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Abstract

A computational data-driven fuzzy set-based methodology is proposed and

applied to determine, with high accuracy, the manufacturing parameters of 3D-

printed polylactide (PLA) components, ensuring user-specified failure tensile

strength and design requirements (here: the notch root radius). Hence, the

novel decision-making tool to estimate 3D-printing process parameters is

offered, ensuring desired design characteristics and the mechanical perfor-

mance. The estimated manufacturing angle and infill density have been

adjusted to provide meaningful values for real applications, still resulting in

accurate predictions through the validation process. Following the success of

these design and strength driven estimations, an extension of the proposed

methodology to the cost-saving problem has then been suggested by introducing

printing period and material cost as extra inputs to the decision-making process.
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Highlights

• Technical parameters of 3D-printed PLA are estimated, using fuzzy infer-

ence system.

• Estimations are optimized, ensuring user-specified geometrical and strength

parameters.

• Cost-control parameters are included together with geometrical and

strength parameters.

• Accuracy of the proposed approach is checked through a devised validation

test.
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1 | INTRODUCTION

Rapid prototyping, also known as additive manufacturing
or 3D-printing, has brought a remarkable digital revolu-
tion to the manufacturing industry in the last decades.
Compared with the conventional subtractive manufactur-
ing process such as machining, milling, and shaping,
parts are additively built layer by layer in 3D-printing,
allowing more flexibility and area of applications. For
example, 3D-printing has been widely used in tissue engi-
neering for fabricating artificial tissue constructs with
solid1,2 and hollow3,4 structures due to its high accuracy
in vitro models.5 Additionally, during the 2020 pandemic,
3D-printing was successfully used (based on the open-
source design data) to manufacture in-house, on-demand
face shields to be used as extra personal protective equip-
ment (PPE).6 Recent research has also demonstrated that
laser sintering-3D-printed body armor can achieve stab
protection to UK body armor standards, due to the high
degree of design freedom provided by 3D-printing.7

As a branch of the giant 3D-printing family, fused
deposition modeling (FDM) is one of the most common
AM technologies based on material extrusion by deposit-
ing melted materials selectively on the printing platform
layer by layer. The most commonly used materials in
FDM are polymers, such as polylactide (PLA), as thermo-
plastic materials can be easily melted and extruded from
the nozzle of a 3D-printer. The path of the nozzle is gen-
erated based on the layer geometry which is the outcome
of the part being sliced into super-thin layers with the
help of computer-aided-design (CAD) software pack-
ages.8 Upon cooling on the printing platform, layers of
thermoplastic materials bond together and eventually
form a three-dimensional part as designed.

Generally, aiming at material and time saving, the
internal structure of a printed object can be partly hollow
where the amount of material-filled volume is defined as
the infill density. Infill density is found to significantly
affect the weight,9 strength,10 stiffness,11 and printing
time12 of the printed part. In addition, various types of
infill pattern (internal shape of a part) have been
reported to cause different levels of anisotropy,13 which
leads to significant mechanical performance variance.14,15

As such, if the 3D-printed part has to comply with speci-
fied mechanical requirements, it is vital to take into
account the infill density.

In addition to the infill density, the mechanical
behavior of printed objects with FDM can be influenced
by multiple processing parameters, including tempera-
tures of nozzle and printing plate, layer thickness, print-
ing speed, feed rate, and printing direction.16,17 Printing
direction, which has recently raised increasing interests
of the international research community, is seen to have

a significant influence on the mechanical response of
common FDM materials, such as PLA. The change in
printing direction has been shown to cause anisotropic
behavior which is one of the main characteristics of 3D-
printing.18 It has been suggested that anisotropy plays a
role of primary importance, as far as the mechanical
response of 3D-printed object is concerned.19,20 This is
also seen in experiments where three different printing
orientations (perpendicularly, on-edge and flat) cause
variations in both strength performance and fracture
behavior.21,22 Furthermore, when it comes to objects
printed flat on the build plate, the mechanical behavior
depends on the manufacturing raster angle.19,23,24 This is
because, by changing the manufacturing raster angle, the
strength performance of the printed objects vary based
on the average layer adhesion and the ultimate tensile
strength of the 3D-printed material.25,26 Specifically,
Weake et al.27 found that the tensile strength of an acry-
lonitrile butadiene styrene (ABS) part could be up to
150% higher when the applied force is parallel to the
material filaments (manufacturing angle equals to 0�)
than perpendicular (manufacturing angle equals to 90�).
In the former case, the overall strength is related to the
axial strength of each material filament, whereas in the
latter case, the overall strength only depends on the
bonding forces between adjacent filaments.19 Thus, by
comparing the average layer adhesion25 and the ultimate
tensile strength of the material,24 it is identified that
parallel loading leads to larger overall tensile strength
than perpendicular loading. As such, manufacturing
angle is definitely worth of extra attention as far as the
mechanical performance of a 3D-printed object is
concerned.

It has been seen in numerous experimental studies
that both infill density and manufacturing angle can
influence simultaneously the mechanical behavior of 3D-
printed objects. Although the individual effect of these
parameters was analyzed,27,28 due to the complexity of
the cross-correlations between them, the estimation of
the mechanical strength can be highly inaccurate where
both infill density and manufacturing angle vary. The
determination of the mechanical behavior of a 3D-
printed part still relies on either numerous tests or
empirical relations which are in any case the outcome
from comprehensive experimental investigations. Hence,
it has become a priority to provide an alternative
methodology requiring fewer experimental tests for for-
mulating the relationship between the mechanical
behavior of a 3D-printed object and multiple manufactur-
ing parameters.

Data-driven solution has shown its capability of over-
coming the above difficulties by gaining knowledge and
recognizing and creating patterns among the data
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directly. Typical data-driven methods, including artificial
neural networks (ANN), fuzzy inference system (FIS),
and other techniques, are widely applied to study the
mechanical behavior of 3D-printed object.27,29 The com-
plexity caused by the joint effect of multiple parameters
is seen to be effectively solved by the application of non-
linear regression solutions included in the aforemen-
tioned techniques.26 Specifically, compared with ANN—a
“black box” structure, FIS framework has a “grey box”
structure which benefits from its fuzzy rules, allowing
more user control through the relatively transparent
structure. Apart from the user-friendly characteristic of
FIS, ease to use and less required data make FIS a highly
welcome data-driven solution in scientific community.
Considering the error that always exists in manufacturing
and testing 3D-printed components, FIS is an appropriate
method for this application due to its tolerance of data
imprecision.30

Previous studies have proven that FIS has the capabil-
ity to estimate the tensile strength with given manufactur-
ing and geometrical parameters.26 However, the current
industrial problem is that with both strength and geomet-
rical design requirements set for a 3D-printed object, the
optimal combination of manufacturing parameters can be
impossible to be determined a priori. Therefore, in this
paper, attempts have been made to solve such a problem
by estimating manufacturing angle and infill density with
the provided requirement of strength and geometry.
Besides, adjustments are conducted to identify the most
appropriate combination of both manufacturing parame-
ters in order to meet specific industrial needs, for example,
setting material-saving as a top priority. Due to the fact
that the estimation in the present work seeks for
manufacturing parameters which lead to required strength
and geometry, it will be referred to as inverse estimation in
the following sections, contrary to direct estimation, result-
ing in strength based on the given manufacturing parame-
ters reported in our previous work.26

In Section 2, the design and manufacturing of tested
components will be introduced. Then, in Section 3, the
classification of experimental data will be explained,
followed by the construction of FIS. Adjustments and
analysis of estimation results as well as the validation
process will be illustrated in the same section. Section 4
will introduce an extra case study where cost related vari-
ables are included.

2 | MANUFACTURING OF
SPECIMENS

3D-printed specimens used in the present research were
manufactured with 3D-printer Ultimaker 2 Extended+,

using 2.85-mm-diameter PLA filaments. The manufactur-
ing parameters were set as shown in Table 1. All speci-
mens were tested with a Shimadzu universal axial
machine where the displacement rate was equal to
2 mm/min.31

The drawings seen in Figure 1A include the dimen-
sions of all specimens used in the present investigation
with different geometrical characteristics. Figure 1B
shows the definition of the manufacturing angle being
adopted, which refers to the angle between the longitudi-
nal axis of the specimen and the positive y-axis of the
building plate. The particular choice of geometries
(notched specimens in Figure 1A) was used to support
the extensive testing of FIS methodology discussed in our
previous investigation.26

3 | INVERSE ESTIMATION
USING FIS

A FIS is based on the idea of fuzzy sets which was first
proposed by Zadeh32 in 1965. The system can be used to

TABLE 1 Predetermined manufacturing parameters for 3D-

printing process.31

Manufacturing parameters Values/selections

Layer height 0.1 mm

Shell thickness 0.4 mm

Infill pattern Grid

Build-plate temperature 60�C

Printing speed 30 mm/s

Nozzle size 0.4 mm

Nozzle temperature 240�C

FIGURE 1 (A) Technical drawings of 3D-printed specimens

with three different dimensions and (B) manufacturing angle

between the longitudinal axis and the main printing direction.31

[Colour figure can be viewed at wileyonlinelibrary.com]
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model complicated problems with nonlinearities in a way
similar to human reasoning process. Particularly in engi-
neering applications, fuzzy sets theory aims at efficient
computational methods that tolerate suboptimality and
imprecision.33

In traditional dual logic, a statement has to be
either true or false (nothing in between). In the theory
of sets, an element can either belong to a set or not.34

However, in the theory of fuzzy sets, the truth of any
statement becomes a matter of degree35 (degree of
membership), which helps formulate the mapping from
a given input to an output. Such mapping can be for-
mulated by a group of IF–THEN rules which are
extracted from the historical data and the formulation
is normally considered as the “training” stage of a
FIS.36 With new input data provided, the trained FIS
can provide an estimation of the unknown output. In
the present investigation, the input refers to
manufacturing and geometrical design parameters and
the output refers to the failure tensile strength of
3D-printed parts. For readers' easier understanding,
the fundamentals and calculations of FIS will be pre-
sented in Sections 3.3 and 3.4 with a simplified
example.

3.1 | Inverse problem setup

Before stepping into the fundamentals of FIS, it is impor-
tant to first identify the engineering problem. As men-
tioned in Section 1, generally, the goal of an industrial
process is to find the optimal solution of manufacturing
parameters that ensures predetermined values of strength
and geometry. Owing to the success of FIS in the previ-
ously investigated direct estimation (from manufacturing
parameters to strength),26 the new input of the inverse
FIS in the present investigation is set to be strength and
geometrical parameters, that is, tensile strength and
notch root radius. Hence, the manufacturing angle and
the infill density have become the output of this new
inverse estimation.

3.2 | Experimental data and
classification

After the inverse problem has been set up, the introduc-
tion of experimental data for training and validating FIS
is also of great importance. The experimental data are
originally adopted from Ahmed and Susmel31 and
reported in Table 2 where every value of the reported fail-
ure strength was calculated by averaging 3.26 Therefore,

there are 27 experimental data sets, each of which has a
unique combination of four parameters. Relevant param-
eters in Table 2 are referred to as radius—notch root
radius (mm), σf—failure tensile strength (MPa),
θp—manufacturing angle (�), infill density (%).

To show the reliability of the FIS methodology, it is
necessary to have not only enough data for defining the
fuzzy rules but also a group of data needed exclusively
for validation. In this paper, a new classification principle
is adopted where all specimens with radius equal to
1 mm are treated as unknown data and classified as the
validation group. This is to evaluate the performance of
FIS to deal with the unseen value—that is, how well FIS
will deal with the unseen data with notch root radius
equal to 1 mm if the system has only seen data with 0.5
and 3 mm.

3.3 | Sugeno FIS

It is seen that both output parameters in Table 2, the
manufacturing angle and the infill density, have crisp
values—measurable, precise numbers/values; in other
words, these characteristics are members of classic,
rather than fuzzy set with a degree of membership
description. Hence, the Sugeno FIS37 is selected as it is
relatively more efficient to model the nonlinear relation-
ship between crisp values. Different from Mamdani FIS38

adopted in the past work,26 Sugeno FIS allows the output
membership function (MF) to be a constant or a linear
function of input values. It is more suitable for the cur-
rent research than Mamdani FIS as the latter has a
requirement of transforming crisp output values into
MFs, which could generate further numerical error if
the parameters of MFs are not set to optimal. Besides,
compared with Mamdani FIS, Sugeno FIS has the
advantage of computational efficiency since the calcula-
tion in defuzzification process refers to the weighted
average of multiple data (illustrated in following
paragraphs and Figure 2), rather than the centroid
solution in Mamdani FIS which has been previously
introduced.20,21,26

Being in itself a recap of the FIS, the general stages of
setting up a Sugeno FIS are illustrated as follows. In the
beginning, a group of “training data” is fed to formulate
the fuzzy rule base which builds mappings between exist-
ing input and output. In order to make predictions of a
new unknown output, the new known input data have to
be first fuzzified into a membership value using MF. One
of the typical MFs is triangular MF39 as shown in
Equation (1), which is popular due to its simplicity and
quick response:

TU ET AL. 2757
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TABLE 2 Summary of

experimental data for testing U-notched

specimens.Specimen

Input Output

Radius (mm) σf (MPa) θp (�) Infill density (%)

1 0.5 9.7 0 30

2 1 9.5 0 30

3 3 10.9 0 30

4 0.5 13.1 0 50

5 1 13.8 0 50

6 3 14.4 0 50

7 0.5 17.4 0 70

8 1 16.9 0 70

9 3 18.6 0 70

10 0.5 8.2 30 30

11 1 8.5 30 30

12 3 10.0 30 30

13 0.5 11.5 30 50

14 1 12.0 30 50

15 3 12.5 30 50

16 0.5 12.2 30 70

17 1 11.9 30 70

18 3 13.9 30 70

19 0.5 8.0 45 30

20 1 8.1 45 30

21 3 9.8 45 30

22 0.5 11.0 45 50

23 1 11.9 45 50

24 3 13.5 45 50

25 0.5 15.1 45 70

26 1 15.2 45 70

27 3 16.4 45 70

FIGURE 2 Decomposition of a

Sugeno fuzzy inference system. [Colour

figure can be viewed at

wileyonlinelibrary.com]
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μ xð Þ¼

0, x ≤ a,
x�a
b�a

, a< x ≤ b,

c�x
c�b

, b< x < c,

0, x ≥ c,

8
>>>>>>>><

>>>>>>>>:

ð1Þ

where a, b, and c are parameters of the function
defined by users and μ xð Þ is the membership value of
the corresponding input x. For various fuzzy rules,
parameters of the MF could be different so the fuzzifica-
tion of a FIS which contains several rules has a
parallel data processing pattern. Note here these
fuzzy rules have only helped on generating para-
meters of MF while they have not interfered with input
data yet.

Note that the triangular MF is used both in the fol-
lowing explanatory example in Section 3.4 and in the
estimation process for the general experimental data.
Moreover, with the focus of the current research being
applying the FIS methodology for the inverse estima-
tion of 3D-printing technical parameters, the effect of
various types of MF will not be detailed in this
content. However, the triangular MF is reported to
have a top-tier performance, compared with other
MFs.40,41

The derived membership values are then brought to
the fuzzy inference engine, which contains a group of
fuzzy calculus that can process the membership value
with respect to fuzzy rules. The detailed calculus will
be introduced in the later section, together with an
illustrative example. The output of a Sugeno fuzzy
inference engine is a combination of two values—mi

and ni where mi refers to the processed membership
value of the new input for ith fuzzy rule and ni refers to
the known output value (from training data) for the
same rule.

As mentioned previously, the Sugeno FIS does not
include any MF calculation in the output stage
apart from a weighted average calculation as shown
below:

Wa ¼
Pk

1
mi �ni
Pk

1
mi

, ð2Þ

where k refers to the total amount of fuzzy rules and Wa

refers to the calculated weighted average value. Eventu-
ally, the value of Wa is the estimated output value for the
new input.

3.4 | Sugeno FIS with an illustrative
example

Since the general stages of constructing a Sugeno FIS
have been introduced, it is possible now to illustrate the
detailed calculation with a synthetic example. Figure 2
shows the decomposition of a Sugeno FIS calculation for
some fabricated data. Note that in Figure 2, the calcula-
tion and setup of MF for input parameters have been
partly simplified, aimed at helping the readers to better
understand.

The process starts from the definition of two fuzzy
rules, formulated based on the existing experimental
data, which in the linguistic form are as follows:

Rule 1. “if radius is 3 mm and strength is 10 MPa, then
infill density will be 30%”;

Rule 2. “if radius is 0.5 mm and strength is 18 MPa, then
infill density will be 70%.”

As the next step, input parameters are fuzzified using
triangular MFs, resulting in membership values. For the
first parameter of synthetic data, radius ranges from 0.5
to 3 mm, and the membership value ranges from 0 to
1. Therefore, MFs for the radius (the first column from
left in Figure 2) can be calculated using Equation (3):

μ xð Þ¼
x�0:5
3�0:5

, if radius is large Rule 1ð Þ,
3�x
3�0:5

, if radius is small Rule 2ð Þ:

8
><

>:
ð3Þ

With a new radius value equal to 1 (x¼ 1) as input,
the corresponding membership value of both rules can be
found as 1�0:5

3�0:5¼ 0:2 and 3�1
3�0:5¼ 0:8 based on Equation (3).

Similarly, membership values, 14�8
18�8¼ 0:6 and 18�14

18�8 ¼ 0:4,
can be obtained for the second parameter—strength (the
second column in Figure 2).

Then, the next step, the AND operation, mentioned
in both rules above, refers to as implication: for example,
for 30% infill density (consequent of Rule 1), the outcome
of this implication stage is a membership value (the prod-
uct of radius and strength membership values)
0.2 � 0.6 = 0.12. Therefore, combined with the 30% infill
density, the calculation result for the first row is 0.12/30%
(0.12 for the calculated membership value and 30% for
the consequent value). Similarly, the calculation result
for the second row is 0.176/70%, where 0.176 is obtained
from 0.8 � 0.22 = 0.176.

Exercising all existing rules (two in our case), the
weighted average of all outcomes is calculated as shown
in Figure 2, resulting in the estimated infill density.
Hence, in our illustrative example, with knowing data
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from Rules 1 and 2, the estimated infill density for a new
specimen (with “notch root radius—1 mm and tensile
strength—14 MPa”) is 0:12�30%þ0:176�70%

0:12þ0:176 ¼ 53:8%. Note
that MFs of output parameters are now in form of con-
stants rather than functions thanks to Sugeno FIS.

3.5 | Estimation results and adjustments

Returning back to the original experimental data
reported in Table 2, a new FIS can be constructed from
all known (unshaded) specimens, following the procedure
introduced in Section 3.5. Then, the new unknown
(shaded in Table 2) data from the validation group is
fed into the system and the estimation result based
on the validation group is noted in Table 3. The “experi-
ment output” in Table 3 includes actual values of
manufacturing angles and infill densities repeated from
Table 2; they are eventually compared with “estimation
output.”

Since the outcome of this inverse FIS is values of
manufacturing parameters which are to be fed into
3D-printers, it is very likely that the estimation results will
be correct mathematically, but the values are somewhat
meaningless to the printer due to possible printer specifi-
cations. Hence, the adjustments of results based on real
applications (taking particular specifications of a 3D-
printer into account) are necessary in order to
avoid meaningless values. To take an example of the
adjustment of manufacturing angle, which follows the
principle of “proximity,” if two estimated manufacturing
angles are 4.3� and 12.9� for two different specimens, the
adjusted estimation result will be 0� and 15�, respectively.
Similarly, for infill density, if two estimated infill

densities are 67.6% and 61.4% for two different specimens,
the adjusted estimation result will be 70% and 60%, respec-
tively. Both adjusted estimation results have been included
in Table 3, in “adjusted estimation” column.

3.6 | Estimation error calculation

In order to evaluate the accuracy of the proposed inverse
FIS methodology, estimated outputs (PestÞ are compared
with the actual experimental outputs Pexp

� �
, see Table 3,

where the absolute error is calculated according to this
simple definition:

Error¼ Pest�Pexp

�� ��, ð4Þ

as the presence of “0” in the actual experimental
manufacturing angle (and hence in a denominator for
the case of relative error calculations) could cause
numerical issues.

As to the analyzing errors presented in Table 3, it is
interesting to note a high estimation error for
manufacturing angle of Specimen 5 (see 30� absolute
error). We attempted to analyze this relatively high value
and came up with the following explanations:

• the two adjacent rules influencing the estimation of
Specimen 5 are Specimens 18 and 24 (see Table 2),
since the strength of Specimen 5, which is 13.8 MPa,
lies in between 13.5 (Specimen 24) and 13.9 MPa
(Specimen 18);

• infill densities are also relatively close to each other
(identical in Specimens 5 and 24);

TABLE 3 Experimental output together with the estimation output and its corresponding adjustment.

Specimen

Experiment output Estimation output Adjusted estimation Absolute error

θp (�) Infill (%) θp (�) Infill (%) θp (�) Infill (%) Error θp (�) Error infill (%)

2 0 30 5.3 30 0 30 0 0

5 0 50 33.7 60 30 60 30 10

8 0 70 9 70 15 70 15 0

11 30 30 24.1 30 30 30 0 0

14 30 50 30 64.3 30 60 0 10

17 30 70 30 61.4 30 60 0 10

20 45 30 37.5 30 30 30 15 0

23 45 50 30 61.4 30 60 15 10

26 45 70 45 70 45 70 0 0

Average error 8.3 4.4

Note: The absolute error between the experimental output and the adjusted estimation.
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• therefore, intuitively, the estimated manufacturing
angle of Specimen 5 should lie somewhere between
30� (Specimen 18) and 45� (Specimen 24).

Moreover, it is seen that although Specimens 18 and
24 have the same radius (3 mm) and very close values of
strength, the experimental manufacturing parameters are
quite different (30�/70% vs. 45�/50%). Such ambiguity
causes the estimation inaccuracy for Specimen 5. Summa-
rizing the above, the estimation result of FIS depends on
the provided experimental data or fuzzy rules where
ambiguous conformity could cause extra estimation
error. Such ambiguity will be discussed in Section 4.

3.7 | Numerical validation

It can be seen from Table 3 that the two manufacturing
parameters of interest can be estimated accurately. The
average estimation error for manufacturing angle and
infill density were seen to be 8.3� and 4.4%, respectively.
At this stage, a validation test was designed in order to

demonstrate the full capability and accuracy of FIS meth-
odology. Authors appreciate the unconventional usage of
the word “validation” in a numerical rather than tradi-
tionally experimental sense but offer readers to
follow them.

In this numerical validation test, illustrated in
Figure 3, we start from the inverse FIS (denoted F1), in
order to estimate manufacturing parameters
(manufacturing angle and infill density) required to
obtain the desired strength values and notch root radius.
We follow the process described above in Sections 3.1–
3.4. These obtained manufacturing parameters, after
adjustments, discussed in Section 3.6, are then used
together with the notch root radius in the next step—the
direct FIS26 (denoted F2) to (re-)estimate values of the
strength. Eventually, these new (re-)estimated values
of the strength are compared to the original experimen-
tal failure strength values. The accuracy of the compari-
son will indicate whether FIS methodologies worked
well.

As shown in Table 4, “manufacturing parameters”
columns present the outcome of F1. These data are

FIGURE 3 Explanation of inverse

and direct estimation using FIS where

F1 refers to as inverse estimation and F2
is the direct validation estimation.

TABLE 4 Estimated manufacturing angle and infill density are brought back into the FIS direct estimation to estimate the failure

strength, which is to be compared with the experimental failure strength for R = 1 specimens.

Specimens (R = 1 mm)

Manufacturing parameters
(adjusted) Strength

Absolute error
θp (�) Infill (%) Estimation σf (MPa) Experimental σf (MPa) σf

2 0 30 9.94 9.5 0.4

5 30 60 12.2 13.8 1.6

8 15 70 15.2 16.9 1.7

11 30 30 8.57 8.5 0.1

14 30 60 12.2 12.0 0.2

17 30 60 12.2 11.9 0.3

20 30 30 8.57 8.1 0.5

23 30 60 12.2 11.9 0.3

26 45 70 15.3 15.2 0.1

Average error 0.6
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then used in the new direct estimation FIS F2, together
with the radius in order to (re-)estimate failure strength
(presented in “strength estimation” column). The
new direct estimation still uses the aforementioned speci-
mens to set up fuzzy rules, and the validation group is
identical to that of inverse estimation. Estimated failure
strength is then compared with experimental failure
strength, and an absolute error is calculated. It can be
seen (from Table 4) that the average absolute error

is 0.6 MPa, which is relatively small, compared to
actual strength values. To reiterate, this error refers to
the difference of failure strength obtained from experi-
ments and estimated using our inverse-adjusted-direct
approach. It is noted that at the end of the direct estima-
tion process, the estimation error already includes errors
generated in both inverse and direct FIS. Therefore, it
can be concluded that FIS has proven to show a good
performance.

TABLE 5 Inverse FIS estimation of manufacturing parameters with printing period and material weight being included.

No.

Input
Experiment
output

Estimated
adjusted
output

Absolute error
without time and
weight (from
Table 3)

Absolute error
including time and
weight

Radius
(mm)

σf
(MPa)

Print
time
(min)

Mat.
weight
(g)

θp
(�)

Infill
(%)

θp
(�)

Infill
(%)

ABS
error
θp

ABS
error
infill

ABS
error
θp

ABS
error
infill

1 0.5 9.7 93 8 0 30

2 1 9.5 94 8 0 30 0 30 0 0 0 0

3 3 10.9 97 8 0 30

4 0.5 13.1 101 9 0 50

5 1 13.8 102 9 0 50 45 50 30 10 45 0

6 3 14.4 105 9 0 50

7 0.5 17.4 109 10 0 70

8 1 16.9 110 10 0 70 0 70 15 0 0 0

9 3 18.6 113 10 0 70

10 0.5 8.2 93 8 30 30

11 1 8.5 94 8 30 30 30 30 0 0 0 0

12 3 10.0 96 8 30 30

13 0.5 11.5 101 9 30 50

14 1 12.0 102 9 30 50 30 50 0 10 0 0

15 3 12.5 105 9 30 50

16 0.5 12.2 109 10 30 70

17 1 11.9 110 10 30 70 30 70 0 10 0 0

18 3 13.9 113 10 30 70

19 0.5 8.0 92 8 45 30

20 1 8.1 93 8 45 30 30 30 15 0 15 0

21 3 9.8 96 8 45 30

22 0.5 11.0 100 9 45 50

23 1 11.9 101 9 45 50 30 50 15 10 15 0

24 3 13.5 104 9 45 50

25 0.5 15.1 108 10 45 70

26 1 15.2 109 10 45 70 45 70 0 0 0 0

27 3 16.4 112 10 45 70

Average
error

8.3 4.4 8.3 0
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4 | EXTENSIVE STUDY OF COST-
CONTROL RELEVANT
PARAMETERS WITH FIS

In this section, we would like to return to the ambiguity
issue, discussed in Section 3.7. It is noted that Specimen
23, for example, has 45�/50% experimental setup but the
estimation result offers as preferred 30�/60% (see
Table 3). The difference between both pairs cannot be
disregarded; however, the 30�/60% provides a failure
strength similar to 45�/50% (see Table 4). It can be
referred to as the non-uniqueness of 3D-printing, that is,
different combinations of multiple parameters can lead to
similar results. Assuming there are no restrictions on
manufacturing angles with respect to cost, this ambiguity
of results can also be controlled by, for example, the
material cost of the printing, where the solution with less
infill density could be preferred (as discussed Section 1).
Hence, it has risen extensive interest of authors that from
the above inference process, parameters such as printing
period and material consumption are worth of extra
attention, especially for manufacturers.

Table 5 presents the study which includes not only
strength and notch root radius but also printing period
and material consumption for the estimation of optimal
manufacturing parameters. Both printing period and
material consumption have been acquired from the soft-
ware CURA with different design models loaded, where
the assumption has been made that the estimated time
and material usage shown in CURA is identical to real-
ity.31 The printing period refers to the time (minutes)
needed to complete the 3D-printing, while material con-
sumption can quantify the weight of the material being
consumed (grams). Both of them can be categorized as
cost-relevant parameters which represent special indus-
trial needs rather than manufacturing settings or geomet-
rical design. Thus, they are used together with radius and
strength as input of a new inverse FIS.

The setup of the new inverse FIS with two extra input
parameters is similar to the one discussed in Section 3.
Table 5 reports the new estimation error of recommended
manufacturing angle is 8.3� (estimation with time and
weight), which is identical to the outcome in Table 3
(estimation without time and weight). It is even more sat-
isfying to see the new estimation error for infill density
drops from 4.4% (without time and weight) to 0% (with
time and weight). Such comparison leads to the following
conclusions.

• Including additional parameters (such as printing time
and material consumption) can lead to better FIS esti-
mation accuracy for infill density while it has no signif-
icant impact on manufacturing angle.

• Generalizing further, it can be concluded that the
manufacturing angle does not significantly influence
the printing time and material consumption contrary
to infill density.

Once again, the above result proves that FIS is a use-
ful tool that can be used to estimate manufacturing
angles and infill densities with not only requirements of
failure strength and notch root radius but also cost-
control parameters such as printing time and material
consumption. Additional relevant parameters can con-
tribute to better estimation accuracy using FIS.

5 | CONCLUSION

Following the present study, key steps of setting up a
Sugeno FIS were discussed and demonstrated, together
with parameter settings. Different from the previous work,
here, FIS has shown its capability of estimating inversely,
that is, estimating manufacturing angle and infill density
with provided requirements of tensile strength and geo-
metrical characteristic (notch root radius) in 3D-printing
application. The necessity of having adjustments for esti-
mation results has been discussed due to the specification
of 3D-printers, and it has been shown that adjustments are
effective and not resulting in an evident reduction of the
estimation accuracy. It was concluded that FIS has a
highly accurate inverse estimation potential.

Due to the intrinsic versatility of FIS, it has been dem-
onstrated that during the inverse estimation, FIS is able
to deal with a variety of parameters, including not only
strength and geometry but also cost-relevant ones such as
printing period and material consumption. It shows a
comprehensive solution which allows manufacturers to
find the optimal manufacturing parameters and have a
cost-control tool at the same time.

Summarizing, FIS is able to offer high estimation
accuracy as a robust and simple methodology. It has great
potential of being an effective decision-making and cost-
control tool in design problems for modern industries. It
can be foreseen that FIS approach could be widely
applied in engineering fields for mechanical behavior
prediction, geometrical characteristics optimization, and
industrial user needs.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are avail-
able from the corresponding author upon reasonable
request.

NOMENCLATURE
R notch root radius
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yp printing direction of 3D-printer
Pest estimated parameter
Pexp experimental parameter
θp manufacturing angle of 3D-printing
μ membership value of corresponding data
σf tensile failure strength
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