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A B S T R A C T   

This paper deals with the problem of estimating notch fatigue limits via machine learning. The proposed strategy 
is based on those constitutive elements that were used by the pioneers like Peterson, Neuber, Heywood, and 
Topper to devise their well-known formulas. The machine learning algorithms being considered were trained and 
tested using a database containing 238 notch fatigue limits taken from the literature. The outcomes from this 
study confirm that machine learning is a promising approach for designing notched components against fatigue. 
In particular, the accuracy in the estimates can easily be increased by simply increasing size and quality of the 
calibration dataset. Further, since machine learning regression models are highly flexible and can handle high- 
dimensional datasets with many input features, they can capture complex relationships between input features 
and the target variable. This means that the accuracy in estimating notch fatigue limit can be increased by 
including in the analyses further input features like, for instance, grain size or hardness. Finally, machine 
learning’s generalization ability is crucial for regression tasks where the goal is to predict values for new 
materials.   

1. Introduction 

The prediction of the fatigue behaviour of materials containing 
notches (such as keyseats, fillets, or holes) is a topic of enduring interest 
in engineering and materials science. In structural components, notches 
act as stress concentrators and they are known to significantly reduce the 
fatigue strength of materials. Since the estimation of the fatigue strength 
of notched components is of primary importance in ensuring the struc
tural integrity in various engineering applications, the development of 
reliable design methodologies has been a challenge for a large number of 
researchers, resulting in decades of dedicated investigations, explora
tions and experimental analyses. Estimating fatigue strength in the 
presence of stress concentrators involves the assessment of various fac
tors that include, amongst others, geometrical profiles of the notches, 
material mechanical properties, loading conditions, and environmental 
effects. 

When dealing with ferrous metallic materials, the fatigue limit is a 
threshold stress that is associated with the presence of a non- 
propagating crack whose growth is blocked by the first micro- 
structural barrier (such as, for instance, the first grain boundary) 
[1,2]. In theory, when a component is in the fatigue limit condition, 
fatigue failure should never occur, i.e. the component is supposed to 
withstand without breaking for a number of cycles equal to infinity. 
However, due to cyclic- and time-dependent phenomena (where the 
specific features of the applied load history and the environment play a 

role of primary importance), fatigue limits are seen to disappear [3,4]. 
This is a consequence of the fact that in the very high-cycle fatigue 
regime cracks no longer initiate on the surface. In contrast, they develop 
inside of the components, with these internal cracks ultimately gov
erning fatigue failures [3]. 

Unlike ferrous metals, non-ferrous materials instead do not have a 
fatigue limit. This is way they are always designed by targeting a specific 
finite number of cycles to failure [5]. Aluminium alloys are a classic 
example of engineering materials displaying no fatigue limit. 

As far as fatigue design is concerned, since the fatigue limit can 
disappear or it does not exist at all, it is preferable to refer to the so- 
called endurance limit. The endurance limit is nothing but a threshold 
stress which is extrapolated to a reference number of cycles to failure 
that usually ranges in the interval 5⋅105–108 [5,6]. 

Bearing in mind what has been said above regarding fatigue versus 
endurance limits, for the sake of simplicity in what fallows the term 
fatigue limit will be used to indicate both the fatigue and the endurance 
limit. In other words, the term fatigue limit will be used to denote a 
reference threshold stress defined in the high-cycle fatigue regime. In 
this setting, it is worth pointing out that those theories that were orig
inally developed by strictly referring to fatigue limits can be applied also 
in terms of endurance limits. This can be done provided that, for a given 
material, plain and notch endurance limits are determined under the 
same experimental conditions (in particular, under the same load ratio) 
and defined by referring to the same reference number of cycles to 
failure [5]. 
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At its core, Machine learning (ML) is a subset of artificial intelligence 
(AI) that enables computer systems to automatically learn and improve 
from experience without being explicitly programmed for a particular 
task. It relies on mathematical algorithms and statistical models to 
identify patterns and relationships within data. The process involves 
feeding vast amounts of data into algorithms, which then iteratively 
learn from the data, adjusting their internal parameters to improve their 
performance on a given task. 

As ML continues to advance, it finds applications in various fields, 
including fatigue. For instance, ML algorithms have been extensively 
applied to predict fatigue life in metallic materials [7–10], additively 
manufactured metals [11–13] and composite materials [14–16]. Despite 
these promising findings, challenges remain in the application of ML to 
fatigue and fracture prediction. Limited availability of high-quality and 
diverse datasets, issues of data reliability, and the need for interpretable 
models continue to be areas of active research. 

In the scenario briefly discussed above, the ultimate objective of the 
present study is to provide a comprehensive understanding of the way of 
using various state-of-the-art ML techniques to estimate the notch fa
tigue limit. In particular, by revisiting a wide array of studies from the 

past to the present, this work aims to facilitate further advancements in 
predicting the fatigue behaviour of notched components by making the 
most of ML. It is anticipated that the knowledge gained from this study 
will aid engineers and researchers in making informed decisions to 
design safer and more reliable notched components, contributing to the 
overall advancement of the structural integrity discipline. 

2. Considered machine learning techniques 

The flow chart reported in Fig. 1 shows in a schematic, simplified 
way how ML algorithms can be used to make predictions. 

The first step is to collect relevant data that will be used to train and 
evaluate the ML model being used. Once the data are collected, they 
need to be processed to ensure they are in a suitable format for the 
adopted ML algorithm (Fig. 1a). 

The subsequent step is to choose a suitable ML algorithm (Fig. 1b). 
Selecting an appropriate ML algorithm is crucial and depends on the 
nature of the prediction problem. Different types of problems (e.g., 
regression, classification, clustering) and data characteristics (e.g., 
linear, nonlinear) may require specific algorithms. The selected 

Nomenclature 

a notch depth 
aH material constants in Heywood’s relationships 
aN material constant in Neuber’s equation 
aP material length in Peterson’s formula 
dn, dg net and gross diameter/width of the notched specimens 
f, f1, f2 functions used to estimate Kf 
n sample size 
y target in a linear regression 
E error (in percentage) 
F constant in DuQuesnay, Topper and Yu’s formula 
K number of “folds” 
Kf fatigue strength reduction factor referred to the net area 
Kf,i, Kf,i-ext experimental and estimated value of Kf (for the i-th 

sample) 
Kt stress concentration factor referred to the net area 
L material characteristic length 
Nf number of cycles of failure 
Oxyz system of coordinates at the notch tip 

R load ratio 
RMSE Root Mean Square Error 
X1, …, Xn features in a linear regression 
β notch opening angle 
β0, …, βn linear regression coefficients 
ε error term in a linear regression 
k geometrical quantity in Glinka and Newport’s equation 
σep linear-elastic peak stress 
σnet nominal stress referred to the net area 
σUTS ultimate tensile strength 
σy normal stress parallel to axis y 
σmin, σmax minimum and maximum value of the stress in the cycle 
σnet, min, σnet,max minimum and maximum value of the net stress in 

the cycle 
ρ notch root radius 
ΔKth threshold value of the stress intensity factor range 
Δσ0 plain material fatigue limit range 
Δσ0n notch fatigue limit range referred to the net area 
Δσ0n,est estimated value of the net notch fatigue limit range 
Δσnet range of the nominal net stress  

Fig. 1. Flow-chart summarising the procedure to use machine learning algorithms to make predictions.  
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algorithm is then trained on the training dataset (Fig. 1c), which in
volves providing the algorithm with the input features (Xi for i = 1,2. …, 
n) and the corresponding target (or output) variable (yj for j = 1,2,…,k). 
The model learns from the data and adjusts its internal parameters 
iteratively to minimize the prediction error or loss function. 

After training the model, it needs to be evaluated to assess its per
formance on unseen data (Fig. 1d). The model is tested on the testing 
dataset, and various performance metrics, such as accuracy, precision, 
recall, or mean squared error, are calculated to gauge its effectiveness in 
making predictions. 

Once the model is trained and evaluated, it is ready to make pre
dictions on new, unseen data (Fig. 1e). The model takes the input fea
tures of the new data as input (Fig. 1f) and produces the corresponding 
output predictions (Fig. 1g). These predictions can be used for various 
applications, such as prediction, classification, regression, anomaly 
detection, or clustering, depending on the nature of the problem. 

In what follows, the ML algorithms used in the present investigation 
are briefly described. 

2.1. Linear Regression 

Linear Regression [17] is a widely used supervised ML algorithm that 
belongs to the family of regression models. It is designed to model the 
relationship between a dependent variable (target) and one or more 
independent variables (features) by fitting a linear equation to the data. 
The primary objective of linear regression is to find the best-fitting line 
that minimizes the difference between the predicted values and the 
actual target values, thus enabling the algorithm to make accurate 
predictions on new, unseen data. 

Mathematically, a linear regression model can be represented as: 

y = β0 + β1X1 + β2X2 +⋯+ βnXn + ε (1)  

where y is the dependent variable (target) to be predicted, Xi (for i = 1, 
2, …, n) are the independent variables (features) that influence the 
target, βj (for i = 0, 1, …, n) are the regression coefficients that deter
mine the relationship between the features and the target, and, finally, ε 
represents the error term, which accounts for the difference between the 
predicted values and the actual values. 

The linear regression algorithm aims to estimate the regression co
efficients βj (for i = 0, 1, …, n) that best fit the given data. This esti
mation is often performed using the Ordinary Least Squares method, 
which minimizes the sum of the squared residuals (the differences be
tween the actual target values and the predicted values). 

Training a linear regression model involves feeding it with a labelled 
dataset, where both the independent variables (features) and the 
dependent variable (target) are known. The algorithm then iteratively 
adjusts the regression coefficients to minimize the error until conver
gence occurs, creating the best-fitting line that describes the relationship 
between the features and the target. 

Linear regression is an interpretable and relatively simple algorithm, 
making it a popular choice for various applications, trend analysis 
included. However, it is essential to ensure that the data satisfies the 
assumptions of the linear regression model, such as linearity, indepen
dence of errors, and homoscedasticity, to obtain reliable and accurate 
predictions. In cases where the data exhibits non-linear relationships, 
more complex regression models or feature transformations may be 
required to achieve better results. 

2.2. Support Vector Machines (SVM) 

Support Vector Machines (SVM) [18] is a powerful and versatile 
supervised ML algorithm used for both classification and regression 
tasks. SVM is particularly effective in solving binary classification 
problems, where the goal is to separate data points into two classes. The 
algorithm operates by finding an optimal hyperplane in a high- 

dimensional feature space that best separates the data points 
belonging to different classes, while maximizing the margin (distance) 
between the closest data points of each class. This hyperplane is also 
referred to as the decision boundary. 

The key concepts behind SVM involve: hyperplane, support vectors, 
margin, and kernel trick. 

In a binary classification problem with n features, the hyperplane is 
an (n-1)-dimensional flat plane that separates the data points into two 
classes (e.g. in a 2D space, the hyperplane is a line, and in a 3D space, it is 
a plane, etc.). 

Support vectors are the data points that lie closest to the decision 
boundary on either side and have the most influence on determining the 
position and orientation of the hyperplane. The support vectors are 
crucial in defining the maximum margin that SVM seeks to achieve. 

In the SVM algorithm, the margin is the distance between the support 
vectors of different classes and the decision boundary. The primary 
objective of SVM is to maximize this margin, as it improves the algo
rithm’s generalization ability and helps avoid overfitting. SVM can 
efficiently handle non-linearly separable data by transforming the input 
features into a higher-dimensional space using a kernel function. Com
mon kernel functions include Polynomial, Radial Basis Function (RBF), 
and Sigmoid. The kernel trick allows SVM to implicitly compute the dot 
product between the transformed feature vectors without explicitly 
calculating the higher-dimensional coordinates, which can be compu
tationally expensive. 

Training an SVM involves finding the optimal hyperplane that 
maximizes the margin between classes. This process is formulated as a 
convex optimization problem, and various optimization techniques, 
such as the Sequential Minimal Optimization (SMO) algorithm, are 
commonly used to efficiently solve it. Once the hyperplane is deter
mined, new data points can be classified by evaluating which side of the 
decision boundary they fall on. 

SVM has proven to be a robust and effective algorithm for a wide 
range of applications, including image classification, text categorization, 
and bioinformatics. Its ability to handle high-dimensional data and 
nonlinear relationships, along with its strong theoretical foundation, 
makes SVM a popular choice for both academic research and real-world 
ML tasks. However, SVM’s performance can be affected by the choice of 
the kernel and the appropriate regularization parameters, which should 
be carefully selected to achieve optimal results. 

2.3. Gaussian Process Regression 

Gaussian Process Regression (GPR) [19] is a powerful non- 
parametric ML algorithm used for regression tasks. It is a Bayesian 
probabilistic approach that allows for flexible modelling of complex 
relationships between input data and corresponding output values. GPR 
is particularly well-suited for scenarios where data points are sparse or 
noisy, and where the underlying function being modelled is unknown or 
difficult to define explicitly. 

The fundamental concept of GPR revolves around modelling the 
relationship between input data points and output values as a distribu
tion of functions rather than a single deterministic function. It assumes 
that any finite set of output values follows a joint multivariate Gaussian 
distribution. In simpler terms, GPR treats each prediction as a random 
variable with an associated mean and uncertainty. 

A Gaussian process is defined by a mean function and a covariance 
function (also known as a kernel function). The mean function captures 
the overall trend in the data, while the covariance function defines the 
similarity between data points. Popular kernel functions include the 
Radial Basis Function (RBF), Matern, and Exponential kernels, among 
others. The choice of kernel determines the smoothness and complexity 
of the learned functions. 

In GPR, prior beliefs about the relationship between input data and 
output values are represented by the mean and covariance functions. 
After observing data, the prior distribution is updated to a posterior 
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distribution, incorporating the newly acquired information. The poste
rior distribution represents the predictive distribution over functions, 
enabling uncertainty quantification in predictions. 

GPR involves hyperparameters, such as the kernel parameters and 
noise variance, which need to be estimated from the data. The process of 
finding optimal hyperparameters often involves maximizing the likeli
hood of the observed data under the Gaussian process model. 

The outcome of GPR is a predictive distribution over functions for 
new, unseen data points. The predictive distribution provides not only 
the point estimate of the output value but also the associated uncertainty 
(variance or confidence interval). 

Training a Gaussian Process Regression model involves learning the 
hyperparameters and inferring the mean and covariance functions from 
the available data. The model can then make predictions for new data 
points by computing the predictive mean and variance using the trained 
Gaussian process. 

Gaussian Process Regression excels in tasks with limited data, as it 
provides a principled approach to handle uncertainty, which is crucial 
when making predictions with sparse or noisy data. However, the al
gorithm’s computational complexity increases significantly with the 
number of data points, which may limit its scalability for very large 
datasets. Nevertheless, GPR remains a popular choice in various fields, 
including robotics, finance, and engineering, where uncertainty esti
mation and high-quality predictions are essential. 

2.4. Cross decomposition – Partial Least Squares (PLS) regression 

Partial Least Squares (PLS) regression [20] is a powerful ML algo
rithm primarily used for multivariate regression tasks, especially when 
dealing with high-dimensional and collinear data. PLS regression is well- 
suited for scenarios where the number of features is much larger than the 
number of samples, and traditional linear regression techniques may 
suffer from overfitting or poor performance. 

The PLS regression algorithm involves a process of extracting latent 
variables (also known as components) that capture the most relevant 
information from both the input features and the target variable. These 
latent variables are constructed in a way that maximizes the covariance 
between Xi and yi, aiming to find the underlying relationships that 
explain the variability in both datasets. 

In more detail, before applying PLS regression, data preprocessing 
steps such as mean centering and standardization are often performed. 
Mean centering ensures that the data has a zero mean, while standard
ization scales the data to have unit variance. These steps are crucial for 
the PLS algorithm to work effectively, especially when dealing with 
features of different scales. 

PLS regression iteratively extracts a series of latent variables, each 
representing a linear combination of the original input features and 
target variable. These latent variables are derived to maximize the 
covariance between Xi and yi, ensuring that the most relevant infor
mation from both datasets is captured. 

The number of latent variables (components) to be extracted is a 
crucial hyperparameter in PLS regression. This number can be deter
mined using various techniques, such as cross-validation or analyzing 
the explained variance. Selecting an appropriate number of components 
is essential to avoid overfitting and achieve a balance between model 
complexity and performance. 

Once the latent variables are extracted, PLS regression performs a 
linear regression on these components to predict the target variable. The 
coefficients of the linear regression are computed during the modelling 
step, enabling predictions for new, unseen data. 

PLS regression offers several advantages, including its ability to 
handle multicollinearity (correlation between input features) and its 
effectiveness in dealing with high-dimensional datasets. By capturing 
the most relevant information in the form of latent variables, PLS 
regression reduces the risk of overfitting, making it a valuable tool for 
tasks involving a large number of features. 

However, PLS regression’s performance heavily depends on the 
appropriate selection of the number of components and the quality of 
the extracted latent variables. Furthermore, it may not be the best choice 
for datasets with non-linear relationships or when dealing with a small 
number of samples. 

2.5. Decision Tree Regression 

Decision Tree Regression (DTR) [21] is a popular and versatile su
pervised ML algorithm used primarily for regression tasks. It employs a 
tree-like model to make predictions based on the input features, where 
each internal node represents a decision based on a specific feature, and 
each leaf node corresponds to a predicted output value. 

The key components of DTR are briefly summarised in what follows. 
The DTR algorithm selects the best features and corresponding split 
points to create decision rules. The primary objective is to minimize the 
variance of the target variable within each subset, leading to more ho
mogeneous subsets with respect to the predicted values. 

The process of creating a decision tree involves recursively splitting 
the data into subsets based on the selected features and split points. Each 
subset represents a branch in the tree, and the process continues until a 
stopping criterion is met (e.g., reaching a predefined maximum tree 
depth or having a minimum number of samples in each leaf node). 

The predicted output value at each leaf node in the tree is calculated 
as the average (or median) of the target variable values within that leaf 
node’s subset. This prediction represents the regression model’s esti
mate for the corresponding region of the feature space. 

Decision trees may have a tendency to overfit the training data, 
capturing noise and small fluctuations in the data. To avoid overfitting 
and improve generalization, post-processing techniques like pruning can 
be applied. Pruning involves removing certain branches or nodes from 
the tree that do not contribute significantly to the overall predictive 
performance. 

In a nutshell, training a DTR model involves finding the optimal split 
points and feature selection that minimize the variance within the 
resulting subsets. The process is performed recursively for each node, 
leading to the construction of the full tree. Optionally, pruning may be 
applied to refine the model and improve its performance on unseen data. 

DTR offers several advantages, including its simplicity, interpret
ability, and ability to handle non-linear relationships between input 
features and the target variable. It can capture complex patterns and 
interactions in the data, making it particularly useful for tasks with non- 
linear behaviour. 

DTR is a flexible and intuitive algorithm that effectively handles 
regression tasks with non-linear relationships. Its hierarchical decision- 
making process makes it easy to interpret and visualize, making it a 
valuable tool for both beginners and experienced data analysts. By 
controlling overfitting and leveraging ensemble methods, DTR can 
deliver accurate predictions in a wide range of real-world applications. 

2.6. Multi-Layer Perceptron (MLP) 

Multi-Layer Perceptron (MLP) [22] is a widely used supervised ML 
algorithm belonging to the family of artificial neural networks. It is 
primarily used for various tasks, such as classification, regression, and 
pattern recognition, and is well-known for its ability to model complex 
relationships in data. 

The fundamental building block of an MLP is the artificial neuron, 
also known as a node or perceptron. An MLP consists of multiple layers 
of interconnected neurons, each layer comprising an input layer, one or 
more hidden layers, and an output layer. The neurons in each layer are 
fully connected to the neurons in the subsequent layer, and each 
connection is associated with a weight. 

The key components and operations of MLP involve activation 
function, forward propagation, loss function, and backpropagation. 

Each neuron in an MLP applies an activation function to the 
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weighted sum of its inputs to introduce non-linearity into the model. 
Common activation functions include the sigmoid, Rectified Linear Unit, 
hyperbolic tangent, and softmax (used in the output layer for classifi
cation tasks). 

To make predictions, data is fed into the input layer of the MLP. The 
input data is then passed through the network layer by layer, where each 
neuron computes its activation based on the weighted sum of its inputs 
and applies the activation function. The outputs of the neurons in one 
layer serve as inputs to the neurons in the next layer until the output 
layer is reached, which generates the final predictions. 

The MLP’s performance is evaluated using a loss function that 
measures the difference between the predicted values and the actual 
target values. Common loss functions for regression tasks include Mean 
Squared Error (MSE), while for classification tasks, Cross-Entropy Loss 
(log loss) is commonly used. 

The process of training an MLP involves updating the weights of the 
connections to minimize the chosen loss function. This is achieved 
through an optimization algorithm known as backpropagation, which 
computes the gradients of the loss function with respect to the model’s 
weights. The weights are then adjusted in the direction that reduces the 
loss, iteratively improving the model’s performance during the training 
process. 

MLP’s strength lies in its ability to learn complex patterns and rep
resentations from data, making it a powerful tool for a wide range of 
applications, including image and speech recognition, natural language 
processing, and time series prediction. However, MLP can be sensitive to 
the choice of hyperparameters, such as the number of hidden layers, the 
number of neurons in each layer, and the learning rate. Tuning these 
hyperparameters and dealing with potential issues such as overfitting 
can be essential for achieving optimal performance. 

MLP is then a versatile and powerful neural network architecture 
capable of handling various ML tasks. Its capacity to learn non-linear 
relationships makes it particularly well-suited for complex data model
ling. By carefully tuning hyperparameters and managing training pa
rameters, MLP can produce accurate predictions in a wide range of 
engineering applications. 

2.7. Implementation of the selected machine learning algorithm 

As far as open-source programming language Python is concerned, 
open-access software environments for ML include:  

• Scikit-Learn: a widely used Python library for machine learning that 
provides a comprehensive set of tools for classification, regression, 
clustering, and more.  

• TensorFlow: an open-source deep learning framework for building 
neural networks and deep learning models.  

• PyTorch: an open-source deep learning framework known for its 
flexibility and dynamic computation graph. 

• Keras: a high-level neural networks API that can run on top of Ten
sorFlow, Theano, or CNTK, making it accessible and easy to use. 

• XGBoost: an optimized gradient boosting library that is highly effi
cient and effective for a wide range of machine learning tasks. 

The ML algorithms briefly described in Sections 2.1 to 2.6. were used 
to estimate notch fatigue limits by taking full advantage of the Scikit- 
Learn library [23]. This choice was dictated by the fact that Scikit- 
Learn is the most popular and widely used open-source ML library for 
Python. It provides a rich set of tools and algorithms for various ML 
tasks, making it an effective, easy-to-use tool for ML-based analyses. The 
Scikit-Learn library collects a very large numbers of ML algorithms that 
are subdivided into the following six groups: Classification, Regression, 
Clustering, Dimensionality Reduction, Model Selection and Pre
processing. The ML algorithms used in the present investigation belong 
to the Regression group. To date, this group contains 17 subgroups, 
allowing the user to employ more than 100 different ML algorithms. In 

the present investigation, we selected a limited number of ML tech
niques, focusing our attention on those algorithms that are most widely 
used to solve regression problems in different scientific disciplines. This 
being said, the goal of this paper is to investigate the accuracy and 
reliability of the ML-based approach in estimating notch fatigue limits, 
with this being done by using some well-known, representative algo
rithms. In this setting, it can be highlighted that other than Python/ 
Scikit-Learn, there are some other vendors of commercial machine 
learning solutions such as, for instance, Microsoft Azure Machine 
Learning, Google Cloud AI Platform, SAS, MATLAB and many others. 
Each of these software packages offers a range of tools and services 
tailored to different needs. In the present investigation, we decided to 
take full advantage of Python and the Scikit-Learn library because it is a 
very popular/widely used open source/open access tool. Accordingly, 
those researchers and engineers who are interested in employing ML to 
predict notch fatigue limits can easily make direct use of the method
ology discussed in the present paper. This also explains the reason why 
all the experimental data used in this investigation are reported in an 
explicit form: the data summarised in Table 1 and the open access Scikit- 
Learn library allow anyone either to replicate the calculations reported 
below or to use ML to estimate notch fatigue limits for different mate
rials and/or for different notch geometries. 

3. The high-cycle notch fatigue problem 

Consider the notched component sketched in Fig. 2a. This compo
nent is subjected to either tension or bending and the material under 
investigation is assumed to be linear-elastic. The stress field in the vi
cinity of the notch tip can be determined either numerically or analyt
ically. As to the latter strategy, for instance, Glinka and Newport [24] 
suggested estimating the distribution of normal stress σy along the notch 
bisector via the following well-known formulas: 

Blunt notch under tension, Kt ≤ 4.5 

σy = Ktσnet

[

1 − 2.33
(x

ρ

)
+ 2.59

(x
ρ

)1.5
− 0.907

(x
ρ

)2
+ 0.037

(x
ρ

)3
]

(2) 

Sharp notch under tension, Kt > 4.5 

σy = Ktσnet

[

1 − 0.235
(x

ρ

)0.5
− 1.33

(x
ρ

)
+ 1.28

(x
ρ

)1.5
− 0.337

(x
ρ

)2
]

(3) 

Blunt notch under bending or bending and tension, Kt ≤ 4.5 

σy = Ktσnet

[

1 − 2.33
(x

ρ

)
+ 2.59

(x
ρ

)1.5
− 0.907

(x
ρ

)2
+ 0.037

(x
ρ

)3
](

1 −
x
κ

)

(4)  

In Eqs (2) to (4) σnet is the nominal net stress (defined as seen in Fig. 2), ρ 
is the notch root radius and, finally, κ is a geometrical quantity that 
depends on the stress gradient characterising the nominal net stress 
distribution (Fig. 2b). According to Neuber [25] and Peterson [26], the 
stress concentration factor referred to the net area, Kt, is defined as: 

Kt =
σep

σnet
(5)  

where σep is the elastic peak stress at the notch tip (Fig. 2). 
Consider now the notched specimen shown in Fig. 3a. This specimen 

(containing a known geometrical feature) is subjected to a nominal 
uniaxial loading, i.e., either to a cyclic axial loading or to cyclic bending. 
The fatigue strength of both the notched specimen and the parent ma
terial is summarised in the SN log–log chart of Fig. 3b. This diagram 
plots the range of the nominal net stress, Δσnet, vs. the number of cycles 
to failure, Nf. The upper fatigue curve refers to the plain material, 
whereas the lower one to the notched specimens. According to Fig. 3b, 
the reduction in fatigue strength due to the presence of the notch is 
quantified through the fatigue strength reduction factor, Kf, which is 
defined as [27]: 
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Table 1 
Summary of the collected experimental results (CNB = circumferential notch cylindrical bar, CNP = centre notch in plate, DENP = double edge notch in plate, CBF =
cylindrical bar with fillet, AX = push–pull, B = bending, RB = rotating bending).  

Material Ref. σUTS Specimen 
Type 

Load 
Type 

Δσ0 ΔKth R a dn dg ρ β Kt Δσ0n Kf 

[MPa] [MPa] [MPa
̅̅̅̅
m

√
] [mm] [mm] [mm] [mm] [◦] [MPa] 

AA356-T6 [40] 260 CNB RB 231  4.4 − 1 0.24 7.32 7.56 0.1 79.9  3.68  126.5  1.83 
231  4.4 − 1 0.63 8.41 9.04 0.18 59.2  4.16  136.4  1.69 
231  4.4 − 1 1.3 7.73 9.03 0.09 60.3  8.94  71.4  3.23 
231  4.4 − 1 2.9 9.08 12 0.08 68.3  17.20  40.7  5.68 

C45 [41] 632 CNB RB 582  8.1 − 1 0.01 5 5.01 0.05 60  1.67  550.0  1.06 
582  8.1 − 1 0.01 5 5.01 0.02 60  2.06  550.0  1.06 
582  8.1 − 1 0.01 5 5.01 0.01 60  2.52  560.0  1.04 
582  8.1 − 1 0.01 5 5.02 0.05 60  1.95  490.0  1.19 
582  8.1 − 1 0.01 5 5.02 0.02 60  2.52  500.0  1.16 
582  8.1 − 1 0.01 5 5.02 0.01 60  3.19  490.0  1.19 
582  8.1 − 1 0.1 5 5.2 0.6 60  1.58  420.0  1.39 
582  8.1 − 1 0.1 5 5.2 0.3 60  1.89  380.0  1.53 
582  8.1 − 1 0.1 5 5.2 0.1 60  2.72  360.2  1.62 
582  8.1 − 1 0.1 5 5.2 0.05 60  3.54  360.0  1.62 
582  8.1 − 1 0.1 5 5.2 0.02 60  5.21  360.0  1.62 
582  8.1 − 1 0.5 5 6 0.6 60  1.86  360.0  1.62 
582  8.1 − 1 0.5 5 6 0.3 60  2.39  300.0  1.94 
582  8.1 − 1 0.5 5 6 0.1 60  3.80  280.0  2.08 
582  8.1 − 1 0.5 5 6 0.05 60  5.19  280.0  2.08 
582  8.1 − 1 0.5 5 6 0.02 60  7.94  290.0  2.01 
582  8.1 − 1 0.5 5 6 0.01 60  11.00  290.0  2.01 
582  8.1 − 1 1.5 5 8 0.6 60  1.91  350.0  1.66 
582  8.1 − 1 1.5 5 8 0.3 60  2.52  280.0  2.08 
582  8.1 − 1 1.5 5 8 0.1 60  4.09  250.0  2.33 
582  8.1 − 1 1.5 5 8 0.05 60  5.66  250.0  2.33 
582  8.1 − 1 1.5 5 8 0.02 60  8.78  250.0  2.33 
582  8.1 − 1 1.5 5 8 0.01 60  12.30  260.0  2.24 

C36 [42] 999 CNB RB 450  4.6 − 1 0.1 13 15 0.2 60  1.56  443.2  1.02 
450  4.6 − 1 0.15 13 14.4 0.2 60  2.02  345.2  1.30 
450  4.6 − 1 0.3 13 14 0.2 60  2.87  253.1  1.78 
450  4.6 − 1 0.5 13 13.6 0.2 60  3.91  187.0  2.41 
450  4.6 − 1 0.7 13 13.3 0.2 60  4.94  146.5  3.07 
450  4.6 − 1 1 13 13.2 0.2 60  6.16  118.6  3.80 

6060-T6 [43] 220 DENP AX 110  6.1 0.1 2.5 45 50 1.25 0  3.22  61.1  1.79 
110  6.1 0.1 10 30 50 2 0  3.20  52.8  2.07 
110  6.1 0.1 2.5 45 50 0.2 0  7.00  52.9  2.07 
110  6.1 0.1 10 30 50 0.2 0  9.18  42.3  2.59 

SM41B [44,45] 423 CNP AX 326  12.4 − 1 3 39 45 0.16 –  8.48  110.0  2.96 
326  12.4 − 1 3 39 45 0.39 –  5.72  120.0  2.72 
326  12.4 − 1 3 39 45 0.83 –  4.23  110.0  2.96 
326  12.4 − 1 3 39 45 3 –  2.60  148.0  2.20 
274  8.4 0 3 39 45 0.16 –  8.48  73.0  3.75 
244  6.4 0.4 3 39 45 0.16 –  8.48  84.2  2.90 

Mild Steel 
(0.15 % C) 

[46] 440 CNB AX 420  12.8 − 1 5.08 32.8 43 0.05 60  14.00  118.0  3.56 
420  12.8 − 1 5.08 32.8 43 0.1 60  10.00  120.0  3.50 
420  12.8 − 1 5.08 32.8 43 0.13 60  9.00  116.0  3.62 
420  12.8 − 1 5.08 32.8 43 0.25 60  6.60  118.0  3.56 
420  12.8 − 1 5.08 32.8 43 0.64 60  4.40  118.0  3.56 
420  12.8 − 1 5.08 32.8 43 1.27 60  3.30  132.0  3.18 
420  12.8 − 1 5.08 32.8 43 5.08 60  1.90  208.0  2.02 

Mild Steel 
(0.15 % C) 

[46] 440 DENP AX 420  12.8 − 1 5.08 53.8 64 0.1 0  12.50  100.0  4.20 
420  12.8 − 1 5.08 53.8 64 0.25 0  8.20  108.0  3.89 
420  12.8 − 1 5.08 53.8 64 0.5 0  6.10  100.0  4.20 
420  12.8 − 1 5.08 53.8 64 1.27 0  4.00  124.0  3.39 
420  12.8 − 1 5.08 53.8 64 7.62 0  2.10  186.0  2.26 

Al-2024-T351 [35] 466 CNP AX 248  5.0 − 1 0.12 44.8 45 0.12 –  2.98  160.0  1.55 
248  5.0 − 1 0.25 44.5 45 0.25 –  2.96  124.0  2.00 
248  5.0 − 1 0.5 44 45 0.5 –  2.94  124.0  2.00 
248  5.0 − 1 1.5 42 45 1.5 –  2.82  90.0  2.76 
172  4.0 0 0.12 44.8 45 0.12 –  2.98  172.9  0.99 
172  4.0 0 0.25 44.5 45 0.25 –  2.96  114.3  1.51 
172  4.0 0 0.5 44 45 0.5 –  2.94  109.4  1.57 
172  4.0 0 1.5 42 45 1.5 –  2.82  91.9  1.87 

SAE 1045 [35] 745 CNP AX 608  13.6 − 1 0.12 44.8 45 0.12 –  2.98  358.9  1.69 
608  13.6 − 1 0.25 44.5 45 0.25 –  2.96  310.0  1.96 
608  13.6 − 1 0.5 44 45 0.5 –  2.94  279.2  2.18 
608  13.6 − 1 1.5 42 45 1.5 –  2.82  248.0  2.45 
608  13.6 − 1 2.5 40 45 2.5 –  2.70  261.0  2.33 
448  6.9 0 0.12 44.8 45 0.12 –  2.98  326.7  1.37 
448  6.9 0 0.25 44.5 45 0.25 –  2.96  311.5  1.44 
448  6.9 0 0.5 44 45 0.5 –  2.94  276.1  1.62 
448  6.9 0 1.5 42 45 1.5 –  2.82  227.1  1.97 

(continued on next page) 
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Table 1 (continued ) 

Material Ref. σUTS Specimen 
Type 

Load 
Type 

Δσ0 ΔKth R a dn dg ρ β Kt Δσ0n Kf 

[MPa] [MPa] [MPa
̅̅̅̅
m

√
] [mm] [mm] [mm] [mm] [◦] [MPa] 

448  6.9 0 2.5 40 45 2.5 –  2.70  235.1  1.91 
Al-Alloy BS L65 [47] 486 CNB AX 300  4.2 − 1 5.08 32.8 43 0.01 55  27.00  80.0  3.75 

300  4.2 − 1 5.08 32.8 43 0.05 55  14.00  77.0  3.90 
300  4.2 − 1 5.08 32.8 43 0.1 55  10.00  46.0  6.52 
300  4.2 − 1 5.08 32.8 43 0.2 55  7.30  46.0  6.52 
300  4.2 − 1 5.08 32.8 43 0.51 55  4.85  62.0  4.84 
300  4.2 − 1 5.08 32.8 43 1.270 55  3.30  93.0  3.23 

2.25 Cr − 1 Mo 
Steel 

[48] 530 CNB AX 440  12.0 − 1 0.03 4.94 5 0.03 0  2.99  440.0  1.00 
440  12.0 − 1 0.05 4.90 5 0.05 0  2.95  420.0  1.05 
440  12.0 − 1 0.07 4.86 5 0.07 0  2.92  340.0  1.29 
440  12.0 − 1 0.20 4.60 5 0.20 0  2.68  280.0  1.57 
440  12.0 − 1 0.40 4.20 5 0.40 0  2.34  296.0  1.49 
440  12.0 − 1 0.76 3.48 5 0.76 0  1.87  320.0  1.38 

G40.11 [49] 538 CNP AX 464  15.9 − 1 0.20 69.60 70 0.20 –  2.98  338.0  1.37 
464  15.9 − 1 0.48 69.04 70 0.48 –  2.96  242.0  1.92 
464  15.9 − 1 4.80 60.40 70 4.80 –  2.59  238.0  1.95 

AISI 304 [47] 505 CNB AX 720  12.0 − 1 5.08 32.8 43 0.05 60  14.00  124.0  5.81 
Ni-Cr Steel [47] 869 CNP AX 1000  12.8 − 1 0.51 21.6 22.6 0.13 60  4.82  207.4  4.82 

1000  12.8 − 1 5.08 32.8 43 0.05 60  18.33  54.6  18.31 
1000  12.8 − 1 5.08 21.6 31.8 0.13 60  11.77  85.1  11.75 

EN-GJS-800–8 [43] 800 DENP AX 440  8.1 0.1 0.4 19.2 20 0.04 90  7.52  144.7  3.04 
440  8.1 0.1 1 18 20 0.1 90  6.29  109.6  4.02 

Grey Iron [50] 249 CNB AX 155  15.9 − 1 3.18 23.6 30 0.3 90  5.60  146.6  1.06 
99  11.2 0.1 3.18 23.6 30 0.3 90  5.60  96.6  1.02 
68  8.0 0.5 3.18 23.6 30 0.3 90  5.60  70.9  0.96 
48  5.2 0.7 3.18 23.6 30 0.3 90  5.60  51.5  0.93 

2024-T3 [51,52] 497 DENP AX 304  − 1 9.53 38.1 57.2 1.45 0  4.35  96.0  3.17 
304  − 1 9.53 38.1 57.2 8.06 0  2.14  165.0  1.84 

7075-T6 [51,52] 569 DENP AX 414  − 1 9.53 38.1 57.2 1.45 0  4.35  103.5  4.00 
414  − 1 9.53 38.1 57.2 8.06 0  2.14  213.1  1.94 

SAE 4130 [51,52] 817 DENP AX 648  8.5 − 1 9.53 38.1 57.2 1.45 0  4.35  193.6  3.35 
648  8.5 − 1 9.53 38.1 57.2 8.06 0  2.14  345.1  1.88 

HT60 [53] 590 DENP AX 580  13.0 0 0.5 50 51 0.05 90  6.25  257.0  2.26 
580  13.0 0 1 50 52 0.05 90  7.82  183.0  3.17 
580  13.0 0 5 50 60 0.05 90  18.08  108.0  5.37 
580  13.0 0 12.5 50 75 0.05 90  22.60  80.9  7.17 
580  13.0 0 0.5 50 51 0.05 135  4.34  263.0  2.21 
580  13.0 0 5 50 60 0.05 135  10.87  142.0  4.08 
580  13.0 0 12.5 50 75 0.05 135  11.86  113.0  5.13 

2024-T3 [54] 427 CNP AX 231  0 1.59 98.4 102 1.5 –  2.91  110.5  2.09 
231  0 3.18 95.2 102 3.18 –  2.83  103.5  2.23 
231  0 6.35 88.9 102 6.35 –  2.67  102.9  2.25 
231  0 12.7 76.2 102 12.7 –  2.43  104.0  2.22 
231  0 25.4 50.8 102 25.4 –  2.16  128.0  1.80 
231  0 0.79 49.2 50.8 0.79 –  2.91  128.0  1.80 
231  0 1.59 47.6 50.8 1.59 –  2.83  117.3  1.97 
231  0 3.18 44.4 50.8 3.18 –  2.67  109.7  2.10 
231  0 6.35 38.1 50.8 6.35 –  2.43  108.0  2.14 
231  0 12.7 25.4 50.8 12.7 –  2.16  132.0  1.75 

2024-T3 [54] 427 CNP AX 290  − 1 1.59 98.4 102 1.59 –  2.91  138.3  2.10 
290  − 1 3.18 95.2 102 3.18 –  2.83  128.0  2.27 
290  − 1 6.35 88.9 102 6.35 –  2.67  123.4  2.35 
290  − 1 12.7 76.2 102 12.7 –  2.43  126.7  2.29 
290  − 1 25.4 50.8 102 25.4 –  2.16  136.0  2.13 
290  − 1 0.79 49.2 50.8 0.79 –  2.91  138.3  2.10 
290  − 1 1.59 47.6 50.8 1.59 –  2.83  128.0  2.27 
290  − 1 3.18 44.4 50.8 3.18 –  2.67  124.6  2.33 
290  − 1 6.35 38.1 50.8 6.35 –  2.43  126.7  2.29 
290  − 1 12.7 25.4 50.8 12.7 –  2.16  136.0  2.13 

7075-T6 [54] 565 CNP AX 243  0 1.59 98.42 102 1.59 –  2.91  113.6  2.14 
243  0 3.18 95.24 102 3.18 –  2.83  117.3  2.07 
243  0 25.40 50.80 102 25.40 –  2.16  142.0  1.71 
243  0 0.79 49.22 50.8 0.79 –  2.91  129.0  1.88 
243  0 1.59 47.62 50.8 1.59 –  2.83  123.7  1.96 
243  0 12.70 25.40 50.8 12.70 –  2.16  142.0  1.71 

7075-T6 [54] 565 CNP AX 290  − 1 1.59 98.42 102 1.59 –  2.91  138.3  2.10 
290  − 1 3.18 95.24 102 3.18 –  2.83  126.9  2.28 
290  − 1 25.40 50.80 102 25.40 –  2.16  146.0  1.99 
290  − 1 0.79 49.22 50.8 0.79 –  2.91  146.6  1.98 
290  − 1 1.59 47.62 50.8 1.59 –  2.83  134.4  2.16 
290  − 1 12.70 25.40 50.8 12.70 –  2.16  152.0  1.91 

2024-T3 [51] 497 CNP AX 304  − 1 38.1 38.1 114 38.1 –  2.08  165.0  1.84 
7075-T6 [51] 569 CNP AX 414  − 1 38.1 38.1 114 38.1 –  2.08  213.0  1.94 
SAE 4130 [51] 817 CNP AX 648  8.5 − 1 38.1 38.1 114 38.1 –  2.08  345.0  1.88 

(continued on next page) 
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Table 1 (continued ) 

Material Ref. σUTS Specimen 
Type 

Load 
Type 

Δσ0 ΔKth R a dn dg ρ β Kt Δσ0n Kf 

[MPa] [MPa] [MPa
̅̅̅̅
m

√
] [mm] [mm] [mm] [mm] [◦] [MPa] 

0.4 % C steel [55] 648 CNB B 664  − 1 0.51 7.62 8.64 0.01 55  18.00  358.2  1.85 
3 % Ni steel [55] 526 CNB B 685  − 1 0.51 7.62 8.64 0.01 55  18.00  419.8  1.63 
3/3.5 % Ni steel [55] 723 CNB B 704  − 1 0.51 7.62 8.64 0.01 55  13.30  605.2  1.16 
Cr-Va steel [55] 752 CNB B 858  − 1 0.51 7.62 8.64 0.01 55  12.10  432.2  1.99 
3.5 % NiCr steel [55] 895 CNB B 1081  − 1 0.51 7.62 8.64 0.02 55  8.70  537.2  2.01 
3.5 % NiCr steel [55] 897 CNB B 1019  − 1 0.51 7.62 8.64 0.02 55  8.70  494.0  2.06 
NiCrMo steel [55] 1000 CNB B 1321  − 1 0.51 7.62 8.64 0.03 55  7.50  543.4  2.43 
Low Carbon 

Steel 
[56] 500 CNB AX 424.6  − 1 2.54 7.62 12.7 0.2 35  4.61  137.0  3.10 

424.6  − 1 2.54 7.62 12.7 0.4 35  3.38  182.8  2.32 
C40 Steel [57] 715 CNB AX 528  − 1 4 12 20 0.5 90  3.68  235.6  2.24 
En3B [58] 676 CNB AX 668  − 1 1.5 5 8 0.2 60  3.80  170.0  3.93 
SAE 1045 [59] 621 CBF B 392  − 1 5 40 50 5 –  1.42  377.2  1.04 
39NiCrMo3 [60] 995 CNB AX 631  − 1 4 12 20 0.1 90  7.46  314.2  2.01 
AISI 416 [61] 700 CNB AX 699  − 1 4 12 20 0.1 90  7.46  195.0  3.59 

699  − 1 2 16 20 0.1 90  7.62  190.2  3.68 
699  − 1 0.5 19 20 0.1 90  5.35  363.2  1.93 

EN-GJS400 [62] 378 CNB AX 284  − 1 4 12 20 0.1 90  7.46  168.0  1.69 
C40 Steel [63] 852 CNB AX 544  − 1 1.43 9.15 12 0.23 35  4.42  165.8  3.28 
En6 [64] 701 CNB AX 343  − 1 10 18 38 1.5 0  2.69  116.1  2.95 
SAE 1045 [65] 760 CNB AX 146.0  0.8 3.3 6 12.6 2 0  1.65  220.0  0.66 

146.0  0.8 3.23 5.44 11.9 0.25 65  3.65  130.0  1.12 
SAE 1045 [65] 1220 CNB AX 240.0  0.8 3.3 6 12.6 2 0  1.65  280.0  0.86 

240.0  0.8 3.23 5.44 11.9 0.25 65  3.65  146.0  1.64 
SAE 1045 [65] 2370 CNB AX 380.0  0.8 3.3 6 12.6 2 0  1.65  360.0  1.06 

380.0  0.8 3.23 5.44 11.9 0.25 65  3.65  146.0  2.60 
SAE 1045 [65] 760 CNB AX 72.0  0.9 3.3 6 12.6 2 0  1.65  110.0  0.65 

72.0  0.9 3.23 5.44 11.9 0.25 65  3.65  100.0  0.72 
SAE 1045 [65] 1220 CNB AX 120.0  0.9 3.3 6 12.6 2 0  1.65  170.0  0.71 

120.0  0.9 3.23 5.44 11.9 0.25 65  3.65  120.0  1.00 
SAE 1045 [65] 2370 CNB AX 230.0  0.9 3.3 6 12.6 2 0  1.65  240.0  0.96 

230.0  0.9 3.23 5.44 11.9 0.25 65  3.65  140.0  1.64 
Ti-6Al-4 V [66–68] 978 CNB AX 529  4.3 0.1 0.13 5.47 5.72 0.13 60  2.80  240.5  2.20 

529  4.3 0.1 0.25 5.21 5.72 0.2 60  2.80  258.0  2.05 
529  4.3 0.1 0.73 4.26 5.72 0.33 60  2.70  244.9  2.16 

Ti-6Al-4 V [66–68] 978 DENP AX 529  4.3 0.1 0.13 5.25 5.51 0.15 60  2.72  235.1  2.25 
529  4.3 0.1 0.64 4.24 5.51 0.43 60  2.72  195.9  2.70 

Ti-6Al-4 V [66–68] 978 CNB AX 362  2.9 0.5 0.13 5.47 5.72 0.13 60  2.80  202.1  1.79 
362  2.9 0.5 0.25 5.21 5.72 0.2 60  2.80  191.4  1.89 
362  2.9 0.5 0.73 4.26 5.72 0.33 60  2.70  194.5  1.86 

Ti-6Al-4 V [66–68] 978 DENP AX 362  2.9 0.5 0.13 5.25 5.51 0.15 60  2.72  196.6  1.84 
362  2.9 0.5 0.64 4.24 5.51 0.43 60  2.72  165.2  2.19 

Ti-6Al-4 V [66–68] 978 CNB AX 184  2.6 0.8 0.13 5.47 5.72 0.13 60  2.80  146.2  1.26 
184  2.6 0.8 0.25 5.21 5.72 0.2 60  2.80  145.0  1.27 
184  2.6 0.8 0.73 4.26 5.72 0.33 60  2.70  148.5  1.24 

Ti-6Al-4 V [66–68] 978 DENP AX 184  2.6 0.8 0.13 5.25 5.51 0.15 60  2.72  164.5  1.12 
184  2.6 0.8 0.64 4.24 5.51 0.43 60  2.72  141.7  1.30 

Ti-6Al-4 V [66–68] 978 CNB AX 529  4.3 0.1 0.13 5.47 5.72 0.13 60  2.85  264.3  2.00 
529  4.3 0.1 0.28 5.16 5.72 0.13 60  3.51  202.7  2.61 
529  4.3 0.1 0.64 4.45 5.72 0.13 60  4.07  191.3  2.77 
529  4.3 0.1 0.1 5.52 5.72 0.33 60  1.97  362.5  1.46 
529  4.3 0.1 0.2 5.31 5.72 0.33 60  2.30  320.8  1.65 
529  4.3 0.1 0.38 4.96 5.72 0.33 60  2.58  306.2  1.73 
529  4.3 0.1 0.73 4.26 5.72 0.33 60  2.72  248.7  2.13 

Ti-6Al-4 V [66–68] 978 CNB AX 362  2.9 0.5 0.13 5.47 5.72 0.13 60  2.85  193.7  1.87 
362  2.9 0.5 0.28 5.16 5.72 0.13 60  3.51  160.4  2.25 
362  2.9 0.5 0.64 4.45 5.72 0.13 60  4.07  135.4  2.67 
362  2.9 0.5 0.1 5.52 5.72 0.33 60  1.97  250.6  1.44 
362  2.9 0.5 0.2 5.31 5.72 0.33 60  2.30  210.6  1.72 
362  2.9 0.5 0.38 4.96 5.72 0.33 60  2.58  174.6  2.07 
362  2.9 0.5 0.73 4.26 5.72 0.33 60  2.72  156.2  2.32 

Low Carbon 
Steel 

[69] 500 CNB RB 436.1  − 1 2.54 7.62 12.7 0.2 35  2.93  179.2  2.43 
436.1  − 1 2.54 7.62 12.7 0.4 35  2.50  214.6  2.03 

Ti-6Al-4 V [70,71] 978 CNB AX 522  3.9 0 0.1   0.05 45  3.92  522.0  1.00 
522  3.9 0 0.3   0.2 45  3.16  480.4  1.09 
522  3.9 0 0.3   0.05 45  5.71  347.6  1.50 
522  3.9 0 0.5   0.05 45  6.61  245.6  2.13 

FeP04 [72] 310 DENP AX 247  10.0 0.1 10 30 50 0.16 45  11.52  75.7  3.26 
247  10.0 0.1 10 30 50 0.16 135  6.54  81.3  3.04 
247  10.0 0.1 10 30 50 0.16 160  3.35  145.3  1.70 

SS41 [73] 418 DENP AX 231  6.4 0.05 10 30 50 0.1 90  18.13  43.2  5.35 
231  6.4 0.05 10 30 50 0.1 120  13.34  66.5  3.47 

HT60 [73] 598 DENP AX 425  6.6 0.05 10 30 50 0.1 90  18.13  51.7  8.23 
425  6.6 0.05 10 30 50 0.1 120  13.34  72.3  5.88 

SAE 1010-HR [74] 326 CNP AX 320  11.8 − 1 0.5 44 45 0.5 –  2.94  220.7  1.45 

(continued on next page) 
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Kf =
Δσ0

Δσ0n
(6)  

In Eq. (6) Δσ0 and Δσ0n are the range of the plain and notch fatigue limit, 
respectively. To compute Kf correctly, Δσ0 and Δσ0n are to be deter
mined either under the same load ratio or by setting the same mean 
stress value. 

Definition (6) and Fig. 3b make it evident that the experimental 
approach is certainly the most accurate method for the quantification of 

the fatigue strength reduction factors. However, owing to the fact that 
this is not always feasible in practice, systematic research work has been 
carried out since the early 1900s to formulate specific approaches 
capable of estimating Kf for different materials and different notch 
profiles [28,29]. 

At the beginning of the 1900s Neuber [25] argued that the detri
mental effect of geometrical features can be quantified by averaging the 
stress in the vicinity of the assessed notch over materials units such as 
grains or “arbitrary particles” of material (Fig. 4a). According to this 
idea, fatigue strength reduction factor can directly be estimated as 
follows: 

Kf = 1+
Kt − 1

1 +
̅̅̅̅
αN
ρ

√ (7)  

In Eq. (7) αN is a reference material length that is linked with the grain 
size or an “arbitrary particle” of material. As suggested in Refs [29–31], 
αN can be estimated from the material ultimate tensile strength, σUTS, via 
the following empirical relationship (valid for σUTS < 1520 MPa): 

αN = 10−
σUTS − 134

586 (8)  

where αN = f(σUTS) is measured in units of [mm] and σUTS in units of 
[MPa]. 

A few years later, the approach proposed by Neuber was further 
simplified by Peterson [3] who proposed to assess notch fatigue strength 
by referring to the stress determined at a given distance from the tip of 
the stress raiser being designed (Fig. 4b). Based on this idea, the fatigue 
strength reduction factor can then be estimated through the following 

Table 1 (continued ) 

Material Ref. σUTS Specimen 
Type 

Load 
Type 

Δσ0 ΔKth R a dn dg ρ β Kt Δσ0n Kf 

[MPa] [MPa] [MPa
̅̅̅̅
m

√
] [mm] [mm] [mm] [mm] [◦] [MPa] 

320  11.8 − 1 1.5 42 45 1.5 –  2.81  205.1  1.56 
SAE 1010-CR22 [74] 476 CNP AX 410  10.2 − 1 0.12 44.8 45 0.12 –  2.98  308.3  1.33 

410  10.2 − 1 0.5 44 45 0.5 –  2.94  280.8  1.46 
410  10.2 − 1 1.5 42 45 1.5 –  2.81  251.5  1.63 

SAE 1010-CR56 [74] 525 CNP AX 546  8.4 − 1 0.12 44.8 45 0.12 –  2.98  339.1  1.61 
546  8.4 − 1 1.5 42 45 1.5 –  2.81  254.0  2.15 

SAE101-CR76 [74] 689 CNP AX 614  6.4 − 1 0.12 44.8 45 0.12 –  2.98  363.3  1.69 
614  6.4 − 1 0.5 44 45 0.5 –  2.94  321.5  1.91 
614  6.4 − 1 1.5 42 45 1.5 –  2.81  265.8  2.31 

SAE 945X-HR [74] 558 CNP AX 500  13.4 − 1 0.12 44.8 45 0.12 –  2.98  390.6  1.28 
500  13.4 − 1 0.5 44 45 0.5 –  2.94  301.2  1.66 
500  13.4 − 1 1.5 42 45 1.5 –  2.81  290.7  1.72 

SAE 945-CR30 [74] 621 CNP AX 588  12.4 − 1 0.12 44.8 45 0.12 –  2.98  374.5  1.57 
588  12.4 − 1 0.5 44 45 0.5 –  2.94  321.3  1.83 
588  12.4 − 1 1.5 42 45 1.5 –  2.81  307.9  1.91 

SAE 945-CR61 [74] 752 CNP AX 630  12.0 − 1 0.12 44.8 45 0.12 –  2.98  406.5  1.55 
630  12.0 − 1 0.5 44 45 0.5 –  2.94  324.7  1.94 
630  12.0 − 1 1.5 42 45 1.5 –  2.81  310.3  2.03  

Fig. 2. Notched component loaded in tension (a) and in bending (b); definition 
of nominal net stress, σnet, and elastic peak stress, σep. 

Fig. 3. Notched component subjected to fatigue loading (a) and SN diagram summarising the strength of the plain and notched material (b).  
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relationship: 

Kf = 1+
Kt − 1
1 + αP

ρ
(9)  

where again αP is a characteristic length which is different for different 
materials. For steels having σUTS > 560 MPa material constant αP can be 
estimated as follows [6]: 

αP = f (σUTS) = 0.0254
(

2079
σUTS

)1.8

[mm] (10) 

Even if their derivation was based on a different reasoning, in the late 
1950s Heywood proposed two formulas similar to those devised by 
Peterson and Neuber, i.e. [6,32]: 

Kf =
Kt

1 + 2
̅̅̅̅
αH
ρ

√ (11)  

Kf =
Kt

1 + 2
̅̅̅̅̅
αH
ρ

√ (
Kt − 1

Kt

) (12)  

In Eqs (11) and (12) αH is a material constant that depends on both the 
component geometry and the ultimate tensile strength. For instance, for 
cast iron with spheroid graphite ̅̅̅̅̅aH

√ is equal to 173.6
σUTS 

[mm1/2]. 
If attention is focused on Eqs (2) to (4), it is straightforward to 

observe that, according to the way Glinka and Newport structured their 
formulas, the shape of the linear-elastic stress field along the notch 
bisector depends on both the stress concentration factor, Kt, and the 
notch root radius, ρ. As mentioned earlier, Peterson and Neuber derived 
their formulas by assuming that Kf depends on the distribution of the 
local linear-elastic stress in the vicinity of the notch being assessed 
(Fig. 4). These two remarks explain why Kf calculated according to Eqs 
(7) and (9) depends on Kt and ρ. Further, the material constants in Eqs 
(7), (9), (11) and (12) can all be estimated from the ultimate tensile 
strength. Based on these considerations, the hypothesis can be formed 
that Kf can directly be estimated from σUTS, Kt and ρ as follow: 

Kf = f(σUTS,Kt, ρ) (12)  

where f is a complex function that can take different forms. 
If the threshold value of the stress intensity factor range, ΔKth, is 

brought into play then the so-called material critical distance can be 
determined according to the following definition [33,34]: 

L =
1
π

(
ΔKth

Δσ0

)2

(13)  

Critical length L can then be used as a further calibration information to 
estimate Kf. For instance, DuQuesnay, Topper and Yu [35] suggested 
estimating the fatigue strength reduction factor in the presence of sharp 
notches by using the following formula: 

Kf =
1
F

(

1+
̅̅̅
a
L

√ )

(14)  

where F is a geometric constant of the order of unity and a is the notch 
depth. 

Similarly, by applying Neuber’s line method (Fig. 4a) according to 
Tanaka’s strategy [36], Atzori, Lazzarin, Meneghetti and Tovo devised 
the following formula to estimate Kf [37,38]: 

Kf =
Kt
̅̅̅̅̅̅̅̅̅̅̅̅
1 + 4L

ρ

√ (15)  

where again the fatigue strength reduction factor depends on critical 
distance L. As to Eq. (15), it is interesting to observe that the structure of 
this formula is very similar to the one proposed by Lukáš and Klesnil 
[39]. 

Eqs (13), (14) and (15) make it evident that, when critical length L is 
used, Kf can directly be estimated as follow: 

Kf = f(Δσ0,ΔKth,Kt, ρ) (16)  

where, again, f is a complex function that can take different forms. 
Having briefly reviewed our understanding of the notch fatigue 

problem, the classic equations to estimate Kf that have been devised over 
the last century clearly suggest two possible strategies - i.e., Eq. (12) and 
(16) - to use ML to quantify the notch fatigue strength reduction factor. 
Accordingly, in what follows, these two strategies will be reformulated 
and expanded in order to use the ML algorithms reviewed in Section 2 to 
directly estimate Kf. 

4. Formulation of a machine learning-based approach to 
estimate notch fatigue limits 

When it comes to designing notched components against high-cycle 
fatigue, engineers are supposed to know the static strength (σUTS) of the 
material planned to be used. Further, independently of the strategy used 
to estimate Kf, according to Eq. (6) the notch fatigue limit (Δσ0n) can be 
estimated only if the plain fatigue limit is known (Δσ0). Thus, it is 
possible to form the hypothesis that both σUTS and Δσ0 are available 
during the fatigue design process. According to this initial assumption, 
relationship (12) can then be expanded as follows: 

Kf = f1(σUTS,Δσ0,Kt, ρ) − Strategy 1 (17) 

In other words, Eq. (17) suggests that, according to Peterson, Neuber 
and Heywood, Kf depends on two different pieces of information, i.e. the 
material mechanical behaviour and the distribution of the local linear- 
elastic stress field. The former is quantified via σUTS and Δσ0, whereas 
the latter via Kt and ρ – see also Eqs (2) to (4). In what follows, this will 
be referred to as Strategy 1. 

Assuming again that, for the same reasons as above, both σUTS and 
Δσ0 are known during the design process, then relationship (16) based 
on the use of critical distance L, Eq. (13), can be rearranged as follows: 

Kf = f2(σUTS,Δσ0,ΔKth,Kt, ρ) − Strategy 2 (18) 

Fig. 4. Neuber’s line method (a) and Peterson’s point method (b).  
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As far this second strategy is concerned, while the profile of the 
linear-elastic stress field is still assumed to depend on Kt and ρ, this time 
the mechanical behaviour is modelled via three different material 
properties, i.e. σUTS, Δσ0 and ΔKth. 

In the next section, the accuracy in estimating notch fatigue limits of 
Strategy 1, Eq. (17), and Strategy 2, Eq. (18), applied along with the MF 
algorithms briefly reviewed in Section 2 will be tested based on a large 
database of experimental results taken from the literature. 

5. Validation by experimental data 

5.1. The database 

As per the flowchart seen in Fig. 1, the first step to use the ML 
approach is to build a coherent database suitable for training and testing 
the various algorithms being considered. As far as the notch fatigue 
problem is concerned, the data collected from the technical literature to 
create a suitable population of experimental results are summarised in 
Table 1. These results were generated by testing notched specimens 
having the geometries schematically sketched in Fig. 5. The technical 
drawings of Fig. 5 also explain the meaning of the symbols used in 
Table 1 to quantify the absolute dimensions of the various notched 
samples being considered. The results listed in Table 1 were generated 
under either axial loading (AX), bending (B) or rotating bending (RB), 
with the load ratio (R = σmin/σmax = σnet,min/σnet,max) ranging in the 
interval 1-0.9. 

The values of the net stress concentration factor, Kt, listed in Table 1 
were taken from the original sources and double-checked either by using 
Peterson’s book [75] or via standard bi-dimensional linear-elastic 
Ansys® Finite Element (FE) models. 

Finally, it is important to point out that the values of both Δσ0 and 
Δσ0n were reported in the original sources either as fatigue limits or as 
endurance limits. The reader is referred to the original papers for detail 
descriptions of the various experimental strategies being followed in 
order to generate the individual experimental data listed in Table 1. 

5.2. Selecting the most effective machine learning algorithm 

As already mentioned in Section 2, the considered ML algorithms 
were applied by making the most of the Scikit-Learn library for Python 
[23]. In this regard, it is important to highlight here that the solvers 
coded to use the various ML algorithms being investigated were all 
characterised by the same level of programming complexity. 

The accuracy of Strategy 1, Eq. (17), and Strategy 2, Eq. (18), was 
assessed via the Root Mean Square Error (RMSE) defined as: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
Kf,i − Kf,i− est

)2

√

(19)  

In Eq. (19) n is the sample size, whereas Kf,i and Kf,i-ext are (for the i-th 
sample) the experimental and estimated value of the fatigue strength 
reduction factor, respectively. 

To apply the GPR algorithm, the “length_scale” hyperparameter in 
the Radial Basis Function kernel was tuned using K-Fold Cross- 
Validation. In the GPR algorithm the kernel determines how much in
fluence nearby data points have on the prediction for a given data point. 
Different kernels will lead to different regression behaviours. K-Fold 
Cross-Validation is a technique used to assess the performance of a ML 
algorithm. In particular, the dataset is divided into K roughly equal-sized 
“folds” or subsets and the ML algorithm under investigation is trained 
and evaluated K times. In each iteration, one fold is used as the test set, 
and the remaining K-1 folds are used for training. By so doing, the al
gorithm’s performance is quantified K times, typically using metrics like 
accuracy or mean squared error. Subsequently, the K performance scores 
are averaged to provide a single, more reliable estimate of the model’s 
performance. K-Fold Cross-Validation helps to assess a ML algorithm’s 
performance while reducing the risk of overfitting or underfitting, as it 
tests the model on different subsets of the data. K-Fold Cross-Validation 
was used to set the “length_scale” hyperparameter by taking K equal to 
10, with this process resulting in an optimal value of 0.06 for our specific 
datasets. This optimal value was determined by using the RMSE, Eq. 
(19), to quantify the performance of the Scikit-Learn GPR algorithm. 

In the PLS regression algorithm, the number of components refers to 
the number of latent variables used to represent the relationships be
tween the predictors and the response variables. Choosing the appro
priate number of components is essential to strike a balance between 
model complexity and its ability to capture the underlying relationships 
in the data. Typically, the number of components is set by using cross- 
validation techniques or by examining the prediction performance on 
a validation dataset. As the number of components increases, the model 
can potentially fit the training data better, but it might also become 
more prone to overfitting. In this setting, the optimal choice may vary 
depending on the specific dataset and the problem one is trying to solve. 
Therefore, it is common practice to explore different values for the 
number of components and select the one that gives the best balance 
between model complexity and performance on new, unseen data. Ac
cording to the above consideration, to apply the Scikit-Learn PLS 
regression algorithm, different values were explored and, via a simple 
“trial and error” procedure, the best predictions - assessed via the RMSE, 
Eq. (19) - were obtained by setting the number of components equal to 3. 

Fig. 5. Geometries of the notched specimens and definition of the adopted symbols.  
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To apply Scikit-Learn’s MLP algorithm, the rectified linear unit 
function was employed as the activation function in the hidden layers. 
Further, the Limited-memory Broyden-Fletcher-Goldfarb-Shanno algo
rithm (which is suitable for small datasets) was used as optimization 
routine to train the neural network. Finally, to specify the architecture of 
the neural network, two hidden layers of sizes 100 and 50 neurons were 
employed. 

In contrast, the use of the other three ML algorithms (i.e., Linear 
Regression, SVM and DTR) required no specific tuning, thus they were 
used by adopting the pre-set values for the hyperparameters. 

The considerations reported above make it evident that when the 
Scikit-Learn ML algorithms being considered could not be employed by 
directly using the pre-set values, the values for the relevant hyper
parameters were determined by following standard, simple optimisation 
procedures. However, the goal of the present work, certainly, is not to 
find the best values possible for the relevant hyperparameters. In 
contrast, this research aims at formulating and validating an ML-based 
strategy suitable for estimating notch fatigue limits. Here the ML pro
cess is informed through the notch fatigue knowledge gained over the 
last century and briefly summarised in Section 3. This aspect is very 
important because, given a specific ML algorithm, the optimal values for 
the various hyperparameters vary not only as the adopted library 
changes (for instance, moving from Scikit-Learn to TensorFlow or 
moving from SAS to MATLAB), but also as size and quality of the input 
dataset changes. As to the size of the input dataset, it is important to 
highlight that, from a fatigue viewpoint, the database summarised in 
Table 1 is certainly very large. However, as far as ML applications are 
concerned, a database containing less than 300 data is considered to be a 
relatively small dataset. All these key aspects should be borne in mind 
since they are behind the results from the analyses discussed in what 
follows. 

Strategy 1 was trained and tested by referring to the entire popula
tion of the data summarised in Table 1 (i.e., 238 experimental results in 
total). In contrast, Strategy 2 was trained and tested by using solely those 
materials for which the experimental value of the threshold value of the 
stress intensity factor range, ΔKth, was available (i.e., 167 experimental 
results in total). 

Using the above two datasets, the accuracy of Strategy 1 and Strategy 
2 applied along with the considered ML algorithms was assessed in terms 
of RMSE, Eq. (19), and the results are summarised in Table 2. The values 
for the average, variance, and the standard deviation (S.D.) reported in 
Table 2 were calculated (for any ML algorithm/strategy) from a popu
lation of 100 RMSEs coming from 100 independent testing trials. For any 
of these 100 testing trials, 85 % of the input experimental results was 
used to train the adopted ML algorithm, whereas the remaining 15 % 
was used as test data. The reason behind this modus operandi, which 
applies to any ML algorithm/strategy being investigated, is as follows. 
Given the input dataset, the test data are extracted randomly, with the 
remaining data being used to train the ML algorithm. Since every time 
the individual experimental results used for calibration change, the 
training process leads to slightly different values for the constants in the 
ML constitutive relationship. In parallel, as the training experimental 

data varies, the test data as well change. This makes it evident that any 
testing trial is characterised by a different set of calibration results as 
well as by a different set of validation data, with this obviously leading 
to different RMSE values. 

Another important aspect associated with the training/testing 
approach described above is that increasing the number of testing trials 
would obviously result in (slightly) different values for the average, the 
variance, and the standard deviation of the RMSE. However, this is not 
an issue because the results reported in Table 2 were calculated to assess 
against each other the accuracy of the considered ML algorithms and not 
to evaluate their absolute accuracy. 

In order to interpret the results summarised in Table 2 correctly, one- 
way analysis of variance (one-way ANOVA) was used to determine 
whether or not there is a statistically significant difference between the 
average values of the RMSE associated with the five ML algorithms being 
investigated. The hypothesis test was based on the following two stan
dard hypotheses:  

• Null Hypothesis (H0): the RMSE average values associated with the 
five ML algorithms are equal;  

• Research Hypothesis (Ha): at least one RMSE average value is 
significantly different. 

The one-way ANOVA analyses run to test Strategy 1 and Strategy 2 
returned a p-value equal to 2.5⋅10-74 and to 3.6⋅10-58, respectively. Since 
these statistical analyses were carried out by setting the α level equal to 
0.05, the fact that both p-values are smaller than 0.01 means the results 
are highly statistically significant, so that H0 can be rejected. This im
plies that at least one RMSE average value is significantly different from 
the other ones. 

Having clarified these important aspects, Table 2 makes it evident 
that the most accurate results (i.e., the lowest values for the average, the 
variance, and the standard deviation of the RMSE) were obtained by 
applying DTR. Further, as far as the DTR algorithm is concerned, the use 
of Strategy 1 resulted in values of the average, the variance and the 
standard deviation of the RMSE that were slightly lower than those 
obtained by adopting Strategy 2. This can simply be ascribed to the fact 
that the population of calibration data used with Strategy 1 was more 
numerous that the one used with Strategy 2 (i.e., 202 vs. 142 calibration 
data). 

5.3. Machine learning, Peterson’s formula and the Theory of Critical 
Distances 

The re-analyses discussed in the previous section suggest that, 
amongst the ML techniques being considered, the highest level of ac
curacy in estimating the fatigue strength reduction factor is reached (in 
relative terms) by using the DTR algorithm. Accordingly, in the present 
section the predictive capability of this ML technique applied along with 
Strategy 1, Eq. (17), and Strategy 2, Eq. (18), is assessed against the 
accuracy of Peterson’s formula - i.e., Eq. (9) applied along with Eq. (10) 
– as well as of the Point Method [34,36]. To this end, two specific 

Table 2 
Accuracy of the considered ML algorithm in estimating the fatigue strength reduction factor based on Strategy 1, Eq. (17), and on Strategy 2, Eq. (18).    

Strategy 1 Strategy 2  

Input Variables σUTS, Δσ0, ρ, Kt σUTS, Δσ0, L, ρ, Kt   

Kf - RMSE Kf - RMSE   

Average Variance S.D. Average Variance S.D. 

Machine-Learning Algorithm Linear Regression  1.31  0.39  0.62  1.32  0.28  0.52 
Support Vector Machines  1.42  0.46  0.68  1.65  0.62  0.78 
Gaussian Process Regression  2.63  0.31  0.56  2.97  0.64  0.80 
Cross decomposition – PLS regression  1.30  0.34  0.58  1.39  0.38  0.61 
Decision Tree Regression  1.02  0.25  0.50  1.21  0.39  0.62 
Multi-Layer Perceptron (MLP)  1.36  0.24  0.48  1.43  1.35  1.15  
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complete data sets were selected from the database reported in Table 1, 
i.e. the notch results by Nisitani and Endo [41] and by Kobayashi and 
Nakazawa [42] generated by testing, under rotating bending, C45 steel 
and C36 steel, respectively. 

As formulated by Tanaka [36] and Taylor [34], Peterson’s Point 
Method is applied by taking the critical distance (i.e., distance DPM in 
Fig. 4b) equal to L/2, where material length L is estimated via definition 
(13). By so doing, a notched component is assumed to be in the fatigue 
limit condition when the range of the linear-elastic stress at a distance of 
L/2 from the apex of the assessed notch is equal to the plain material 
fatigue limit, Δσ0. The local linear-elastic stress fields needed to apply 
the Point Method to estimate the selected notch results were determined 
from simple bi-dimensional linear-elastic models solved using com
mercial FE code Ansys®. In these models, the mesh in the notch region 
was gradually refined until convergence occurred. 

To train the DTR algorithm, the experimental results referring to the 
notched specimens of C45 steel [41] and C36 steel [42] were removed 
from the dataset of Table 1. Since to apply Strategy 2, Eq. (18), the range 
of the threshold value of stress intensity factor range, ΔKth, was 
required, clearly the population of training data used with this approach 
was markedly less numerous than the population of data used to train 
the DTR algorithm applied along with Strategy 1, Eq. (17). 

The accuracy of the considered four approaches in estimating the 
results generated by testing notched specimens of C45 steel [41] and 
C36 steel [42] were quantified by defining the error, E, as follows: 

E [%] =
Δσ0n − Δσ0n,est

Δσ0n,est
• 100 (20)  

where Δσ0n and Δσ0n,est are the experimental and the estimated value of 
the notch fatigue limit, respectively. 

The results of this accuracy assessment exercise are summarised in 
the Δσ0n vs. Δσ0n,est chart of Fig. 6 as well as in Table 3. Fig. 6 makes it 
evident that the use of the DTR algorithm applied along with Strategy 1, 
Peterson’s formula and the Point Method resulted in a similar level of 

accuracy. This finding is further confirmed by Table 3 since the use of 
these three notch fatigue design strategies resulted in very similar values 
of both the average and standard deviation of error E calculated ac
cording to Eq. (20). In contrast, the estimates obtained by applying the 
DTR algorithm along with Strategy 2 were characterised by a larger level 
of scattering. Even if more data are needed to confirm this, this may be 
ascribed to the fact that the dataset used to train the ML algorithm 
contained a limited number of experimental results. 

Turning back to Table 3 and Fig. 6, it is interesting to point out again 
that the use of the DTR algorithm applied along with Strategy 1, 
Peterson’s formula and the Point Method returned the same level of 
accuracy. Both Peterson’s method and the Theory of Critical Distances 
are approaches that are already used in industry on a daily bases. Thus, 
the fact the DTR-Strategy 1 method is characterised by the same level of 
accuracy as the other two standard methodologies suggests the ML- 
based philosophy proposed in the present paper can safely be used to 
address fatigue design problems of practical interest. This being said, the 
advantage of the ML-based design method over the other existing 
standard approaches is the intrinsic flexibility of ML algorithms. For 
instance, the accuracy in estimating notch fatigue limits can easily be 
increased by simply increasing size and quality of the dataset used to 
calibrate the ML algorithms being employed. Additionally, because ML 
regression models can handle high-dimensional datasets with numerous 
input features, they are able to capture complex correlations between 

Fig. 6. Accuracy of DTR – Strategy 1, DTR – Strategy 2, Peterson’s formula - - Eq. (9) applied along with Eq. (10) – as well as of the Point Method [34,36] in 
estimating the notch fatigue limits of C45 steel [41] and C36 steel [42]. 

Table 3 
Accuracy in predicting the notch fatigue strength of C45 [41] and C36 [42].  

Approach Δσon - E [%] 

Average S.D. 

DTR - Strategy 1  0.4  18.4 
DTR - Strategy 2  − 4.4  35.4 
Peterson’s formula  5.2  18.7 
Point Method  − 5.2  11.1  
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input features and the target variable. This indicates that, by incorpo
rating additional material property-related input variables in the ML 
analyses, the accuracy in estimating the notch fatigue limit can be 
improved markedly. 

6. Conclusions 

This investigation deals with the accuracy and reliability in esti
mating notch fatigue limits of a number of popular ML algorithms. The 
analyses discussed in the present paper were based on a large number of 
experimental results generated by testing under uniaxial loading 
notched specimens of various metallic materials, aluminium alloys and 
titanium alloys. These experimental results were all collected from the 
technical literature and then organised in a coherent database. 

The strategies being proposed to use ML to assess notch high-cycle 
fatigue strength were informed by learning from a number of classic 
formulas specifically devised to estimate the fatigue strength reduction 
factor. Based on the findings reported in the present paper, as long as ML 
is applied in conjunction with the classic nominal stress approach, the 
most relevant conclusions are summarised in what follows.  

• If Kf is the target, σUTS, Δσ0, ΔKth, Kt and the notch root radius, ρ, can 
be used as features to train standard ML algorithms.  

• Amongst the considered ML algorithms, the highest level of accuracy 
(in relative terms) in estimating Kf was obtained by using the DTR 
algorithm.  

• Amongst a number of other factors, the accuracy of a ML algorithm 
also depends on the size of the training dataset. This explains why the 
use of DTR – Strategy 1 resulted in more accurate estimates than 
those obtained via DTR – Strategy 2.  

• The use of the DTR algorithm applied along with Strategy 1 was seen 
to lead to a level of accuracy similar to the one obtained by applying 
both Peterson’s formula and the Point Method.  

• More experimental work needs to be done in order to create a large 
database of notch fatigue results that can be used to train ML 
algorithms. 
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