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Abstract: Deep learning has revolutionized medical image analysis, offering the possibility of auto-
mated, efficient, and highly accurate diagnostic solutions. This article explores recent developments 
in deep learning techniques applied to medical imaging, including Convolutional Neural Networks 
(CNNs) for classification and segmentation, Recurrent Neural Networks (RNNs) for temporal anal-
ysis, Autoencoders for feature extraction, and Generative Adversarial Networks (GANs) for image 
synthesis and augmentation. Additionally, U-Net models for segmentation, Vision Transformers 
(ViTs) for global feature extraction, and hybrid models integrating multiple architectures are ex-
plored. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) process 
such as PubMed, Google Scholar and Scopus databases were used. The findings highlight key chal-
lenges such as data availability, interpretability, overfitting, and computational requirements. While 
deep learning has demonstrated significant potential in enhancing diagnostic accuracy across multi-
ple medical imaging modalities—including MRI, CT, and X-ray—factors such as model trust, data 
privacy, and ethical considerations remain ongoing concerns. The study underscores the importance 
of integrating multimodal data, improving computational efficiency, and advancing explainability to 
facilitate a broader clinical adoption. Future research directions emphasize optimizing deep learning 
models for real-time applications, enhancing interpretability, and integrating deep learning with ex-
isting healthcare frameworks for improved patient outcomes. 

Keywords: artificial intelligence; artificial neural networks; medical image analysis; deep learning; 
image classification and pattern recognition 
 

1. Introduction 
The use of imaging for diagnosis in healthcare is substantial, amounting to about 100 billion 

dollars globally per year [1]. Mounting pressures on the healthcare facilities and the market for imag-
ing diagnosis have led to increasing demands for diagnostic excellence in the clinical setting due to 
rising number of clinical images, image complexities and faster results, as demanded by clinicians. 
As a result, the need for new technologies is centred around providing solutions that will increase 
the effectiveness of the clinical process, improving the healthcare systems and provide accurate di-
agnosis for the patients, while improving care quality. Therefore, there have been high demands for 
technologies that can aid the automation of workflows associated with the use of medical imaging 
for diagnosis, leading to advances in the use of artificial intelligence (AI) methods such as deep learn-
ing to assist radiologists in analysing complex image datasets [2]. 

1.1. Deep Learning Overview 

Deep learning is a subfield of machine learning which leverages the artificial neural networks 
(ANN) architecture to acquire knowledge from large datasets and perform intricate operations. One 
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of the main advantages of deep learning techniques is their ability to mimic the information pro-
cessing complexity of the human brain [2,3]. The field has been a studied since the 1980s but gained 
prominence in recent years. This is because of access to large datasets for model training, improved 
algorithm development and increased processing power of microprocessors. The structure of an 
ANN is an interconnection of nodes (sometimes referred to as processing elements or neurons) which 
can span up to multiple layers, depending on the intricacy of the tasks and capabilities of hardware 
resources. Each node gathers information from the previous layer and then transmits to the subse-
quent layer based on the configured characteristics and set parameters. The values of the parameters 
used are normally initially randomised but then iteratively updated during training based on a set 
learning rate [4]. A deep learning network extracts deeper and intricate information as its number of 
architectural layers increases, resulting in optimized performance with large datasets and training 
iterations. This in turn ensures precisive recognition of patterns in the data [3]. 

1.2. Deep Learning in Medical Imaging, Classification and Segmentation 

Deep learning has seen extensive applications in medical image analysis. It has been used for 
different medical image modalities including X-ray radiographs, CT and MRI scans to provide pre-
dictive diagnosis and treatment. Subtle and intricate patterns presented by these medical images are 
effectively identified by the adapted deep learning approach, thereby providing a means to automate 
the feature extraction process. Image feature extraction or selection is a process that can be performed 
manually by a qualified specialist, but this can be time consuming and subjective. When deep learn-
ing models are properly trained, they have an ability to accurately identify lesion or tumours, exam-
ine membranes and tissues for differences and do diverse medical related tasks thereby providing 
accelerated diagnostic outcomes. Therefore, deep learning is emerging into the realm of medical im-
ages analysis assisting with diagnosis. A summary of deep learning applications is shown in Figure 
1. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. A summary of deep learning usage with medical images. 

1.3. Challenges in Utilizing Deep learning in the Medical Field 

Despite the significant advancements and capabilities of deep learning techniques in medical 
image analysis, there are certain limitations and challenges in their implementation and acceptance. 
For instance, most deep learning algorithms often lack explainability, i.e., they typically operate as 
black boxes [5]. In the medical field where decision making processes are required for diagnosis and 
provision of treatment, the deep learning method of convolutional neural network (CNN), for in-
stance, does not provide an insight into the manner it came up with a decision. Other challenges that 
applications of deep learning techniques can face include:  
• Overfitting: This causes poor accuracy by the deep learning artificial neural networks in recog-

nising images not included in the training set (i.e., the unseen images) even though the images 
in the training set were accurately recognised. Overfitting has several causes that include insuf-
ficient training imaging examples and excessive model parameters for the architecture. 

Medical imaging modalities: x-ray radiograph, CT, MRI, etc 

Image enhancement Image segmentation 

Feature extraction or selection 

Segmentation Localisation Classification Anomaly detection Registration 
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However, there are techniques that could be valuable to deal with overfitting occurs in con-
strained training data set scenarios. These include the drop out technique whereby some nodes 
in the architecture are temporarily left out during training [6]. Another approach is to artificially 
extend the training data set through a process known as data augmentation [7]. 

• Image annotation: Many deep learning algorithms are supervised, i.e. they require labelled im-
ages indicating their categories during their training phase. The labelling requires annotation of 
images by qualified medical practitioners. Because deep learning requires large data for training, 
this process can be time consuming. 

• Noisy images: Medical images can be noisy. This distorts the quality of images being used to 
train the deep learning networks. 

• Image variations: Different medical imaging equipment can cause variations in the quality of 
the image they produce that can cause inconsistencies during training.  

• Privacy and ethics: There are concerns around ethics and privacy if the medical images are not 
properly anonymised.  

• Trust: There is an ongoing issue around relying on critical medical diagnostic results generated 
by when the manner of their generation is not sufficiently transparent [4]. 

• Computational requirement and environmental issues: training deep learning algorithms typi-
cally require high computational ability and long durations. Many general-purpose computers 
do not have the means of delivering the required computational resources and there is also the 
issue of the environmental aspects of using so much electrical energy to perform the required 
deep learning training.   

This article explores deep learning techniques for medical image analysis, highlighting their 
roles in assisting diagnostic tasks. It examines CNNs for classification and segmentation, recurrent 
neural networks (RNNs) for sequential data, autoencoders for feature extraction, and generative ad-
versarial networks (GANs) for data augmentation. It also discusses U-Net models for segmentation, 
vision transformers (ViTs) for long-range dependencies, and hybrid models that integrate multiple 
architectures. Different algorithms and their architectures are discussed. The associated mathemati-
cal models to demonstrate the manner different image modalities operate are presented. The study 
emphasizes the transformative impact of deep learning in medical diagnostics and suggests future 
improvements in efficiency and interpretability. In the following sections the materials and methods 
are explained, and the results are discussed. 

2. Materials and Methods 
A systematic review was undertaken to explore the latest developments in deep learning ANNs 

for analysing medical images. As this field is growing with many related articles published daily, a 
rapid review approach was undertaken [6]. The necessary constraints and criteria for inclusion were 
used when searching for literature that provided information about recent deep learning techniques 
used for medical image analysis. The following keywords were combined as part of the literature 
search “deep learning” and “medical image analysis”. We also included image modalities and used 
“OR” and “AND” operators as illustrated below: 

“Deep learning” AND “Medical image analysis”  
“Deep learning” AND “Medical image analysis” OR “CT”   
“Deep learning” AND “Medical image analysis” OR “MRI” 
“Deep learning” AND “Medical image analysis” OR X-ray” 
“Deep learning” AND “Medical image analysis” OR “Infrared Thermal Image” 
The search was performed on different scientific databases including Scopus, PubMed and 

Google Scholar and the inclusion and exclusion criteria as shown in Figure 2. The image modalities 
are shown in Figure 3.  
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Figure 2. Inclusion and exclusion criteria of the systematic literature review using PRISMA framework. 

 
Figure 3. Count of image modalities on a section of articles included in the review. 

We examined each article mainly focussing on the deep learning techniques deployed and the 
image modalities adopted. The articles that did not report either a deep learning algorithm or a med-
ical imaging modalities were excluded. The remaining articles were then filtered to include the deep 
learning techniques in whole or in part as many works used a combination of deep learning tech-
niques. The categories included were: CNN, RNN, autoencoders, GANs, transfer learning (TL), ViTs 
and hybrid models. We also considered studies that combined multi-deep learning algorithms, i.e. 
hybrid systems further refined our search to include the terms “Hybrid”. For completeness, a sum-
mary description of each of method is included as part of the review. As CNN architectures were 
widely deployed, mostly with other deep learning techniques, we further narrowed the search terms 
to include only publications that specifically used CNN by updating the search terms to include: 
(“Convolutional neural network” AND “Medical image analysis”) OR (“CNN” AND “Medical im-
age analysis”).  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 April 2025 doi:10.20944/preprints202504.0449.v1

https://doi.org/10.20944/preprints202504.0449.v1


5 of 27 

Over 500 different studies were first identified across the databases during the initial criteria 
with some duplicated across the databases, especially in PubMed and Google Scholar. After applying 
all the constraints, this was refined to 129 articles that was eventually reviewed in this study. The 129 
articles were distributed over all the identified categories, and these were based on the applied con-
straints. We have included a broad imaging modality. The focus was to identify the deep learning 
techniques most suitable for medical imaging tasks, the processes employed to improve the monitor-
ing and diagnosis performance of the deep learning techniques, and the optimisation performed.  

3. Results 
This section contains an overview of deep learning neural network concepts. 

3.1. Convolutioal Neural Network 

The CNN were the dominant technique for analysing medical images for diagnostic purposes 
[7]. It has gained immense popularity since 2012 when high performance computing (HPC) became 
more accessible. This led to the ImageNet competition for different combination of the deep CNN 
networks to achieve better diagnostics results when compared to the human experts. CNN has been 
effective for several tasks such as image segmentation, detection, registration, localisation, and clas-
sification [5]. They consist of numerous layers of convolutional filters with nonlinear activation func-
tions, combined with pooling layers, dropout layers and fully connected layers. Their ability to ex-
tract complex spatial relationships and patterns in images has seen them used in various medical 
imaging modalities such as magnetic resonance imaging (MRI), computed tomography (CT), X-ray 
radiographs, ultrasounds (US), histopathology and more recently in infrared thermal imaging (IRT) 
[8]. The images associated with multiple diseases have been segmented, classified, registered and 
interpreted, ranging from bone fractures, cancer, liver diseases, pneumonia, Covid 19, etc. The CNN 
architecture applied to the discrete Fourier transformed infrared thermal images is shown in Figure 
4 [10]. Although the study was a pilot, the model was effective in screening wrist fracture in children. 

 

Figure 4. An example of CNN used for the analysis of infrared thermal images [8]. 

The concept of convolution is simply a mathematical operation where a filter, also known as 
kernel, is applied on an input image for feature extraction. The convolution process is described 
mathematically next. Let the input image to the CNN be represented by a 3D matrix such that 𝑋 ∈  ℝு×ௐ×஽      (1) 
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where 𝐻 is the height of the image, 𝑊 is the width of the image and 𝐷 is the depth of the image (it 
represents the number of channels which is usually 3 for an RGB image). When applied to a set of 
convolutional filters for each input, the output of the convolutional filter can be represented by: 

                                𝑍௜,௝,௞ = ෍ ෍ ෍ 𝑋௜ା௛,௝ା௪,ௗ஽
ௗୀ଴ . 𝐾௛,௪,ௗ,௞ௐೖ

௪ୀ଴
ுೖ

௛ୀ଴  (2) 

where 𝑍௜,௝,௞ is the output feature map for the filter 𝑘 at position (𝑖, 𝑗), 𝐾 is the convolutional filter 
(kernel) 𝐻௞, 𝑊௞ are the height and width of the kernel which is usually a sample of the size of the 
input. This process helps to identify local patterns such as the edges, shapes and textures from the 
input image.  

When the CNN algorithm is used for classification purposes, it is combined with other layers 
such as the activation layers, pooling layer and the fully connected layer. The output from the con-
volutional filter is passed through an activation function 𝐴௜,௝,௞. If the rectified linear unit (ReLU) acti-
vation function is applied, the output from the convolution layer becomes: 𝐴௜,௝,௞ = 𝑚𝑎𝑥൫0, 𝑍௜,௝,௞൯ (3) 

This operation helps to add nonlinearity by ensuring only positive values are retained thereby 
helping to learn complex patterns from the image. 

The pooling layer is then applied to the output of the activation layers. The effect of the pooling 
operation is to reduce spatial dimensions from the convolution operation thus help the network to 
capture small translations in the image. This process also helps to reduce the computational complex-
ity of the network. Assuming the max (maximum) pooling function is applied to the activation layer, 
with a 𝑝 × 𝑝 window size, the output from the pooling layer is represented by:         𝐴௜,௝,௞ =  𝑚𝑎𝑥௛,௪∈[ଵ,௣]  𝐴௜ା௛,௝ା௪,௞ (4) 

The fully connected layer is connected to the output of a flattened max pooling layer output. This 
layer takes a vector value and is a standard neural network with each input connected to all the neu-
rons in the next layer. The output of the fully connected (FC) layer is given by:   𝑍௟ = 𝑊௟𝐴௟ିଵ + 𝑏௟ (5) 

where 𝐴௟ିଵ is the input into the FC layer and 𝑊௟ and 𝑏୪ represent the weights and biases of the FC 
layer. The final or output layer which is also a vector is mostly passed through a SoftMax function 
for a classification task. This function helps to convert the output classes into probabilities with the 
following expression: 𝑦పෝ =  𝑒𝑥𝑝 (𝑍௜)∑ 𝑒𝑥𝑝 (𝑍௝)஼௝ୀଵ  (6) 

where 𝑦పෝ  represents the probability of predicting the class 𝑖, and 𝐶 represents the total number of 
classes being differentiated. The full CNN network undergoes training to correctly learn the features 
of the image input. This training uses a loss function, usually a cross-entropy loss when considering 
a classification task. The cross-entropy loss is given by: 

𝐿 =  − ෍ 𝑦௜ 𝑙𝑜𝑔(𝑦పෝ)஼
௜ୀଵ  (7) 

where 𝑦పෝ  and 𝑦௜ is the predicted probability for class 𝑖 and the target label respectively. 
The gradient of the loss function is calculated with respect to the weights through back propa-

gation formula, ∂L∂W =  ∂L∂Z . ∂Z∂W (8) 

The weights are updated using the gradient descent, i.e.,  
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 𝑊௡௘௪ =  𝑊௢௟ௗ −  𝜂 𝜕𝐿𝜕𝑊 (9) 

where 𝜂 (0 < 𝜂 ≤ 1) represents the learning rate controlling convergence rate. 

3.1.1. Literature Review Findings for CNN  

Most studies have used CNN individually while there were studies that applied it in combina-
tion with another algorithm such as UNET and GANs for medical image diagnostics. However, in 
this section the focus is on CNN application on its own. A lightweight CNN algorithm was used to 
detect Covid-19 from chest X-ray radiograph images [9]. Their proposed CNN network was inspired 
by the ResNet model [10] in which all layers were not connected in sequence, creating a skip connec-
tion whereby neurons in a particular layer can be connected to another neuron further ahead. This 
arrangement helped to create a lightweight model that was effective in edge detection applications. 
Their study was compared with other CNN models such as CVDNet and Deep GRU-CNN and 
showed a similar performance with the models compared with a reduced computational complexity. 
A deeper CNN in their work was proposed that used CT scans and X-ray radiographs for the detec-
tion of several pulmonary diseases including Covid-19 and viral pneumonia [11]. They used varied 
datasets, consisting of different image modalities for their work which provided another dimension 
of the efficacy of CNN in diagnostic imaging. They proposed a 26-layer deep CNN network which 
was inspired by a wide residual network (WRN) [12]. It provided a faster training time when consid-
ering the deep nature of the architecture. This was achievable based on the sophistication of their 
hardware. Their model was effective in terms of the accuracy in detecting the different pulmonary 
diseases when compared to the traditional methods. A CNN model was used to classify ultrasonic 
images of fatty liver [15]. A pertinent problem in their research was the similarity in the pathological 
ultrasonic images used for training the CNN algorithm. This sort of challenge might pose a problem 
for the CNN architecture as it may struggle to extract distinct features for the different pathological 
images. Therefore, there will be a need for deep convolution layers leading to computational com-
plexities. They however used pixel-level feature extraction as a preprocessing step and then proposed 
a CNN architecture comprising of two convolutional layers, a pooling layer and a fully connected 
layer. They also experimented the proposed method with a skip connection and improved the accu-
racy when compared to other algorithms such as VGGNet. 

3.2. Recurrent Neural Network  

Recurrent neural networks (RNNs) are another class of neural networks that have gained signif-
icant research consideration for modelling of sequential data. Their variability of the length of their 
input and output also makes them suitable for natural language processing tasks [1]. A RNN has an 
internal memory unlike feedforward networks which helps to keep memory of the hidden states 
across different time stamps. In RNN, there is a feedback loop between the outputs of the hidden 
layers [13]. This arrangement allows the RNNs to learn sequential patterns, making them suitable for 
tasks such as time series prediction and video analysis [14]. RNN architecture normally suffers from 
the issue of vanishing gradients [15]. Their use transcends sequential and textual data. They can also 
be applied to image modalities with time-series characteristic information such dynamic imaging in 
functional MRIs to monitor progress of disease in a patient and to check how they respond to treat-
ments. This functionality has been made popular by a variant of the network known as Long Short-
Term Memory Network (LSTM). The LSTM works by introducing self-loops to allow for the flow of 
gradients for long durations [16]. The recurrent structure of the neural network is always enforced by 
the LSTM by introducing gating functions on the neurons in the hidden layer. The architecture of the 
RNN is shown in Figure 5.  
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Figure 5. Structure of the RNN [14]. 

The mathematical representation of RNN is described next. Let the sequential input to the RNN 
at time step 𝑡 be 𝑥௧ where 𝑥௧ ∈ ℝ௡ is a vector. Hence the input sequence becomes   𝑥ଵ, 𝑥ଶ, … . , 𝑥் (10) 

where 𝑇 represents numbers of time steps in the sequence. For every time step 𝑡 , a hidden state (ℎ௧) is maintained. Each hidden state is updated as  ℎ௧ = 𝑓(𝑊௛௛ℎ௧ିଵ + 𝑊௫௛𝑥௧ + 𝑏௛) (11) 

where 𝑊௛௛ represents the hidden states or recurrent weights, 𝑊௫௛ is the weight of the connection 
between the input layer and the hidden layer and 𝑏௛ is the bias for the hidden state. The function 𝑓 
represents the activation function, typically the ReLU or the hyperbolic tangent. To obtain the output 
of the RNN at each time step, the output from each hidden state is multiplied by its associated weights 
and added with a chosen bias vector. This is represented as 𝑦௧ = 𝑔൫𝑊௛௬ℎ௧ + 𝑏௬൯ (12) 

where 𝑊௛௬ represents the weight matrix between the hidden state and the output, and 𝑏௬ repre-
sents the output bias vector. The function 𝑔 is the activation function for the output, which could be 
task dependent. SoftMax activation function is mostly employed for classification tasks.  

3.2.1. Literature Review Findings for RNN  

RNN is widely used for machine learning or deep learning tasks that are time related. For image 
diagnosing, it can be used to monitor the disease progression and patient response to treatments, 
based on different time stamp that the images are being taken. Most works that have based their 
classification task on RNN, typically combined it with CNN for the feature extraction stage as shown 
in Table 1.  

Table 1. Recurrent neural network applications. 

Article Image Modality Task 

CNN 
feature 

extraction 
Disease/body 

part 
Variant 

used 
[17] MRI Classification Y Alzheimer’s BGRU 

[18] 
Histopathological 

images Classification N breast cancer None 
[19] MRI Classification/Segmentation N Brain tumour LSTM 
[16] MRI Segmentation Y Aorta LSTM 

[20] MRI Classification/Localisation Y 
Knee 

ligament LSTM 
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[21] IRT Classification Y 
Diabetes 
mellitus LSTM 

[15] CT Image Denoising N Lungs LSTM 
[22] MRI Registration Y Brain Cancer LSTM 

MRI images were used for classification of Alzheimer’s disease by analysing the longitudinal 
sequence of the MRI images taken at different time steps to measure the disease progression [17]. 
They combined CNN for feature extraction and RNN for classification. For the RNN architecture, 
they cascaded three bidirectional gated recurrent units (BGRU) with the inputs from the CNN net-
work at multiple points, providing a longitudinal analysis. RNN architectures can suffer from van-
ishing gradients when the sequence of the images becomes too long as they do not contain memory 
units to store sequences [23] , hence the reason for developing its variants such as LSTM and GRU. 
RNN can also be used on their own without the addition of gated memory units. An RNN was used, 
with slight modification, for the classification of breast cancer with microscopic histopathological 
image [17]. The RNN architecture was gain modulated using the honey badger algorithm (HBA) by 
updating the weights of the RNN during training. The capacity in which RNN was used in their 
study is for classification of different stages of breast cancer and not disease progression hence why 
the gated memory approaches were not used. RNN can also be used for image segmentation tasks, 
especially when the images of the part of the body are a moving part, requiring sequencing the time 
frame when image is taken for segmenting anomalies. An RNN-based LSTM model was proposed 
together with U-NET to label aortic MRI images [19]. This sort of tasks use the capacity of the RNN 
architecture being able to segment temporal images as most annotated images normally used for 
classification are static. The U-NET algorithm was combined with CNN for feature extraction with 
the sequencing part achieved with the RNN algorithm. The ability of the neural network to visualise 
the different thousands of images compared to the human makes the RNNs suitable for segmenting 
image labels for disease identification. RNNs can also been used to denoise diagnostic images. Images 
used for diagnosis can be susceptible to noise such as white, salt and pepper noise. A LSTM model 
was combined with particle swarm optimisation (PSO) algorithms to optimise the batch normalisa-
tion process of the RNN training to remove noise from CT images of the lungs [18]. The technique 
provided improved peak signal to noise ratio (PSNR) when compared to the traditional noise re-
moval techniques such filtering-based and diffusion-based techniques.  

3.3. Autoencoders  

Autoencoders are unsupervised learning models used for dimensionality reduction and feature 
extraction with minimal distortion when their input is compared to their output [24]. They play an 
important role in the deep learning paradigm for medical image analysis [25]. They can help denoise 
or compress medical images and are useful in anomaly detection, where unusual patterns in images 
indicate potential medical issues. They can also be used as a semi-supervised deep learning model to 
produce annotated data in situations where there is a lack of substantial amount of annotated dataset 
available for training any deep learning network for tasks such as classification or segmentation [26]. 
Their architecture consists of an encoder and decoder structure with a latent space to store the value 
of the compressed data. Both the encoder and the decoder comprise of a fully connected feedforward 
neural network. The encoder converts the input image into a low dimension compressed version, 
which is referred to as latent space or the encoder. The latent space contains only essential features 
of the input from the encoder and is kept as shallow as possible in terms of the number of neurons 
used to retain the compressed version of the input and computational efficiency. The encoder in turn 
transforms the latent space to a reconstruction of the input. A loss function is generally used during 
training to compare the input with its reconstruction [27]. The architecture of an autoencoder with an 
MRI image as its input is shown in Figure 6. 
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Figure 6. An Autoencoder architecture reproducing an MRI image. 

The mathematical representation for the dimensionality reduction function of the autoencoder’s 
encoder and decoder is described next. Let the input image to the encoder be represented by                                                                      𝑥 𝜖 ℝ௡                                                                             (13) 

The encoder in turn transforms the input 𝑥 into a lower-dimensional latent representation                                                             𝑧 𝜖 ℝௗ                                                                                   (14) 
where 𝑑 < 𝑛 . 

The transformation function that produced the latent information is given as: 
     𝑧 = 𝑓௘௡௖(𝑥) =  𝜎(𝑊௘௡௖𝑥 + 𝑏௘௡௖)                                                          (15)  

where 𝑊௘௡௖ 𝜖 ℝௗ ×௡ is the encoder weight matrix, 𝑏௘௡௖ 𝜖 ℝௗ ×௡ represented the encoder’s bias vector 
and 𝜎 represents the selected activation function of the encoder which is commonly ReLU or sig-
moid function. The latent representation 𝑧 of the input 𝑥 provides compressed information by only 
capturing the essential features of the input image, a feature referred to as bottleneck in which the 
dimension of the latent feature is smaller than the input vector. This facilitates the autoencoder to 
learn a better way to efficiently represent the input vectors. The decoder network tries to transform 
the latent space 𝑧 back to the reconstructed input 𝑥ො to match the input vectors 𝑥. The decoder func-
tion can be represented as thus: 𝑥ො = 𝑓ௗ௘௖(𝑧) =  𝜎ᇱ(𝑊ௗ௘௖𝑧 + 𝑏ௗ௘௖)                                                   (16) 

The loss function is used to minimize the difference between the input 𝑥 and the reconstructed 
input 𝑥ො. This difference is normally quantified by binary cross-entropy error (BCE) when the dataset 
is binary or Mean Squared Error (MSE) for multi-class data. 

The MSE loss computed with the following function    𝐿(𝑥, 𝑥ො) =  1𝑛 ෍(𝑥௜ − 𝑥ො௜)ଶ௡
௜ୀଵ                                                                    (17) 

And the BCE loss is computed as follows  𝐿(𝑥, 𝑥ො) =  − ෍[௡
௜ୀଵ 𝑥௜ 𝑙𝑜𝑔(𝑥ො௜) + (1 − 𝑥௜)𝑙𝑜𝑔 (1 − 𝑥ො௜)]                                       (18) 

Training of the autoencoder requires the finding of the parameters for the weights and biases of 
the encoder and decoder such that the reconstruction loss is minimised over the training data. Gra-
dient based optimization techniques such as stochastic gradient descent (SGD) or Adam can be used 
for this purpose. 
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Table 2. Autoencoder based techniques. 

Article 
Image 

modality Task 
Disease/ 

body part 

[26] MRI 
Augmentation/ 
segmentation Brain 

[28] MRI Denoising Prostate 
[29] CT + others Classification Face 
[30] CT Augmentation Various 

[31] MRI & CT Classification 
Intracerebral 
hemorrhage 

[32] 
X-ray/digital Histopathol-

ogy Anomaly detection Various 
[33] Single-cell images Classification Myeloid Leukemia 
[34] None Anomaly detection None 
[35] CT Classification Covid-19 
[36] MRI Denoising/classification Autism/Brain 

3.3.1. Literature Review Findings for Autoencoder  

Autoencoders are associated with both unsupervised and semi-supervised deep learning tasks. 
These tasks are normally preferred in the absence of ample annotated datasets required for deep 
learning activities especially in imaging analytics. Autoencoders are used to augment small number 
of annotated datasets often before a segmentation task. For example, a method known as GenSeg was 
proposed which combines the generative aspects of the autoencoders to generate the latent represen-
tation of the tumour cells from a labelled health image and using U-NET architecture to obtain the 
unique information of tumours present in the MRI images. There were also other related studies [30]. 
Noise reduction is another task that has benefitted from generative features of the autoencoder frame-
work. The fusion of Bayes shrinkage fused wavelet transform (BSbFWT) was proposed for noise re-
moval and an auto encoder block for generative a noiseless variant of an MRI image of prostate cancer 
[31]. As MRI images can be prone to Gaussian and Rician noise which is introduced during image 
capturing by the MRI device and the imaging environment. The effectiveness of their noise reduced 
generated images is measured using several parameters like values of peak signal to noise ratio 
(PSNR), mean squared error (MSE), structural similarity index metric (SSIM) and mean absolute error 
(MAE) which outperforms numerous traditional filtering approaches presented in their work. Auto 
encoders can also be used in classification tasks [29,31,33,35]. Autoencoders were used to mesh a fully 
convoluted network for a classification task [32]. They have proposed a Convolutional Mesh Auto-
encoder (CMA) framework for the classification of syndromic craniosynostosis (SC) of three known 
SC variants including Muenke, Crouzon and Apert disease in infants and adults using 3D computed 
tomography data (CT) images and others with very good percentage on evaluation metrices such as 
sensitivity, specificity and accuracy when compared to the human counterpart. These tasks were very 
critical as late and inaccurate diagnosis might prove irreversible, causing permanent damage to the 
brain. As indicated, an autoencoder which is infused with four convolutional layers for encoding and 
decoding was used for the construction of the face models from the CT images. Autoencoder were 
also used to detect complex anomalies presented in medical imaging [32,34,36]. Autoencoders were 
applied to chest X-ray and digital pathology images [35]. Abnormalities that are barely visible such 
as metastases in lymph nodes always proved difficult to detect as they resemble normal images in 
pathological slides. They proposed a deep perpetual autoencoder that learnt the shared patterns of 
normal images and content similarities with abnormal ones and restores them correctly. For evalua-
tion of their mode, they used the receiver operating characteristics (ROC) as it integrates the classifi-
cation performance of the normal and the abnormal class. Their models were also evaluated on non-
medical related images. Their model performed well with medical images when compared to non-
medical images making autoencoder suitable in medical imaging climes. 
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3.4. Generative Adversarial Network  

Generative adversarial networks (GANs) are groups of deep learning artificial neural networks 
that can be used for generating synthetic medical images, data augmentation, and improving image 
resolution. They are valuable for enhancing small datasets, which are common in medical imaging, 
and can also be used to create better training data for improving model performance. GAN uses an 
unsupervised learning algorithm and can be used for mostly semi-supervised and unsupervised 
learning [37,38]. A GAN network consists of two main parts, namely the generator (G) and the dis-
criminator (D). The generator, which comprises of a multi-layer perceptron (LP), learns the data dis-
tribution of the input image and produces a similar image to the input, also known as “fake data”. 
The job of the discriminator, which is also an MLP, is to discriminate between the generated image 
from the generator network and the input image. The result of this discrimination, which constitutes 
an error between the original input image and the generated image is fed back to the generator input 
to make the generated image more realistic i.e., closer to the original image. During training, the 
weights of the generator and discriminator are alternately updated, and the weights updates of the 
generator come from the discrimination error. Both networks are engaged in a competing optimiza-
tion process. This process continues until there is an equilibrium between the generator and the dis-
criminator networks [1,39,40]. The architecture of the GAN network is shown in Figure 7. 
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Figure 7. Structure of the GAN network [38]. 

The Generator (G) consists of an input noise vector 𝑧 such that 𝑧 ~ 𝑝௭(𝑧), where 𝑝௭ is a prior 
distribution which could be Gaussian. The output of the generator, which could be an image is rep-
resented by 𝐺(𝑧) and the objective is to maximize log (𝐷൫𝐺(𝑧)൯). The input to the discriminator (D) 
is the image data sample 𝑥 and the output of the generator network. The output to the discriminator 
is the probability that 𝑥 is real or fake. This is represented by 𝐷(𝑥)𝜖[0,1], where 0 represents fake 
and 1 represents real. The goal of the discriminator network is to maximize log (𝐷(𝑥) +𝑙𝑜𝑔൫1 − 𝐷(𝐺(𝑧)൯)). The discriminator loss ℒ஽ is given by 
        ℒ஽ =  −𝔼௫~௣೏ೌ೟ೌ[log 𝐷 (𝑥)] − 𝔼௫~௣೥ ቂlog ቀ1 − 𝐷൫𝐺(𝑧)൯ቁቃ                                          (19) 
 
where −𝔼௫~௣೏ೌ೟ೌ[log 𝐷 (𝑥)]  maximises the probability of correctly classifying the real data and 𝔼௫~௣೥[log(1 − 𝐷൫𝐺(𝑧)൯) minimises the probability of misclassifying the generated data. When both 
generator and discriminator are at a stable equilibrium, the combined minimax game function is de-
fined as 
           Minீ max஽ 𝔼௫~௣೏ೌ೟ೌ[log 𝐷 (𝑥)] + 𝔼௫~௣೥[log(1 − 𝐷൫𝐺(𝑧)൯)]                                     (20) 
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Table 3. GAN based techniques. 

Article Image Modality Task Disease/body part Variant used 
[37] MRI/Retina fundus Image synthesis - - 
[41] MRI Image resolution Brain Cycle-GAN 
[42] CT Image synthesis Covid Enhanced vanilla 
[43] X-Ray/CT Image Denoising Chest/Thorax CGAN 
[44] Various Image resolution Various Enhanced vanilla 
[45] - Image synthesis Skin cancer DCGAN 
[46] MRI/CT Image synthesis Head/Neck Vanilla GAN 
[47] MRI/CT Image resolution Bladder cancer Enhanced Vanilla 
[48] Retina Fundus/MRI Image resolution Various Vanilla GAN 
[49] CT/MRI Translation Thorax/brain CGAN 

3.4.1. Literature Review Findings for GAN  

Deep learning technique such as GANs can be used in medical imaging in two different ways. 
The generative network in GANs has been used for image synthesis purposes to generate synthetic 
datasets for tasks where there are limited annotated datasets, and using the discriminating networks 
of GANs for anomaly detection [38]. The quality of the generated synthetic images can be measured 
by the use of some qualitative metrics such as Fréchet inception distance (FID) which is a measure of 
similarities between the representations of the generated and the real input images, structural simi-
larity index measure (SSIM), which indicates the similarities of the structures (usually image contrast 
and brightness) and peak signal to noise ratio (PSNR), which are used to analyse the sensitivity of 
the generated image. PSNR is the most important metrics when dealing with medical images. Quan-
titative metrics used for generated image quality includes number of parameters (NoP), to represent 
the total number of trainable parameters in the GAN network, and floating points of operations 
(FLoPs), which measures the cost of computation of the network [37]. Most studies that have used 
GANs have however been used for imaged synthesis, image resolution, image translation, and image 
denoising. For example, a lightweight GAN (LEGAN) was proposed to generate high fidelity images 
from MRIs and retina fundus images [40]. Their technique boasts of fewer parameters used in the 
training process and lower FID when compared to other variants of the GAN networks such as 
CGAN, DCGAN, Pix2Pix and so on. To achieve this, they used a two-stage GAN to create a coarse-
to-fine paradigm which is necessary in generating images with a high sensitivity to the fine patterns 
of the original image. To lower the NoP, redundancy in the convolutional kernel was eliminated by 
using the principal components of a normally fully ranked convolutional kernel for feature extrac-
tion. The resolution of MRI images of the brain was improved by increasing the contrast using a 
variant of the GAN network known as Cycle-GAN to aid the segmentation of the MRI images [44]. 
To achieve this, they used the image-to-image translation technique to create a high tissue contrast 
(HTC) of the real image. The attention block of the Cycle-GAN used in this study helped in focussing 
on a single tissue and increasing the contrast within the tissue other works that have used GANs for 
medical image resolution includes [44]. For denoising tasks, GANs was used for denoising X-ray im-
ages using the CGAN variant of the GAN architectures [46]. They purposed to deal with the spatially 
varying noise, which is often overlooked when dealing with medical images. To achieve this, the 
gradient of original image was merged with the noisy image to obtain the conditional information 
for the CGAN network thereby enhancing the contrast. The convolutional layers of the generator 
were used in full for better feature extraction. For improved consistency between the real and fake 
images, the reconstruction loss was combined with WGAN loss to create an objective loss for the 
network. They obtained remarkable PSNR and SSIM performance when compared to other state-of-
the-art (SOTA) GAN architectures. 

3.5. U-Net  

U-Net architecture combines the best of CNN and encoder-decoder models, specifically for the 
purposes of segmenting medical images [50,51]. They have found applications in major medical image 
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modalities such as CT, X-ray radiograph and MRI. The U-Net’s ability to exploit small, annotated 
data samples (based on its fully connected layers) by leveraging data augmentation and improved 
feature extraction made it a valuable technique for medical image segmentation [51]. The U-shaped 
architectures with skip connections help to delineate objects in images, making it highly effective in 
medical image analysis, particularly in tasks like tumors detection, organ delineation, and segmen-
tation of medical images from various modalities and they have been widely embraced variants 
among the many different deep learning networks [52].  

U-Net architecture is mainly composed of two paths. The first path is referred to as the contract-
ing or encoder path. It uses a down sampling module that consists of several repeating convolutional 
blocks for semantic and contextual feature extraction. Each convolution block has two successive 3x3 
convolutions, ReLU activation functions and the pooling layer. The pooling layer serves to increase 
the receptive field of the convolution network with no extra burden of computing resources that 
might be introduced by an additional convolution block. The second path of the U-net is the expan-
sive path, or the decoder path and it is saddled with the task of up sampling spatial resolutions of the 
feature maps from the contracting path, usually by a factor of two. During this operation, the dimen-
sions of the features are reduced, and a pixel-wise classification/resolution score is produced. The 
expansive path is made up of a 2x2 transposed convolution layer (reversing the operation in the con-
tracting path), which is followed by a 3x3 convolutional layer and a ReLU activation function. There 
is also a bottleneck layer which serves as a connection between the two paths. It is also comprised of 
two blocks of 3x3 convolution layers and a ReLU activation function. The embedded skip connections 
in the bottleneck copy the output of each stage of the paths, helping to learn contextual and semantic 
representations in the deep and shallow layers respectively [51,53]. The U-Net architecture is shown 
in Figure 8. 

 

Figure 8. The architecture of U-net [54]. 

The encoders/contracting paths shown on the left-hand side of Figure 8 comprise several layers. 
Each layer 𝑙 in the encoder is represented by the function 
                                       𝑓௟ =  𝜎(𝑊௟ ∗ 𝑓௟ିଵ + 𝑏௟)                                                           (21) 
where 𝑓௟ିଵ represents input features from a previous layer, 𝑊௟, 𝑏௟ is the convolutional weights 
and biases and 𝜎 represents the activation function which is ReLU in most cases. 
The output of the encoder is normally max-pooled and can be represented as 
                                               𝑓௣௢௢௟௘ௗ௟ = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑓௟)                                                             (22) 
The output is then passed through the bottleneck layer which is another convolution function repre-
sented by  
                                          𝑓௕௢௧௧௟௘௡௘௖௞ =  𝜎(𝑊௕ ∗ 𝑓௅ + 𝑏௕)                                                          (23) 
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With 𝐿 representing the number of layers in the encoder/contracting path. The up sampling taking 
place in the decoder is performed via a skip connection at every layer on the encoder. So, each layer 
in the decoder up samples the feature map, concatenates the corresponding encoder features and 
applies convolution with the given function as 
                                  𝑓௨௣௦௔௠௣௟௘ௗ௟ = 𝐶𝑜𝑛𝑣𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑛𝑠𝑒൫𝑓௕௢௧௧௟௘௡௘௖௞௟ ൯                                     (24) 
                             𝑓௖௢௡௖௔௧௟ = 𝐶𝑜𝑛𝑐𝑎𝑡൫𝑓௨௣௦௔௠௣௟௘ௗ௟ , 𝑓௘௡௖௢ௗ௘௥௅ିଵ ൯                                                (25)                                       𝑓௟ = 𝜎(𝑊ௗ௘௖௢ௗ௘௥௟ ∗ 𝑓௖௢௡௖௔௧௟ + 𝑏ௗ௘௖௢ௗ௘௥௟ )                      (26)    
At the output layer, there is a 1x1 convolution layer that uses SoftMax activation to map the desired 
output segments and is represented below:                          𝑦 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊௢௨௧ ∗ 𝑓௅೏೐೎೚೏೐ೝ + 𝑏௢௨௧)                                                  (27) 
During training of the U-Net, the loss function used is usually the cross-entropy loss and it is nor-
mally applied pixel-wise. 

Table 4. U-Net Segmentation techniques. 

Article Imaging Modality Disease/Body Part Variant Used 
[55] CT Liver/ Lung Attention U-Net 
[56] CT hepatocellular carcinoma Enhanced U-Net 
[57] CT Liver Enhanced U-Net 
[58] MRI Brain Tumour None 
[54] MRI Brain Tumour Enhanced U-Net 
[59] Colour Fundus Diabetic retinopathy Enhanced U-Net 
[60] MRI Various/Musculoskeletal Enhanced U-Net 
[61] MRI Lower limb muscle Attention U-Net/SCU-Net 
[62] MRI Musculoskeletal Various 
[63] Various Various Enhanced U-Net (U-Net++) 

3.5.1. Literature Review Findings for the U-Net 

The U-Net is mostly used for segmentation tasks especially for segmentation of cancer for vari-
ous image modalities. Over time, there have been a lot of modifications to the vanilla U-Net model 
as different researcher has tried to enhance the different facets of the U-Net, ranging from the skip 
connections to modifying the convolutional layers with attention networks in a bid to increase seg-
mentation quality or reduce computational resource. A multi-level feature assembly MFLA U-Net 
was reported which is integrated with multi-scale information attention MSIA and pixel-vanishing 
attention mechanism [64]. This enhanced U-Net model was designed to boost segmentation perfor-
mance. Their model was tested on different medical imaging datasets with different modalities such 
as colonoscopy and dermoscopic images. They have used the dice index coefficients as a metrics to 
evaluate the effectiveness of their developed model in segmenting these images. Their model outper-
formed many state-of-the-art U-Net models on the datasets used for testing. A lightweight U-Net 
architecture was applied to on a publicly available brain tumour datasets (BraTs) to segment brain 
tumor [58]. The focus of the study was mainly developing a low resource U-Net framework which 
had a multimodal CNN encoder-decoder. They also excluded augmentation to reduce the computa-
tional demand of their network. Their model achieved a remarkable performance with dice coeffi-
cient values of up to 0.93 for specific classes they segmented when compared to other U-Net models. 
An enhanced U-Net model with minimal parameter was reported [54]. The authors achieved this by 
developing a framework known as Stack Multi-Connection Simple Reducing Net, otherwise known 
as SRNet. This network used fewer convolution operation in the down sampling and up sampling 
processes, which in turn helped to reduce the total parameter of the vanilla U-Net algorithm by 20%. 
They also modified the original architecture by ensuring the convolutional layers were not stacked, 
helping to reduce information loss. Their model was also tested with the BraTs dataset. They obtained 
matching results with popular variants of the U-Net model, also using the Dice coefficient parameters 
as an evaluation tool. The vanilla U-Net was modified for the purpose of improving the accuracy of 
segmentation [58]. They explored the weakness of the U-Nets models which only focues on 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 April 2025 doi:10.20944/preprints202504.0449.v1

https://doi.org/10.20944/preprints202504.0449.v1


16 of 27 

contextual information and neglects other useful features of the channel. The developed HDA-
ResUNet which combined the best of attentions mechanisms, U-Net and dilated convolution. They 
evaluated their model on ISI and LiTS segmentation datasets and achieved a good performance in 
terms of the dice coefficient. This model also used fewer parameters compared to the conventional 
U-Net. 

3.6. Transfer Learning  

Deep learning techniques are known to be computationally intensive, owing to the large number 
of trainable parameters available in their networks. These parameters increase substantially as the 
network deepens. Also, the availability of large amounts of annotated medical image datasets is 
scarce and it is a very important element in the use of deep learning for medical image analysis [65,66]. 
Transfer learning algorithms was developed to help solve these problems by providing a means to 
reparametrize an already trained large deep learning network. These networks are CNN based net-
works, trained on millions of images with different classes. The resulting learnt parameters are saved 
to be reused on other datasets. Some aspects of these networks are modified to suit the new dataset. 
Transfer learning involves using pre-trained deep learning models (e.g., ResNet, VGG, DenseNet, 
GogleNet, XceptionNet, AlexNet, Inception V3 and SqueezeNet) and fine-tuning them on medical 
images. Developing models when using transfer learning is performed in two stages: Initializing the 
weights and finetuning. During initialization of the weights, the weights of a previously trained 
model with a different dataset, i.e. (AlexNet – trained on ImageNet) as shown in Figure 9, are copied. 
When a new training dataset such as medical image in this case is used to train this model, the weights 
are updated. In the finetuning process, some of the CNN layers are frozen thereby the weights are 
not being updated. Another method of finetuning is freezing all the CNN layers barring the classifi-
cation layer that is adjusted according to the requirements of the medical image data. This technique 
is highly effective when the available dataset is small or specific to a particular medical condition. It 
reduces training time and improves diagnostic accuracy [67]. Transfer learning can be categorized 
into inductive, transductive and unsupervised learning based on data labels. They can also be cate-
gorized as homogenous and heterogeneous based on how consistent the dataset features and label 
between the source and target domain [68,69]. 

 

Figure 9. Structure of a transfer learning model – AlexNet [66]. 

The concept of transfer learning can be modelled mathematically as described next. The source 
domain be represented as 
                                               𝐷௦ = ቄ𝑥௦(௜), 𝑦௦(௜)ቅ for ,௜ୀଵேೞ                                                    (28) 

where 𝑥௦(௜) ∈  𝑋௦ is the input data from the source domain and 𝑦௦(௜) ∈  𝑌௦ represents the corresponding 
labels and 𝑁௦ is the number of samples. The target domain be represented as 
                                              𝐷் = ቄ𝑥(்௜), 𝑦(்௜)ቅ  for ,௜ୀଵே೅                                                    (29) 
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where 𝑥(்௜) ∈  𝑋் is the input data from the target domain and 𝑦௦(௜) ∈  𝑌௦ represents the corresponding 
labels 𝑁் is the number of samples, with the assumption that 𝑋௦ ≠  𝑋் or 𝑌௦ ≠ 𝑌  . The objective of 
the transfer learning function is to find a model 𝑓 (𝑥்; ∅்) that minimizes the loss in the target do-
main. If we represent the loss function by ℒ், then ℒ்can be defined as:                                                     𝐿் = 1𝑁் ෍ 𝑙(𝑓 (𝑥(்௜);ே೅

௜ୀଵ ∅்), 𝑦(்௜))                                                (30) 

where 𝑙 is the specific loss algorithm, which can be cross-entropy or mean squared error and ∅் is 
the target domains model parameters. The transfer learning process between the source and target 
domain takes two steps. We pretrain the model on the source domain, using the objective loss func-
tion given by the equation:                                                 𝐿௦ = 1𝑁௦ ෍ 𝑙(𝑓௦(𝑥௦(௜);ேೞ

௜ୀଵ ∅௦), 𝑦௦(௜))                                                    (31) 

The learned parameters ∅௦ from the source domain are transferred to the target domain by freezing 
the base layers, where ∅௦௕௔௦௘ fixed or by fine-tuning specific layers i.e., ∅௡்௘௪. 
The target domain overall model becomes:                             𝑓 ൫𝑥(்௜); ∅்൯ =  𝑓௦௕௔௦௘(𝑥்; ∅௦௕௔௦௘) + 𝑓௡௘௪(𝑥்; ∅௡்௘௪)                              (32) 
The learning process is then optimized by regularizing the losses. Therefore, a combined loss function 𝐿 given by                                                    𝐿 = 𝐿் + 𝜆 ∙ 𝐿௥௘௚௨௟௔௥௜௦௔௧௜௢௡                                                      (33) 
where 𝜆 is the regularisation weight and 𝐿௥௘௚௨௟௔௥௜௦௔௧௜௢௡ can be any term used for smooth transfer 
i.e., 𝐿ଶ-norm. 

3.6.1. Findings for Transfer Learning 
Transfer learning (TL) techniques are mostly applied for the classification of medical images as 

summarised by the studies listed in Table 5.  

Table 5. Summary of transfer learning techniques. 

Article Image Modality Disease/body part TL Variant/best Model 
[70] Histopathological Images Breast Cancer ResNet 50 
[71] MRI Brain Tumour Improved ResNet 50 
[72] MRI Alzheimer’s Various(EffiecientNet) 
[73] CT Pulmonary Nodules Various(DenseNet) 
[74] X-ray/CT Covid-19 Various(VGG 16) 
[75] MRI Alzheimer’s Modified ResNET 18 

This is because the networks they are learning from have been pretrained for classification as 
well. Several transfer learning models such as VGG16, DenseNet 121 and ResNet 50 were used for 
the binary classification tasks of X-ray radiographs and CT images of Covid-19 patients [74]. Most of 
the model parameters were frozen and the weights were not initialised. However, they were able to 
obtain very good results in terms of classification accuracy with VGG 16 model performing best with 
an accuracy of 99%. Transfer learning models like the models in [74] were compared and also a custom 
CNN was built from scratch to compare the efficacy of the TL process [79]. The models were however 
trained on different publicly available datasets with varying modalities, ranging from X-ray radio-
graphs to CT of different diseases including lung cancer and brain tumour. The initial convolutional 
layers of the TL networks used in their work was frozen and the weights of the top layers were up-
dated. The models were trained on all the datasets, and they obtained improved accuracy with the 
TL models with ResNet 50 showing the highest accuracy of 90% for the histopathological images. 
Transfer learning techniques were trained on the ImageNet datasets [80]. They pre-trained a novel 
hybrid DCNN model which combined convolutional layers with global average pooling for each 
layer with a skip connection in each of the convolution layers. The 200,000 augmented unlabelled 
data were sourced from different repository of biopsy breast cancer image datasets, and this was used 
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to train their DCNN model. The pretrained DCNN model was then used to classify annotated skin 
lesion cancer as benign or malignant based on the weights from their novel pretrained model. They 
obtained an improved accuracy when compared to other models that tested on similar datasets. A 
transfer learning model (ResNet 18) was used for the diagnosis of different stages of the Alzheimer's 
disease (AD) [78]. The ResNet model was fine-tuned by unfreezing all the layers, allowing for the 
ResNet 18 model to update all it weights based on the DICOM MRI publicly available datasets used 
in their study. They obtained high accuracies for the three different classes in the range of 99% and 
their model outperformed other related works that classified AD. 

3.7. Vision Transformers  

Despite the significant successes recorded in the enhancement of the diagnostic accuracy of deep 
learning models such as CNN, RNN and U-Net in the classification and segmentation of medical 
images, there have remained some limitations. Their reliance on localized feature extraction, leading 
to inductive bias and sequential operation, make them fall short when the medical imaging tasks 
requiring long range dependency and global feature extraction [76]. Although initially designed for 
natural language processing tasks such as sentiment analysis [77], machine translation and text sum-
marization [78], their ability to capture long range dependencies in image pixels helps to build a more 
robust segmentation/ classification model. Vision transformer is a relatively new deep learning ar-
chitecture that is increasingly being applied to medical imaging. Developed by Google in 2020, it 
performs segmentation or classification using the transformer architecture. The ViT creates a parti-
tion of the input images into multiple patches of 16x16 pixels and linearly embeds them. For the pixels 
to be suitable for the transformer architecture, they must be transformed into fixed-length vectors 
[79]. The self-attention mechanism represents the main feature of the ViT architecture as this forms 
the basis on the interaction between the pixel patches. It also uses positional encoding to represent 
the spatial location of the image patches. Feedforward layers, placed after the self-attention layers, 
are generally used in for making final decisions by the model [80]. The original architecture of the 
vision transformer is shown in Figure 10. 

 
Figure 10. Vision Transformer ViT architecture [81]. 

If we represent the input to the ViT model by an image 𝑋, then 𝑋 can be defined such that 
                                                          𝑋 ∈  ℝு×ௐ×஼                                                             (34) 
where 𝐻 and 𝑊 represent the height and width of the image respectively, and 𝐶 is the number of 
channels which is usually 3 for RGB images. The input image is divided into non-overlapping patches 
of size 𝑃𝑃, such that                                           𝑋௣௔௧௖௛௘௦ = ൛𝑥ଵ,𝑥ଶ, … . . , 𝑥ே,ൟ                                                                    (35) 
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where 𝑁 =  ு×ௐ௉మ  is the total number of patches and each patch is flatten as                                                                   𝑥ଵ ∈  ℝ௉మ.஼                                                                             (36) 
The patches are sent through the transformer encoder layers consisting of the multi-head attention 
layer, which computes the relationships between patches using the 𝐾, 𝑉, 𝑄 matrices (Keys, Values 
and Queries), which are computed as 
                                       𝐾 = 𝑍(௟ିଵ)𝑊௄, 𝑉 = 𝑍(௟ିଵ)𝑊௏, 𝑄 = 𝑍(௟ିଵ)𝑊ொ                          (37) 
where 𝑍(௟ିଵ)  is the positional patch embedding for each patch and 𝑊௄, 𝑊௏, 𝑊ொ is the learnable 
weights projection matrices, which have the same size as embedding space. This is then passed to the 
feed forward neural network (FFN) and a classification head for a classification task [82].  

3.7.1. Literature Review Findings for Vision Transformers 

Several studies used ViT and its variants including TNT, Swin, DeiT and PVT [82] for classifica-
tion, registration and segmentation of medical images. Just like the convolution-based transfer learn-
ing models, learnable parameters from transformer models such the ones listed above can also be 
used for specific DL tasks. For example, a pretrained Swin transformer was used for the classification 
of breast cancer using publicly available breast X-ray images [88]. The dataset was resized to fit the 
Swin transformer input size and augmentation was also performed to improve generalization. They 
achieved very high classification rates based on their selected metrics for evaluation with an accuracy 
of 99.9% and a precision of 99.8%. They compared their results with convolution-based TL algorithms 
(ResNet50 and VGG16) and found that the Swin transformer had a superior performance. MRI im-
ages of Ischemic strokes were classified using ViT by [83]. The vanilla ViT or ViT base used in the 
study also had limited fine-tuning and hyperparameters were adjusted to fit the datasets to be clas-
sified. They also augmented and resized the MRI images as preprocessing steps before deploying the 
ViT model. They achieved an impressive accuracy score of 97.59% when compared to VGG16 model 
used in a similar study, demonstrating the superiority of transformer models for classification tasks. 
Transformers were used for image registration tasks [90]. In their study, they developed the Trans-
Morph algorithm which is a hybrid transformer and convolution network. The network leveraged 
on the encoder/decoder architecture of transformers but instead of the attention mechanisms at the 
decoder, this was replaced with a convolution network. For the transformer network, they used the 
Swin variant due to its ability to extract feature maps at different resolutions by merging patch layers, 
making it suitable for the image registration task. The algorithm was tested on different image pair 
datasets comprising mainly MRI and CT modalities for registration purposes. They obtained very 
competitive results based on the Dice score evaluation when compared to both traditional and other 
DL methods used for similar tasks. 

3.8. Hybrid Models 

Most deployed deep learning methods use CNN as described in the preceding sections, with 
variants such as VGG, ResNet, LSTM, RNN, GAN and GRU all being used for different medical im-
age analysis. However, different authors have tried to combine the strength of some of the models to 
deal with the weaknesses of the others by combining them together and this forms the basis for hy-
brid models [3]. Some works have also combined different deep learning methodologies by focusing 
on the strengths of the methodologies. For example, a convolutional network’s strong local feature 
extraction has been combined with the long-range dependencies of transformers when performing 
medical analysis. 

3.8.1. Convolution-Based Hybrid Models 

A hybrid model of convolution algorithms was developed comprising SegNet, MultResUNet 
and Krill Herd Optimisation algorithm (KHO) to improve the segmentation of CT scans of liver lesion 
and RNA genome sequencing [91]. The SegNet framework provided the segmentation capacity of 
their model, utilizing pixel-wise classification through the Softmax layer. A CNN based architecture 
was employed with the MultiResUNet to handle the lesion segmentation, together with the SegNet 
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framework. The hyperparameters of the models, when optimized through the KHO algorithm, 
helped to improve the segmentation process. They tested their algorithm with a publicly available 
LiTs datasets and used evaluation metrics such as the Dice coefficient, F1-score and accuracy and 
obtained better results with F1-score comparatively higher than the models used for comparison. A 
hybrid model of convolutional methods involving RestNet and UNet model (ResUNet) was devel-
oped for the segmentation of liver and tumors using CT images [92]. Their ResUnet model focused 
on improving the available models by providing improved image contrast and segmenting irregular 
tumor shapes and small tumor sizes. The combination uses the best of ResNet’s residual connection 
and the UNet’s encoder and decoder structure to enhance feature learning, segmentation precision 
and efficiency. They also implemented various augmentation techniques such as rotation and reflec-
tion to increase the variability in their dataset. They achieved an accuracy of 99.6% and a dice coeffi-
cient of 99.2%. 

3.8.2. Convolution-Transformer Based Hybrid Models 

A hybrid model called TBConvl-NET that combines CNN, LSTM and ViT for the segmentation 
of several diseases was developed using publicly available datasets of different modalities such as 
ultrasound and MRI [93]. The hybrid model targeted some well-known challenges in segmenting 
medical images such as scale, texture and shape of pathology. Due to high computational resources 
required, they used a depth wise separable convolution, thereby reducing computational overhead. 
Swin transformer blocks were used in the skip connections to help deal with the varying scales of the 
data and help preserve semantic information. They used Dice index, accuracy and Jaccard index to 
evaluate their model and compared the developed model with other hybrid segmentation models 
and obtained improved results. A hybrid classification model that combines the transformer and the 
convolution model to improve the classification of skin lesion was developed using publicly available 
datasets [94]. They used the Swin-Unet architecture to perform image segmentation, leveraging self-
attention of the Swin transformer and robust hierarchical analysis of the UNet. They combined this 
with the Xception and ResNet 18 models for feature extraction to further improve on the image anal-
ysis. For hyperparameter tuning, a Hybrid Salp Swam Algorithm (HSSA) was used to obtain the 
optimal parameters, hence avoiding local minima during training. A gated recurrent unit (GRU) net-
work was used for the eventual classification. They achieved an accuracy of 94.51% and 95.38% on 
both datasets used in the study. Their model performed better when compared to TL models like 
AlexNet and ResNet18.  

4. Discussion 
In this article, an in-depth discussion of various deep learning methodologies used for medical 

imaging analysis was provided. These included Convolutional Neural Networks (CNNs), Recurrent 
Neural Networks (RNNs), Autoencoders, Generative Adversarial Networks (GANs), U-Net architec-
tures, Vision Transformers, and hybrid models. For each of these methodologies, some of the key 
findings were presented. 

CNNs are extensively used for medical imaging tasks like disease detection, classification, and 
segmentation and the most important contribution of the algorithm is the unrivalled feature extrac-
tion through convolutional layers, making them effective for tasks requiring spatial hierarchy. CNN 
models can be lightweighted in terms of computing resources as inspired by ResNet while also bal-
ancing the model performance. Deeper CNN architectures can be computationally expensive but can 
be very useful in multi-disease detection, for example in the classification and detection of COVID-
19 and viral pneumonia, achieving high accuracy due to advanced hardware. They can also be effec-
tive when the task includes a pixel-level feature extraction. Examples can be seen in its use in the 
classification of ultrasound image classification of fatty liver. RNNs, particularly their variants like 
Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), are suitable for sequential data 
tasks. Their ability to retain temporal dependencies is utilized in dynamic imaging and disease pro-
gression monitoring. RNNs which usually have convolution layers are effective for classification 
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tasks, with different imaging modalities, with MRI dominating. They were applied to detecting sev-
eral diseases such as Alzheimer’s disease and breast cancer. LSTM variants of the RNNs algorithm 
handle tasks like segmentation of temporal MRI images and noise removal in diagnostic images. 
Some modifications have also been applied to the RNN algorithm training, such as using the Honey 
Badger Algorithm (HBA) for optimisation of the model training parameters. 

Autoencoders are unsupervised models used for dimensionality reduction, anomaly detection, 
and data augmentation. Their encoder-decoder structure helps compress and reconstruct medical 
images with minimal distortion. Autoencoders are employed for image analysis tasks like segmenta-
tion and denoising and have been used with several image modalities for the analysis of different 
diseases. Enhancing autoencoders by fusing with wavelet transform can also help improve noise re-
moval from medical images. They can also be combined with convolutional networks to improve 
disease classification. GANs are used for generating synthetic medical images, data augmentation, 
and improving image resolution or quality. The main components of a GAN network comprise: a 
generator for creating synthetic images and a discriminator for distinguishing between real and gen-
erated images. GANs can be very computationally intensive due to the dual deep convolutional net-
works. Research around this area is focussed on reducing models’ parameters and maintaining per-
formance. Different variant of GANs have employed different image analysis tasks with each variant 
tuned to fit the specific tasks. 

U-Nets are specialised for medical image segmentation and have been widely adopted for tasks 
like tumour detection and organ delineation. The architecture combines encoder-decoder pathways 
with skip connections for improved feature representation. Different variants of the U-Net architec-
ture also exist to enhance the vanilla model, making them suitable for specific image modality while 
performing its main task of segmentation. Also, enhancements have been created to reduce model 
operating costs, while retaining the segmentation process. More recent studies have been adding 
transformers to U-Nets to further enhance segmentation accuracy. Transfer learning leverages pre-
trained models (e.g., ResNet, VGG, DenseNet) on large datasets and fine-tunes them for medical im-
aging tasks. They are mostly used for classification tasks models like VGG16 and ResNet50 perform 
well for COVID-19 classification, achieving very high accuracy on different image modalities. Some 
transfer learning models are quite deep with millions of parameters, making them very computation-
ally intensive. Custom hybrid models pretrained on unlabelled medical datasets have also been used 
to improve classification accuracy for skin lesions and breast cancer images, mimicking the transfer 
learning ideology. They provide an option in terms of computing resources and domain specific 
training and learning. ViTs are a relatively newer deep learning architecture, adapted for medical 
imaging tasks. They require global feature extraction and long-range dependencies. They divide im-
ages into patches and process them using self-attention mechanisms. ViT models can also be pre-
trained like most CNN models and the learning transfer for a newer task. Several variants have also 
been developed depending on the task. With larger training datasets, ViTs have shown to outperform 
CNN models when used for tasks with fewer annotated data.  

Hybrid models combine the strengths of multiple architectures (e.g., CNNs with RNNs, or 
CNNs with transformers) to improve medical image analysis. CNN-based hybrids like ResUNet 
combine ResNet’s feature extraction with U-Net’s segmentation capabilities. They were used widely 
for cancer related image segmentation. Convo-transformer hybrids, like TBConvl-NET integrate 
CNN, LSTM, and ViT for improved segmentation and classification of diseases. Hybrid models can 
also be optimised. The algorithm such as hybrid salp swarm algorithm (HSSA) could be used to ob-
tain the optimal parameters thereby increasing model performance.  

5. Conclusions 
This review explored the transformative impact of deep learning algorithms on medical image 

analysis. Convolutional neural networks (CNNs) are widely used for feature extraction and disease 
classification across medical imaging modalities, achieving high accuracy with optimized computa-
tional costs. Recurrent neural networks (RNNs), including LSTM and GRU, enhance temporal 
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analysis for disease progression monitoring. Autoencoders and generative adversarial networks 
(GANs) assist in data augmentation, denoising, and synthetic image generation. U-Net architectures 
improve segmentation for tumor detection and organ delineation. Vision transformers (ViTs) lever-
age attention mechanisms for superior classification and registration. Hybrid models combining 
CNNs, transformers, and optimization techniques enhance performance, while transfer learning mit-
igates data scarcity, ensuring robust results across imaging applications. Together, these advance-
ments underscore the versatility and efficiency of deep learning in medical diagnostics, paving the 
way for improved clinical outcomes and personalized healthcare solutions. Future advancements 
may focus on computational efficiency, integrating multimodal data, and enhancing interpretability 
for clinical adoption. 
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