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A B S T R A C T   

Efficiently merging fatigue datasets from diverse sources has proven to be a strategic approach for enhancing the 
reliability of fatigue assessment and design within industry, while concurrently streamlining costs and time. 
Statistical parametric analysis is an approach that can be applied to fatigue datasets to determine whether the 
datasets can be deemed statistically significant (different) or statistically insignificant (similar). This paper 
systematically employed statistical parametric test-statistic hypotheses to assess significance. To validate this 
approach the paper used as a case study, fatigue data sets generated from varied notched specimens with hole 
diameters ranging from 0 mm to 3 mm, in addition to data from the literature. In particular, gross stresses were 
utilized to ensure that the only means to identify differences in the fatigue datasets was through statistical 
analysis. This approach was observed to work well for geometries with differences in notch geometry as small as 
1 mm and was able to identify notch insensitivity in cast iron. Thus, this method can be used to differentiate 
fatigue datasets based on statistical parameters rather than other physical parameters.   

1. Introduction 

Fatigue assessment in engineering is a critical process when evalu
ating the structural durability and performance of structural compo
nents under dynamic loading. It predicts potential fatigue failure over 
time considering cyclic stresses and strains [1]. Historical failures un
derscore the importance of robust fatigue analysis [2]. Various methods 
including theoretical approaches, fracture mechanics, and 
non-destructive testing, to enhance fatigue behaviour understanding 
and improve engineering safety have been used in industry. With fatigue 
failure accounting for a majority of engineering failures, accurately 
assessing fatigue is therefore essential to prevent these failures. Engi
neers can proactively address weaknesses, optimize designs, and ensure 
long-term reliability and safety across diverse industries. 

Given the critical nature of fatigue data assessment for designing 
resilient structures and the variability in fatigue datasets from experi
ments, statistical analysis serves as a potent tool for exploration. In 
addition, fatigue experiments are time-consuming and costly, and 
designing reliably requires ample fatigue data for analysis. Addressing 
these challenges involves utilizing datasets from different sources and 
applying standard approaches for amalgamation and validation, such as 
parametric analysis. This method evaluates differences in fatigue prop
erties, revealing intrinsic mechanical characteristics of materials and 
establishing significance within diverse experimental conditions or 

environments. Not only does this aid in consolidating fatigue datasets 
for heightened reliability but it also mitigates the time and cost chal
lenges associated with conducting numerous fatigue experiments [3–5]. 
A detailed methodology for parametric statistical testing constitutes a 
comprehensive exploration, enriching the field of fatigue data analysis 
with valuable insights for engineers and researchers striving to optimize 
designs and improve material reliability under cyclic loading conditions. 
Consequently, conclusions drawn from fatigue test data can be made 
confidently based on a predetermined level of significance. 

This paper seeks to address the research question of whether statis
tics alone is sufficient to determine the similarity or dissimilarity be
tween two datasets. This is not only useful for comparing fatigue data 
sets, but it can also be used to differentiate data sets produced using 
different manufacturing, specimen preparation protocols or loading 
conditions (tension, torsion, load ratio, etc). To answer this question, a 
hypothesis is formulated and tested. In this study, the hypothesis under 
consideration is the t-test statistics in parametric analysis. The fatigue 
data sets used in this study are derived from notches, which serve as a 
case study. By employing notches of varying geometries, different fa
tigue datasets are generated and utilized to validate the hypothesis. 

Notches were selected as the basis for generating fatigue data for this 
paper because they are well-known for reducing the endurance limit of 
engineering materials [6,7] as well as the inverse slope [8], effectively 
shifting the mean S-N curve downward. They also change the level of 
scattering depending on the notch root radius and the material type [9]. 
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By introducing a notch, it is anticipated that the fatigue data sets will be 
statistically significant. Altering the notch geometry allowed distinct 
fatigue data sets to be generated that were subsequently employed in the 
statistical significance testing. Moreover, notch geometry is a parameter 
that can be conveniently controlled and accurately measured. For this 
reason, three different materials – steel, cast iron, and brass were used to 
produce the notched specimens, with three different notch diameters: 0 
mm, 1 mm, 2 mm, and 3 mm. 

In the analysis of the fatigue results, only the gross stresses were 
taken into consideration. The gross stress is the nominal stress experi
enced by the specimen, assuming it is smooth and free of any geometric 
discontinuities that could affect the stress distribution. By using gross 
stresses, all specimens are therefore assumed to have the same geometry 
and the statistical approach is the only tool used to identify the differ
ence in notch geometry by analysing the experimental results. By so 
doing, this approach focused only on utilizing statistical methods to 
determine whether the discrepancies in the generated fatigue data sets 
were statistically significant, based on a predetermined threshold. 

2. Review of Wöhler curves and mean parameters from fatigue 
data points 

(
σi,Nf ,i

)

The stress-based approach to fatigue assessment relies on S–N curves, 
commonly known as Wöhler curves [10]. These curves are derived from 
subjecting identical and standardized specimens to constant amplitude 
cyclic loading until failure occurs. Fatigue data sets 

(
σi,Nf ,i

)
generated 

from these experiments are used to produce the S-N curve. The S-N curve 
in this paper will be limited to the medium cycle fatigue regime, which is 
crucial for understanding the endurance and fatigue life of materials, 
thereby optimizing design and manufacturing processes in various en
gineering applications. This curve in the medium cycle fatigue regime is 
assumed to be linear [11–15] and there are various formulations to 
represent this curve. One of the most popular formulation is the Basquin 
equation which is transformed in the log-log space as [16]: 

LogNf =Co + C1 Log σ (1)  

where Nf is the fatigue life and σ is the stress level, which can either be 
the stress amplitude, range or maximum stress. Co and C1 are the 
intercept and inverse slope constant respectively which are dependent 
on the fatigue data. The inverse slope determines the sensitivity of the 
material to fatigue, and a lower value indicates that the material is more 
sensitive to small changes in stress or strain amplitude. Generating the S- 
N curve represented by equation (1) involves a few assumptions (see 
Refs. [11,117] and the references reported therein). The experimental 
data points have a standard deviation (s) which is observed in the degree 
of scatter and defined by the change in the residuals around the mean 
[18,19,20]. Therefore, the mean parameters representing the fatigue 
properties from the fatigue data sets can be checked for statistical sig
nificance. These mean parameters include the variance s2, slope C1 , and 
the vertical intercept C0. These mean parameters are calculated as: 

C1 =

∑n

i=1
[log (σi) − log σi][log (Ni) − log Ni]

∑n

i=1
[log (σi) − log σi]

2
(2)  

and 

C0 = log Ni − C1log σi (3)  

s2 =

∑n

i=1

(
logNfi − log Nf

)2

n − 2
(4) 

The scatter band generated as a result of the scattering of the data is 
calculated using the equation [11,12,20]: 

Log Nf =C0 +C1 log σi ± t s

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
1
n
+

(log σi − log σi )
2

∑n

i=1
(log σi − log σi )

2

√
√
√
√
√

(5)  

in which C0 and C1 are the intercept and inverse slope constant 
respectively which are dependent on the fatigue data. t is the corre
sponding percentage point of the student’s t-distribution with of degrees 
of freedom equal to n − 2 and s2 is the best guess of the variance around 

Nomenclature 

C0 Intercept of mean S-N curve (constant) 
C1 Coefficient of independent variable (constant) 
C1,i Coefficient of independent variable of ith data set, i = 1,2.

.

k Negative inverse slope 
f Degrees of freedom 
Fcal F-test statistic for variance calculated 
Fcrit F-test statistic for variance from tables 
log Nf ,ij Log of life at the replication level 
logNfij Mean log of life at the replication level 
log σi Mean log of stress level, log σi =

∑n
i=1

log σi
n 

logNf ,i Mean log of fatigue life, logNf ,i =
∑n

i=1
log Nf ,i

n 
log Nf ,D Log of estimated life for design life 
mi Replication level at the ith stress level 
Nf Number of cycles to failure 
Nf ,i Number of cycles to failure at the ith stress level 
n Number of experimental results (sample set) 
NA Reference number of cycles to failure 
Nkp Number of cycles to failure at the knee point 
Ps Probability of survival 
q Index depending on the probability of survival 
R Stress ratio (R = σ min/ σ max) 

s Standard deviation of log cycles to failure 
sx1

2 Variance of measured quantity x 
se

2 Equivalent variance of two homogenous data sets 
sC1

2 Variance of common line when slopes of parallel lines are 
insignificant 

xi Arbitrary measured quantities 
t Test statistic 
tβ Critical value corresponding to a significance level β 
tμ Test statistic calculated for means 
tμ́ Test statistic calculated for means that are significant 
tC1 Test statistic for slopes 
t(δ) Test statistic for collinear lines 
σ Generic stress level (stress amplitude, maximum stress or 

stress range) 
σi ith stress level (i = 1, 2 …, n) 
σmin,σmax Minimum and maximum stress in the cycle 
σ0 Endurance limit 
σ0,P% Endurance limit at a probability of survival P 
σ0,(1− P)% Endurance limit in error at a probability of survival P 
Tσ Scatter ratio of reference stress for (1-P) % and P% 

probabilities of survival 
β Level of significance 
δ Random variable for collinear lines 
μY/X The expected value of logN given log σ  
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the mean curve. From these the endurance level σ0,P%, for a probability 
of survival P is defined as 

σ0,P% =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

10

(

C0 − t s

̅̅̅̅̅̅̅

1+ 1
n

√
)

NA

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

1
k

(6) 

While the endurance limit in error at the reference cycle σ0,(1− P)% is 

defined as 

σ0,(1− P)% =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

10

(

C0+t s

̅̅̅̅̅̅̅

1+ 1
n

√
)

NA

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

1
k

(7) 

From these therefore the scatter band is calculated as 

τσ =
σ0,(1− P)%

σ0,P%
(8) 

The endurance limit at a 50% probability of survival is also calcu
lated as 

σ0,50% =

[
10C0

NA

]1
k

(9)  

3. Brief overview of parametric and non-parametric analysis 

Parametric and non-parametric analyses are two types of statistical 
procedures through which disparities can be probed between fatigue 
data sets [21,22]. In parametric analysis, a fixed number of parameters 
are considered for statistical tests [23,24]. Here, statistical tests are 
carried out based on some assumptions about the data sets [24]. It re
quires less data compared to non-parametric methods [25]. More so, 
parametric analysis assumed that the data has a normal distribution and 
this approach works best when the spread in the data set of each data set 
is different [26]. The parameters analysed in this approach include the 
variance, slope and intercepts. Meanwhile, non-parametric analysis 
tends to test medians. It is utilized based on fewer assumptions about 
data sets [27,28], and usually requires a large data set than parametric 
methods and has no assumed distribution to the data. Non-parametric 
methods can perform well in many situations but its performance is at 
peak when the spread of data in each group is the same. Nonparametric 
analysis uses the rank test for two or more groups to compare the me
dians [12]. Here ranks for two groups are totalled separately and the 
total for the smallest group should fall within the critical chi-squared 
lower and upper rank totals depending on the levels of significance. 

In this paper, only the parametric significance test procedures will be 
explained. For simplicity, this procedure is used on portions of the S-N 
curve that are linear, the data sets also assumed to have a normal dis
tribution and will generate S-N curves with near parallel or parallel 

Fig. 1. The flow chart to illustrate how to test the statistical significance of two S-N curves.  

Fig. 2. Specimen geometry in mm a) plane, b) notched with a circular notch of 
diameter ∅ 
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characteristics. This ensures that comparisons are valid solely for stress 
level ranges pertinent to a given design or application. Having deter
mined the type of analyses that will be discussed in this paper, it is 
therefore essential to proceed to explain the fundamental concept in 
statistical hypothesis testing of parametric tests, particularly the null 
hypothesis which plays a central role when comparing two or more data 
sets. 

3.1. The t-test and null hypothesis meaning and application 

A t-test is an inferential statistic used to determine if there is a sig
nificant difference between two measured observables. It compares the 
values of the measured quantities from two data sets and determines if 
they came from the same population. This comparison helps to deter
mine the effect of chance on the difference, and whether the difference is 

outside that chance’s range. T-tests are used when the data sets follow a 
normal distribution and have unknown variances. The t-test value is 
calculated as the ration of the difference between the measured quan
tities to the variation that exists in the sample data sets as shown below 
[12,20,29,30]. 

t=
x1 − x2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
sx1

2 − sx2
2

√ (10)  

Where x1 and x2 are any two observed quantities (such as mean, slope, 
etc.) with variances sx1

2 and sx2
2 respectively. Higher values of the t- 

score calculated using equation (10) indicate that a large difference 
exists between the two sample data sets. The smaller the t-value, the 
more similarity exists between the two sample sets. The value of the 
calculated test statistic is compared with a critical value tβ obtained from 
the critical value table known as the t-distribution table. This value 

Fig. 3. Some samples of failed specimens after fatigue tests.  
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depends on the level of significance β, and the degrees of freedom f . 
The t-distribution table can either be for a one-tail or two-tail for

mats. While one-tail values are used for assessing changes in data sets 
that have a fixed direction of change, two-tail values represent varia
tions in more than one direction, which can either increase or decrease. 
For the analysis involved in this research, the two-tail distribution table 
will be use so that both positive and negative effects can be monitored on 
the measured observables. 

Comparing the t-statistic with the critical value of tβ obtained from a 
two-tail t-distribution table, the null hypothesis is used to conclude as 
follows. 

For: 

t ≤ tβ, Null hypothesis accepted (no statistical significance from the 
two observables) 
t > tβ, Alternate hypothesis or null hypothesis rejected. 

What follows is a description of how parametric analysis is used in 
conjunction with the null hypothesis to establish statistical significance 
between fatigue data sets. 

3.2. Statistical test on sample fatigue life data sets 
(
Nf ,i
)

generated at the 
same stress level 

Parametric analysis can be used on fatigue life data sets to ascertain 
whether sample sets exhibit statistical significance compared to the 
parent population for the fatigue lives that are generated at the same 
stress level. To use this approach, the fatigue lives are assumed to follow 
a normal distribution at this stress level. In this case, the parameters to 
be tested for significance are the variance and the mean. The test on 
variance is otherwise known as the test for homogeneity of variance and 
is assessed and described as below. 

3.3. Statistical test on homogeneity of variances of two fatigue life data 
sets 

Consider two normally distributed fatigue datasets at the same stress 
level with variances s1

2 and s2
2 with corresponding sample sets n1 and 

n2, respectively. The test statistic Fcal, for the homogeneity of the fatigue 
data sets is calculated as [12,29,31–33]. 

Fcal =
s1

2

s2
2 (11) 

In order to ascertain the presence of a significant difference at a 
designated level of significance (β), the critical value of the Fp distri
bution associated with n1 − 1 degrees of freedom for s1 and n2 − 1 de
grees of freedom for s2, derived from statistical tables found in Refs. [17, 
20,30,32] is compared with the F-distribution value Fcal, calculated 
using equation (11). Should Fcal ≤ Fp the sample variances are deemed 

not significantly different (homogeneous) in accordance with the null 
hypothesis. Conversely, if Fcal > Fp, the two datasets are considered 
significant. 

3.4. Statistical test on two means when the standard deviations are not 
significantly different 

Suppose two homogenous fatigue life data sets belong to the same 
population; in this scenario, the common estimate of the population 
variance se

2, is calculated as follows [29,34]: 

se
2 =

(n1 − 1)s1
2 + (n2 − 1)s2

2

n1 + n2 − 2
(12)  

in which n1 and n2 represent the sample sizes of the two fatigue life 
datasets, and s1 and s2 are their respective standard deviations. The test 
statistic for comparing their means tμ, is calculated as [12,32]: 

tμ =
log Nf1 − log Nf2

s
̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n1
+ 1

n2

√ (13)  

where log Nf1 and log Nf2 represent the mean values of the logarithm of 
fatigue life for the two fatigue life sample sets. Given a predetermined 
significance level β, the corresponding critical value tβ associated with 
degrees of freedom f = n1 + n2 − 2 is obtained from statistical tables as 
in Refs. [17,33,35,36]. If /tμ/ > tβ, it can be concluded that the pop
ulations from which the sample datasets are derived are distinct; 
otherwise, there is no statistically significant difference in the means of 
the sample sets. 

3.5. Statistical test on two means when the standard deviations are 
significantly different 

If the sample standard deviations can be verified to be significantly 
different, then the hypothesis that the populations’ means are significant 
or not can be tested by calculating a test statistic tμ́ as [12,30]: 

tʹμ =
log Nf1 − log Nf2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
s12

n1
+ s22

n2

√ (14) 

Similarly, for a predefined significance level β, the associated char
acteristic value tβ is determined based on a defined value of the degree of 
freedom defined as: 

f =

[
c2

n1 − 1
+
(1 − c)2

n2 − 1

]− 1

(15)  

where c is a dimensionless quantity defined as [12]: 

Table 1 
Summary of fatigue properties at a probability of 95%, of notch specimens under uniaxial loading in tension at a frequency of 10Hz  

Specimen type Fatigue test results 

Sample set, n R Inverse slope, k Variance s2 σ0 [MPa] σ0,95% [MPa] σ0,5% [MPa] τσ 

S 17 0.1 50.9 0.09 224.5 231.5 217.6 1.1 
S_1 mm 10 0.1 9.4 0.024 119.1 108.6 130.7 1.2 
S_2 mm 10 0.1 8.4 0.023 96.1 86.9 106.2 1.2 
S_3 mm 10 0.1 8.1 0.015 79.9 73.3 87.0 1.2 
Br 5 0.1 40.1 1.17 140.6 177.7 111.2 1.6 
Br_1 mm 10 0.1 8.6 0.012 72.6 67.6 77.9 1.2 
Br_2 mm 10 0.1 6.9 0.011 56.3 51.7 61.4 1.2 
Br_3 mm 10 0.1 6.1 0.015 46.7 41.9 52.1 1.2 
CI 15 0.1 8.9 0.36 32.7 40.9 26.2 1.6 
CI_1 mm 10 0.1 11.1 0.257 33.0 25.6 42.7 1.7 
CI_2 mm 10 0.1 13.0 0.071 27.8 24.7 31.2 1.3 
CI_3 mm 10 0.1 10.7 0.031 21.1 19.2 23.1 1.2  
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c=
s1

2

n1
s12

n1
+ s22

n2

(16) 

If the value for the calculated degree of freedom f is not an integer, 
then its value is approximated to the nearest smaller integer. The value 
of f is then used to extract the associated characteristic value tβ based on 
the predefined level of significance. In the same way, if / tʹμ/ < tβ, then 
there is no significance in the means of fatigue lives of the two data sets 
and for /tʹμ/ > tβ, the means are judged to be different. 

The analysis outlined above is carried out on fatigue life datasets 
under the assumption that they have been collected at uniform stress 

levels and follow a normal distribution. When dealing with datasets 
acquired from a variety of stress levels, the parametric analysis is 
extended by considering the parameters within the mean curves 
generated from these datasets, as elaborated below. 

4. Parametric analysis of the parameters of two mean curves 

To statistically compare the significance of two mean S-N curves 
using the null hypothesis, three steps are employed [29,31]. The initial 
step entails testing whether the variance or standard deviations (s)
around the distinct lines can be assumed to be drawn from the same 

Fig. 4. Scatter bands at 95% level of confidence and 5% level of significance for: a) S and S_1 mm, b) S and S_2 mm c) S and S_3 mm d) S_1 mm and S_2 mm curves, e) 
S_1 mm and S_3 mm curves and f) S_2 mm and S_3 mm curves. 
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population, thus demonstrating homogeneity. Secondly, the examina
tion involves assessing whether the two mean curves can be viewed as 
parallel (approximated by the same inverse slope C1 ). And lastly, 
determining if the two parallel regression lines can be considered 
collinear, meaning they lie on the same line [36]. 

4.1. Test that the variance of the data set is homogenous 

Homogeneity of variance is used to describe a data set that has the 

same variance as another [20,30]. This equivalence can be visually 
identified through consistent scatter on a scatter plot or by observing 
equivalent standard deviations in the derived parameters like sample 
size, mean, slope and variance [29,37]. If, upon inspection, the data 
exhibits heteroscedasticity, a statistical hypothesis test is carried out by 
constructing a test for the homogeneity of variances between the fatigue 
data sets. 

Consider for example two data sets 1 & 2 having sample sizes n1 and 
n2 respectively, with corresponding degrees of freedom (n1 − 2), and 

Fig. 5. Scatter bands at 95% level of confidence and 5% level of significance for: a) Br and Br_1 mm, b) Br and B_2 mm, c) Br and Br_3 mm, d) Br_1 mm and Br_2 mm, 
e) Br_1 mm and Br_3 mm and f) Br_2 mm and Br_3 mm curves. 
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(n2 − 2). Additionally, assume that s1
2 and s2

2 represent the variances of 
the respective data sets 1 and 2, with s1 > s2. The test statistic Fcal is 
calculated according to equation (11) [12,17,30,32]. By referring to 
standard F-distribution tables, the critical value entry (Fcrit) corre
sponding to the degrees of freedom f1 = (n1 − 2) and f2 = (n2 − 2) is 
extracted and subsequently compared with the calculated value. 

If it turns out that Fcal ≤ Fcrit, it can be concluded that both variance 
estimates are homogeneous and can be considered as independent es
timators of the population. Consequently, the null hypothesis is vali

dated, signifying that the difference in variance of the two mean curves 
is not significant. In this situation, the variance estimate se

2 defining 
both data sets is defined as: 

se
2 =

(n1 − 1)s1
2 + (n2 − 1)s2

2

(n1 − 2) + (n2 − 2)
(17) 

To summarize, the two sample variances are considered significant if 
the equation below is validated. 

Fig. 6. Scatter bands at 95% level of confidence and 5% level of significance for: a) CI and CI_1 mm, b) CI and CI_2 mm, c) CI and CI_3 mm, d) CI_1 mm and CI_2 mm, 
e) CI_1 mm and CI_3 mm and f) CI-2mm and CI_3 mm. 
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sn
2

sd2 − Fcrit(1 − β, fn, fd) < 0 (18) 

In this equation, sn
2 and sd

2 represent the variances of the numerator 
and denominator of equation (11) respectively. Additionally, fn and fd 

correspond to the degrees of freedom of the numerator and the de
nominator, respectively. And Fcrit(1 − β, fn, fd) denotes the critical value 
obtained from entries corresponding to the significance level β, and the 
respective degrees of freedom. 

Table 2 
Summary of statistical analysis using the null hypothesis for the fatigue data sets generated by testing brass, cast iron and steel specimens with 1 mm, 2 mm and 3 mm 
notches.  

Source of data sets compared Variance test (β = 1.7%) Slope test (β = 1.7%) Intercept test (β = 1.7%) Conclusion (
∑

β ≅ 5%)

Steel S and S_1 mm − 0.76 31.94 1.40 Significant 
S and S_2 mm − 0.53 32.89 2.01 Significant 
S and S_3 mm 1.44 33.44 2.58 Significant 
S_1 mm and S_2 mm − 4.00 − 1.47 0.48 Significant 
S_1 mm and S_3 mm − 3.50 − 0.88 1.09 Significant 
S_2 mm and S_3 mm − 3.58 − 1.87 0.41 Significant  

Brass Br and Br_1 mm 106.83 10.99 − 0.52 Significant 
Br and Br_2 mm 112.92 12.05 − 0.103 Significant 
Br and Br_3 mm 88.24 12.97 − 0.06 Significant 
B_1 mm and B_2 mm − 4.01 − 0.77 0.52 Significant 
B_1 mm and B_3 mm − 3.87 − 0.03 0.90 Significant 
B_2 mm and B_3 mm − 3.80 − 1.69 0.23 Significant  

Cast Iron CI and CI_1 mm − 3.00 − 6.78 − 0.27 Insignificant 
CI and CI_2 mm − 3.22 − 1.49 1.01 Significant 
CI and CI_3 mm 0.10 − 2.72 1.61 Significant 
CI_1 mm and CI_2 mm − 2.04 − 6.75 0.69 Significant 
CI_1 mm and CI_3 mm 3.30 − 7.36 1.36 Significant 
CI_2 mm and CI_3 mm − 2.87 − 0.86 0.69 Significant  

Table 3 
Summary of statistical analysis using the null hypothesis for the fatigue data sets generated by testing brass, cast iron and steel specimens with 1 mm, 2 mm and 3 mm 
notches around their mean stresses.  

Source of data sets compared Variance test (β = 1.7%) Slope test (β = 1.7%) Intercept test (β = 1.7%) Conclusion (
∑

β ≅ 5%)

Steel S_1 mm and S_2 mm − 4.00 − 1.47 ¡2.55 Insignificant 
S_1 mm and S_3 mm − 3.50 − 0.88 ¡0.56 Insignificant 
S_2 mm and S_3 mm − 3.58 − 1.87 ¡3.35 Insignificant  

Brass B_1 mm and B_2 mm − 4.01 − 0.77 ¡0.82 Insignificant 
B_1 mm and B_3 mm − 3.87 − 0.03 1.09 Significant 
B_2 mm and B_3 mm − 3.80 − 1.69 ¡2.69 Insignificant  

Cast Iron CI_1 mm and CI_2 mm − 2.04 − 6.75 ¡12.40 Insignificant 
CI_1 mm and CI_3 mm 3.30 − 7.36 ¡9.97 Significant 
CI_2 mm and CI_3 mm − 2.87 − 0.86 ¡0.34 Insignificant  

Table 4 
Fatigue data from Ref. [41].  

As-forged cantilever As-forged bending 

σ (MPa) N(cycles) σ (MPa) N(cycles) 

892 5951 546 43586 
607 23826 398 94495 
596 39661 396 110938 
551 43176 273 698654 
396 144489 274 820228 
396 195427 227 851781 
324 328393 227 981303 
324 367768   
274 753441   
248 623852   
249 760585   
229 1327244    

Fig. 7. Scatter band at 95% level of confidence and 5% level of significance for 
significant data set of as-forged (cantilever) and as-forged (bending) 
in Ref. [41]. 
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4.2. Test that the lines are parallel 

Let C1,1 and C1,2 represent the slopes of two data sets 1 & 2 respec
tively. The t-test statistic for the significance of the slopes tC1 is calcu
lated as [30,32]: 

tC1 =

⃒
⃒C1,1 − C1,2

⃒
⃒

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⎛

⎜
⎜
⎝

1
∑n1

i=1
(log σi,1 − log σi,1)

2
+ 1
∑n2

i=1
(log σi,2 − log σi,2)

2

⎞

⎟
⎟
⎠

√
√
√
√
√
√
√

se

(19) 

This value of tC1 is then compared with the student’s distribution 
value tβ obtained from statistical tables aligning with degrees of freedom 
f1 + f2 = (n1 − 2) + (n2 − 2) and the chosen significance level. Should 
the value of tC1 be lower than this critical value, the slopes are deemed 
not statistically significant. Conversely, if tC1 is more than the critical 
value, there is no bases to accept the null hypothesis. 

In the case of statistical insignificance, the mean curves are consid
ered to be parallel. Hence, a common estimate for the slopes C1 is 
determined. This estimation takes the form of the weighted average of 
both slopes C1,1 and C1,2, and can be calculated as [29]: 

C1 =

∑n1

i=1

(
log σi,1 − log σi,1

)2
× C1,1 +

∑n2

i=1

(
log σi,2 − log σi,2

)2
× C1,2

∑n1

i=1

(
log σi,1 − log σi,1

)2
+
∑n2

i=1

(
log σi,2 − log σi,2

)2
(20) 

The resulting estimate of the variance of C1 denoted as sC1
2 is such 

Table 5 
Summary of parametric statistical analysis of fatigue data set from Ref. [41].  

Source of data 
sets compared 

Variance test 
(β = 1.7%)

Slope test 
(β = 1.7% 
)

Intercept test 
(β = 1.7%)

Conclusion 
(
∑

β ≅ 5%)

Considering the entire S-N curve with extrapolationd 
Forged 

bending- 
cantilever 

− 5.64 − 0.89 − 0.07 Insignificant  

Stress levels in the vicinity of the mean stress 
Forged 

bending- 
cantilever 

− 5.64 − 0.89 − 2.29 Insignificant  

Table 6 
Summary of fatigue test results under uniaxial loading in tension (R = 0.1) at a frequency of 10Hz  

Material type Fatigue test results 

1 mm notch 2 mm notch 3 mm notch Plain 

σ0 [MPa] Nf [Cycles] σ0 [MPa] Nf [Cycles] σ0 [MPa] Nf [Cycles] σ0 [MPa] Nf [Cycles] 

Steel 215.2 8103 183.0 8606 154.7 12684 75.5 109362 
214.6 8643 182.7 10000 146.7 7826 72.7 140561 
188.0 34155 175.5 12105 135.6 31457 67.8 194403 
187.2 24110 161.6 26734 135.3 27529 66.9 196858 
147.8 203115 151.7 23547 108.6 210278 59.6 410938 
147.5 193751 133.8 155536 108.6 196032 59.0 676739 
142.4 374787 133.8 136806 108.1 208275 55.7 706821 
140.9 483252 129.7 291168 94.4 481826 55.3 507491 
136.9 362177 128.8 185460 92.5 519988 53.4 616481 
136.2 1215396 107.9 496775 92.2 540895 52.5 1568334       

75.5 109362       
72.7 140561       
67.8 194403       
66.9 196858       
59.6 410938       
59.0 676739       
55.7 706821 

Cast iron 56.9 5176 54.4 406 40.8 1455 76.4 751 
54.4 8798 48.8 645 40.5 1708 70.0 1690 
51.1 8442 46.2 1183 37.9 5641 69.8 2101 
46.1 132604 46.1 4025 37.6 2933 64.8 5651 
43.4 24487 44.7 15354 37.4 4988 64.6 2264 
43.4 303117 43.5 16266 27.2 187383 61.0 16839 
43.2 39080 35.3 64586 26.9 137409 60.5 18501 
42.8 963511 35.2 110298 25.6 174677 56.3 23930 
42.3 67485 32.3 347842 25.3 159794 55.7 14745 
42.1 68918 30.0 563403 24.7 660480 55.4 7987       

51.7 66103       
51.1 17621       
51.0 197025       
46.6 142029       
46.4 14235 

Brass 112.6 55514 94.8 59018 75.5 109362 192.2 8 
107.9 65518 94.4 36739 72.7 140561 178.1 13 
107.5 74827 84.0 178161 67.8 194403 164.4 131262 
97.1 161869 83.8 130672 66.9 196858 155.4 57180 
97.0 121909 75.8 240122 59.6 410938 145.7 87888 
84.2 541945 75.7 292589 59.0 676739   
84.1 739815 70.5 359750 55.7 706821   
80.9 776713 70.5 337359 55.3 507491   
80.5 530996 67.8 460968 53.4 616481   
75.9 1903387 67.5 732233 52.5 1568334    
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that the combined estimate of both variances and the error in the esti
mation of C1 has one degree of freedom and is calculated as: 

sC1
2 =

(
C1,1 − C1,2

)2

1
∑n1

i=1
(log σi,1 − log σi,1)

2
+ 1
∑n2

i=1
(log σi,2 − log σi,2)

2

(21) 

However, sC1
2 is always small [29] when the two lines are considered 

parallel. Alternatively, the estimated common variance se
2 is defined as 

in equation (17) and according to the null hypothesis, the individual 
slopes are significant if tC1 > tβ in equation (19). 

4.3. Test that the parallel lines are collinear 

The two mean curves from the fatigue data sets are collinear if both 
have similar intercept and slope. Suppose the expected values for both 
curves are defined as μNf ,1/σ1

= C0 + C1 log σ1 and μNf ,2/σ2
= C0+ C1 log σ2 

for any stress level σ, with both intercept and slope constant. Then at the 
mean point, there is a random variable δ defined as: 
(
log N1,i − log N2,i

)
− C1

(
log σ1,i − log σ2,i

)
= δ (22)  

δ is normally distributed with mean equal to zero and variance Var(δ)
defined by Ref. [28]. 

Var(δ)= s2

⎡

⎢
⎢
⎣

1
n1

+
1
n2

+

(
log σ1,i − log σ2,i

)2

∑n1

i=1

(
log σi,1 − log σi,1

)2
+
∑n2

i=1

(
log σi,2 − log σi,2

)2

⎤

⎥
⎥
⎦

(23) 

Then a test statistic t(δ) for the random variable δ can be calculated as 
shown in equation (15) where se is the new-pooled estimate of the 
combined variance corresponding to [(n1 − 2)+(n2 − 2)+1] degrees of 
freedom. 

t(δ)=
C0,1 − C0,2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⎡

⎢
⎢
⎣

1
n1
+ 1

n2
+

(log σ1,i − log σ2,i )
2

∑n1

i=1
(log σi,1 − log σi,1)

2
+
∑n2

i=1
(log σi,2 − log σi,2)

2

⎤

⎥
⎥
⎦

√
√
√
√
√
√
√

se

(24) 

Hence, the two mean curves are considered not to be collinear if the 
test statistic t(δ) is significant. i.e. /t(δ)/ > tβ where tβ is the character
istic value associated with the predefined significance level and degrees 
of freedom. If /t(δ)/ ≤ tβ, then the null hypothesis confirms that the two 
curves are collinear [29]. 

In conclusion, when considering the null hypothesis, two mean 
curves from two fatigue data sets are considered insignificant if the 
variances, gradients, and intercepts are found to be statistically insig
nificant. If there is no substantial evidence to support the acceptance of 
significance for any of these parameters, then, in accordance with the 
criteria of the null hypothesis, there is no foundation to assert that the 
data sets are insignificant. 

4.4. Composite hypotheses and its significance level 

It is important to highlight that in composite hypothesis testing, the 
null hypothesis is evaluated separately for each parameter of variance, 
intercept, and slope, all at a specified significance level. The cumulative 
level of significance is obtained by summing all the individual signifi
cance levels when each parameter is tested as illustrated in the flow 
chart in Fig. 1. This can potentially lead to a high chance of rejecting 
these hypotheses even if all three parameters are accurate. As a result, it 
is advisable to employ a lower significance level for each individual 
parameter test when conducting composite hypothesis testing [12,20, 
29]. For instance, a significance level of 1.7% could be used, resulting in 
an approximate combined level of significance of about 5%. Under a 

similar condition, when testing for the consistency in sample variance 
and means, a significance level of 2.5% would be appropriate. This 
approach helps reduce the increased risk of erroneous rejections asso
ciated with composite hypothesis testing. In general, the level of sig
nificance of each of the parameters tested is determined by dividing the 
significance level used to test the null hypothesis by the number of pa
rameters considered [29–33]. 

The composite hypothesis is deemed acceptable only when all the 
test statistics pertaining to the parameters of variance, intercept, and 
slope are insignificant. If any of these parameters lack sufficient evi
dence to support the acceptance of the null hypothesis, it follows that 
there is no valid ground to accept the significance of two S-N curves from 
the data sets. 

5. Experimental procedure and results 

To evaluate the accuracy and reliability of the mentioned test sta
tistics, experimental fatigue data were generated. These datasets were 
derived from both plane specimens and specimens altered by notches of 
different geometries with varied sharpness. The geometries ranged from 
a 0 mm diameter hole notch (plain specimens) to a 3 mm diameter hole 
notch on the chosen materials. 

5.1. Materials, specimen geometry and experimental testing 

The materials chosen for this analyses were ex-service pipeline ma
terials of cast iron (348HV0.2), brass (111HV0.2), and X52 carbon steel 
(184HV0.2), where HV0.2 denotes the Vickers Hardness using an applied 
load of 2 N. The specimens underwent surface preparation to make them 
smooth by manual machining. For plane specimens, the dog-bone design 
was used as shown in Fig. 2a. The dimensions consisted of a length of 65 
mm, a thickness of 2 mm, and a width of 5 mm. The thickness mea
surement was taken at different points along the length of each specimen 
and the results averaged. For notched specimens, the notches were 
created from rectangular strips using drills with varying diameters (1–3 
mm) to produce circular holes at the centre of the specimens. The di
mensions of the specimens measured on average a length of 65 mm, 
8.5mmm in width and had a cross sectional thickness of 2 mm as shown 
in Fig. 2b. 

The fatigue machine used to generate the data was the Multipurpose 
Servo Hydraulic Testing machine, the LFV-L series, with a static load test 
capacity of up to 25 kN, and a recommended fatigue testing capacity of 
20 kN. Each specimen was loaded into the test machine in tension 
(R= 0.1) at a chosen stress amplitude and a frequency of 10Hz until the 
specimen failed by complete breakage or survived 2 × 106 cycles (run
out). For each of the runout results, the specimen was retested at a 
higher stress amplitude. 

The failure criterion was defined as the complete breakage of spec
imens occurring at the critical region with a small net area, in which the 
crack propagation part of the total life was considered to be negligible. 
Some of the failed specimens are shown in Fig. 3. 

5.2. Experimental results and application of parametric test analysis 

Table 1 summarises the fatigue results generated from testing the 
notched specimens of steel, cast iron and brass with different notch radii. 
The experimental data used to generate these fatigue results are also 
summarized in Table 6. Considering any two data sets for each material 
type, the scatter bands and data points are illustrated on respective 
graphs to visually depict the significance of the data. The chosen 
approach uses gross stress amplitudes with fatigue life. The utilization of 
gross stress amplitudes is intended to minimize the impact of notch 
geometry variations within the compared data sets. The primary 
objective is to assess the effectiveness of using statistical approaches in 
identifying the presence of different notch geometries in the datasets. 
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5.3. Application of parametric analyses on generated data sets 

It is assumed that the data sets from each group of specimens/ma
terial are normally distributed at each stress level and are statistically 
independent of each other. Additionally, the variance at each stress level 
is constant, and therefore, the data sets follow the same form of the S-N 
curve and have the same residual standard deviations. Linear regression 
is applied to generate these mean S-N curves. Figs. 4–6 provide a sum
mary of the S-N curves and scatter bands for steel, brass, and cast-iron 
specimens generated in this investigation, with a 95% confidence level 
and a significance level of 5%. These curves also present the estimated 
endurance limits after 2 × 106 cycles, along with the values of their 
inverse slopes. The parameters of these mean curves are then utilized to 
assess statistical significance of the data sets. The significance test- 
statistics for variance, slope, and intercept, calculated using gross 
stress amplitudes for all materials, are summarized in Table 2 by 
employing equations (18), (19) and (24). In this table, a negative entry 
indicates that the calculated test statistic is smaller than the critical 
value or the p-value corresponding to the chosen level of significance. 

As depicted in Table 1, the anticipated notch effect was evident in the 
fatigue data sets [6,7], with the endurance limit decreasing upon the 
introduction of the notch. Statistical significance is observed in the 
characteristic test value retention when comparing each notch with the 
plain fatigue data, notably due to a change in slope. Upon examination 
of the variances of the S_1 mm and S_2 mm data sets, along with their 
inverse slopes, it becomes apparent that the two data sets are statistically 
insignificant when considered together. However, the mean curves 
representing these data sets do not lie on the same plane and are not 
collinear. Therefore, it is concluded, with a 95% confidence level, that 
these data sets cannot be represented by the same line, indicating sta
tistical significance. Similarly, S_1 mm and S_3 mm data sets exhibit 
statistically insignificance in variance and inverse slope. However, their 
mean curves are not collinear, leading to the conclusion that these two 
data sets are also statistically significant. The same pattern is observed 
with the S_2 mm and S_3 mm data sets, confirming their statistical sig
nificance. Given that these fatigue data sets were generated by testing 
specimens with different notch radii, the t-test statistical analysis proves 
capable of detecting changes in the geometry of these notches for steel 
specimens. 

Considering the brass specimens, Fig. 5 provides a summary of the 
data sets at a 95% confidence level and a 95% probability of survival. 
Similar to the steel specimens, the data sets in Table 2 show that the 
fatigue properties change with the introduction of notches and are 
deemed statistically significant with changes in the slope being more 
statistically significant. Comparing the notched specimens amongst 
themselves also shows statistical significance due to the absence of 
collinearity between each pair of data. This lack of collinearity is evident 
from the positive characteristic test values, indicating that the difference 
in intercepts for each curve exceeds the characteristic value at the 
chosen probability. Therefore, the statistical test analysis effectively 
detects changes in geometry within the brass fatigue data sets. 

For cast iron specimens, the statistical significance test does not 
indicate any changes upon the introduction of a 1 mm notch geometry. 
This finding aligns with the explanation provided in Refs. [38,39] 
regarding the low sensitivity of cast iron to notches. Additionally, sta
tistical significance is only observed in the notched specimens due to 
collinearity, as will be further elucidated. Fig. 6 illustrates the scatter 
bands for any two data sets for cast iron at a 95% confidence level and a 
95% probability of survival, utilizing gross stresses. The results of the 
statistical test analyses for significance are summarized in Table 2. 

As observed from the test statistic values for cast iron, the data sets 
from cast iron specimens with 1 mm and 2 mm notches, and using gross 
stresses, the spread in these data sets suggest that they are insignificant 
and drawn from the same population. The inverse slopes of these sets are 
also statistically insignificant. However, the mean curves representing 
these datasets are not collinear, indicating statistical significance. 

Similarly, for data sets from specimens with 1 mm and 3 mm notches the 
spread shows that they do not belong to the same population, even 
though the inverse slopes from these datasets are not statistically sig
nificant. In addition, the mean curves representing the data sets are not 
collinear. Therefore, it is reasonable to conclude that these datasets are 
indeed significant. In addition, specimens with 2 mm and 3 mm notches 
are also statistically significant because the mean curves representing 
both sets are not collinear. Thus, it is concluded that, by using gross 
stresses and statistical approaches, the data sets from cast iron are all 
significant. This approach has been able to verify that notches with 
varied geometry will have an impact on the fatigue property of cast iron 
even when some types of cast iron show less sensitivity to small notch 
radii as stated in Ref. [40]. 

The analysis was conducted by examining the mean curves derived 
from the compared data sets. If the stress levels, considered in gener
ating fatigue data during testing, are statistically insignificant, their 
mean stress levels should also be statistically insignificant. Ref. [30] 
recommends performing a check for statistical significance only for 
stress levels around the mean stress levels during testing. In this sce
nario, the variance and slope test statistics are calculated using equa
tions (18) and (19) respectively, while equation (24) is adjusted for 
checking collinearity, as follows: 

t(δ)=
⃒
⃒C0,1 − C0,2

⃒
⃒

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⎡
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⎤
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√
√
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√

se

(25) 

In which C0,1 and C0,2 are the estimated intercepts of the regression 
lines through the two data sets and se is the estimate of the common 
variance of the two data sets defined by equation (17). By applying this 
to the experimental data, Table 3 summarises the significance test 
conclusions arrived at. The results in this table show that restricting the 
stress range to a narrow region around the mean stress field for the 
statistical significance tests, the endurance limit must only change by 
approximately 36% (see Table 1) to indicate a potential statistical sig
nificance within the fatigue data sets. Therefore, restricting the statis
tical significance analysis to only sections of the data sets will result in 
conclusions about significance that are not consistent with the fatigue 
properties revealed by the entire data set. One explanation for this is the 
Kt which is around 3 in this case. In the medium/low cycle fatigue 
regime, the elastic peak stress is larger than the yield stress. 

5.4. Application of parametric test analysis of data sets from literature 
(insignificance) 

Notch parameters have a significant impact on the fatigue strength of 
materials. However, what if parameters that have a lesser influence on 
the material’s fatigue strength are considered? In such cases there might 
be minimal change in the fatigue strength when these parameters are 
utilized. To investigate this scenario, we analysed data from the litera
ture to highlight situations where fatigue data sets become insignificant. 
Consider the data in Ref. [41], in which the data sets were generated by 
testing plain specimens with two types of surface finishes: a 
smooth-polished surface finish and a hot-forged surface finish with 
different levels of hardness. These data sets were used to evaluate and 
quantify forged surface finish effect at several hardness levels. It should 
be noted that this project is only interested in using the data sets pro
duced in this reference rather than reviewing the research reported 
therein. 

The data set considered in this case is shown in Ref. [41] of this 
reference for as-forged in bending and as-forged in cantilever testing. 
This data is summarized in Table 4, while the overlapping scatter bands, 
from the S-N curves plotted at confidence level of 95% with a probability 
of survival of 95%, derived from this data set is as shown in Fig. 7. 
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The analysis for this pair of data sets is summarized in Table 5 and it 
clearly shows that the difference in the data set is statistically insignif
icant at a level of 5%. These two data sets can be seen as drawn from the 
same population, despite the difference in the endurance limits extrap
olated at 2 million cycles. In this example, the endurance limits differ by 
about 3%. Because the data sets are insignificant, it can be concluded 
that there is no difference in the fatigue behaviour of the forged surface 
finish in rotating bending and cantilever bending. 

It can be observed that if there is a case of statistical insignificance 
observed when evaluating both the entire S-N curves, the same holds 
true when examining stress levels around the mean stress levels 
considered during testing for both data sets. 

6. Discussion 

In this investigation it has been established that statistical tests can 
be used to compare different fatigue data sets by assessing the signifi
cance of differences and test hypotheses under varying conditions. By 
using gross stresses, it has been inferred that no geometrical information 
is attributed a priori to each data set. The results have shown that the 
fatigue data sets are statistically significant and thus have been gener
ated from specimens with different geometries. Indeed, the data sets 
have been generated from specimens with different notch dimensions, 
root radius. 

Thus, parametric analysis employs a well-established statistical 
method that provide robust conclusions based on the level of signifi
cance. This greatly helps in making informed decisions between about 
fatigue data sets for design purposes. It offers an objective way to assess 
the significance of differences in fatigue properties by reducing subjec
tive biases in interpretation of results. It is data driven, consistent, and 
efficiently handles all the parameters that define the mean curve and 
further offers a more comprehensive assessment of the fatigue behaviour 
as opposed to visual assessments. When utilized accurately, parametric 
analysis helps minimize errors that might arise from misinterpreting 
data or drawing conclusions solely based on visual observations. 
Furthermore, this analysis has demonstrated a comprehensive approach 
that can be used to determine the feasibility of merging fatigue datasets 
from various sources for enhanced reliability. This approach aims to 
minimize the time and cost associated with conducting fatigue experi
ments, as well as comparing the impact of specific characteristics on the 
mechanical properties of a material. Some of these characteristics may 
include surface finish, environmental impacts or conditions, curing, 
machining, etc. This is important because more data increases the level 
of reliability and fatigue experiments are costly and time consuming. 
Using data sets from a variety of sources will reduce the cost in time and 
money. More so, in the case of fatigue data sets used in the very high 
cycle fatigue regime, where a substantial amount of data are needed to 
establish distributions at each stress level, this process becomes espe
cially valuable. In addition, this statistical parametric analysis approach 
of fatigue data sets will assist in determining whether the differences 
observed in fatigue behaviour of are due to chance, material properties, 
or the conditions in which the data were collected. This approach aids in 
understanding what causes variations in fatigue behaviour and whether 
they have meaningful reasons behind them. 

However, when dealing with ferrous metals lacking a fatigue limit, 
the comparison of data sets is influenced by the stress range considered 
in generating the data sets. Stress levels significantly distant from the 
mean stress are more susceptible to the collinearity condition. 
Restricting the analysis to the vicinity of the mean stress can result in 
different conclusions regarding significance levels compared to situa
tions where stress levels far from the mean stress are involved. 

7. Conclusion 

This paper has clarified and substantiated the application of para
metric statistical analysis for identifying disparities in specimen 

geometry. The method proves effective in detecting even small geo
metric alterations through the analysis of data set behaviour. However, a 
notable challenge lies in determining the significance of changes in ge
ometry, particularly when monitored using significance levels. Never
theless, this approach remains valuable as long as a clearly defined 
significance level is employed. 

It is concluded that:  

• Parametric analysis can detect changes of 1 mm in the geometry of 
specimens used to generate data sets.  

• The mean points of fatigue data sets influence statistical parametric 
analysis. Parametric analysis for two or more mean S-N curves is very 
effective for stress ranges near the mean stress. Thus, using the 
analysis for points extrapolated far off from the mean stress consid
ered during testing can lead to misleading or erroneous conclusions.  

• Collinearity stands out as the most influential factor in establishing 
statistical independence. When S-N curves exhibit collinearity, it 
indicates that the precision of the estimated coefficients in the 
common S-N curve diminishes due to inflation in the variance and 
standard error of the coefficient estimates. This reduction in preci
sion weakens the statistical power of the final S-N curve, thereby 
decreasing its reliability. Although this issue can be addressed by 
considering variance inflation factors, it is not applicable in this 
context since the various parameters determining changes in the data 
sets cannot be determined a priori. Therefore, it falls beyond the 
scope of this paper. 
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