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1 Executive Summary
University College London Hospital (UCLH) has provided a dataset of 148 patients
who underwent cystectomy surgery (removal of the bladder). This dataset includes
postoperative complication outcomes (morbidities), demographic information, and
pre-surgery Cardiopulmonary Exercise Test (CPET) results. CPET is administered
to patients scheduled for surgery to determine their exercise capacity, which serves
as an indicator of perioperative and postoperative risk. Therefore, CPET can be
used to estimate surgical risk. Despite the wealth of physiological data collected
during CPET, only a small proportion of this information is currently used when
calculating surgical risk.

The purpose of this Data Study Group (DSG) was to apply modern machine
learning techniques to develop models predicting postoperative morbidities from
CPET data. The DSG objectives included: creating models that are more
predictive and interpretable than existing CPET-based risk models; comparing
different machine learning algorithms in terms of predictive performance and
interpretability; and using these models to derive additional predictive features
from CPET data.

The dataset itself consists of high-frequency physiological measurements
collected during the CPET sessions for each patient. These measurements
include oxygen uptake, carbon dioxide production, heart rate, and blood pressure.
Measurements were recorded at one-second intervals over a total test duration of
8–12 minutes per patient. The CPET sessions consisted of stages involving rest,
pedalling, and recovery on an exercise bike. CPET session data are linked to
demographic information and binary indicators showing whether patients
developed cardiovascular (CVS), respiratory, or infection complications after
surgery.

It was unclear a priori which machine learning algorithm would perform best on
these data, prompting the consideration of several algorithms. Both traditional
machine learning (ML) and deep learning (DL) algorithms were applied. For
traditional ML algorithms, several handcrafted features were derived from the raw
data based on previous literature suggesting their predictive value for postoperative
morbidities. These derived features, along with most of the raw features, were
input into a ridge classifier, random forest, XGBoost, and Random Convolutional
Kernel Transform (ROCKET). Additionally, Granger causality was applied to
identify causal relationships within the dataset and to derive p-values for use
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as features in machine learning models. These features were evaluated using a
k-nearest neighbours (k-NN) classifier.

Several deep learning architectures were also considered. A one-dimensional
convolutional neural network (CNN) was applied due to its demonstrated success
on time-series data. A recurrent architecture, specifically a Long Short-Term
Memory (LSTM) network, was evaluated because of its natural ability to handle
sequential data. Finally, a simple multilayer perceptron (MLP) was applied to
assess whether predictions could be effectively made using individual time points
from the CPET data.

In general, the models performed moderately well on a held-out test set of 16
patients, achieving accuracies ranging between 0.5 and 0.75 for predicting
respiratory and infection complications. XGBoost and random forest classifiers
generally outperformed the other models in terms of test accuracy and F1 scores.
Most models achieved accuracy greater than 0.9 for the CVS complication class;
however, this result was primarily due to severe class imbalance, meaning high
accuracy could be achieved simply by predicting the majority class.

Due to the absence of benchmark prediction models or typical clinicians’
prediction accuracies for this task, it was challenging to determine the practical
usefulness of the developed models. Thus, the first research objective could not
be conclusively assessed. Additionally, comparing algorithm performance was
difficult because test accuracies were calculated differently between some
models, preventing the second research objective from being achieved. Lastly,
aside from manually engineered features derived from the literature, no
additional features were successfully derived from the ML models, meaning the
final research objective was also not met.

Interpretability of most models was found to be poor. The deep learning models
were inherently difficult to interpret, and most traditional ML models also lacked
interpretability. However, the ridge classifier demonstrated inherent
interpretability, as it is a linear model, and its learned coefficients provide
meaningful insights.

The primary limitations of this study included insufficient data and significant class
imbalance, which led to poor generalisation performance. Additionally, the limited
duration of the DSG did not allow sufficient time for hyperparameter optimisation
or thorough debugging. Nevertheless, this DSG demonstrated that CPET data can
be processed into various formats suitable for machine learning models, resulting
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in moderate predictive performance.

For future work, the DSG recommends obtaining additional data, allocating more
time for hyperparameter optimisation and code quality assurance, standardising the
calculation of test accuracy metrics, and employing interpretable machine learning
methods such as Shapley Additive Explanations (SHAP) or Local Interpretable
Model-agnostic Explanations (LIME).
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2 Introduction

2.1 Background
The challenge owner, University College London Hospital (UCLH), is a world-
renowned teaching hospital recognized for its cutting-edge medical research and
patient care. UCLH is at the forefront of applying advanced technologies, including
machine learning and data science, to improve healthcare outcomes.

This challenge is part of a broader initiative to enhance the quality of surgical
care, particularly for patients undergoing major operations such as cystectomy.
To support this effort, UCLH has made available an anonymized dataset of 148
patients who underwent a preoperative Cardiopulmonary Exercise Test (CPET)
followed by cystectomy surgery. Cystectomy, the surgical removal of the bladder,
is a major procedure often associated with significant risks.

The goal of this challenge is to leverage data-driven insights to predict post-
surgical complications, a crucial step in enhancing patient safety and improving
the efficiency of healthcare services.

CPET is a standardized test conducted on an exercise bike to assess a patient’s
exercise capacity before surgery [7]. The test begins with a 3-minute ‘rest stage,’
during which the patient remains stationary on the bike. Next, the patient performs
3 minutes of resistance-free pedaling (unloading phase). This is followed by
an incremental phase, during which the work rate gradually increases until the
patient’s tolerance limit is reached, culminating in a recovery phase. The test
typically lasts between 8 and 12 minutes, depending on when the patient’s tolerance
limit is achieved.

Throughout the CPET session, multiple physiological metrics are collected.
Various pieces of equipment measure values such as 𝑂2 and 𝐶𝑂2 flow, 𝑆𝑝𝑂2,
heart rate, and blood pressure (a full list can be found in [7]). Together, these
metrics provide a comprehensive assessment of a patient’s exercise
capacity.

In this challenge, we aim to develop binary predictive models that forecast
post-surgical complications using CPET results. Specifically, we will focus on
predicting respiratory, cardiovascular, and infection-related morbidities on days 3
and 5 post-surgery. Given the exploratory nature of Data Study Groups,
particular emphasis will be placed on evaluating a wide range of algorithms.
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Furthermore, participants are encouraged to consider the explainability and
interpretability of their models to foster trust between healthcare professionals
and the predictive systems.

This challenge aligns with UCLH’s mission to advance personalized medicine
by tailoring treatments and interventions to individual patient data, ultimately
improving outcomes and optimizing resource allocation within the healthcare
system.

In this report, we present a comprehensive overview of the dataset, which
comprises anonymized CPET data from 146 patients who underwent cystectomy
surgery. The dataset includes high-resolution time-series data capturing detailed
cardiopulmonary responses during preoperative testing, as well as binary
outcomes indicating the occurrence of post-surgical complications. We also
describe the machine learning (ML) methods applied, including preprocessing
techniques to address noise and missing data, model selection strategies to
optimize performance, and feature engineering approaches designed to enhance
predictive accuracy.

Finally, we present the results of our study and discuss the reliability, limitations,
and potential impact of the findings.

2.2 DSG Objectives
The challenge questions are:

• Can physiological data from CPET accurately predict post-surgical
complications after cystectomy using modern machine learning
techniques?

• What machine learning algorithms are most effective for predicting different
types of complications (pulmonary, cardiovascular, infections)?

• How can models be designed to balance accuracy with interpretability and
uncertainty quantification for medical applications?
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3 Data Overview

3.1 Data Description
The dataset comprises time series data from CPET conducted on 148 patients
before undergoing cystectomy surgery, along with metadata that contains post-
surgical outcomes. In this study we focus on three post-surgical complications,
respiratory, cardiovascular, and infection-related morbidities. This dataset was
created through routine CPET tests and postoperative assessments conducted at
UCLH. Demographic information and duration of hospital stay were also provided
for each patient.

The outcomes were labeled in the dataset to indicate whether patients developed
complications following cystectomy surgery. The determination of whether a
patient developed complications is based on the Post-Operative Morbidity Score
(POMS). POMS is a clinical scoring system used to assess whether patients
experience specific types of complications, including respiratory, cardiovascular,
renal, pain, and infection-related complications. These scores were recorded on
days 3 and 5 post-surgery and serve as the primary indicator of the presence (1)
or absence (0) of post-surgical complications (Table 1).

The dataset underwent a pseudonymization procedure in order to reduce the risk
of personal healthcare data being released into the public domain and to provide
more flexibility in terms of data handling. This procedure consisted of removing
any demographic data apart from gender and an age bracket. Age bracket specifies
an age range that each patient falls into rather than giving an exact age.

3.2 Data Source
The dataset is consolidated and curated at University College London Hospital
(UCLH) and maintained in a secure Data Safe Haven (DSH) facility. Given
the sensitivity of the data, it was securely transferred to the Turing Research
Environment (TRE) for the Data Study Group (DSG). The time series data was
collected during CPET assessments, with metadata recorded at different stages of
the patient’s hospital care at UCLH before and after the cystectomy surgery.

3.3 Data Structure
The dataset is divided into two main components:
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CPET time series data: This component of the dataset consists of 17 key
physiological variables recorded during the CPET in 1 second intervals, capturing
comprehensive measurements of the patient’s cardiopulmonary function. These
variables include oxygen uptake (VO2), carbon dioxide production (VCO2), heart
rate (HR), and ventilation (V’E), among others, offering detailed insights into the
patient’s respiratory and cardiovascular performance. The data is organised as a
time series, covering the distinct phases of the CPET: rest, exercise, and recovery.
For each of the 148 patients, these physiological variables were continuously
recorded throughout the test, creating a rich dataset that reflects the dynamic
physiological changes occurring in response to varying levels of exertion.

The following variables are included in the CPET time series data:

• Timestamp (hh:mm:ss): Time at which the measurement was taken during
the CPET.

• Phase: Stage of the CPET test (rest, exercise, recovery).

• Ventilation (V’E): Minute ventilation (L/min).

• PetO2 and PetCO2: End-tidal partial pressures of oxygen and carbon
dioxide, respectively.

• Oxygen uptake (VO2) and Carbon dioxide production (VCO2): Measures
of oxygen consumption and CO2 production during the test.

• Respiratory exchange ratio (RER): Ratio of CO2 production to oxygen
uptake.

• Heart rate (HR): Heart rate in beats per minute.

• Breathing frequency (BF) and Tidal Volume (VT): Number of breaths per
minute and the volume of air per breath.

• VO2 per heart beat (V’O2/HR): Oxygen consumption per heartbeat.

• Work rate (WR): Rate of physical work performed during exercise.

• Oxygen Saturation (SpO2): Percentage of oxygen saturation in the blood.

Patient metadata and complication outcomes: This component includes
demographic and clinical outcome information for the 148 patients. The
metadata includes age bracket, gender, type of surgery, hospital
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admission/surgery/discharge dates. The POMS data for respiratory,
cardiovascular and infection morbidities on days 3 and 5 post-surgery are
presented as binary indicators, where each entry denotes the presence or absence
of specific complication. A value of ‘1’ indicates the occurrence of a
complication, while ‘0’ signifies no complication. This data serves as the key
outcome measure to assess the patients’ recovery.

The dataset includes the following metadata and outcome variables:

• Post-Operative Morbidity Score (POMS) data for days 3 and 5, indicating
respiratory, cardiovascular, and infection-related complications.

• Age bracket of the patient, for example, 25-40.

• Gender (e.g., Male, Female).

• Type of cystectomy surgery (e.g., robotic, laparoscopy-assisted).

• Dates of hospital admission, surgery, and discharge.

3.4 Data Quality
Overall, the data was typical of real world health data: noisy, missing values and
containing demographic and class imbalances. The dataset also had a low number
of samples; 148 samples is much smaller than what is typically used in real world
machine learning applications.

Appropriateness The dataset was very relevant to the questions posed. It
provided very fine grained time series data from the CPET test, which was then
used to predict the binary outcomes provided by the POMS data.

Readiness Apart from a few missing values for very particular variables in the
CPET time series’ (detailed in Section 3.5) the data was mostly complete. It
was found that there was 1 patient with CPET data but no POMS outcomes and
there were 3 patients with POMS outcomes and no CPET data; the respective data
for these patients was removed and not included in the analysis. There was no
documentation provided with this data but its content is self explanatory.

Reliability/Bias The dataset had a significant class imbalance issue as illustrated
in Table 1 and Figure 1. For all morbidities the number of non-morbidity patients
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outnumbers those with a morbidity. However, the difference is most extreme for the
cardiovascular morbidities where very few patients have CVS complications. Even
though oversampling can be performed to rebalance the data, this initial imbalance
can still negatively affect generalisation performance on unseen data.

Figure 1: Number of patients with (red) and without (blue) morbidities for day 3
and day 5 post surgery.

It is unknown whether the data represents a diverse set of demographics due to
the absence of most of the demographic information. With regards to gender there
was a significantly larger number of males represented in the data (99) compared
to females (49). The age range split is as follows: [30, 58] : 23, [58, 68] : 32, [68,
78] : 56, [78, 100] : 37. The uneven data splits for both gender and age groups will
create bias in the final models with a greater generalisation capability expected for
the majority classes.

There was found to be a large amount of noise on the CPET data. This noise was
likely introduced as the result of inaccurate sensors and therefore could only be
remediated by more accurate sensors. Noise reduction filters were applied to the
data but this is limited in its effectiveness.

11



Table 1: Number of patients in the dataset that have and do not have the specified
morbidity (complication type).

Complication Type Number of Patients

Pul (Day 3) Healthy 78
Diseased 70

Inf (Day 3) Healthy 75
Diseased 73

CVS (Day 3) Healthy 138
Diseased 10

Pul (Day 5) Healthy 106
Diseased 42

Inf (Day 5) Heatlhy 93
Diseased 55

CVS (Day 5) Healthy 144
Diseased 4

Finally, the data was collected between 5 and 7 years ago which might introduce a
source of bias. There might be population differences today compared to 5 years
ago meaning that the models trained on this old data might not generalise well
to patients today. There might also be improvements in medical care compared
to 5 years ago meaning that morbidities that would have occurred in certain
circumstances then might not occur today, resulting in a larger number of false
positives if using the model today.

Sensitivity: Was the data private or confidential? In its original form the data
was highly confidential given the fact that it contained personal health information.
Subsequent to the pseudonymization procedure detailed in 3.1 the dataset was much
less confidential but still sensitive. It was for this reason that it was contained within
the Turing Safe Haven.

Sufficiency The dataset has a low number of samples (148) and is therefore not
particularly sufficient. This is typical in medical-related settings where willing
participants are difficult to come by and sensitive data is hard to collect. Despite
this, machine learning techniques, in particular Deep Learning techniques, work
better with a sample size larger than 148.
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3.5 Data Preprocessing
Effective data preprocessing is an important factor in machine learning, especially
when working with real world noisy time series data. Several preprocessing
techniques were applied to ensure the dataset was ready for analysis, addressing
issues such as normalisation, missing values, and categorical data.

Combining Patient Files The dataset was provided as a single Excel spreadsheet
with outcomes and demographic data for all patients, and a single Excel sheet for
each patient containing their CPET results. The outcomes and demographic
spreadsheet was split into two, one for training and one for testing. Two single
Excel spreadsheets (training and testing) were created by consolidating all of the
CPET data - linked with the appropriate demographic and outcomes data via
patient ID - into one table.

Standardization All continuous variables, such as heart rate (HR), oxygen
uptake (VO2), and minute ventilation (V’E), were standardized to ensure they
had a mean of zero and a standard deviation of one (z-score normalisation).
Standardization is essential in machine learning because many algorithms,
particularly those based on distance metrics or gradient descent, are sensitive to
the scale of the input features. By standardizing the data, we ensured that all
features contributed equally to model training, avoiding bias from features with
larger numerical ranges.

One-Hot Encoding To handle categorical variables such as age group, the phase
of the CPET test (rest, exercise, recovery), and type of surgery, a one-hot encoding
was applied. This technique converts categorical variables into binary vectors,
where each unique category is represented as a separate feature. For example,
the type of surgery (robotic, laparoscopic-assisted, or open) was transformed into
three binary features, allowing machine learning algorithms to interpret these non-
numeric values more efficiently. One-hot encoding is particularly useful in machine
learning, as it avoids imposing any ordinal relationships between categories.

Handling Missing Values The dataset contained missing values for certain
variables, notably oxygen saturation (SpO2) and other physiological parameters.
The SpO2 data contained a significant amount of missing values, marked by a
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hyphen (’-’), which were replaced with NaN. A total of 59 patients had missing
SpO2 data, with 34 of those missing most of their values.

Two approaches were adopted to handle these missing data points.

1. Padding With Zeros The first method explored was padding the time series
data with zeros to fill in the missing values. Padding is a simple and widely
used technique for handling the missing data in time series, especially when
the length of the series vary between instances. By filling missing time steps
with zeros, we ensured that all time series data has the same length, making
it easier for algorithms to process. However, its important to note that this
method can introduce distortions, as padding zeros may misrepresent the
underlying physiological patterns.

2. MINIROCKET Minimally Random Convolutional Kernel Transform
(MINIROCKET) [4] is a powerful preprocessing technique designed for
time series classification. It works by transforming the time series data into
a feature space that can be directly used by models. This has been proven
to handle variable length time series effectively and can also deal with
missing values by creating feature maps that are invariant to the exact
length of the series. This method was favoured because it allowed us to
retain as much meaningful information as possible from the time series
data, without relying on artificial padding methods.

Smoothing The raw physiological data often exhibited sharp spikes or peaks,
which could be attributed to sudden physiological changes or sensor error during
the CPET sessions due to machine displacement etc. While these peaks may
carry important information, they mostly introduce noise or outliers, potentially
confusing models.

To address this, we applied smoothing techniques to reduce the impact of this
noise. A moving window average with a window size of 10 was applied to all
continuous features. Smoothing is a common technique used in time series analysis
to create a more stable and continuous dataset by reducing random fluctuations.
By applying smoothing, we were able to capture the underlying trends in the data
while minimizing the noise introduced by sudden peaks. This helped the model
focus on the more consistent pattern across the dataset rather than being misled by
outliers or extreme values.

Figure 2 shows time series data for various physiological variables during a CPET
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Figure 2: Moving average smoothing applied to four of the CPET variables. The
red lines show the raw data and the green lines show the data after smoothing.
Vertical lines delineate the rest, exercise, and recovery phases.
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test for a single patient, with noisy data (red) and smoothed data (green) for each
variable. It can be observed that, for VE, the raw data shows sharp peaks during
the exercise phase, especially around the 15-minute mark. The smoothed data
effectively removes these abrupt spikes while maintaining the gradual increase
and subsequent decrease in ventilation during exercise. This approach ensures
that the models built from this data are more likely to generalize well, as they
avoid fitting to irrelevant noise or outliers.

Additional Stage In addition to the three stages, rest, exercise and recovery, a
distinct sub-stage called ”Unload” where the patients pedaled without resistance
for three minutes was introduced. This was shown to improve the calculation of
scores, such as peak heart rate and time to peak. This additional column (phase
with unl) was introduced between the ‘rest’ stage and the ‘exercise’ phase.

3.6 Feature Engineering
Several features were engineered from the CPET data to enhance the predictive
capacity of the machine learning models. Based on recommendations from the
reviewed literature [13, 11, 10, 9] the following features were derived from the
smoothed time-series variables, separately for each phase:

• Event duration (in seconds).

• Peak values for heart rate (HR) and V’O2.

• Time to peak HR.

• Slopes for HR, V’O2, V’CO2, V’E, V’E/V’CO2: calculated by fitting a
regression line on the time series data of each patient.

Additionally, heart rate recovery (HRR) was calculated by subtracting the heart
rate measured one minute into the recovery phase from the peak heart rate recorded
during exercise. These features contributed to a total of 37 engineered features
derived from the time series data - 9 for each of the above features, for each of the
4 phases, plus 1 for HRR.

Despite the richness of these features, none of them, when considered
individually, provided linear separation for the outcome variables related to
post-surgical complications. For instance, Figure 3 illustrates the distribution of
some features across two patient groups: those with and without pulmonary
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complications on day 5. Although clear diagnostic separation cannot be
observed, certain features, such as peak heart rate during exercise, exhibited
variations in their distributions that may offer diagnostic value for machine
learning models.
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Figure 3: A selection of engineered features plotted separately, focusing on patients
with and without pulmonary complications on day 5. Each dot in the plot
represents an individual patient, highlighting the distribution of features across
the two groups.

The complete set of 37 engineered features was subsequently provided to the
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machine learning team as candidate input variables for model development.
Despite the presence of outliers in some variables, such as the V’CO2 slope
during exercise, no outlier removal was applied at this stage.

3.7 Granger Causality Analysis
Granger Causality (GC) [5] is a technique used to assess whether one time series
can predict another, thereby establishing causal relationships between variables.
In this study, GC was applied to analyse the CPET time series data, focusing on
the relationships between features to enhance model performance and
explainability.

We applied GC analysis to the multivariate autoregressive (MVAR) time series
derived from the raw data. After normalizing sliding windows for each subject and
phase, we calculated GC p-values using model parameters such as window size,
overlap, and maxlag. The model order was determined using AIC. Low p-values
indicate strong causality from the variable A to B, while high p-values suggest no
causal relationship.

Figures 4, 5, and 6 show the GC value evolution across all subjects during rest,
exercise, and recovery phases. It can be seen that the casual relationship between
some of the features has large variability depending on the phase the subjects are in.
Although the computational constraints limited detailed analysis, the preliminary
results show that GC provides valuable insights into feature relationships.

The derived p-values can be used to help analyse the relevance of some of the
features so we can decide which features are more important and determine whether
there are any features that could be removed. They can also be used instead of the
raw time series as input features to the predictive models.
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Figure 4: GC values over time for the rest phase. The color scale represents GC
values on the Z-axis.

Figure 5: GC values over time for the exercise phase. The color scale represents
GC values on the Z-axis.
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Figure 6: GC values over time for the recovery phase. The color scale represents
GC values on the Z-axis.
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4 Approach
We used two distinct approaches to build the binary classifiers, traditional machine
learning methods and deep learning techniques. Traditional machine learning
(ML) models refer to algorithms and techniques that rely on manually derived
features and structured datasets for predictive tasks. In this study, key attributes
such as peak heart rate and oxygen uptake were extracted from the raw data using
domain-specific knowledge, and these feature-engineered variables (as detailed
in Section 3.6), along with summary statistics, were employed to classify binary
outcomes effectively. These features are expected to enhance the model’s ability
to focus on the most relevant information, thereby optimizing overall performance.
Traditional methods in general, are effective in scenarios where derived features
help in improving both model interpretability and explainability.

In contrast, Deep Learning models, (e.g. LSTM networks) were applied directly
to the raw time series data from the CPET tests. These models do not typically
require manual feature selection, as they are capable of automatically learning
hierarchical patterns from the data. LSTMs are particularly effective for capturing
long-term dependencies in sequential data, making them well-suited for time series
analysis, while 1D CNNs excel at detecting localized temporal patterns. Although
DL models perform exceptionally well on large, high-dimensional datasets, they
typically require more computational resources and larger datasets for optimal
performance.

Evaluation Metrics Models were compared based on accuracy, and for certain
models, F1 score, using the same subset of data consisting of 16 patients that were
held out for testing. Evaluation on the held out test data ensured that the models
were evaluated on unseen data and prevented overfitting. Accuracy and F1 score
are evaluation metrics often used to determine the quality of a binary classifier
with the following definitions:

22



𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

where 𝑇𝑃 = true positives, 𝐹𝑃 = false positives, 𝑇𝑁 = true negatives, and 𝐹𝑁 =
false negatives.

F1 score makes up for certain failings of accuracy in determining the quality of
classifiers with large class imbalances. For example, a classifier that guesses the
positive class for all test instances on a dataset where 99% of instances are of
the positive class still achieves a 99% accuracy. This accuracy might make the
classifier sound impressive but if the negative class indicates the presence of a
disease, then all patients with the disease are classified incorrectly, which can
have devastating consequences. F1 score is important for incorporating these false
positives into the evaluation metric.

4.1 Machine Learning
Binary classifiers were built using 6 different types of model. Each model was
selected based on its suitability for the structure of the data and the complexity of
the problem.

RidgeClassifierCV RidgeClassifierCV is a linear classifier that uses
regularization (ridge regression) to prevent overfitting. It is well-suited for high
dimensional data where multicollinearity between features is a concern, as it
penalizes large coefficients and ensures the model generalises better. For this
study, we used a range of alpha values defined by the logarithmic space between
10−3 and 103. This range allows the model to explore a wide spectrum of
regularization strengths. Additionally, the RidgeClassifierCV evaluates each of
these alpha values to find the one that strikes the best balance between
underfitting and overfitting. This automatic selection of alpha through
cross-validation improves the model’s performance by the fine-tuning this key
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hyperparameter, leading to a more generalized solution that performs well on
unseen data.

XGBoost XGBoost is a powerful boosting algorithm that builds an ensemble of
weak learners (decision trees) to create a strong predictive model. It applies
gradient boosting technique to optimize model performance iteratively by
minimizing the errors made by previous trees. XGBoost was ran here with
𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 100, which defines the number of boosting rounds or trees built
during the training process. XGBoost is widely known for its robustness and high
performance on structured data, particularly when dealing with large datasets and
imbalanced classes. The algorithm’s use of regularization and advanced
techniques such as handling missing values and tree pruning make it particularly
effective for binary classification tasks like those in this study.

Random Forest Random Forest is an ensemble learning method that constructs
multiple decision trees using different subsets of the data. Each tree is trained
on a random subset of features and samples, and the final classification is made
by averaging the outputs of all trees. This method reduces the risk of overfitting
and improves model robustness, especially in cases where the dataset is noisy or
contains outliers. Random Forest is typically well-suited for datasets with a mix
of numerical and categorical variables and can handle the noise present in patient
data.

ROCKET (RandOm Convolutional KErnel Transform) ROCKET [3] is a
method specifically designed for time series classification. It works by applying
a large number of random convolutional kernels to the time series data and using
the resulting transformations as input features to a linear classifier. ROCKET was
chosen for this study due to its ability to efficiently handle high-dimensional time
series data, with zero need for feature engineering. Its computationally efficient
and scalable nature make it particularly well-suited for handling large volumes
of time series data, such as the CPET tests, where capturing temporal patterns is
critical. The number of kernels used for these experiments was 500.

Multi-Output Classification with Ensemble Learning Technique (MOCEL)
This MOCEL model is an advanced machine learning approach that combines
multi-output classification with an ensemble learning technique to address
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complex prediction tasks where multiple target variables need to be predicted
simultaneously.

The intuition behind the multi-output classification is that, unlike traditional
approaches where the classification model predicts single target variable in a
single prediction, multi-output classifier predicts multiple output for each
instance without using multiple models. This approached reduces computational
complexity. The rationality behind the ensemble learning technique is that it
improves the accuracy of predictions through a weighted average of the
individual model predictions, thus providing an improved overall
performance.

In the MOCEL architecture the multi-output classifier is ensembled to enhance
prediction power and the robustness of model. Figure 7 shows that in level 0 the
base models with default parameters comprises of Random Forest, XGBoost and a
Support Vector Classifier. Each of these base models are trained independently. In
Level 1, XGBoost is used to ensemble and then used as a meta model. During the
training process base models make predictions on training data and the output from
them is used as input features for the meta model to learn and output prediction
results.

This stacking approach captures the temporal pattern learned by each base model
and the meta model will learn to weigh these pattern and weights appropriately.
Since time series data can be noisy and subject to fluctuation, stacking makes it
robust to handling non-stationarity in time series data. The entire architecture is
presented in Figure 7.

k-NN Classifier To verify the use of GC values as features, a KNN classifier
(𝑘 = 10) was trained using the GC p-values, validated using 10-fold
cross-validation.

Each of these algorithms was chosen based on its strengths in handling different
aspects of the dataset, including time series features, high collinearity,
regularization ability, and scalability. By applying a diverse set of algorithms, we
aimed to identify the best performing model for predicting post-operative
complications using CPET data.
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Figure 7: MOCEL architecture
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4.2 Deep Learning
Deep learning (DL) has the ability to classify raw data without the need for feature
extraction, saving time and pre-processing steps. This subsection explores the
specific pre-processing applied to the data with regards to the DL approaches and
how the DL models were developed.

4.2.1 Convolutional Neural Network

A 1-dimensional Convolutional Neural Network (CNN) was first explored because
it has been shown to perform well on time-series data [4, 15], including on CPET
data [14, 1]. A CNN is a type of neural network that applies multiple filters,
or kernels, to its input. Each kernel is repeatedly applied to the input in small
windows, in this way the number of network weights is much less compared to a
multilayered neural network. Previous usage of CNNs demonstrates how different
kernels learn to detect different features, such as lines and corners in images.
CNNs are particularly suited to processing data that can be considered grid-like,
examples include images, time series (1 dimensional grid), and video.

One-hot Encoding Through initial exploration of the data, it was found that there
were challenges related to the combination of time-series and categorical data. The
categorical data includes features that could be beneficial for the prediction, such
as age bracket and gender. Therefore, each of the categorical data was one-hot
encoded so that it could be fed into the DL models.

Oversampling After initial exploration of the data, it was discovered that for two
of the classification challenges - Day 3 CVS and Day 5 CVS - the class imbalance
was extremely high with the vast majority of patients lacking the morbidity (Table
1). The lack of balanced training data makes it challenging to train DL models;
therefore, the data was oversampled in the CNN experiments in order to create
new synthetic data for the minority class (positive cases of CVS).

The SMOTE package was used for oversampling. SMOTE [2] works by creating
new values that are similar to the existing data by not only duplicating existing
data but also creating new values that are close to the minority class. The synthetic
data is created by randomly selecting one or more K-nearest neighbours for each
sample in the minority class. Then a line between the current data point and a
selected neighbour is drawn and a new point is randomly selected along that line.
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This process is repeated and the new samples are added to the dataset.

Normalisation For the CNN experiments the time-series data was normalised
using z-score normalisation. Z-score normalisation transforms the data in a way
that helps the model generalise across different features. As CPET data contains
different measurements with different scales it ensures each feature has a mean of
0 and a standard deviation of 1. Furthermore, z-score normalisation helps adjust
for differences in scale between the train and test dataset which other normalisation
techniques may not account for.

Windowing When using convolutional deep learning approaches for time-series
data it is common to split the data into windows of samples that includes an overlap
between the windows. This enables the more efficient extraction of temporal
features from the data because time-series data patterns may not appear in a
limited number of time-steps. Furthermore, overlap also enables more training
data which is useful for datasets such as those in the medical domain that can often
be limited.

Windowing the data should also help the convolutional model to generalise better
by exposing the model to different sequences of the data to learn representative
features rather than the model trying to fit to the entire data sequence. A range of
window and overlap sizes were manually explored ranging from small windows
of 20 samples to large windows of 600 samples with overlaps of 20% to 80%
explored. It was found that a window size of 200 with a 50% overlap achieved the
best accuracy on the validation sets.

Validation A key consideration when evaluating the model performance is the
validation approach. When developing health-care models it is vital to test on a
per-participant basis as when using a traditional test-train split it is possible to
achieve a higher accuracy but this is using data from all participants which does
not simulate real-world scenarios. Instead the models have been evaluated per-
participant either by excluding a small number of participants from the training
data which are then only used for testing or used for k-fold cross-validation. K-
fold cross-validation was the chosen approach due to its capability to test over the
entire dataset removing any subjectivity of the selected test split. 5 folds were
used to evaluate validation performance which balanced the benefits of k-fold
cross-validation with increased training time.
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Architectures

CNN A CNN was explored using the entire raw CPET dataset consisting of
all time-series features. The data was windowed with a window size of 200 and
an overlap of 100. A single label consisting of the mean label assigned to each
window was used for training.

A number of 1D CNN architectures were explored ranging from 2 to 6
convolutional layers with each followed by a max pooling layer. Additional layers
were explored to reduce model overfitting including dropout layers and batch
normalisation layers, these were similarly included after each convolutional
block. After the convolutional layers both global average pooling and dense
layers were explored.

A range of convolutional filter quantities and kernel sizes were explored resulting
in an optimal final selection of 32 filters and a kernel size of 3. Similarly, the
max pooling size was selected as 3. For the dropout layers a range of percentage
values were explored for the number of neurons to selectively ignore with values
increasing for the later dropout layers starting with 0.3 to 0.5. A He Normal
initialiser was used to initialise the weights of the kernels.

Additional hyperparameters were also explored within the CNN to prevent
overfitting, including dilation rate which is the spacing between elements within a
filter and kernel regularization including both L1 and L2 regularization at
0.005.

An example CNN model architecture can be seen in Figure 8.
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Figure 8: An example convolutional architecture

CNN-LSTM Hybrid Another model architecture explored was a hybrid CNN-
LSTM to combine the strengths of both a convolutional architecture in capturing
local, short-term features and a recurrent architecture that should better capture
long-term temporal dependencies. The aim of this architecture was to improve the
generalisability of the model by using a more substantial architecture consisting
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of 5 convolutional layers and 3 LSTM layers - exploring both 32 and 64 units. The
model architecture can be seen in Figure 9. Similar to the 1D CNN, all of the raw
features from the dataset were used as input to the model. The same window size
of 200 and overlap of 100 was also used.
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Figure 9: Combined CNN-LSTM network architecture
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4.2.2 Long Short-Term Memory

Recurrent Neural Networks (RNN), such as Long Short-Term Memory (LSTM)
[6], are commonly used in conjunction with time-series data due to their inherit
capability of modelling long term dependencies in sequential data. An RNN is a
neural network with a cycle that takes a sequence of data as input. The cycle in
the network allows the network to remember information from previous time steps
and use this information at the current time step.

Traditional RNNs struggle to learn long-term dependencies due to issues with
vanishing and exploding gradients. LSTMs were invented as a way to circumvent
the vanishing/exploding gradient issues by including a gating mechanism that
has the ability to keep information stored for longer periods of time. Due to
their success at learning long-term dependencies in time-series data, LSTMs were
utilised for this task.

Preprocessing In order to standardise the number of time steps between patients
the data was downsized to the minimum number of time steps of all the patients.
The minimum number of time steps over all patient was 499. This downsizing
was done by randomly (without replacement) selecting 499 data points from all
the time steps of each patient. Then, non-numeric features were removed, such
as ‘t’, ‘Phase’, ‘person id’, ‘Type of surgery’, ‘Gender’ and ‘Age’. The training
validation split was set at 80:20.

Architecture The architecture chosen consisted of 3 LSTM layers of size 64
each followed by dropout with a rate of 0.2. A dense layer of size 64 with ReLU
activation was then appended, followed by another dropout layer with a rate of 0.2,
and finally, a dense layer of size 1 with a sigmoid activation function was used as
the last layer.

An ADAM optimiser with a learning rate of 1e-3 was used. Binary cross-entropy
was used as a loss function.

4.2.3 Multilayer Perceptron

A multilayer perceptron (MLP) is a type of feed forward artificial neural network
which consists of multiple layers of neurons. Each neuron within each layer is
densely connected to the next layer. This type of architecture was also applied to
this task.
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Traditional MLP Figure 10 shows the architecture of the traditional MLP model
that was used. Data at each time step is treated as 1D vector where each element
is considered a feature i.e. measurements in CPET. In this model, 130030 data
samples are used (one for each time step of CPET for every patient) for training and
validation with a train validation split of 80:20 with regards to different patients.
Z-score normalization was applied to the input data before being fed into this
model.

Figure 10: Traditional MLP architecture used during this task

Variational MLP In order to solve the overfitting problem that comes from
the data variations between different participants, a variational MLP was built. A
variational MLP aims to capture the data variations by reducing noise. Specifically,
it maps the input data to a mean and variance that approximates a Gaussian
distribution, which can be considered as normalization within the model layers.
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Figure 11: Variational MLP architecture

Dropout layers were included with a rate of 0.2 and so was l2 regularization with
a rate of 0.02.

According to the Causal Inference theory, randomization can be used to remove
the confounding variables - in this task, they are the participants. Therefore, a
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multi-class neural network is built where the first classifier is designed to predict if
it is positive/negative for each class and the second classifier is to force the model
to be trained on randomized patient IDs. This can be considered as an additional
regularization step. Architectural details are shown in Figure 11. Every numerical
time series feature (excluding the categorical features) except SpO2 was used to
train the model.

5 Results

5.1 Machine Learning
This section evaluates the performance of the applied machine learning models
in predicting post-surgical complications. Results are presented in Table 2 for
both day 3 and day 5 post-surgical outcomes for respiratory, cardiovascular and
infection complications.

5.1.1 Day 3 Results

The first set of results focuses on predicting complications on Day 3 post-surgery.
Performance varied across the models, highlighting the challenges posed by
imbalanced data and the complexity of the CPET time series.

Ridge Classifier The Ridge Classifier achieved reasonable accuracy (0.60)
when predicting pulmonary complications, but a poor F1 score (0.20) indicated
difficulties in handling the class imbalance. In the infectious category, the Ridge
Classifier performs better, with a validation accuracy of 0.55 and an F1 score of
0.40, suggesting it captures some positive cases. For CVS, the accuracy is very
high (0.95), but the F1 score is consistently 0.0, indicating that the model is likely
overfitting to the majority class with no correct predictions for the minority class.
The model struggled to effectively identify patients with complications, likely
favoring the majority class (those without complications).

Rocket Classifier The Rocket Classifier also struggles with the pulmonary
classification, showing poor F1 scores despite similar accuracy levels as the
Ridge Classifier. For infection cases, the accuracy and F1 score are slightly better
on the test set (0.67 accuracy and 0.71 F1 score), indicating that it captures
positive cases of infectious better than for pulmonary conditions. However, the
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Table 2: Prediction results for Day 3 and Day 5 using various ML classifiers
Models Pulmonary Infectious CVS

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score
Day 3

Ridge Classifier
Validation 0.60 0.20 0.55 0.40 0.95 0.00

Test 0.40 0.40 0.67 0.71 0.93 0.00
Rocket Classifier

Validation 0.45 0.27 0.55 0.40 0.95 0.00
Test 0.47 0.49 0.67 0.71 0.93 0.00

XGBoost Classifier
Validation 0.45 0.15 0.55 0.40 0.95 0.00

Test 0.40 0.40 0.80 0.80 0.93 0.00
Random Forest

Validation 0.55 0.00 0.65 0.53 0.95 0.00
Test 0.47 0.50 0.60 0.66 0.93 0.00

Day 5
Ridge Classifier

Validation 0.60 0.20 0.55 0.40 0.95 0.00
Test 0.53 0.00 0.60 0.50 0.93 0.00

Rocket Classifier
Validation 0.45 0.27 0.55 0.40 0.95 0.00

Test 0.67 0.00 0.60 0.50 0.93 0.00
XGBoost Classifier

Validation 0.45 0.15 0.55 0.40 0.95 0.00
Test 0.60 0.00 0.73 0.50 0.93 0.00

Random Forest
Validation 0.55 0.00 0.65 0.53 0.95 0.00

Test 0.60 0.00 0.80 0.67 0.93 0.00
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CVS results again showed a mismatch between accuracy (0.95) and F1 score
(0.00). Its ability to handle time series data may have contributed to its improved
performance on pulmonary outcomes, although the class imbalance still
remained a limiting factor.

XGBoost XGBoost underperformed in predicting pulmonary complications,
showing lower accuracy and F1 scores, but achieved an accuracy of 0.8 in the
infectious class. CVS results are the same as the previous two models.

Random Forest For pulmonary complications, Random Forest has reasonable
validation accuracy (0.55) but has an F1 score of 0. However, it performs slightly
better for the infectious class, with an F1 score of 0.53, suggesting some ability to
capture positive cases. For CVS, again accuracy is high but the F1 score is 0.00,
reflecting poor handling of positive cases.

5.1.2 Day 5 Results

The second set of results focuses on predicting complications on day 5 post-
surgery. The models showed some improvement over Day 3, particularly for
specific complications.

Ridge Classifier The model maintained similar accuracy for pulmonary and
infectious complications, but continued to struggle with low F1 scores. This
indicates that while it can correctly classify most patients, it has difficulty
identifying the minority class of patients with complications.

Rocket Classifier Rocket Classifier showed improved accuracy in predicting
pulmonary complications (0.67), though it still struggled to identify positive cases,
as indicated by its modest F1 score. Infectious condition performance remains
stable, with some improvement in accuracy (0.60) on the test set and non zero F1
score (0.50). The improvement suggests the model better captures the patterns in
the time series, but the class imbalance remained a challenge.

XGBoost It shows slight improvement in accuracy for pulmonary classification
on day 5, but the F1 score remained 0, indicating difficulty with positive predictions.
For infectious classification, the F1 score remains stable (0.40-0.50) showing
consistent but suboptimal performance.
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Table 3: Average classification accuracy for each complication category using
Granger Causality Features.

Classes Day 3 Pulmonary Day 3 Infectious Day 3 CVS Day 5 Pulmonary Day 5 Infectious Day 5 CVS

Avg. Accuracy 0.536 0.511 0.936 0.667 0.604 0.978

Random Forest This model achieved the best results for predicting infectious
complications on Day 5, with the highest accuracy (0.80) and an F1 score of
0.67. Random Forest’s ensemble nature likely helped capture complex interactions
between features, improving performance for infection outcomes. However, the
model’s performance on other complications remained poor.

5.1.3 MOCEL Results

The MOCEL model, which employs a multi-output classification approach using
ensemble learning, shows promise in improving validation accuracy across
multiple outcomes. With more time, this could be demonstrated with metrics
such as accuracy and F1 score. It struggled to achieve consistently high
performance across all complication types, particularly for more complex
outcomes such as cardiovascular issues. This suggests that while MOCEL’s
ensemble approach is effective for certain outcomes, further optimization may be
needed to improve its overall performance.

5.1.4 Granger Causality KNN

As shown in Table 3, the GC-based features perform comparably to the other
traditional machine learning algorithms (Table 2) on the test set. The confusion
matrices in Figure 12 confirm these findings, suggesting that further refinement is
needed to handle unbalanced datasets.

5.2 Deep Learning
5.2.1 Convolutional Neural Network

Given that the models were trained using windowed data, the test set was split into
windows of the same dimension that were fed into the model which output a single
classification output per time window. The results in Table 4 show the difference
in accuracies between each of the folds of the validation data during training and
the unseen test data for the class POMS day 3 pulmonary. The results show that
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Figure 12: Left: Confusion matrix for Day 3 CVS class, 𝑘−fold cross-validation
accuracy: 0.935. Right: Confusion matrix for Day 5 Pulmonary class, 𝑘−fold
cross-validation accuracy: 0.68.

Table 4: Training accuracy results of the three convolutional models for each k-fold
and final test accuracy for day 3 pulmonary.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Test

CNN 2 layer 58.9% 60.8% 58.5% 50.8% 62.5% 47.1%
CNN 3 layer 61.2% 53.4% 56.9% 48.9% 55.6% 43.9%
CNN LSTM hybrid 58.1% 46.2% 52.3% 50.4% 66.4% 36.8%

there can be a large variation between folds showing the difference in data between
participants has a significant impact on model performance. Furthermore, CNN
networks with 2 and 3 convolutional layers were explored. The simpler 2 layer
convolutional network generally performed best, possibly due to simpler models
being less prone to overfitting. Therefore, the 2 layer model was used to evaluate
performance on the test dataset across all 6 classes.

The results in Table 5 show the accuracies for both of the convolution CNN models
as well as the hybrid CNN-LSTM model. The results show a variation between
the classes with day 5 generally achieving higher classification accuracy than day
3. Furthermore, the simpler CNN network consistently outperforms the more
complex CNN-LSTM model.
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Table 5: Test accuracy results of the 2 layer CNN and the CNN-LSTM hybrid
model for all 6 classes

Model Pul (3) Pul (5) Inf (3) Inf (5) CVS (3) CVS (5)

CNN 47.1% 71.6% 60.6% 66.5% 74.2% 93.5%
CNN-LSTM 47.1% 62.6% 59.4% 45.8% 60.6% 91.2%

5.2.2 LSTM

Table 6 shows the training and validation accuracies for each of the six classes for
the pure LSTM model. The LSTM model was not tested on the testing data due to
limited time.

Table 6: LSTM training and validation accuracies for each of the six binary
outcomes

Target variable Training accuracy Validation accuracy
Day 5 CVS 97.51 97.54

Day 5 infectious 60.80 60.50
Day 5 pulmonary 71.07 70.30

Day 3 CVS 93.24 93.11
Day 3 infectious 49.11 49.37
Day 3 pulmonary 54.10 53.65

Average 70.97 70.75

5.2.3 Multilayer Perceptron

Table 7 shows the accuracy when predicting Day 3 pulmonary, Day 3 infectious,
Day 5 pulmonary and Day 5 infectious for training, validation and testing for the
variational MLP. The accuracy calculated here is per time step (i.e. per row),
which means if you have 10 participants and each of them has 1000 time step as
the input, then you have 10 × 1000 outcomes in total.

Figure 13 shows the confusion matrices for both Day 5 Infectious and Day 5 CVS.
Both Day 3 CVS and Day 5 CVS show a significantly high accuracy which is over
90%. Figure 13 shows that although Day 5 CVS has a high accuracy it predicts
that all data belongs to the positive class. This is likely due to the class imbalance
that was not addressed using upsampling in this case. We therefore hypothesise
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Table 7: Training, validation and testing accuracies for Day 3 pulmonary, Day 3
infectious, Day 5 pulmonary and Day 5 infectious outcomes for the variational
MLP

Type Pul (3) Inf (3) Pul (5) Inf (5)

Train 0.6327 0.5390 0.7787 0.7495
Val 0.5386 0.5291 0.6387 0.7219
Test 0.5446 0.4345 0.7489 0.7395

Figure 13: Confusion matrices. Left: Day 5 Infectious with 74% accuracy. Right:
Day 5 CVS with 94% accuracy.

that upsampling would have encouraged the model to not predict all cases of Day
5 CVS as positive.

6 Discussion

6.1 Machine Learning
The results highlight the challenge of predicting post-surgical complications from
CPET data, especially given the class imbalance in the data. Traditional machine
learning models struggled with identifying patients who developed complications,
particularly for minority outcomes such as cardiovascular issues. This reflects
the limitations of relying on feature-engineered data and standard classification
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algorithms for complex and imbalanced medical datasets. Despite this, XGBoost
achieved an 80% test accuracy and F1 score on the day 3 infectious complication
and the Random Forest acheived a test accuracy of 80% on the day 5 infectious
complication.

Models designed specifically for time series data, such as the Rocket Classifier,
demonstrated potential by improving accuracy for certain complications, such as
pulmonary outcomes. However, the class imbalance continued to impact their
overall effectiveness, as indicated by low F1 scores.

The standout performance of Random Forest in predicting infectious complications
can be attributed to its ability to handle feature interactions and reduce overfitting
through its ensemble structure. MOCEL also showed promise as a multi-output
classification model, although further refinement is necessary to handle the more
complex patterns in the data.

In conclusion, while these models provide valuable insights into the prediction
of post-surgical complications, addressing class imbalance and improving the
handling of time series data could further enhance their performance. Future work
could focus on balancing techniques and more advanced feature extraction methods
to better capture the complexity of the underlying physiological data.

6.2 Deep Learning
The main challenge faced with the development of the deep learning models has
been overfitting. The training accuracy has consistently been high in comparison
to the low validation accuracy showing that the model is overfitting. This is
further demonstrated by the test results, highlighting the difficulty in developing a
generalised model that works across new unseen patients.

We aimed to resolve this challenge by exploring techniques to reduce overfitting
such as L1 and L2 regularization, dropout layers and kernel initialisers. These
parameters have been tuned to help improve overall model performance but further
hyperparameter tuning could be completed in the future to improve classification
test performance.

Another challenge has been the class imbalance, in particular for the day 3 CVS
and day 5 CVS. The training data was oversampled in the CNN experiments to
create a 50% data balance between the two classes for both day 3 CVS and day 5
CVS. However, during testing the model accuracy for these classes was high, in
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particular for CVS day 5 where both models achieved over 90%. When exploring
the confusion matrices for these classifiers, as shown in Figure 14, the vast majority
of predictions are for the negative class that contained the vast proportion of the
data. Therefore, oversampling the training data had little impact on the model
performance potentially due to the synthetic data being similar to the existing
limited data which does not generalise to new patients.

Figure 14: Confusion matrices for CNN model for day 3 CVS (left) and day 5
CVS (right)

Overall, the lack of training data has been the most significant challenge in
developing deep learning classification models. The small dataset led to
overfitting of models while the imbalanced data resulted in models predicting a
single class. However, the classification models developed still show promise, in
particular for day 5 pulmonary and day 5 infectious classification.

One interesting observation is the ability of the MLP to achieve testing accuracies
greater than 70% despite the fact that the input consists of only one time step of
information. This suggests that there is more predictive information in single items
of data than was first expected and that ingesting the entire time series might not
be necessary.

6.3 Limitations
The primary limitations of the data have been its limited availability and class
imbalances.
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For all algorithms, there was insufficient time during the Data Study Group for
comprehensive hyperparameter optimization. As a result, the chosen
hyperparameters may not be optimal, potentially leading to suboptimal test
accuracies. Deep learning techniques, in particular, exhibited signs of overfitting,
suggesting that they could benefit from further hyperparameter tuning. The time
constraints also affected code quality, increasing the likelihood of bugs and
suboptimal performance.

A key limitation of the study was the inconsistent calculation of test accuracies
across different algorithms. This discrepancy arose due to a misunderstanding
among study group members regarding the best method for calculating test
accuracy. For example, the MLP model predicted an outcome for each time step
of each patient, whereas the CNN model generated predictions for each window.
However, test accuracies for all machine learning algorithms were calculated
using the same approach, making them directly comparable to each other. This
inconsistency in accuracy calculations means that we cannot directly compare the
performance of ML models with DL models or even within the DL models
themselves. As a result, no definitive conclusions can be drawn about the relative
generalization ability of the different algorithms on the test set.

Additionally, we lack a benchmark for evaluating the models produced in this
Data Study Group. A useful benchmark could be the accuracy of previous risk
models or the typical predictive performance of a doctor on this task. Such
benchmarks would provide insight into whether the models developed in this
study have practical utility.

Another limitation of the study is the lack of explainability in most of the models.
Deep learning models, in particular, function as black boxes, providing no clear
indication of how they arrive at their decisions. Some machine learning models,
however, offer greater interpretability. For example, the Ridge Classifier is a
linear model, meaning that its coefficients provide a quantifiable measure of each
variable’s contribution to the output.

7 Conclusion
In this DSG, we sought to determine whether post-surgical complications could
be accurately predicted using CPET data and modern machine learning
techniques.
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The results indicate that, in general, the models performed moderately well on the
held-out test data, achieving accuracies between 0.5 and 0.75 for the respiratory
and infection complication classes. Most models attained an accuracy above 0.9 for
the CVS class; however, this was primarily due to class imbalance, meaning that a
relatively high accuracy could be achieved simply by predicting the majority class
in all cases. Nevertheless, it was challenging to determine whether these accuracies
were sufficiently high for practical use, given the lack of benchmarks.

We also aimed to compare a wide range of machine learning algorithms to identify
the most effective ones for this task. When evaluating traditional ML algorithms,
we found that no single algorithm consistently outperformed the others across
all tasks. However, the Rocket Classifier demonstrated superior performance in
pulmonary prediction, while XGBoost and Random Forest performed best for
infection prediction. For CVS prediction, all traditional ML algorithms performed
similarly due to the local minimum of always predicting no morbidity. Comparing
the effectiveness of deep learning (DL) models with traditional ML models was
challenging since test accuracies were computed slightly differently.

Finally, we sought to balance accuracy and interpretability in these models. We
found that most of the algorithms considered offered limited interpretability,
particularly the DL models. However, we note that the Ridge Classifier, being a
linear model, allows for some interpretability, as its learned coefficients provide
valuable insights into the impact of different features on prediction
outcomes.

Overall, this DSG successfully demonstrated that predictive models could be
developed using CPET data and that these models could achieve an accuracy
greater than 0.5, which is the expected accuracy of a random binary classifier. The
study also highlighted the need for a larger dataset and brought attention to class
imbalances, particularly in CVS complications. Furthermore, it became evident
that many modern machine learning algorithms inherently lack explainability,
necessitating modifications to enhance transparency and build the trust required
for real-world implementation.

7.1 Future Work
Future work will consist of collecting more data and rectifying the class imbalances.
It would also be informative to recalculate the accuracies of the DL models in the
same manner as the traditional ML models so that a direct comparison can be
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performed. Exploring explainable algorithms, such as SHAP [8] and LIME [12],
would render the models more useful to physicians who would require a large
amount of trust in them for the models to be practically useful. Finally, performing
a hyperparameter sweep for all the algorithms would ensure that maximal algorithm
performance had been reached.

8 Team members
Vaishnavi Balaji is a COO and Data Scientist in Curenetics, an AI based
personalised cancer therapies startup, with a background in data science, machine
learning, and artificial intelligence. She contributed to this project by leveraging
her expertise in data analytics and predictive modelling, particularly in the
domains of healthcare and application development. Her strong foundation in
applying machine learning techniques to real-world problems, especially in
biomedical research, allowed her to derive actionable insights and develop
innovative solutions. Vaishnavi’s experience in presenting at international
conferences and contributing to research publications further enhanced the
project’s academic rigor and practical applicability.

Levan Bokeria is a Research Data Scientist at the Alan Turing Institute,
specialising at the intersection of health and AI and with a background in
cognitive neuroscience research. He contributed to the feature engineering part
of the project by researching, extracting and transforming relevant features from
the datasets to be used by downstream ML algorithms.

Alicia Falcon Caro is a final-year PhD student at Nottingham Trent University,
specialising in the development of advanced signal processing and machine
learning techniques applied to physiological time series data, particularly EEG
and EMG, for the development of an hyper scanning brain-computer interface
(BCI). She contributed to this project by participating as one of the facilitators of
the team and through the application of statistical analysis methods, such as
Granger Causality, to explore the potential causal relationships between the
physiological features, and how these interactions differ across different classes.
Additionally, she collaborated with team members on preliminary exploratory
analysis and data preprocessing, ensuring the data was optimally prepared for
machine learning applications

Dr. Funda Güner is an Assistant Professor at Çankaya University. She holds a
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PhD in Industrial Engineering and has completed postdoctoral research at the
University of Leicester. Her expertise lies in industrial engineering, with a focus
on operations research and mathematical modelling. In this project, she
contributed her expertise in modelling and data analysis to support the
development of predictive models for morbidity outcomes.

Muhammad Aslam Jarwar is a Senior Lecturer at the School of Computing and
Digital Technologies, Sheffield Hallam University. His expertise lies in the
Internet of Things (IoT), wearable data processing, and applied artificial
intelligence. Jarwar was a participant in the challenge, he contributed to data
cleaning, developed the neural network to predict post-surgery risk, and played a
key role in writing the report.

Mahreen Kiran is a PhD student at Anglia Ruskin University, Chelmsford,
specializing in machine learning with a research focus on type 2 diabetes mellitus
(T2DM) prediction using digital twin technology. She contributed to this UCL
project, where she was involved in coding, data analysis, model development, and
report writing. Her work applies advanced machine learning techniques to
enhance predictive accuracy, supporting better clinical decision-making and
patient outcomes.

Tochukwu Onyeogulu is a PhD student at Oxford Brookes University,
specialising in machine learning and deep learning solutions for big data analysis,
action/activity recognition, and multi-omic data analysis. With a background in
applied mathematics, he contributed to this project by applying modern
machine-learning techniques to build predictive models of morbidity, precisely
respiratory complications, cardiovascular complications, and post-surgical
infections

Kieran Woodward is a Research Fellow at the University of Nottingham
specialising in pervasive computing with a focus on real-world AI applications
such as for affect recognition and edge computing, including the development of
novel techniques to reduce the size of deep learning models. He contributed to
this project by developing the deep learning approaches used to classify the
sensitive CPET data, including the integration of multiple models. Furthermore,
he also contributed to the data preprocessing necessary for effective machine
learning implementation.

Ruoqing Yin is a PhD student at the University College London specialising in
time series deep learning analysis. She contributed to this project by feature
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engineering, providing useful insights on machine learning model
construction.

Amy (Yijie) Zheng was a PhD student at University of Nottingham specialising
in computational AI and physics-informed neural networks for fibre optical
imaging techniques. She is currently a postdoctoral Research Associate at
University of Cambridge. She contributed to this project by facilitating the group
to collaborate effectively, providing data-driven solutions using Multilayer
Perceptron and writing the draft report.

Vijai Anand is a Research Fellow at the Collaborative Healthcare Innovation
using Mathematics, Engineering, and AI (CHIMERA), University College
London. Recently, his research focus has been on designing data-driven models
to enhance the understanding and prediction of cardiopulmonary interactions in
intensive-care patients. He was one of the PIs on this project and prepared the
scope and data for the challenge.

James Butterworth is a Research Fellow at the Clinical Operational Research
Unit at UCL where he applies modern machine learning algorithms to problems
in healthcare. He was one of the PIs on this project and prepared the scope and
data for the challenge.
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