-Net models for segmentation, vision transformers (ViTs) for long-range de-
pendencies, and hybrid models that integrate multiple architectures. Different algorithms
and their architectures are discussed. Associated mathematical models are presented to
demonstrate the manner in which different imaging modalities operate. The study empha-
sises the transformative impact of deep learning in medical diagnostics and suggests future
improvements in efficiency and interpretability. In the following sections, the materials and
methods are explained and the results are discussed.

2. Materials and Methods
A systematic review was undertaken to explore the latest developments in deep

learning ANNs for analysing medical images. As this field is growing, with many related
articles published daily, a rapid review approach was undertaken [6]. The necessary
constraints and criteria for inclusion were used when searching for literature that provided
information about recent deep learning techniques used for medical image analysis. The
following keywords were combined as part of the literature search: “deep learning” and
“medical image analysis”. We also included imaging modalities and used “OR” and
“AND” operators:

“deep learning” AND “medical image analysis”.
“deep learning” AND “medical image analysis” OR “CT”.
“deep learning” AND “medical image analysis” OR “MRI”.
“deep learning” AND “medical image analysis” OR “X-ray”.
“deep learning” AND “medical image analysis” OR “infrared thermal image”.
“deep learning” AND “medical image analysis” OR “ultrasound”.
The search was performed on different scientific databases, including Scopus, PubMed,

and Google Scholar, and the inclusion and exclusion criteria are shown in Figure 2. The
imaging modalities are shown in Figure 3.

We examined each article with a principal focus on the deep learning techniques
deployed and the imaging modalities adopted. Articles that did not report either a deep
learning algorithm or a medical imaging modality were excluded. The remaining articles
were then filtered to include the deep learning techniques in whole or in part, as many
works used a combination of deep learning techniques. As this is a wider review of deep
learning methodologies, we have not looked critically into the clinical aspects of diseases to
be diagnosed. The categories included were CNNs, RNNs, autoencoders, GANs, transfer
learning (TL), ViTs, and hybrid models. We also considered studies that combined multiple
deep learning algorithms, i.e., hybrid systems further refined our search to include the terms
“hybrid”. For completeness, a summary of each method is included as part of the review.
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As CNN architectures were widely deployed, mostly with other deep learning techniques,
we further narrowed the search terms to include only publications that specifically used
CNNs by updating the search terms to include (“convolutional neural network” AND
“medical image analysis”) OR (“CNN” AND “medical image analysis”).
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Over 500 different studies were initially identified across the databases, with some
duplicated across the databases, especially on PubMed and Google Scholar. After applying
the exclusion criteria, this was refined to 141 articles being eventually reviewed in this study.
The 141 articles were distributed over all the identified categories. We included a broad
range of imaging modalities. The objective was to identify the deep learning techniques
most suitable for medical imaging tasks, the processes employed to improve the monitoring
and diagnosis performance of these techniques, and the optimisation performed.

3. Results
This section contains an overview of deep learning neural network concepts.

3.1. Convolutional Neural Networks

CNNs were the dominant technique for analysing medical images for diagnostic
purposes [46]. It has gained immense popularity since 2012, when high-performance com-
puting (HPC) became more accessible. This led to the ImageNet competition for different
combinations of deep CNNs to achieve better diagnostic results when compared to hu-
man experts. CNNs are effective for several tasks, such as image segmentation, detection,
registration, localisation, and classification [5]. They consist of numerous layers of convolu-
tional filters with nonlinear activation functions combined with pooling layers, dropout
layers, and fully connected layers. Their ability to extract complex spatial relationships
and patterns in images has seen them used in various medical imaging modalities, such
as magnetic resonance imaging (MRI), computed tomography (CT), X-rays, ultrasound
(US), and histopathology, and more recently in infrared thermal (IRT) imaging [47,48].
Images associated with multiple conditions, e.g., bone fractures, cancer, liver diseases,
pneumonia, and COVID-19, were segmented, classified, registered, and interpreted. The
CNN architecture applied to the discrete Fourier-transformed infrared thermal images is
shown in Figure 4. Although the study was a pilot, the model was effective in screening
wrist fracture in children.
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process is described mathematically next. Let the image input to the CNN be represented
by a 3D matrix such that:

X ∈ RH×W×D (1)

where H is the height of the image, W is the width of the image, and D is the depth of the
image (representing the number of channels, which is usually three for an RGB image).
When applied to a set of convolutional filters for each input, the output of the convolutional
filter can be represented by:

Zi,j,k =
Hk

∑
h=0

Wk

∑
w=0

D

∑
d=0

Xi+h,j+w,d.Kh,w,d,k (2)

where Zi,j,k is the output feature map for the filter k at position (i, j), K is the convolutional
filter (kernel), and Hk and Wk are the height and width of the kernel, which are usually a
sample of the size of the input. This process helps to identify local patterns such as the
edges, shapes, and textures from the input image.

When the CNN algorithm is used for classification purposes, it is combined with
other layers such as the activation layers, pooling layer, and the fully connected layer. The
output from the convolutional filter is passed through an activation function Ai,j,k. If the
rectified linear unit (ReLU) activation function is applied, the output from the convolutional
layer becomes:

Ai,j,k = max
(

0, Zi,j,k

)
(3)

This operation helps to add nonlinearity by ensuring only positive values are retained,
thereby helping to learn complex patterns from the image.

The pooling layer is then applied to the output of the activation layers. The effect of
the pooling operation is to reduce spatial dimensions from the convolution operation and
thus help the network to capture small translations in the image. This process also helps
to reduce the computational complexity of the network. Assuming the max (maximum)
pooling function is applied to the activation layer with a p × p window size, the output
from the pooling layer is represented by:

Ai,j,k = max
h,w∈[1,p]

Ai+h,j+w,k (4)

The fully connected layer is connected to the output of a flattened max pooling layer
output. This layer takes a vector value and is a standard neural network, with each input
connected to all the neurons in the next layer. The output of the fully connected (FC) layer
is given by:

Zl = Wl Al−1 + bl (5)

where Al−1 is the input into the FC layer and Wl and bl represent the weights and biases of
the FC layer. The final or output layer, which is also a vector, is mostly passed through a
softmax function for a classification task. This function helps to convert the output classes
into probabilities with the following expression:

ŷi =
exp (Zi)

∑C
j=1 exp

(
Zj
) (6)

where ŷi represents the probability of predicting class i, and C represents the total number
of classes being differentiated. The full CNN undergoes training to correctly learn the
features of the image input. This training uses a loss function, usually a cross-entropy loss,
when considering a classification task. The cross-entropy loss is given by:
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L = −
C

∑
i=1

yilog (ŷi) (7)

where ŷi and yi are the predicted probabilities for class i and the target label, respectively.
The gradient of the loss function is calculated with respect to the weights through a

back-propagation formula:
∂L
∂W

=
∂L
∂Z

.
∂Z
∂W

(8)

The weights are updated using the gradient descent, i.e.,

Wnew = Wold − η
∂L
∂W

(9)

where η (0 < η ≤ 1) represents the learning rate controlling the convergence rate.

Literature Review Findings for CNNs

Most studies have used a CNN individually, though there have been studies that
applied a CNN in combination with another algorithm such as UNET and GANs for
medical image diagnostics. However, in this section, the focus is on a CNN application on
its own (other CCN-based algorithms, such as transfer learning, are discussed in Section 3.6).
A lightweight CNN algorithm was used to detect COVID-19 from chest X-ray radiograph
images [49]. In that study, their proposed CNN was inspired by the ResNet model [50], in
which no layers were connected in sequence, creating a skip connection whereby neurons
in a particular layer can be connected to another neuron further ahead. This arrangement
helped to create a lightweight model that was effective in edge detection applications.
Their study was compared with other CNN models such as CVDNet and deep GRU-CNN,
and showed similar performance to models with reduced computational complexity. A
deeper CNN in their work was proposed that used CT scans and X-ray radiographs for the
detection of several pulmonary diseases, including COVID-19 and viral pneumonia [51].
They used varied datasets consisting of different imaging modalities for their work, which
provided another dimension to the efficacy of CNNs in diagnostic imaging. They proposed
a 26-layer deep CNN which was inspired by a wide residual network (WRN) [52]. It
provided a faster training time when considering the deep nature of the architecture. This
was achievable based on the sophistication of their hardware. Their model was effective
in terms of the accuracy in detecting the different pulmonary diseases when compared
to traditional methods. A CNN model was used to classify ultrasonic images of fatty
liver [53]. A pertinent problem in that research was the similarity in the pathological
ultrasonic images used for training the CNN algorithm. This sort of challenge might
pose a problem for the CNN architecture, as it may struggle to extract distinct features
for different pathological images. Therefore, there will be a need for deep convolutional
layers, leading to computational complexities. However, they used pixel-level feature
extraction as a preprocessing step and then proposed a CNN architecture comprising
two convolutional layers, a pooling layer and a fully connected layer. They also tested
the proposed method with a skip connection and improved its accuracy when compared
to other algorithms such as VGGNet. The authors in [54] developed a CNN model to
distinguish between benign and malignant tumours using radial endobronchial ultrasound
(rEBUS) images. A total of 769 images were collected from hospitals in Taiwan for model
training and internal validation, with an additional 300 and 92 images from two other
hospitals used for external validation. The model was trained with image augmentation
techniques to improve its robustness. Internal validation showed strong performance, with
an AUC of 0.88, sensitivity of 0.80, and specificity of 0.75. For external validation, the
AUC was 0.76 and 0.72 at the two external sites, with varying sensitivity and specificity.
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After fine-tuning, performance improved, reaching AUC values of 0.78 and 0.82. The
CNN also showed potential in identifying lung cancer subtypes, with moderate success
for adenocarcinoma and squamous cell carcinoma, but limited accuracy for small cell
lung cancer. Overall, the model proved promising for aiding rEBUS-based lung cancer
diagnosis. The authors in [55] developed a deep convolutional neural network (DCNN) for
the classification of ovarian cancer in the pelvic area using ultrasound images. They used
data collected from ten hospitals in China between 2003 and 2019, including adult patients
with adnexal (ovary-related) lesions and healthy controls. Validation of the proposed
model was performed using three datasets: one internal and two external, all containing
images from patients with either ovarian cancer or benign lesions. The DCNN showed
high diagnostic performance, with area under the curve (AUC) scores of 0.911, 0.870, and
0.831 across the three datasets, respectively. They benchmarked their model against the
diagnostic results of 35 radiologists, and the proposed DCNN model outperformed the 35
radiologists in accuracy for detecting ovarian cancer.

3.2. Recurrent Neural Networks

Recurrent neural networks (RNNs) are another class of neural network that have
gained significant research consideration for modelling of sequential data. Their variability
in length of their input and output also makes them suitable for natural language processing
tasks [1]. An RNN has an internal memory unlike feed-forward networks, which helps
to keep memory of the hidden states across different time stamps. In RNNs, there is a
feedback loop between the outputs of the hidden layers [56]. This arrangement allows
the RNNs to learn sequential patterns, making them suitable for tasks such as time-series
prediction and video analysis [57]. RNN architecture normally suffers from the issue of
vanishing gradients [53]. Their use transcends sequential and textual data. They can
also be applied to imaging modalities, such as dynamic imaging in functional MRIs, with
time-series characteristic information to monitor disease progress in a patient and to check
how they respond to treatments. This functionality has been made popular by a variant
of the network known as the long short-term memory network (LSTM). The LSTM works
by introducing self-loops to allow for the flow of gradients for long durations [58]. The
recurrent structure of the neural network is always enforced by the LSTM by introducing
gating functions on the neurons in the hidden layer. The architecture of an RNN is shown
in Figure 5.
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The mathematical representation of an RNN is described next. Let the sequential input
to the RNN at time step t be xt where xt ∈ Rn is a vector, hence the input sequence becomes:

x1, x2, . . . , xT (10)

where T represents the number of time steps in the sequence. For every time step t, a
hidden state (ht) is maintained. Each hidden state is updated as:

ht = f (Whhht−1 + Wxhxt + bh) (11)

where Whh represents the hidden states or recurrent weights, Wxh is the weight of the
connection between the input layer and the hidden layer, and bh is the bias for the hidden
state. The function f represents the activation function, typically the ReLU or the hyperbolic
tangent. To obtain the output of the RNN at each time step, the output from each hidden
state is multiplied by its associated weights and added to a chosen bias vector. This is
represented as:

yt = g
(

Whyht + by

)
(12)

where Why represents the weight matrix between the hidden state and the output and by

represents the output bias vector. The function g is the activation function for the output,
which could be task-dependent. The softmax activation function is mostly employed for
classification tasks.

Literature Review Findings for RNNs

RNNs are widely used for machine learning or deep learning tasks that are time-
related. For image diagnostics, they can be used to monitor disease progression and patient
response to treatments based on different time stamps of when the images were taken.
Most studies have based their classification tasks on an RNN, typically combining it with a
CNN for the feature extraction stage, as shown in Table 1.

Table 1. Recurrent neural network applications.

Article Imaging Modality Task CNN Feature
Extraction

Disease/Body
Part

Variant
Used

[58] MRI Classification Y Alzheimer’s BGRU
[59] Histopathological images Classification N Breast cancer None
[60] MRI Classification/segmentation N Brain tumour LSTM
[57] MRI Segmentation Y Aorta LSTM
[61] MRI Classification/localisation Y Knee ligament LSTM
[62] IRT Classification Y Diabetes mellitus LSTM
[56] CT Image denoising N Lungs LSTM
[63] MRI Registration Y Brain cancer LSTM

In one study, MR images were used for classification of Alzheimer’s disease by
analysing the longitudinal sequence of the MR images taken at different time steps to
measure disease progression [58]. They combined a CNN for feature extraction and
RNN for classification. For the RNN architecture, they cascaded three bidirectional gated
recurrent units (BGRU) with the inputs from the CNN at multiple points, providing a
longitudinal analysis. RNN architectures can suffer from vanishing gradients when the
sequence of the images becomes too long, as they do not contain memory units to store
sequences [64], hence the reason for developing variants such as LSTM and GRU. RNNs
can also be used on their own without the addition of gated memory units. An RNN with
slight modification was used in another study for the classification of breast cancer with
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microscopic histopathological imaging [58]. The RNN architecture was gain-modulated
using the honey badger algorithm (HBA) by updating the weights of the RNN during train-
ing. The capacity in which RNN was used in their study was for classification of different
stages of breast cancer and not disease progression, hence why gated memory approaches
were not used. RNNs can also be used for image segmentation tasks, especially in cases
where time-series images of a part of the body are taken, requiring sequencing of the time
frame for identification of anomalies. In another study, an RNN-based LSTM model was
proposed together with U-Net to label aortic MR images [60]. This sort of task uses the
capacity of the RNN architecture to segment temporal images, as most annotated images
normally used for classification are static. The U-Net algorithm was combined with a CNN
for feature extraction, with the sequencing part achieved with the RNN algorithm. The
ability of a neural network to visualise several distinct images when compared to a human
makes RNNs suitable for segmenting image labels for disease identification. RNNs can also
been used to denoise diagnostic images. Images used for diagnosis can be susceptible to
such interference as white and salt-and-pepper noise. An LSTM model was combined with
particle swarm optimisation (PSO) algorithms to optimise the batch normalisation process
of the RNN training to remove noise from CT images of the lungs [59]. The technique
provided improved peak signal-to-noise ratio (PSNR) when compared to traditional noise
removal techniques such as filtering-based and diffusion-based techniques.

3.3. Autoencoders

Autoencoders are unsupervised learning models used for dimensionality reduction
and feature extraction with minimal distortion when their input is compared to their
output [65]. They play an important role in the deep learning paradigm for medical
image analysis [66]. They can help denoise or compress medical images and are useful in
anomaly detection, where unusual patterns in images indicate potential medical issues.
They can also be used as a semi-supervised deep learning model to produce annotated
data in situations where there is a lack of substantial amount of annotated data available
for training any deep learning network for tasks such as classification or segmentation [67].
Their architecture consists of an encoder and decoder structure with a latent space to store
the value of the compressed data. Both the encoder and the decoder comprise a fully
connected feed-forward neural network. The encoder converts the input image into a
low-dimension compressed version, which is referred to as latent space or the encoder.
The latent space contains only essential features of the input from the encoder and is kept
as shallow as possible in terms of the number of neurons used to retain the compressed
version of the input and computational efficiency. The encoder in turn transforms the latent
space to a reconstruction of the input. A loss function is generally used during training to
compare the input with its reconstruction [68]. The architecture of an autoencoder with an
MR image as its input is shown in Figure 6.

The mathematical representation of the dimensionality reduction function of the
autoencoder’s encoder and decoder is described next. Let the input image to the encoder
be represented by:

x ϵ Rn (13)

The encoder in turn transforms the input x into a lower-dimension latent representa-
tion:

z ϵ Rd (14)

where d < n.
The transformation function that produced the latent information is given as:

z = fenc(x) = σ(Wencx + benc) (15)
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where Wenc ϵ Rd×n is the encoder weight matrix, benc ϵ Rd×n represents the encoder’s bias
vector, and σ represents the selected activation function of the encoder, which is commonly
ReLU or a sigmoid function. The latent representation z of the input x provides compressed
information by only capturing the essential features of the input image, a feature referred to
as bottleneck, in which the dimension of the latent feature is smaller than the input vector.
This facilitates the autoencoder to learn a better way to efficiently represent the input
vectors. The decoder network tries to transform the latent space z back to the reconstructed
input x̂ to match the input vector x. The decoder function can be represented thus:

x̂ = fdec(z) = σ′(Wdecz + bdec) (16)

The loss function is used to minimize the difference between the input x and the
reconstructed input x̂. This difference is normally quantified by binary cross-entropy error
(BCE) when the dataset is binary or mean squared error (MSE) for multi-class data.
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The MSE loss is computed with the following function:

L(x, x̂) =
1
n

n

∑
i=1

(xi − x̂i)
2 (17)

and the BCE loss is computed as follows:

L(x, x̂) = −
n

∑
i=1

[xilog (x̂i) + (1 − xi)log (1 − x̂i)] (18)

Training of the autoencoder requires finding parameters for the weights and biases of
the encoder and decoder such that the reconstruction loss is minimised over the training
data. Gradient-based optimisation techniques such as stochastic gradient descent (SGD)
or Adam can be used for this purpose. Table 2 shows the summary of autoencoder
based techniques.
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Table 2. Autoencoder-based techniques.

Article Image
Modality Task Disease/

Body Part

[67] MRI Augmentation/
segmentation Brain

[69] MRI Denoising Prostate
[70] CT + others Classification Face
[71] CT Augmentation Various

[72] MRI and CT Classification Intracerebral
haemorrhage

[73] X-ray/digital histopathology Anomaly detection Various

[74] Single-cell images Classification Myeloid
leukaemia

[75] None Anomaly detection None
[76] CT Classification COVID-19
[77] MRI Denoising/classification Autism/brain

Literature Review Findings for Autoencoders

Autoencoders are associated with both unsupervised and semi-supervised deep learn-
ing tasks. These tasks are normally preferred in the absence of the ample annotated datasets
required for deep learning activities, especially in imaging analytics. Autoencoders are
used to augment small annotated datasets, often before a segmentation task. For exam-
ple, a method known as GenSeg was proposed that combines the generative aspects of
autoencoders to generate a latent representation of tumour cells from a labelled health
image and uses U-Net architecture to obtain the unique information of tumours present
in the MR images. There is also other related research [69]. Noise reduction is another
task that has benefited from the generative features of the autoencoder framework. The
fusion of Bayes shrinkage fused wavelet transform (BSbFWT) was proposed for noise
removal and an autoencoder block for generating a noiseless variant of an MR image of
prostate cancer [72]. MR images can be prone to Gaussian and Rician noise, which is
introduced during image capture by the MRI device and the imaging environment. The
effectiveness of noise-reduced images was measured using several parameters, such as
peak signal-to-noise ratio (PSNR), mean squared error (MSE), structural similarity index
metric (SSIM), and mean absolute error (MAE), which outperformed numerous traditional
filtering approaches presented in their work. Autoencoders can also be used in classifica-
tion tasks [70,72,74,76]. Autoencoders were used to mesh a fully convoluted network for a
classification task [73]. The authors proposed a convolutional mesh autoencoder (CMA)
framework for the classification of syndromic craniosynostosis (SC) of three known SC
variants—Muenke, Crouzon, and Apert disease—in infants and adults using 3D computed
tomography (CT) images and others with very good percentages on evaluation metrics such
as sensitivity, specificity, and accuracy when compared to normal subjects. These tasks are
very critical, as late and inaccurate diagnosis might prove irreversible, causing permanent
damage to the brain. As indicated, an autoencoder which is infused with four convolutional
layers for encoding and decoding, was used for the construction of face models from the
CT images. Autoencoders were also used to detect complex anomalies present in medical
imaging [73,75,77]. In another study, autoencoders were applied to chest X-ray and digital
pathology images [76]. Abnormalities that were barely visible, such as metastases in lymph
nodes, always proved difficult to detect as they resemble normal images in pathological
slides. The authors proposed a deep perpetual autoencoder that learnt the shared patterns
of normal images and content similarities to abnormal ones and restored them correctly.
For evaluation of their mode, they used the receiver operating characteristic (ROC), as it
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integrates the classification performance of the normal and the abnormal class. Their model
was also evaluated on non-medical images and performed well in comparison, indicating
the suitability of their autoencoder for medical imaging purposes.

3.4. Generative Adversarial Networks

Generative adversarial networks (GANs) are groups of deep learning artificial neural
networks that can be used for generating synthetic medical images, data augmentation,
and improving image resolution. They are valuable for enhancing small datasets, which
are common in medical imaging, and can also be used to create better training data for
improving model performance. A GAN uses an unsupervised learning algorithm and can
be used for mostly semi-supervised and unsupervised learning [78,79]. A GAN consists
of two main parts—the generator (G) and the discriminator (D). The generator, which
comprises a multilayer perceptron (LP), learns the data distribution of the input image
and produces a similar image to the input, also known as “fake data”. The job of the
discriminator, which is also an MLP, is to discriminate between the generated image from
the generator network and the input image. The result of this discrimination, which
constitutes an error between the original input image and the generated image, is fed back
to the generator input to make the generated image more realistic, i.e., closer to the original
image. During training, the weights of the generator and discriminator are alternately
updated, and the weight updates of the generator come from the discrimination error. Both
networks are engaged in a competing optimisation process. This process continues until
there is an equilibrium between the generator and the discriminator networks [1,80,81].
The architecture of a GAN is shown in Figure 7.
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The generator (G) consists of an input noise vector z such that z∼pz(z), where pz is
a prior distribution that could be Gaussian. The output of the generator, which could be
an image, is represented by G(z), and the objective is to maximize log (D(G(z))). The
input to the discriminator (D) is the image data sample x and the output of the generator
network. The output to the discriminator is the probability that x is real or fake. This is
represented by D(x)ϵ[0, 1], where 0 represents fake and 1 represents real. The goal of the
discriminator network is to maximize log(D(x) + log(1 − D(G(z) ))). The discriminator
loss LD is given by:

LD = −Ex∼pdata [log D(x)]−Ex∼pz [log(1 − (G(z)))] (19)
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where −Ex∼pdata [log D(x)] maximises the probability of correctly classifying the real data
and Ex∼pz [log(1 − D(G(z))) minimises the probability of misclassifying the generated
data. When both generator and discriminator are at a stable equilibrium, the combined
minimax game function is defined as:

Min
G

max
D

Ex∼pdata [log D(x)] +Ex∼pz [log(1 − (G(z))) ] (20)

Table 3 shows the summary of GAN-based techniques.

Table 3. GAN-based techniques.

Article Imaging Modality Task Disease/Body Part Variant Used

[79] MRI/retina fundus Image synthesis - -
[82] MRI Image resolution Brain Cycle-GAN
[83] CT Image synthesis COVID-19 Enhanced vanilla
[84] X-ray/CT Image Denoising Chest/thorax CGAN
[85] Various Image resolution Various Enhanced vanilla
[86] - Image synthesis Skin cancer DCGAN
[87] MRI/CT Image synthesis Head/neck Vanilla GAN
[88] MRI/CT Image resolution Bladder cancer Enhanced vanilla
[89] Retina fundus/MRI Image resolution Various Vanilla GAN
[90] CT/MRI Translation Thorax/brain CGAN

Literature Review Findings for GANs

Deep learning technique such as GANs can be used in medical imaging in two different
ways. The generative network in GANs has been used for image synthesis purposes
to generate synthetic datasets for tasks where there are limited annotated datasets and
using the discriminating networks of GANs for anomaly detection [79]. The quality
of the generated synthetic images can be measured by the use of qualitative metrics
such as Fréchet inception distance (FID), which is a measure of similarities between the
representations of the generated and the real input images, structural similarity index
measure (SSIM), which indicates the similarities of the structures (usually image contrast
and brightness), and peak signal-to-noise ratio (PSNR), which is used to analyse the
sensitivity of the generated image. PSNR is the most important metric when dealing with
medical images. Quantitative metrics used for generated image quality include number
of parameters (NoPs) to represent the total number of trainable parameters in the GAN
and floating points of operations (FLoPs), which measure the cost of computation of the
network [78]. Most studies that have used GANs have used them for image synthesis,
image resolution, image translation, and image denoising. For example, a lightweight GAN
(LEGAN) was proposed to generate high-fidelity images from MRIs and retina fundus
images [79]. That technique boasts fewer parameters used in the training process and
lower FID when compared to other variants of GAN such as CGAN, DCGAN, Pix2Pix,
and so on. To achieve this, they used a two-stage GAN to create a coarse-to-fine paradigm,
which is necessary in generating images with high sensitivity to the fine patterns of the
original image. To lower the NoPs, redundancy in the convolutional kernel was eliminated
by using the principal components of a normally fully ranked convolutional kernel for
feature extraction. The resolution of MR images of the brain was improved by increasing
the contrast using a GAN variant known as Cycle-GAN to aid in the segmentation of the
images [85]. To achieve this, they used the image-to-image translation technique to create a
high tissue contrast (HTC) of the real image. The attention block of the Cycle-GAN used in
that study helped in focusing on a single tissue type and increasing the contrast within the
tissue. Other studies have used GANs for medical image resolution, including [85]. For
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denoising tasks, a GAN was used for denoising X-ray images using the CGAN variant of
the GAN architecture [87]. The authors customised it to deal with spatially varying noise,
which is often overlooked when dealing with medical images. To achieve this, the gradients
of original images were merged with noisy images to obtain conditional information for
the CGAN, thereby enhancing the contrast. The convolutional layers of the generator were
used in full for better feature extraction. For improved consistency between the real and
fake images, the reconstruction loss was combined with WGAN loss to create an objective
loss for the network, obtaining remarkable PSNR and SSIM performance when compared
to other state-of-the-art (SOTA) GAN architectures.

3.5. U-Net

U-Net architecture combines the best of CNN and encoder–decoder models, specifi-
cally for the purposes of segmenting medical images [91,92]. They have found application
in major medical imaging modalities such as CT, X-ray, and MRI. U-Net’s ability to exploit
small, annotated data samples (based on its fully connected layers) by leveraging data
augmentation and improved feature extraction made it a valuable technique for medical
image segmentation [92]. The U-shaped architecture with skip connections help to delin-
eate objects in images, making it highly effective in medical image analysis, particularly in
tasks like tumour detection, organ delineation, and segmentation of medical images from
various modalities, and variants have been widely embraced among the many different
deep learning networks [93].

U-Net architecture is mainly composed of two paths. The first path is referred to
as the contracting or encoder path. It uses a downsampling module that consists of
several repeating convolutional blocks for semantic and contextual feature extraction. Each
convolutional block has two successive 3 × 3 convolutions, ReLU activation functions, and
a pooling layer. The pooling layer serves to increase the receptive field of the convolutional
network with no extra burden of computing resources that might be introduced by an
additional convolutional block. The second path of U-Net is the expansive or decoder
path. It is saddled with the task of upsampling spatial resolutions of the feature maps from
the contracting path, usually by a factor of two. During this operation, the dimensions
of the features are reduced and a pixel-wise classification/resolution score is produced.
The expansive path is made up of a 2 × 2 transposed convolutional layer (reversing the
operation in the contracting path), which is followed by a 3 × 3 convolutional layer and
a ReLU activation function. There is also a bottleneck layer that serves as a connection
between the two paths. It is also comprised of two blocks of 3 × 3 convolutional layers and
a ReLU activation function. The embedded skip connections in the bottleneck copy the
output of each stage of the paths, helping to learn contextual and semantic representations
in the deep and shallow layers, respectively [92,94]. The U-Net architecture is shown in
Figure 8.

The encoders/contracting paths shown on the left-hand side of Figure 8 comprise
several layers. Each layer l in the encoder is represented by the function:

f l = σ
(

W l ∗ f l−1 + bl
)

(21)

where f l−1 represents input features from a previous layer, W l , bl is the convolutional
weights and biases, and σ represents the activation function, which is ReLU in most cases.

The output of the encoder is normally max-pooled and can be represented as:

f l
pooled = MaxPool

(
f l
)

(22)
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The output is then passed through the bottleneck layer, which is another convolution
function, represented by:

f bottleneck = σ
(

Wb ∗ f L + bb

)
(23)

with L representing the number of layers in the encoder/contracting path. The upsampling
taking place in the decoder is performed via a skip connection at every layer on the
encoder. As such, each layer in the decoder upsamples the feature map, concatenates the
corresponding encoder features, and applies convolution with the given function as:

f l
upsampled = ConvTransponse

(
f l
bottleneck

)
(24)

f l
concat = Concat

(
f l
upsampled, f L−1

encoder

)
(25)

f l = σ
(

W l
decoder ∗ f l

concat + bl
decoder

)
(26)

At the output layer, there is a 1 × 1 convolutional layer that uses softmax activation to
map the desired output segments:

y = So f tmax
(

Wout ∗ f Ldecoder + bout

)
(27)

During training of a U-Net, the loss function used is usually the cross-entropy loss,
and it is normally applied pixel-wise.

Table 4 provides a summary of works that have implemented the U-Net segmentation.

Table 4. U-Net segmentation techniques.

Article Imaging Modality Disease/Body Part Variant Used

[95] MRI Brain tumour Enhanced U-Net
[96] Various Various Enhanced U-Net
[97] CT Hepatocellular carcinoma Enhanced U-Net
[98] CT Liver Enhanced U-Net
[99] MRI Brain tumour None

[100] Colour fundus Diabetic retinopathy Enhanced U-Net
[101] MRI Various/musculoskeletal Enhanced U-Net
[102] MRI Lower limb muscle Attention U-Net/SCU-Net
[103] MRI Musculoskeletal Various
[104] Various Various Enhanced U-Net (U-Net++)
[105] Ultrasound Breast cancer Enhanced U-Net (attention gate)
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Literature Review Findings for U-Net

U-Net is mostly used for segmentation tasks, especially for segmentation of cancer for
various imaging modalities. Over time, there have been a lot of modifications to the vanilla
U-Net model as different researchers have tried to enhance different facets, ranging from
the skip connections to modifying the convolutional layers with attention networks in a bid
to increase segmentation quality or reduce computational burden. A multi-level feature
assembly MFLA U-Net was reported that was integrated with a multi-scale information
attention and pixel-vanishing attention mechanism [106]. This enhanced U-Net model
was designed to boost segmentation performance. The model was tested on different
medical imaging datasets with different modalities such as colonoscopy and dermoscopic
images. Dice index coefficients were used as a metric to evaluate the effectiveness of the
model in segmenting these images. It outperformed many state-of-the-art U-Net models
on the datasets used for testing. A lightweight U-Net architecture was applied to a publicly
available brain tumour dataset (BraTs) to segment brain tumours [99]. The focus of the
study was mainly developing a low-resource U-Net framework that had a multimodal CNN
encoder–decoder. Augmentation was excluded to reduce the computational demand on the
network. The model achieved remarkable performance, with Dice coefficient values of up
to 0.93 for specific segmented classes when compared to other U-Net models. An enhanced
U-Net model with minimal parameters was reported [97]. The authors achieved this by
developing a framework known as stack multi-connection simple reducing net, otherwise
known as SRNet. This network used fewer convolution operation in the downsampling
and upsampling processes, which in turn helped to reduce the total parameters of a vanilla
U-Net algorithm by 20%. They also modified the original architecture by ensuring the
convolutional layers were not stacked, helping to reduce information loss. Their model was
also tested using the BraTs dataset. They obtained matching results with popular variants
of the U-Net model, also using Dice coefficients as an evaluation tool. Others modified
a vanilla U-Net for the purpose of improving the accuracy of segmentation [99]. They
explored the weakness of U-Net models that only focus on contextual information and
neglect other useful features of the channel. The developed HDA-ResUNet combined the
best of attention mechanisms, U-Net, and dilated convolution. They evaluated their model
on ISI and LiTS segmentation datasets and achieved than a conventional U-Net.

3.6. Transfer Learning

Deep learning techniques are known to be computationally intensive, owing to the
large number of trainable parameters available in their networks. These parameters increase
substantially as the network deepens. Also, the availability of large annotated medical
image datasets is scarce, and this is a very important consideration in the use of deep
learning for medical image analysis [107,108]. Transfer learning algorithms were developed
to help solve such problems by providing a means to reparametrize an already-trained
large deep learning network. These networks are CNN-based and trained on millions
of images with different classes. The resulting learnt parameters are saved to be reused
on other datasets. Some aspects of these networks are modified to suit new datasets.
Transfer learning involves using pretrained deep learning models (e.g., ResNet, VGG,
DenseNet, GogleNet, XceptionNet, AlexNet, Inception V3, and SqueezeNet) and fine-
tuning them on medical images. Developing models when using transfer learning is
performed in two stages: initialising the weights and fine-tuning. During initialisation
of the weights, the weights of a previously trained model with a different dataset, i.e.,
AlexNet trained on ImageNet, as shown in Figure 9, are copied. When a new training
dataset, such as medical images in this case, is used to train this model, the weights are
updated. In the fine-tuning process, some of the CNN layers are frozen and thereby the
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weights are not being updated. Another method of fine-tuning is freezing all the CNN
layers barring the classification layer that is adjusted according to the requirements of the
medical image data. This technique is highly effective when the available dataset is small or
specific to a particular medical condition. It reduces training time and improves diagnostic
accuracy [109]. Transfer learning can be categorised into inductive, transductive, and
unsupervised learning based on data labels. These can also be categorised as homogeneous
and heterogeneous based on how consistent the dataset features and labels are between the
source and target domain [110,111].
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The concept of transfer learning can be modelled mathematically as described next.
The source domain be represented as:

Ds =
{

x(i)s , y(i)s

}
for Ns

i=1, (28)

where x(i)s ∈ Xs represents the input data from the source domain, y(i)s ∈ Ys represents the
corresponding labels, and Ns is the number of samples. The target domain is represented as:

DT =
{

x(i)T , y(i)T

}
for NT

i=1, (29)

where x(i)T ∈ XT represents the input data from the target domain and y(i)s ∈ Ys represents
the corresponding labels. NT is the number of samples, with the assumption that Xs ̸= XT

or Ys ̸= YT . The objective of the transfer learning function is to find a model fT(xT ;∅T)

that minimises the loss in the target domain. If we represent the loss function by LT , then
LT can be defined as:

LT =
1

NT

NT

∑
i=1

l( fT(x(i)T ;∅T), y(i)T ) (30)

where l is the specific loss algorithm, which can be cross-entropy or mean squared error
and ∅T represents the target domain model parameters. The transfer learning process
between the source and target domain takes two steps. We pretrain the model on the source
domain using the objective loss function given by the equation:

Ls =
1

Ns

Ns

∑
i=1

l( fs(x(i)s ;∅s), y(i)s ) (31)

The learned parameters ∅s from the source domain are transferred to the target
domain by freezing the base layers, where ∅base

s is fixed or by fine-tuning specific layers
i.e., ∅new

T .
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The target domain overall model becomes:

fT

(
x(i)T ;∅T

)
= f base

s

(
xT ;∅base

s

)
+ f new

T (xT ; ∅new
T ) (32)

The learning process is then optimised by regularising the losses. Therefore, a com-
bined loss function L is given by:

L = LT + λ·Lregularisation (33)

where λ is the regularisation weight and Lregularisation can be any term used for smooth
transfer, e.g., L2-norm.

Findings for Transfer Learning

Transfer learning (TL) techniques are mostly applied in the classification of medical
images, as summarised in Table 5.

Table 5. Summary of transfer learning techniques.

Article Imaging Modality Disease/Body Part TL Variant/Best Model

[112] Histopathological images Breast cancer ResNet 50
[113] MRI Brain tumour Improved ResNet 50
[114] MRI Alzheimer’s Various (EffiecientNet)
[115] CT Pulmonary nodules Various (DenseNet)
[116] X-ray/CT COVID-19 Various (VGG 16)
[117] MRI Alzheimer’s Modified ResNET 18
[118] Ultrasound Thyroid VGG-16

This is because the networks they are learning from have been pretrained for classifica-
tion as well. Several transfer learning models, such as VGG16, DenseNet 121, and ResNet
50, were used for the binary classification tasks of X-ray radiographs and CT images of
COVID-19 patients [118]. Most of the model parameters were frozen and the weights were
not initialised. However, they were able to obtain very good results in terms of classification
accuracy, with VGG16 performing best, with accuracy of 99%. Transfer learning models like
those in [118] were compared and a custom CNN built from scratch to compare the efficacy
of the TL process. The models were trained on different publicly available datasets with
varying modalities, ranging from X-rays to CT scans of different diseases, including lung
cancer and brain tumour. The initial convolutional layers of the TL networks used in that
work was frozen and the weights of the top layers were updated. The models were trained
on all the datasets, and improved accuracy was obtained with the TL models, with ResNet
50 showing the highest accuracy of 90% for the histopathological images. In another study,
transfer learning techniques were trained on the ImageNet datasets [119]. The authors
pretrained a novel hybrid DCNN model that combined convolutional layers with global
average pooling for each layer with a skip connection in each of the convolutional layers.
The 200,000 augmented unlabelled data were sourced from different repositories of biopsy
breast cancer image datasets and were used to train the DCNN model. The pretrained
DCNN model was then used to classify annotated skin cancer lesions as benign or ma-
lignant based on the weights from the novel pretrained model. They obtained improved
accuracy when compared to other models tested on similar datasets. A transfer learning
model (ResNet 18) was used for the diagnosis of different stages of Alzheimer’s disease
(AD) [120]. The model was fine-tuned by unfreezing all the layers, allowing it to update all
it weights based on the publicly available DICOM MRI datasets used. High accuracy was
obtained for the three different classes (in the range of 99%), and their model outperformed
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other related works that classified AD. Qing Guan et al. [121] used an Inception-v3 TL
model for the classification of papillary thyroid carcinomas (PTCs) and benign thyroid
nodules using ultrasound images. A total of 2836 images from 2235 patients were used.
The model was trained to crop nodule margins and make diagnostic predictions. The best
performance was achieved using a 50-pixel margin and 384 × 384 image size. In the test
group, Inception-v3 achieved sensitivity of 93.3% and specificity of 87.4%. Their proposed
model was most accurate for nodules sized 0.5–1.0 cm.

3.7. Vision Transformers

Despite the significant successes recorded in enhancing the diagnostic accuracy of
deep learning models such as CNN, RNN, and U-Net in the classification and segmenta-
tion of medical images, there remain some limitations. Their reliance on localised feature
extraction leading to inductive bias and sequential operation makes them fall short when
the medical imaging tasks requiring long-range dependency and global feature extrac-
tion [122]. Although initially designed for natural language processing tasks such as
sentiment analysis [123], machine translation, and text summarisation [124], their ability to
capture long range dependencies in image pixels helps to build a more robust segmentation–
classification model. The vision transformer is a relatively new deep learning architecture
that is increasingly being applied to medical imaging. Developed by Google in 2020, it
performs segmentation or classification using the transformer architecture. The ViT cre-
ates a partition of the input images into multiple patches of 16 × 16 pixels and linearly
embeds them. For the pixels to be suitable for the transformer architecture, they must be
transformed into fixed-length vectors [125]. The self-attention mechanism represents the
main feature of the ViT architecture, as this forms the basis of the interactions among the
pixel patches. It also uses positional encoding to represent the spatial location of the image
patches. Feed-forward layers placed after the self-attention layers are generally used by the
model for final decisions [126]. Several large language models have been developed for
medical image analysis [127]; however, we have focused on the legacy transformer model
in our analysis. The original architecture of the vision transformer is shown in Figure 10.
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If we represent the input to the ViT model by an image X, then X can be defined
such that:

X ∈ RH×W×C (34)

where H and W represent the height and width of the image, respectively, and C is the
number of channels, which is usually three for RGB images. The input image is divided
into non-overlapping patches of size P such that:
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Xpatches = {x1,x2, . . . , xN,} (35)

where N = H×W
P2 is the total number of patches and each patch is flattened as:

x1 ∈ RP2.C (36)

The patches are sent through the transformer encoder layers consisting of the multi-
head attention layer, which computes the relationships between patches using the K, V, Q
(keys, values, and queries) matrices, which are computed as:

K = Z(l−1)WK, V = Z(l−1)WV , Q = Z(l−1)WQ (37)

where Z(l−1) is the positional patch embedding for each patch and WK, WV , and WQ are
the learnable weight projection matrices, which have the same size as embedding space.
This is then passed to the feed-forward neural network (FFNN) and a classification head
for a classification task [128].

Literature Review Findings for Vision Transformers

Several studies have used ViTs and their variants, including TNT, Swin, DeiT, and
PVT [129], for classification, registration, and segmentation of medical images. Just like
the convolution-based transfer learning models, learnable parameters from transformer
models such as those can also be used for specific DL tasks. For example, a pretrained
Swin transformer was used for the classification of breast cancer using publicly available
breast X-ray images [130]. The dataset was resized to fit the Swin transformer input size
and augmentation was also performed to improve generalisation, achieving very high
classification rates based on the selected metrics for evaluation, with accuracy of 99.9%
and precision of 99.8%. The results were compared with convolution-based TL algorithms
(ResNet50 and VGG16), and the Swin transformer had superior performance. MR images
of ischemic strokes were classified using ViT by [131]. The vanilla ViT or ViT base used
in the study also had limited fine-tuning, and hyperparameters were adjusted to fit the
datasets to be classified. They also augmented and resized the MR images as preprocessing
steps before deploying the ViT model. They achieved an impressive accuracy score of
97.59% when compared to the VGG16 model used in a similar study, demonstrating the
superiority of transformer models for classification tasks. Transformers were used for image
registration tasks [132]. In that study, the authors developed the TransMorph algorithm,
which is a hybrid transformer and convolutional network. The network leveraged the
encoder–decoder architecture of transformers, but instead of the attention mechanism at
the decoder, this was replaced with a convolutional network. For the transformer network,
they used the Swin variant due to its ability to extract feature maps at different resolutions
by merging patch layers, making it suitable for the image registration task. The algorithm
was tested on different image-pair datasets comprising mainly MRI and CT modalities
for registration purposes. They obtained very competitive results based on Dice score
evaluations when compared to both traditional and other DL methods used for similar
tasks. Chuantao Wang et al. [133] proposed a ViT model with a deep neural network
called ConvTrans-Net for the segmentation of lymph node tumours using ultrasound
images from Kaggle. The model works by concatenating the different feature vectors of
the ultrasound images that are passed on to a multilayer perceptron, and the output of
the multiple attention mechanism is passed on to a feed-forward layer for segmentation
purposes. Their model was evaluated using the Jaccard similarity coefficient, precision,
and recall, and was benchmarked with the NCP and WS-2017 models. They obtained a
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Jaccard coefficient 85.21%, recall of 89.65%, and precision of 85.17 when compared to the
benchmark models.

3.8. Hybrid Models

Most deployed deep learning methods use CNNs, as described in the preceding
sections, with variants such as VGG, ResNet, LSTM, RNN, GAN, and GRU all being used
for different medical image analysis. However, different authors have tried to combine the
strengths of some of the models to deal with the weaknesses of the others by combining
them, and this forms the basis of hybrid models [3]. Some studies have also combined
different deep learning methodologies by focusing on the strengths of the methodologies.
For example, a convolutional network’s strong local feature extraction has been combined
with the long-range dependencies of transformers when performing medical analysis.

3.8.1. Convolution-Based Hybrid Models

A hybrid model of convolution algorithms was developed comprising SegNet, MultRe-
sUNet, and the krill herd optimisation algorithm (KHO) to improve the segmentation of CT
scans of liver lesions and RNA genome sequencing [134]. The SegNet framework provided
the segmentation capacity of their model, utilising pixel-wise classification through the
softmax layer. A CNN-based architecture was employed with MultiResUNet to handle the
lesion segmentation, together with the SegNet framework. The hyperparameters of the
models, when optimised through the KHO algorithm, helped to improve the segmentation
process. The algorithm was tested with a publicly available LiTs dataset using evaluation
metrics such as Dice coefficient, F1 score, and accuracy, and obtained better results, with
F1 scores comparatively higher than the models used for comparison. A hybrid model
of convolutional methods involving RestNet and U-Net (ResUNet) was developed for
the segmentation of liver and tumours using CT images [135]. The model focused on
improving the available models by providing improved image contrast and segmenting
irregular tumour shapes and small tumours. The combination used the best of RestNet’s
residual connection and U-Net’s encoder and decoder structure to enhance feature learning,
segmentation precision, and efficiency. Various augmentation techniques such as rotation
and reflection were also implemented to increase the variability in the dataset, and accuracy
of 99.6% and a Dice coefficient of 99.2% were achieved. Yangyang Zhu et al. [136] devel-
oped a hybrid model for the classification of unexplained cervical lymphadenopathy (CLA)
using ultrasound images of patients in an underdeveloped area of China. The CLA-HDM
model was made up of three smaller models, each designed to handle a specific diagnosis
task related to unexplained lymph node abnormalities (CLA). Model 1 checked whether
the issue was benign (non-cancerous) or malignant (cancerous). Model 2 looked deeper
into benign cases to decide between tuberculosis or a reactive condition. Model 3 examined
malignant cases to determine if they were due to metastasis (spread from another cancer)
or lymphoma. Each model had two input branches, one for greyscale ultrasound (BUS)
images and another for colour Doppler (CDFI) images. The CDFI images were processed to
emphasize important colour details. Then, both images were analysed by a deep learning
model (ResNet-50). The efficacy of their model was evaluated using the area under the
curve, which was above the 0.8 benchmark for each model. The authors in [137] developed
an ensemble model of a custom-built convolutional neural network (5-CNN) and a transfer
learning model using the pretrained VGG-19 architecture for the classification of thyroid
disorders using ultrasound images of four categories: autoimmune, nodular, micro-nodular,
and normal. The combined CNN-VGG method showed superior performance, achieving
test accuracy of 97.35%, specificity of 98.43%, and sensitivity of 95.75%. It also demonstrated
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strong predictive capabilities, with high positive and negative predictive values, and an
area under the ROC curve of 0.96.

3.8.2. Convolution–Transformer-Based Hybrid Models

A hybrid model called TBConvl-NET that combines CNN, LSTM, and ViT for the seg-
mentation of several diseases was developed using publicly available datasets of different
modalities such as ultrasound and MRI [138]. The hybrid model targeted some well-known
challenges in segmenting medical images, such as scale, texture, and shape of pathology.
Due to the high computational resources required, they used a depth-wise separable con-
volution, thereby reducing computational overhead. Swin transformer blocks were used
in the skip connections to help deal with the varying scales of the data and help preserve
semantic information. They used the Dice index, accuracy, and Jaccard index to evaluate
their model, compared the developed model with other hybrid segmentation models, and
obtained improved results. A hybrid classification model that combines the transformer
and the convolution model to improve the classification of skin lesion was developed using
publicly available datasets [139]. It used the Swin-Unet architecture to perform image
segmentation, leveraging the self-attention of the Swin transformer and robust hierarchical
analysis of the UNet. This was combined with the Xception and ResNet 18 models for
feature extraction to further improve on the image analysis. For hyperparameter tuning,
a hybrid salp swam algorithm (HSSA) was used to obtain the optimal parameters, hence
avoiding local minima during training. A gated recurrent unit (GRU) network was used
for the eventual classification. Accuracy of 94.51% and 95.38% was achieved on the two
datasets used in the study. The model performed better when compared to TL models
like AlexNet and ResNet18. Laifa Yan et al. [140], proposed a framework focusing on the
three-vessel view (3VV) that identifies three major heart vessels—the pulmonary artery,
aorta, and superior vena cava—using ultrasound images. In the first step, a YOLOv5
(based on CNN architecture) model was used to detect these vessels and earmark the
region of interest. In the second step, they used a modified DeepLabv3 model with a new
attentional multi-scale feature fusion (AMFF) module to perform segmentation. Using a
dataset of 511 images, the model achieved high accuracy, with Dice scores of over 85% for
the pulmonary artery and aorta.

4. Discussion
In this article, we have provided a broad view of various deep learning methodolo-

gies used for medical imaging analysis. These included convolutional neural networks
(CNNs), recurrent neural networks (RNNs), autoencoders, generative adversarial networks
(GANs), U-Net architectures, vision transformers, and hybrid models. For each of these
methodologies, some of the key findings were presented.

CNNs are extensively used for medical imaging tasks like disease detection, clas-
sification, and segmentation, and the most important contribution of the algorithms is
the unrivalled feature extraction through convolutional layers, making them effective for
tasks requiring spatial hierarchy. CNN models can be lightweight in terms of computing
resources, as inspired by ResNet, while also balancing model performance. Deeper CNN
architecture can be computationally expensive, but can be very useful in multi-disease
detection, e.g., in the classification and detection of COVID-19 and viral pneumonia, achiev-
ing high accuracy due to advanced hardware. It can also be effective when the task includes
pixel-level feature extraction. Examples can be seen in its use in the classification of ul-
trasound image classification of fatty liver. RNNs, particularly their variants like long
short-term memory (LSTM) and gated recurrent units (GRUs), are suitable for sequential
data tasks. Their ability to retain temporal dependencies is utilised in dynamic imaging
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and disease progression monitoring. RNNs, which usually have convolutional layers, are
effective for classification tasks for different imaging modalities, with MRI dominating.
They have been applied in the detection of several diseases, such as Alzheimer’s and breast
cancer. LSTM variants of the RNN algorithm handle tasks like segmentation of temporal
MR images and noise removal in diagnostic images. Some modifications have also been
applied to RNN algorithm training, such as using the honey badger algorithm (HBA) for
optimisation of the model training parameters.

Autoencoders are unsupervised models used for dimensionality reduction, anomaly
detection, and data augmentation. Their encoder–decoder structure helps compress and
reconstruct medical images with minimal distortion. Autoencoders are employed for image
analysis tasks like segmentation and denoising and have been used with several imaging
modalities for the analysis of different diseases. Enhancing autoencoders by fusion with
wavelet transform can also help improve noise removal from medical images. They can
also be combined with convolutional networks to improve disease classification. GANs
are used for generating synthetic medical images, data augmentation, and improving
image resolution or quality. The main components of a GAN comprise a generator for
creating synthetic images and a discriminator for distinguishing between real and generated
images. GANs can be very computationally intensive due to the dual deep convolutional
networks. Research in this area is focused on reducing models’ parameters and maintaining
performance. Different variants of GANs have employed different image analysis tasks,
with each variant tuned to fit the specific tasks.

U-Nets are specialised for medical image segmentation and have been widely adopted
for tasks like tumour detection and organ delineation. The architecture combines encoder–
decoder pathways with skip connections for improved feature representation. Different
variants of the U-Net architecture also exist to enhance the vanilla model, making them
suitable for specific imaging modalities while performing the main task of segmentation.
Also, enhancements have been created to reduce model operating costs while retaining the
segmentation process. More recent studies have been adding transformers to U-Nets to
further enhance segmentation accuracy. Transfer learning leverages pretrained models (e.g.,
ResNet, VGG, DenseNet) on large datasets and fine-tunes them for medical imaging tasks.
They are mostly used for classification tasks. Models like VGG16 and ResNet50 perform
well for COVID-19 classification, achieving very high accuracy on different imaging modal-
ities. Some transfer learning models are quite deep, with millions of parameters, making
them very computationally intensive. Custom hybrid models pretrained on unlabelled
medical datasets have also been used to improve classification accuracy for skin lesions and
breast cancer images, mimicking the transfer learning ideology. They provide an option in
terms of computing resources and domain-specific training and learning. ViTs are a rela-
tively newer deep learning architecture, adapted for medical imaging tasks. They require
global feature extraction and long-range dependencies. They divide images into patches
and process them using self-attention mechanisms. ViT models can also be pretrained like
most CNN models and learning transferred for newer task. Several variants have also been
developed depending on the task. With larger training datasets, ViTs have been shown to
outperform CNN models when used for tasks with fewer annotated data.

Hybrid models combine the strengths of multiple architectures (e.g., CNNs with RNNs
or CNNs with transformers) to improve medical image analysis. CNN-based hybrids like
ResUNet combine ResNet’s feature extraction with U-Net’s segmentation capabilities. They
are used widely for cancer related image segmentation. Convo-transformer hybrids like
TBConvl-NET integrate CNN, LSTM, and ViT for improved segmentation and classification
of diseases. Hybrid models can also be optimised. Algorithms such as the hybrid salp
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swarm algorithm (HSSA) could be used to obtain optimal parameters, thereby increasing
model performance.

5. Conclusions
This review explored the transformative impact of deep learning algorithms on med-

ical image analysis. Convolutional neural networks (CNNs) are widely used for feature
extraction and disease classification across medical imaging modalities, achieving high ac-
curacy with optimised computational costs. Recurrent neural networks (RNNs), including
LSTM and GRU, enhance temporal analysis for disease progression monitoring. Autoen-
coders and generative adversarial networks (GANs) assist in data augmentation, denoising,
and synthetic image generation. U-Net architectures improve segmentation for tumour
detection and organ delineation. Vision transformers (ViTs) leverage attention mechanisms
for superior classification and registration. Hybrid models combining CNNs, transformers,
and optimisation techniques enhance performance, while transfer learning mitigates data
scarcity, ensuring robust results across imaging applications. Together, these advancements
underscore the versatility and efficiency of deep learning in medical diagnostics, paving
the way for improved clinical outcomes and personalised healthcare solutions. Future
advancements may focus on computational efficiency, integrating multimodal data, and
enhancing interpretability for clinical adoption.
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