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A B S T R A C T   

The accuracy of the Theory of Critical Distances, Gradient Elasticity and the Averaged Strain Energy Density 
criterion in estimating fatigue lifetime of notched additively manufactured Ti6Al4V is assessed against numerous 
experimental results generated under load ratios equal to − 1 and 0.1. The 3D-printed Ti-alloy under investi-
gation was tested by keeping the notches in the as-manufactured condition. The common feature of the 
considered design approaches is that they all make use of a material length scale. The validation exercise based 
on the generated experimental results demonstrates that the length scale concept can be extended successfully 
also to the fatigue assessment of notched 3D-printed metallic components.   

1. Introduction 

Additive Manufacturing (AM) is a group of fabrication processes that 
allow complex designs to directly be turned into physical components by 
an incremental addition of feedstock material supplied in the form of 
powder, wire and sheets. Compared to conventional fabrication pro-
cesses, AM offers a wider range of advantages such as, for instance: 
elimination of expensive tools and moulds, lower material waste, higher 
flexibility in direct fabrication of complex CAD models, and, ultimately, 
faster time-to-market. Amongst the AM techniques for fabrication of 
metallic components available to date, certainly Laser Powder Bed 
Fusion (LPBF) is one of the most commonly used technologies in situa-
tions of practical interest. This process utilises a laser heat source to fuse 
the feedstock material supplied in the form of powder. Thanks to the 
ability of the LPBF process to make high quality parts containing intri-
cate geometrical features, its application has been expanded so that it 
can be used to manufacture a wide range of different metallic materials - 
including Ti-alloys that are relevant for the present study. 

The highly localised heat input during the LPBF process and the rapid 
cooling during the deposition of the layers result in a unique material 
microstructure. In particular, the microstructure is seen to be charac-
terised by long grains elongated along the heat transfer direction, with 
this morphology potentially leading to an anisotropic mechanical 
behaviour [1]. Further, the use of this manufacturing process is seen to 

result in brittle phases - such as, for instance, martensitic phases in steel 
and Ti-alloys - that can have a detrimental effect on the overall strength 
of the additively manufactured (AM) components. On top of that, the 
fabricated parts often have poor surface quality (mostly characterised by 
large residual stresses) and are likely to contain internal defects that 
manifest themselves in the form of trapped voids and lack of fusion 
between adjacent layers. 

These process-driven characteristics directly influence the mechan-
ical properties of LPBF-manufactured parts. Considering the local nature 
of fatigue failures, clearly these detrimental factors can act simulta-
neously and synergistically, with this resulting in further uncertainties 
in the material mechanical performance. These limitations explain the 
reason why much experimental/theoretical work has been done in 
recent years to improve the overall quality of LPBF-manufactured 
components, with this being achieved by: (i) optimizing the process 
parameters [2], (ii) formalising specific design procedures for additively 
manufactured components [3] and (iii) defining suitable post-processing 
treatments (e.g., heat and surface treatments) [4]. Accordingly, a well- 
optimized fabrication process can reduce the magnitude of the resid-
ual stresses, the level of the internal porosity, and the geometrical errors 
characterising the fabricated parts. In addition, process conditions such 
as preheating of both build stage and powder bed have shown to be 
effective in removing martensitic phases as well as in controlling the size 
of the grains during LPBF-manufacturing [4,5]. 

Turning to the design-related aspects, successful usage of AM 
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involves effective selection of fabrication orientation, utilisation of 
supporting structures for better heat transfer during manufacturing and 
the incorporation of the process limits in the design procedures. As to the 
latter aspect, advanced topology optimization techniques can be used to 
fabricate AM components with minimal internal porosity, low magni-
tude of residual stresses and a more uniform surface finishing. 

In terms of improving the overall mechanical performance, post- 
processing treatments have shown to be able to enhance significantly 
the mechanical properties of LPBF-manufactured metals to a level which 
is comparable with the conventional counterparts [6]. In this setting, 
heat-treatment of the as-fabricated LPBF parts is always recommended 
to improve the mechanical properties, with this being achieved by 
eliminating the residual stresses and by altering the material micro-
structure [7]. Hot Isostatic Pressing (HIP) is another well-known post- 
processing technology which is based on the simultaneous use of high 
pressure and high temperature to reduce the internal porosity [2,8]. 
However, since the HIP process does not mitigate the effect of the sur-
face defects, it is recommended to be used along with other surface 
treatment techniques. In this context, sand blasting, shot peening and 
chemical etching have proven to be able to improve the surface quality 
of the AM parts, with this resulting in enhanced fatigue performance [9]. 
It is evident that synergistic usage of these post-AM techniques can result 
in the elimination of a number of detrimental AM-related factors, with 
this leading to enhanced mechanical performance. 

Bearing in mind the advantages and limitations briefly summarised 
above, systematic effort has been made by the international scientific 
community to define standard procedures suitable not only for assessing 
the quality of AM components, but also for characterising their me-
chanical properties under various mechanical loading conditions. 
However, to the best of the authors’ knowledge, there still is a lack of 
specific standardised procedures to be followed to assess structural 
integrity, with the majority of the available research studies attempting 
to use with 3D-printed parts specific methodologies originally developed 
for conventionally manufactured metallic components [10]. 

As far as metal fatigue is concerned, the localised nature of this type 
of failures implies that in structural components cracks usually initiate 

in small material volumes in the vicinity of geometrical discontinuities 
acting as stress/strain concentrators. Owing to such a localised nature, it 
is common practice to use local approaches to perform fatigue assess-
ment of real components. The common feature characterising these 
design methods is that fatigue failures are assumed to take place when 
the magnitude of a key parameter - such as stress, strain, strain energy 
density (SED), etc. - determined by post-processing the stress/strain 
fields in the vicinity of the crack initiation locations reaches a material- 
dependant critical value [11]. In general terms, the key design param-
eter is either extracted at a single point (Point Method), averaged over a 
line (Line Method), or averaged in a control bi-dimensional/three- 
dimensional domain (Area/Volume Method). 

In this challenging scenario, the ultimate goal of the present inves-
tigation is to check the accuracy and reliability of the Theory of Critical 
Distances (TCD), Gradient Elasticity (GE), and the Averaged Strain En-
ergy Density (ASED) in estimating fatigue lifetime of LPBF- 
manufactured notched specimens of Ti-6Al-4 V when this AM Ti-alloy 
is employed with the notch region being kept in the as-manufactured 
condition. While these three design approaches are different in their 
details, they share two common fundamental features:  

• fatigue damage is estimated via a length scale parameter that is 
linked with the micro/meso-structure of the material under 
investigation;  

• the stress/strain analysis is performed based on a simple linear- 
elastic constitutive law. 

Considering the distinctive characteristics of AM metallic materials, 
the accuracy of the TCD, GE, and the ASED method in estimating uni-
axial fatigue lifetime of notched LPBF-AM Ti-6Al-4 V is assessed against 
a large number of experimental results generated in our laboratories. To 
this end, the fundamentals of these three methods are reviewed in the 
following three sections. Subsequently, the experimental results gener-
ated by testing plain and notched specimens of LPBF-AM Ti-6Al-4 V are 
presented, summarised and discussed. In the last part of the work, the 
accuracy of the three critical length-based approaches being considered 

Nomenclature 

2α notch opening angle 
B body forces 
cw weighting parameter accounting for the load ratio 
E1 constant depending on the notch opening angle 
k negative inverse slope 
ℓ intrinsic material length scale determined according to GM 
u displacements 
wg gross width 
wn net width 
A, B constants in relationship L(Nf) 
Aw, Bw constants in the ΔW̄ vs Nf relationship 
Cijkl matrix containing the elastic moduli 
E Young’s modulus 
F, H geometrical functions used in the ASED criterion 
Kt stress concentration factor referred to the net area 
L high-cycle fatigue critical distance determined according 

to the TCD 
L(Nf) TCD critical distance in the finite life regime 
Lav average value of the TCD critical distance 
Nf number of cycles to failure 
Nf,e estimated number of cycles to failure 
N0 reference number of cycles to failure (N0 = 2•106 cycles to 

failure) 
Oxyz Cartesian coordinate system 

Orθ polar system of coordinates 
PS probability of survival 
R load ratio (R = σmin/σmax) 
R0 critical radius determined according to the ASED criterion 
Tσ scatter ratio of endurance limit for 90 % and 10 % 

probabilities of survival 
eij Cartesian components of strains 
λ1 Mode I Williams’ eigenvalue 
σij Cartesian components of stresses 
σmin, σmax minimum/maximum stress in the cycle 
ν Poisson’s ratio 
r notch root radius 
ΔK1 Mode I N-SIF range 
ΔK1,A Mode I N-SIF range of at the fatigue/endurance limit 
ΔKth threshold value of the stress intensity factor range 
ΔW̄ ASED range 
Δσ range of the nominal stress in the plain material 
Δσeff range of the TCD effective stress 
Δσ1 range of the maximum principal stress 
ΔσGE,y range of the gradient-enriched stress at the notch tip 
Δσy range of the normal stresses parallel to the y-axis 
Δσroot tensile stress range at the notch root 
Δσ0 range of the plain fatigue/endurance limit 
Δσ0n range of the nominal net fatigue/endurance limit  
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is assessed quantitatively against the produced fatigue data, with the key 
conclusions being drawn in the last section. 

2. Basics of the Theory of Critical Distances 

As far as fatigue assessment is concerned, the TCD [12–16] estimates 
the extent of damage via a material length scale parameter which is used 
to post-process the local linear-elastic stress fields in the vicinity of the 
assumed crack initiation locations. In the TCD framework, the critical 
distance is treated as a material property, with this length varying as the 
load ratio, R, increases [14,16]. Based on the above idea, the different 
formulations of the TCD can be derived by simply changing the char-
acteristics of the integration domain used to quantify the design effec-
tive stress, Δσeff [13,17]. 

The three-dimensional formalisation of the TCD (which is known as 
the Volume Method) calculates Δσeff by averaging the time-variable 
local-linear elastic stresses in a hemisphere which is centred at the tip 
of the assessed notch/crack [17]. Accordingly, the TCD used in the form 
of the Volume Method estimates fatigue damage in the presence of stress 
concentrators by directly manipulating the local linear-elastic stress 
field acting on a specific material process zone [18]. In this setting, this 
process zone can be treated as that portion of material which controls 
the overall fatigue strength of the component being designed. From a 
materials science viewpoint, the size of the process zone (and, therefore, 
the length of the TCD critical distance) depends on the characteristics/ 
features of the local material microstructural heterogeneities, on the 
mechanical/cracking behaviour at micro/meso-scopic level as well as on 
the size of the plastic region [16,18]. 

As far as the fatigue/endurance limit problem is concerned, the TCD 
critical distance can be calculated according to the following well- 
known relationship [12,13,19]: 

L =
1
π

(
ΔKth
Δσ0

)2

(1) 

where ΔKth is the range of the threshold value of the stress intensity 
factor, whereas Δσ0 is the plain fatigue/endurance limit. 

Since, as said above, the TCD critical distance depends also on the 
size of the plastic region, it is seen to increase as the magnitude of the 
applied cyclic loading increasing [20,21]. From a fatigue strength point 
of view, this implies that the TCD critical distance increases as the 
number of cycles to failure, Nf, decreases. Accordingly, the relationship 
between critical distance and Nf can be expressed directly via a simple 
power law [20]: 

L
(
Nf
)
= A • NB

f (2) 

In Eq. (2) A and B are material fatigue constants that can be deter-
mined by running appropriate experiments. For a given material, con-
stants A and B vary as the load ratio changes. In contrast, the values of A 
and B do not vary as profile and sharpness of the assessed stress 
concentrator change. The procedure being recommended to calibrate 
function (2) will be discussed in detail at the end of the present section. 

The evident conceptual/physical links between its modus operandi 
and the three-dimensional process zone concept make the Volume 
Method very appealing from a scientific point of view. However, un-
fortunately, its usage in situations of practical interest is not at all 
straightforward because Δσeff can be calculated provided that the local 
stress fields are determined and integrated accurately in the control 
volume. Clearly, this can be a very laborious task since suitable nu-
merical/analytical tools are required in the presence of complex, three- 
dimensional components so that the local linear-elastic stresses are 
averaged accurately over the relevant integration domains. The above 
obstacle can be overcome by using the other formalisations of the TCD 
which are, by their nature, simpler to apply. These different forms of the 
TCD are briefly reviewed in what follows. 

According to the Area Method (which is the bi-dimensional version 

of the TCD) Δσeff can be determined by directly averaging the local 
linear-elastic stresses over a semi-circular area centred at the tip of the 
assessed stress concentrator and having radius equal to L(Nf) [13,22]. 
From a mathematical point of view, the effective stress can be deter-
mined according to the Area Method as follows [13] (see also Fig. 1a and 
d): 

Δσeff =
4

πL(Nf )2

∫π/2

0

∫L(Nf )

0

Δσ1(θ, r).r.dr.dθ (3) 

where Δσ1 is the range of maximum principal stress. 
The one-dimensional formalisation of the TCD is known as the Line 

Method. It postulates that Δσeff has to be determined by averaging the 
local linear-elastic stress along a linear path having length equal to 2L, i. 
e. [13] (see also Fig. 1a and 1c): 

Δσeff =
1

2
(
Nf
)

∫ 2L(Nf )

0
Δσy(θ = 0, r) • dr (4) 

where, as per Fig. 1c, Δσy is the normal stress parallel to the y-axis. 
Lastly, the zero-dimensional form of the TCD is called the Point 

Method and assumes that Δσeff is equal to the linear-elastic stress 
determined at a distance of L/2 from the notch/crack apex, i.e. [12,13] 
(see also Fig. 1a and 1b): 

Δσeff = Δσy
(

θ = 0, r =
L
(
Nf
)

2

)

(5) 

Independently of the strategy being used to determine Δeff, the last 
step in the design process is to estimate fatigue lifetime from the plain 
material fatigue curve (experimentally determined under the appro-
priate load ratio) as follows [20]: 

Nf ,e = N0

(
Δσ0

Δσeff

)k

(6) 

In Eq. (6) Nf,e is the estimated number of cycles to failure, Δσ0 is the 
un-notched material endurance limit range extrapolated at N0 cycles to 
failure and k is the negative inverse slope of the plain fatigue curve. 

By focusing attention on definition (2), it is straightforward to 
observe that Nf,e is needed to determine the critical distance value used 
to calculate the effective stress according to Eqs (3) to (5). However, in a 
fatigue design context, obviously the number of cycles to failure repre-
sents the unknown variable in the problem. Therefore, as discussed in 
detail in Ref. [20], the TCD can be employed to predict fatigue lifetime 
of notched components provided that suitable recursive numerical 
procedures are employed. 

The last aspect to be considered in the present section is the deter-
mination of material constants A and B in Eq. (2). As recommended in 
Ref. [20], this can be done by post-processing the un-notched material 
fatigue curve together with another fatigue curve determined by testing 
specimens weakened by a known geometrical feature. This simple and 
straightforward approach to calibrate relationship L(Nf) is explained in 
Fig. 1e. In more detail, for given a number of cycles to failure, Nf*, it is 
possible to estimate the distance from the notch/crack tip, L(Nf)/2, at 
which the linear-elastic stress range, Δσy, equals the range of the stress, 
Δσ*, that has to be applied to break the un-notched material at Nf* cy-
cles to failure (Fig. 1e). Via this simple procedure based on the Point 
Method, the TCD critical distance can then be determined at different 
numbers of cycles to failure, with this resulting in an unambiguous 
determination of constants A and B in Eq. (2). This straightforward 
calibration strategy will be employed below to assess the accuracy of the 
linear-elastic TCD in estimating fatigue lifetime of notched AM Ti6Al4V. 

3. Basics of Gradient Elasticity 

An alternative (though, as we will demonstrate, quantifiably com-
parable) approach to assess the stress fields around stress raisers is 
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provided by generalized continuum theories, in particular the theory of 
GE as advocated by Aifantis and co-workers [23–25]. 

The analogies and similarities between the TCD and GE can be un-
derstood via the concept of nonlocal elasticity [26,27], whereby 
weighted volume averages of stress quantities are computed using 
certain weighting functions. Taking these weighting functions as unity 
inside a hemisphere and zero outside leads to the Volume Method of the 
TCD; similarly, unit weighting functions in a semi-circle or along a line 
segment leads to the Area Method and the Line Method of the TCD, 
whereas taking a Dirac delta function as a weighting function results in 
the Point Method. On the other hand, Eringen showed that a higher- 
order differential relation between stresses and strains is obtained when 
the nonlocal weighting function is taken as a Green’s function [28]. 

Thus, nonlocal mechanics provides the framework that unifies the TCD 
and generalized continuum mechanics. 

In the 1990 s, Aifantis and co-workers suggested to extend the 
stress–strain relations with the Laplacian of the strain [23–25], as 
follows: 

σij = Cijkl
(
εkl − l 2εkl,mm

)
(7) 

where σij and εij are the Cartesian components of stresses and strains, 
Cijkl contains the elastic moduli, and indices following a comma denote 
derivation with respect to the relevant spatial coordinate. The Laplacian 
of the strain is accompanied by an additional material parameter l that 
has the unit of length and is envisaged to capture the geometry of the 
material’s microstructure; this new material parameter is often called 

Fig. 1. Notched component subjected to fatigue loading (a); effective stress calculated according to the Point (b), Line (c) and Area Method (d); calibration of the L 
(Nf) relationship via a plain fatigue curve and a notch fatigue curve (e). 
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the internal or microstructural length scale. 
The equilibrium equations based on Eq. (7) in terms of displacements 

ui read: 

Cijkl
(
uk,jl − l 2uk,jlmm

)
+ bi = 0 (8) 

where the body forces are denoted as bi. 
To facilitate analytical and numerical solution methods, Ru and 

Aifantis [25] suggested to factorise the various derivatives in Eq. (8) as: 

Cijkl
(
uk − l 2uk,mm

)

jl+ bi = 0 (9) 

This allows to interpret the quantity inside the parentheses as the 
displacements of the classical theory of elasticity, and indicates that the 
fourth-order differential equation (9) can be solved as a sequence of two 
second-order differential equations: 

Cijkluck,jl + bi = 0 (10a)  

ugk − l 2ugk,mm = uck (10b) 

where superscripts c and g denote the classical and gradient-enriched 
fields, respectively. It is easily verified that substituting Eq. (10b) back 
into Eq. (10a) leads to Eq. (9); however, the variationally consistent 
boundary conditions that accompany Eqs (10) differ from those of Eq. 
(9). To reduce this effect, it was suggested [29] to take the derivative of 
Eq. (10b) and pre-multiply it with the constitutive tensor Cijkl to arrive at 
a stress-based counterpart of Eq. (10b): 

σgij − l 2σgij,mm = Cijkluck,l (10c) 

The response of this stress-based staggered formulation of GE ac-
cording to Eqs. (10a) and (10c) was shown to be the closest to that of the 
original formulation of Eq. (8), although some quantitative differences 
remain due to the format of the variationally consistent boundary con-
ditions. An additional advantage of Eqs. (10a) and (10c) is that they 
contain second-order differential equations; thus, numerical imple-
mentation with the finite element method is straightforward [29,30]. 

However, of particular interest to the present paper is the strong 
similarity between this stress-based staggered gradient elasticity 
approach and the TCD: both of these are based on first solving the 
equations of classical elasticity, and subsequently post-processing these 
via one or other approach of nonlocality. The unifying concept of non-
locality can also be used to derive a relation between the internal length 
scale l of gradient elasticity and the critical distance L of the TCD. Using 
a truncated Taylor series expansion in the Area Method of the TCD, it 
was shown [31] that the two length parameters are related via. 

l 2 ≈ 1
8L

2 or l
(
Nf
)2

≈ 1
8L
(
Nf
)2(11). 

With this relation, it has been shown that gradient elasticity is able to 
capture a wide range of experimental results related to the fracture 
strength as well as fatigue limit of engineering structures and compo-
nents [31–34]. 

4. Basics of the averaged strain Energy density approach 

The volumetric formulation of the Strain Energy Density (SED) 
proposed by Lazzarin and Zambardi [35] assumes that engineering 
materials fail when the SED averaged in a control volume in the vicinity 
of the crack/notch under investigation reaches a critical value. This 
critical value is postulated to be independent of the notch geometry so 
that it depends solely on the mechanical properties of the material being 
designed. This criterion, known as the Average Strain Energy Density 
(ASED) approach, has been applied successfully to assess a large variety 
of brittle, quasi-brittle and ductile materials and its robustness and 
reliability in predicting failure of cracked and notched components 
under quasi-static loading are well documented (see Ref. [36] and ref-
erences reported therein). Owing to such a remarkable level of accuracy, 
the idea the original formulation of the ASED approach is based on was 

then extended to fatigue situations, with this being done by initially 
post-processing a large number of fatigue data generated by testing 
welded joints. In this setting, the pivotal idea was to use the ASED 
calculated in a control volume of a certain size instead of the stress in the 
net section of the welded components. The resulting unifying fatigue 
curve was found to be independent of the weld geometry. Accordingly, it 
was treated as a master curve which can be used for fatigue life pre-
diction of welded components without the need for performing new 
fatigue experiments. 

Calculation of the local SED around geometrical discontinuities re-
quires precise information on the size of the control volume in which the 
SED itself is averaged. Theoretically, the material properties around the 
notch tip depend on a number of factors including (but not limited to) 
microstructure, surface roughness, internal defects, and residual 
stresses. Accordingly, developing an ASED-based approach which can be 
used to predict fatigue life of AM components is obviously a challenging 
task. To this end, the ASED criterion makes use of a simplified meth-
odology to estimate fatigue lifetime of AM notched components, where 
the size of the control volume is determined by treating the effect of the 
various influencing factors in statistical terms [1]. In particular, based 
on the ASED criterion, the size of the control volume around the notch 
tip is estimated by using the fatigue strength characterising two refer-
ence geometries, i.e., plain material and V-notch. By so doing, in the 
absence of any global stress/strain raiser, the effect of surface roughness 
and internal defects is modelled via the fatigue results generated by 
testing plain specimens [35]. A schematic illustration of the control 
volume for sharp and blunt notch geometries is given in Fig. 2 [37]. In 
this figure, 2α is the notch opening angle, ρ is the notch root radius, R0 is 
the critical radius defining the size of control volume, and r0 is the 
distance between the centre of the control volume and the notch tip in a 
blunt notch, with r0 being defined as: r0 = ρ • (π − 2α)/(2π − 2α). For 
cracks and sharp notches, the control volume is defined as a circle 
having radius equal to R0 and centred at the crack/notch tip. The critical 
radius in plane-strain condition can be calculated using the following 
expression [35]: 

R0 =

( ̅̅̅̅̅̅̅
2e1

√
ΔK1A

Δσ0

) 1
1− λ1

(12) 

where constant e1 depends on the notch opening angle, 2α, ΔK1A is 
the mode I Notch-Stress Intensity Factor (N-SIF) range of the reference 
notched specimen at the fatigue/endurance limit, Δσ0 is the fatigue/ 
endurance limit of the plain material and λ1 is Williams’ eigenvalue 
[38]. The Mode I N-SIF in this equation can be calculated according to 
the following expression (see Fig. 1a for the adopted system of 
coordinates): 

ΔK1 =
̅̅̅̅̅
2π

√
lim
r→0+

r1− λ1 Δσy(r, θ = 0) (13) 

For a given stress range Δσ, the ASED range for plain specimens is 
defined as: 

ΔW̄ =
cw(Δσ)2

2E
(14) 

 

2α
2α

R0 + r0

ρ

R0R0

Fig. 2. ASED control volume around sharp and blunt V-notch under mode I 
loading condition [37]. 
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where E is Young’s modulus. Weighting parameter cw is used in this 
expression to account for the effect of the nominal load ratio, R = σmin/ 
σmax. This weighting parameter can be calculated using the following 
expression [39,40]: 

cw =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 + R2
(
1 − R2) for − ∞ ≤ R < 0

1forR = 0

1 + R2
(
1 − R2) for0 ≤ R < 1

(15) 

For sharp notches, the SED averaged in the control volume can 
directly be computed using the following equation as a function of the N- 
SIF range, the elastic modulus, and the critical radius [41]: 

ΔW̄ = cw
e1

E

(
ΔK2

1

R2(1− λ1)
0

)

(16) 

Dealing with blunt notches under Mode I loading, the ASED range 
can be expressed as a function of the tensile stress range at the notch root 
according to the following closed-form equation [42]: 

ΔW̄ = cw • F(2α) • H
(

2α,R0

ρ

)

•
Δσ2

root

E
(17) 

where F is a geometrical function that depends on notch opening 
angle 2α, H is a function that depends on both notch opening angle 2α 
and the ratio between critical radius and notch root radius (i.e., R0/ρ) 
and Δσroot is the tensile stress range at the notch root. 

Finite Element (FE) analysis can be employed to calculate the ASED 
as an alternative strategy to the use of the theoretical formulas briefly 
reviewed above. By so doing, the ASED values for notched components 
can directly be extracted by post-processing simple linear-elastic FE 
models. Since the SED values can be determined using the nodal dis-
placements without involving their derivatives, their calculation do not 
require the use of a very fine mesh in the regions of interest [43]. This 
means that the local ASED is independent of the mesh size and it can be 
determined with high level of accuracy by simply using regular coarse 
meshes. 

To summarize, the ASED approach is applied by estimating the size 
of the control volume via Eq. (12) from experimental results generated 
by investigating two reference geometrical configurations (i.e. plain and 
sharply notched specimens). Alternative procedures for the calculation 
of the critical radius in the ASED approach can be found in Ref. [1]. As 
soon as the critical size of the control volume is known, the ASED ranges 
for plain and notched specimens generated experimentally can be used 
to plot the corresponding ΔW̄ vs Nf diagram. These data form the basis of 
the master curve and are used to obtain the constants in a regression 
equation that can be written as: ΔW̄ = Aw • NBw

f . This equation can then 
be employed to predict the fatigue lifetime, Nf, of other components 
containing different geometrical features, with this holding true pro-
vided that they are fabricated using the same material and the same 
manufacturing procedures. The predictions obtained using this method 
shed light on the minimum allowable fillet radius to be used in 
geometrically complex AM parts. 

The ASED criterion has been widely used over the last two decades 
with a wide range of materials and loading conditions. Numerous ad-
vantages have been reported for this criterion such as the simplicity of 
the method, its ability to consider the effect of loading ratio, T-stress, 
mode mixity, and, ultimately, its accuracy in modelling the scale and 
three-dimensional effect. 

5. Experimental details 

To assess the accuracy of the methodologies reviewed in the previous 
sections in estimating fatigue lifetime of 3D-printed metals containing 

notches in the as-manufactured condition, plain and notched specimens 
of AM Ti6Al4V were tested under cyclic axial loading in the laboratories 
of the University of Sheffield, UK. 

The specimens being used were fabricated at the Norwegian Uni-
versity of Science and Technology, Trondheim, via the Direct Metal 
Laser Sintering (DMLS) technology. In particular, 3D-printer EOS M280 
(with maximum laser power of 400 W) was employed by setting the laser 
power equal to 280 W, the scan speed to 1200 mm/sec and the hatch 
distance to 0.140 mm. Both the plain and the notched samples were 
manufactured flat on the build plate. The specimens were deburred and 
lightly polished in order to markedly reduce the surface roughness. All 
the samples were tested by keeping the notches in the as-manufactured 
condition. In particular, no post-fabrication high-temperature/high- 
pressure curing was employed to mitigate, in the notch regions, the 
detrimental effect of manufacturing defects and superficial residual 
stresses. 

The titanium alloy additively manufactured according to the pro-
cedure briefly discussed above had Young’s modulus, E, equal to 110 
GPa, ultimate tensile strength, σUTS, equal to 1413 MPa and Poisson’s 
ratio, ν, to 0.33. 

According to the pictures seen in Fig. 3, both the plain and the 
notched specimens had average thickness equal to 2.7 mm and average 
gross width, wg, equal to 12.1 mm. The average width, wn, of the gauge 
section in the un-notched specimens was equal to 4.6 mm. The sharply 
V-notched specimens had average net width, wn, equal to 4.7 mm, 
average notch root radius, ρ, equal to 0.4 mm and average notch opening 
angle equal to 35◦. The intermediate U-notched specimens had average 
net width equal to 5.8 mm and average notch root radius equal to 0.7 
mm. The bluntly U-notched samples had wn equal to 6.0 mm and ρ to 
1.5 mm. 

The fatigue tests were run at a frequency of 10 Hz by employing a 
walter + bai 25 kN servo-hydraulic fatigue testing machine (Model LFV- 
25-ME) controlled through digital controller walter + bai PCS8000. All 
the tests were run at room temperature under sinusoidal constant- 
amplitude axial loading. The fatigue results were generated under 
nominal load ratios, R, equal to − 1 as well as to 0.1. 

Owing to the fact that the net cross-sections of the samples being 
tested were very small, fatigue failures were defined as the number of 
cycles resulting in the complete separation of the specimens. The post- 
processing of the force/displacement signals directly gathered from 
the fatigue machine showed that final breakages were never preceded by 
any gradual decrease in the stiffness. This confirms that, given the 
reduced dimensions of the cross-sectional areas and the characteristics 
of the material being tested, the propagation of the fatigue cracks 
occurred almost instantaneously under the maximum force applied in 
the cycle. This also means that the propagation process did not result in 
any secondary bending effects. Further the direct inspection of the 
fracture surfaces revealed that, due to the almost instantaneous nature 
of the process, the crack propagation phase was not affected by the su-
perficial scratches in the notch region. In contrast, the profile of the 
crack propagation paths was seen to depend on the actual local 
morphology of the material at the net section of the individual speci-
mens. The run-out tests were all stopped at 2•106 cycles. The matrix of 
failures reported in Fig. 4 shows some representative examples of the 
crack initiation paths that were observed both in the plain and in the 
notched specimens under load ratios equal to − 1 as well as to 0.1. 

The raw data generated by following the above experimental pro-
tocol are summarised in the SN log–log diagrams of Fig. 5. The stress 
amplitudes, σnet,a, used to build the charts displaying the notch fatigue 
results were calculated by referring to the net nominal area. The scatter 
bands plotted in the diagrams of Fig. 5 were determined by assuming a 
log-normal distribution of the number of cycles to failure for each stress 
level with a confidence level equal to 95 %, [44,45]. The results from the 
statistical re-analyses are summarised also in Table 1 in terms of nega-
tive inverse slope, k, endurance limit range, Δσ0 or Δσ0n, extrapolated, 
for a probability of survival, PS, equal to 50 %, at N0 = 2•106 cycles to 
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failure, and, finally, scatter ratio, Tσ, of the endurance limit for 90 % and 
10 % probabilities of survival. In Table 1 Δσ0 is used to denote the plain 
material endurance limit range, whereas Δσ0n is the nominal notch 
endurance limit range referred to the net area. Accordingly, scatter ratio 
Tσ is defined as follows: 

Tσ =
Δσ0,PS=10%

Δσ0,PS=90%
for plain curves (18)  

Tσ =
Δσ0n,PS=10%

Δσ0n,PS=90%
for notch curves (19) 

The charts of Fig. 5 together with the results summarised in Table 1 
make it evident that the presence of manufacturing defects resulted in 
relatively large values of scatter ratio Tσ. It is interesting to observe that, 
for a given notch geometry, the level of scattering was not affected by 
the load ratio, R, being applied. In this setting, the exception is repre-
sented by the data generated by testing the intermediate notches (i.e., 
notches with ρ = 0.7 mm), where the presence of relatively big 
manufacturing defects in some of the samples resulted in a Tσ value of 
7.32 under R = -1. It has to be said that a Tσ value of 7.32 is certainly 
very high. However, these data were in any case included in the re- 
analyses discussed below for the following reason. Additively 

manufactured components always contain defects and/or voids that are 
randomly introduced during the fabrication process. Since they act as 
local stress concentrators, these manufacturing flaws have a detrimental 
effect on the overall fatigue strength of 3D-printed components. The 
ultimate goal of the present research work is to assess the accuracy of 
three different length scale-based design tools in performing the fatigue 
assessment of 3D-printed metals containing notches in the as- 
manufacture condition. Owing to the fact that fabrication defects are a 
relevant aspect of the additive manufacturing technology, it is certainly 
relevant to assess the accuracy of the design criteria being investigated 
also when the fatigue behaviour of the considered experimental results 
is markedly affected by the presence of flaws. This explains the reason 
why the data generated under R = -1 by testing notch specimens with ρ 
= 0.7 mm were considered in the validation exercise discussed in the 
next section even though the corresponding scatter band was charac-
terised by a Tσ value of 7.32. 

Another important aspect to be considered in detail is that the plain 
fatigue curves were seen to be characterised by a very low value of the 
negative inverse slope – i.e. k = 2.8 under R = -1 and k = 3.3 under R =
0.1 (Tab. 1). These k values are way lower than those usually displayed 
by un-notched metallic materials, with conventional metals having a 
negative inverse slope under uniaxial loading in the range 8–12 (if not 

Fig. 3. Geometry of the tested specimens and average dimensions (average thickness equal to 2.7 mm).  
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larger) [46]. These low values for k can be ascribed to the detrimental 
effect of the manufacturing defects whose presence resulted, from a 
fatigue point of view, in an intrinsically notched material. In contrast, in 
the specimens containing geometrical features the stress concentration 
phenomena associated with the manufacturing flaws were somehow 
hidden by the presence of the conventional macroscopic notches. As a 
result, the plain fatigue curves were seen to be characterised by k values 
close to the negative inverse slope values displayed by the notch fatigue 
curves (see Fig. 5 and Table 1). 

As far as the effect of the manufacturing defects is concerned, it can 
be pointed out also that, compared to the experimentally determined 
ultimate tensile strength, the fully-reversed plain material endurance 
limit was seen to be very low. In particular, it is well-known that in 
conventional metallic materials, the ratio between Δσ0/2 (under R = -1) 
and σUTS is equal to approximately 0.5 [46,47]. In contrast, this ratio for 
the titanium alloy being investigated was experimentally determined to 
be equal to 0.07. This suggests that, while the internal flaws introduced 
during the additive manufacturing process just marginally influenced 
the material static strength, their presence had instead an evident 
detrimental effect on the overall fatigue performance of the AM titanium 

alloy being investigated. 

6. Validation 

The local-stress distributions in the vicinity of the investigated stress 
concentrators were determined according to classic continuum me-
chanics by using commercial Finite Element (FE) code ANSYS®. The 
notched specimens seen in Fig. 3 were modelled as bi-dimensional 
bodies by using 4-node structural plane elements (plane 182). As rec-
ommended in Ref. [20], the relevant stress fields were determined by 
treating the AM titanium alloy under investigation as a linear-elastic, 
homogeneous and isotropic material. In order to determine the 
required local linear-elastic stress fields with the necessary level of ac-
curacy, the mesh density in the notch regions was gradually increased 
until convergence occurred. 

Based on these standard numerical solutions, the net stress concen-
tration factor, Kt, was calculated to be equal to 2.10, 2.86 and to 3.37 for 
the specimens containing blunt, intermediate and sharp notches, 
respectively (see also Fig. 3 and Table 1). 

The solutions from the standard FE analyses briefly described above 

R=-1 R=0

Plain

Blunt

Intermediate

Sharp

Fig. 4. Examples of the macroscopic cracking behaviour displayed by the tested plain and notched specimens of AM Ti6Al4V (in the pictures the specimen’s 
longitudinal axes are vertical and the crack initiation points/notch tips are on the left-hand side). 
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were initially used to check the accuracy of the TCD in estimating the 
notch results summarised in Fig. 5. 

As per the calibration methodology explained in Fig. 1e, constant A 
and B in the L(Nf) relationship, Eq. (2), were estimated for PS = 50% via 
the un-notched plain fatigue curves and the fatigue curves determined 
by testing the specimens containing V-notches with root radius, ρ, equal 

to 0.4 mm. This approach was followed to calibrate the L(Nf) relation-
ship under both R = -1 and R = 0.1, obtaining: 

L
(
Nf
)
= 1.252 • N − 0.057

f [mm] under R = − 1 (20)  

L
(
Nf
)
= 0.171 • N0.097

f [mm] under R = 0.1 (21) 

Fig. 5. Fatigue curves and associated scatter bands determined by post-processing the experimental data generated by testing plain and notched specimens of 
AM Ti6Al4V. 
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Relationships (20) and (21) are plotted also in the chart of Fig. 6. 
According to this chart, the critical distance displays limited variation as 
the number of cycles to failure increases, with this holding true under 
both R = -1 and R = 0.1. This suggests that the critical distance can be 
assumed to be constant in the fatigue lifetime interval of interest, with 
this resulting just in a little loss of accuracy. This simplifying assumption 
was then used to post-process relationships (20) and (21), obtaining for 
both the R = -1 and the R = 0.1 case an average value, Lav, for the critical 
distance of about 0.6 mm. Thus, the hypothesis was formed that, for the 
specific AM titanium alloy being tested, constant B in Eq. (2) could be 
taken invariably equal to zero so that: 

L
(
Nf
)
= Lav = 0.6mm under both R = − 1 and R = 0.1 (22) 

This average value for the critical distance was then employed to 
post-process the generated notch fatigue results according to the Point, 
the Line and the Area Method. The overall accuracy obtained by using 
these three different formalisations of the TCD is summarised in the 
experimental, Nf, vs estimated, Nf,e, fatigue lifetime diagrams seen in 
Fig. 7a to 7c. In particular, the error diagram of Fig. 7b shows that the 
TCD used in the form of the Line Method returned estimates all falling 
within the parent material scatter bands. The use of the TCD in the form 
of both the Point Method (Fig. 7a) and the Area Method (Fig. 7c) 
returned instead estimates that were still accurate, but all characterised 
by a slight degree of conservatism. 

To assess the accuracy of GE in predicting the fatigue lifetime of the 
tested notched specimens, initially length scale l was estimated for the 
AM Ti-alloy under investigation via Eqs. (11) and (22), obtaining: 

l
(
Nf
)
≈

1
2
̅̅̅
2

√ L
(
Nf
)
=

1
2
̅̅̅
2

√ Lav = 0.21mm under both R = − 1 and R = 0.1

(23) 

Subsequently, a number of numerical analyses with GE were carried 
out to determine the relevant gradient-enriched stress fields. To this end, 
the stress-based staggered approach of Eqns. (10a) and (10c) was 
adopted, where both steps lend themselves straightforwardly to imple-
mentation with standard finite element technology. Three-noded linear 
triangles were used within a plane stress framework. The gradient- 
enriched stresses at the tip of the notch were retrieved directly as 
nodal data from the numerical results of Eq. (10c) without any need for 
further post-processing. The ranges of the gradient-enriched stresses at 
the notch tip, ΔσGE,y, were then directly used along with the parent 
material fatigue properties to estimate the fatigue lifetime of the 
notched specimens being tested, i.e.: 

Nf ,e = N0

(
Δσ0

ΔσGE,y

)k

(24) 

The error chart seen in Fig. 7d makes it evident that the estimates 
obtained via GE as well were highly accurate, even if slightly conser-
vative. This trend is not at all surprising, since the use of GE is seen to be 
characterised by a certain level of conservatism also when this elegant 
and powerful approach is used to estimate fatigue lifetime of conven-
tional notched engineering materials [33,34]. 

Numerical FE models similar to those employed to apply the TCD 
were used to estimate also the ASED critical radius, R0. As explained in 
Section 4, the calculation of R0 was based on Eqs. (12) and (13) cali-
brated through the endurance limits (at N0 = 2•106 cycles) determined 
under both R = -1 and R = 0.1 by testing the plain samples as well as the 
sharply notched specimens (ρ = 0.4 mm) – see Table 1. This straight-
forward procedure returned a value of the control volume radius equal 
to 0.52 mm and to 0.42 mm under R = 0.1 and R = -1, respectively. 
Owing to the fact that these two values were very close to each other, 
similar to what was done to use the TCD, the ASED criterion was applied 
by setting R0 equal to the average value from the two, i.e. R0 = 0.47 mm. 
By post-processing the linear-elastic FE models, the ASED values were 
then calculated for the reference notched specimens, while Eq. (14) was 
used to model in terms of SED the fatigue behaviour of the plain material 
(under both R = -1 and R = 0.1). 

It should be noted that due to the linear-elastic nature of the ASED 
criterion, according to Eqs. (14), (16) and (17) the strain energy density 
range is proportional to the square of the applied nominal stress range. 
Therefore, fatigue results expressed in terms of nominal stress ranges, 
Δσnet, can easily be turned into ASED-based data via the following 
expression: 

ΔW̄ = ΔW̄|unitload • (Δσnet)
2 (25) 

where ΔW̄|unitload is the ASED range determined from a numerical 
model solved by setting the range of the applied nominal stress equal to 
unity. Taking full advantage of this simplified procedure, the calibration 
data (i.e., plain specimens and notched specimens with ρ = 0.4 mm) 
expressed in terms of ΔW̄ and Nf were then post-processed together 
using a simple linear regression, obtaining: 

cwΔW̄ = 406.1 • N − 0.609
f for R = 0.1 (26)  

cwΔW̄ = 919.9 • N − 0.724
f for R = − 1 (27) 

Finally, from the relevant FE models solved by setting the nominal 
stress range invariably equal to unity, Eq. (25) was used together with 
Eq. (26) and Eq. (27) to post-process the notch results seen in Fig. 5 and 
generated under R = 0.1 and to R = -1, respectively. The comparison 
between experimental, Nf, and estimated, Nf,e, number of cycles to 
failure is presented in Fig. 7e. As per this chart, almost all the estimates 
fall within the parent material scatter bands. This confirms that the 
ASED criterion as well is highly accurate in estimating the fatigue life-
time of the tested notched specimens. 

Table 1 
Summary of the fatigue curves determined by post-processing the experimental 
data generated by testing plain and notched specimens of AM Ti6Al4V (Kt is the 
stress concentration factor referred to the net area).  

ρ wg wn t Kt R k Δσ0 or Δσ0n Tσ 
[mm] [mm] [mm] [mm] [MPa] 

– 12.1 4.6 2.7 1.00 − 1  2.8  105.6  1.94 
0.1  3.3  114.1  1.98 

1.5 12.1 6.0 2.7 2.10 − 1  2.8  88.8  3.27 
0.1  3.7  104.2  3.54 

0.7 12.1 5.8 2.7 2.86 − 1  1.5  36.7  7.32 
0.1  4.8  107.1  2.21 

0.4 12.1 4.7 2.7 3.37 − 1  2.6  69.6  1.70 
0.1  3.9  84.6  1.83  

Fig. 6. L(Nf) relationships obtained according to the procedure summarised in 
Fig. 1e by post processing the plain fatigue results together with the results 
generated by testing the sharply notched specimens. 
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7. Conclusions 

The present investigation aims at assessing the accuracy of three 
different length scale-based methodologies in predicting finite lifetime 
of notched AM Ti6Al4V. The notched specimens used to perform the 
validation exercise discussed in Section 6 were tested under load ratios 
equal to − 1 as well as to 0.1. The accuracy and reliability of the TCD, GE 

and the ASED criterion in estimating fatigue lifetime of notched AM 
Ti6Al4V were checked systematically against the generated fatigue 
results. 

Based on the outcomes from this experimental/theoretical work, the 
most relevant conclusions are summarised in what follows. 

Fig. 7. Accuracy of the Point Method (a), Line Method (b), Area Method (c), Gradient Elasticity (d) and Averaged SED approach (e) in estimating the fatigue lifetime 
of the tested notched specimens of AM Ti6Al4V. 
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• Due to internal defects and superficial residual stresses, the inverse 
slope of the plain fatigue curves is close to the k values characterising 
the notch fatigue curves.  

• The fatigue behaviour of the tested AM titanium alloy is affected by 
notch sharpness and magnitude of superimposed static stresses.  

• Both in the presence and in the absence of notches, fatigue cracks are 
seen to initiate either on the surface or from sub-surface 
manufacturing defects.  

• The TCD, GE and the ASED criterion are successful in estimating the 
fatigue lifetime of the tested notched specimens, with the estimates 
mainly falling within the plain material scatter bands.  

• Length scale-based design methods allow fatigue assessment of 
notched AM to be performed by directly post-processing the relevant 
stress fields determined via conventional linear-elastic FE analyses.  

• More work needs to be done to assess the accuracy of length scale- 
based design methods in estimating fatigue lifetime under variable 
amplitude fatigue loading. 
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