
Estimating notch fatigue limits via a machine learning-
based approach structured according to the classic Kf
formulas

SUSMEL, Luca <http://orcid.org/0000-0001-7753-9176>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/35302/

This document is the Published Version [VoR]

Citation:

SUSMEL, Luca (2024). Estimating notch fatigue limits via a machine learning-based
approach structured according to the classic Kf formulas. International Journal of
Fatigue, 179: 108029. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

International Journal of Fatigue 179 (2024) 108029

Available online 31 October 2023
0142-1123/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Estimating notch fatigue limits via a machine learning-based approach
structured according to the classic Kf formulas

Luca Susmel
Department of Civil and Structural Engineering, The University of Sheffield, Mapping Street, Sheffield S1 3JD, UK

A R T I C L E I N F O

Keywords:
Notch fatigue limit
Machine learning
Kf

Critical distance

A B S T R A C T

This paper deals with the problem of estimating notch fatigue limits via machine learning. The proposed strategy
is based on those constitutive elements that were used by the pioneers like Peterson, Neuber, Heywood, and
Topper to devise their well-known formulas. The machine learning algorithms being considered were trained and
tested using a database containing 238 notch fatigue limits taken from the literature. The outcomes from this
study confirm that machine learning is a promising approach for designing notched components against fatigue.
In particular, the accuracy in the estimates can easily be increased by simply increasing size and quality of the
calibration dataset. Further, since machine learning regression models are highly flexible and can handle high-
dimensional datasets with many input features, they can capture complex relationships between input features
and the target variable. This means that the accuracy in estimating notch fatigue limit can be increased by
including in the analyses further input features like, for instance, grain size or hardness. Finally, machine
learning’s generalization ability is crucial for regression tasks where the goal is to predict values for new
materials.

1. Introduction

The prediction of the fatigue behaviour of materials containing
notches (such as keyseats, fillets, or holes) is a topic of enduring interest
in engineering and materials science. In structural components, notches
act as stress concentrators and they are known to significantly reduce the
fatigue strength of materials. Since the estimation of the fatigue strength
of notched components is of primary importance in ensuring the struc
tural integrity in various engineering applications, the development of
reliable design methodologies has been a challenge for a large number of
researchers, resulting in decades of dedicated investigations, explora
tions and experimental analyses. Estimating fatigue strength in the
presence of stress concentrators involves the assessment of various fac
tors that include, amongst others, geometrical profiles of the notches,
material mechanical properties, loading conditions, and environmental
effects.

When dealing with ferrous metallic materials, the fatigue limit is a
threshold stress that is associated with the presence of a non-
propagating crack whose growth is blocked by the first micro-
structural barrier (such as, for instance, the first grain boundary)
[1,2]. In theory, when a component is in the fatigue limit condition,
fatigue failure should never occur, i.e. the component is supposed to
withstand without breaking for a number of cycles equal to infinity.
However, due to cyclic- and time-dependent phenomena (where the
specific features of the applied load history and the environment play a

role of primary importance), fatigue limits are seen to disappear [3,4].
This is a consequence of the fact that in the very high-cycle fatigue
regime cracks no longer initiate on the surface. In contrast, they develop
inside of the components, with these internal cracks ultimately gov
erning fatigue failures [3].

Unlike ferrous metals, non-ferrous materials instead do not have a
fatigue limit. This is way they are always designed by targeting a specific
finite number of cycles to failure [5]. Aluminium alloys are a classic
example of engineering materials displaying no fatigue limit.

As far as fatigue design is concerned, since the fatigue limit can
disappear or it does not exist at all, it is preferable to refer to the so-
called endurance limit. The endurance limit is nothing but a threshold
stress which is extrapolated to a reference number of cycles to failure
that usually ranges in the interval 5⋅105–108 [5,6].

Bearing in mind what has been said above regarding fatigue versus
endurance limits, for the sake of simplicity in what fallows the term
fatigue limit will be used to indicate both the fatigue and the endurance
limit. In other words, the term fatigue limit will be used to denote a
reference threshold stress defined in the high-cycle fatigue regime. In
this setting, it is worth pointing out that those theories that were orig
inally developed by strictly referring to fatigue limits can be applied also
in terms of endurance limits. This can be done provided that, for a given
material, plain and notch endurance limits are determined under the
same experimental conditions (in particular, under the same load ratio)
and defined by referring to the same reference number of cycles to
failure [5].

Contents lists available at ScienceDirect

International Journal of Fatigue

journal homepage: www.elsevier.com/locate/ijfatigue

https://doi.org/10.1016/j.ijfatigue.2023.108029
Received 4 August 2023; Received in revised form 5 October 2023; Accepted 29 October 2023

www.sciencedirect.com/science/journal/01421123
https://www.elsevier.com/locate/ijfatigue
https://doi.org/10.1016/j.ijfatigue.2023.108029
https://doi.org/10.1016/j.ijfatigue.2023.108029
https://doi.org/10.1016/j.ijfatigue.2023.108029
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijfatigue.2023.108029&domain=pdf
http://creativecommons.org/licenses/by/4.0/

International Journal of Fatigue 179 (2024) 108029

2

At its core, Machine learning (ML) is a subset of artificial intelligence
(AI) that enables computer systems to automatically learn and improve
from experience without being explicitly programmed for a particular
task. It relies on mathematical algorithms and statistical models to
identify patterns and relationships within data. The process involves
feeding vast amounts of data into algorithms, which then iteratively
learn from the data, adjusting their internal parameters to improve their
performance on a given task.

As ML continues to advance, it finds applications in various fields,
including fatigue. For instance, ML algorithms have been extensively
applied to predict fatigue life in metallic materials [7–10], additively
manufactured metals [11–13] and composite materials [14–16]. Despite
these promising findings, challenges remain in the application of ML to
fatigue and fracture prediction. Limited availability of high-quality and
diverse datasets, issues of data reliability, and the need for interpretable
models continue to be areas of active research.

In the scenario briefly discussed above, the ultimate objective of the
present study is to provide a comprehensive understanding of the way of
using various state-of-the-art ML techniques to estimate the notch fa
tigue limit. In particular, by revisiting a wide array of studies from the

past to the present, this work aims to facilitate further advancements in
predicting the fatigue behaviour of notched components by making the
most of ML. It is anticipated that the knowledge gained from this study
will aid engineers and researchers in making informed decisions to
design safer and more reliable notched components, contributing to the
overall advancement of the structural integrity discipline.

2. Considered machine learning techniques

The flow chart reported in Fig. 1 shows in a schematic, simplified
way how ML algorithms can be used to make predictions.

The first step is to collect relevant data that will be used to train and
evaluate the ML model being used. Once the data are collected, they
need to be processed to ensure they are in a suitable format for the
adopted ML algorithm (Fig. 1a).

The subsequent step is to choose a suitable ML algorithm (Fig. 1b).
Selecting an appropriate ML algorithm is crucial and depends on the
nature of the prediction problem. Different types of problems (e.g.,
regression, classification, clustering) and data characteristics (e.g.,
linear, nonlinear) may require specific algorithms. The selected

Nomenclature

a notch depth
aH material constants in Heywood’s relationships
aN material constant in Neuber’s equation
aP material length in Peterson’s formula
dn, dg net and gross diameter/width of the notched specimens
f, f1, f2 functions used to estimate Kf
n sample size
y target in a linear regression
E error (in percentage)
F constant in DuQuesnay, Topper and Yu’s formula
K number of “folds”
Kf fatigue strength reduction factor referred to the net area
Kf,i, Kf,i-ext experimental and estimated value of Kf (for the i-th

sample)
Kt stress concentration factor referred to the net area
L material characteristic length
Nf number of cycles of failure
Oxyz system of coordinates at the notch tip

R load ratio
RMSE Root Mean Square Error
X1, …, Xn features in a linear regression
β notch opening angle
β0, …, βn linear regression coefficients
ε error term in a linear regression
k geometrical quantity in Glinka and Newport’s equation
σep linear-elastic peak stress
σnet nominal stress referred to the net area
σUTS ultimate tensile strength
σy normal stress parallel to axis y
σmin, σmax minimum and maximum value of the stress in the cycle
σnet, min, σnet,max minimum and maximum value of the net stress in

the cycle
ρ notch root radius
ΔKth threshold value of the stress intensity factor range
Δσ0 plain material fatigue limit range
Δσ0n notch fatigue limit range referred to the net area
Δσ0n,est estimated value of the net notch fatigue limit range
Δσnet range of the nominal net stress

Fig. 1. Flow-chart summarising the procedure to use machine learning algorithms to make predictions.

L. Susmel

International Journal of Fatigue 179 (2024) 108029

3

algorithm is then trained on the training dataset (Fig. 1c), which in
volves providing the algorithm with the input features (Xi for i = 1,2. …,
n) and the corresponding target (or output) variable (yj for j = 1,2,…,k).
The model learns from the data and adjusts its internal parameters
iteratively to minimize the prediction error or loss function.

After training the model, it needs to be evaluated to assess its per
formance on unseen data (Fig. 1d). The model is tested on the testing
dataset, and various performance metrics, such as accuracy, precision,
recall, or mean squared error, are calculated to gauge its effectiveness in
making predictions.

Once the model is trained and evaluated, it is ready to make pre
dictions on new, unseen data (Fig. 1e). The model takes the input fea
tures of the new data as input (Fig. 1f) and produces the corresponding
output predictions (Fig. 1g). These predictions can be used for various
applications, such as prediction, classification, regression, anomaly
detection, or clustering, depending on the nature of the problem.

In what follows, the ML algorithms used in the present investigation
are briefly described.

2.1. Linear Regression

Linear Regression [17] is a widely used supervised ML algorithm that
belongs to the family of regression models. It is designed to model the
relationship between a dependent variable (target) and one or more
independent variables (features) by fitting a linear equation to the data.
The primary objective of linear regression is to find the best-fitting line
that minimizes the difference between the predicted values and the
actual target values, thus enabling the algorithm to make accurate
predictions on new, unseen data.

Mathematically, a linear regression model can be represented as:

y = β0 + β1X1 + β2X2 +⋯+ βnXn + ε (1)

where y is the dependent variable (target) to be predicted, Xi (for i = 1,
2, …, n) are the independent variables (features) that influence the
target, βj (for i = 0, 1, …, n) are the regression coefficients that deter
mine the relationship between the features and the target, and, finally, ε
represents the error term, which accounts for the difference between the
predicted values and the actual values.

The linear regression algorithm aims to estimate the regression co
efficients βj (for i = 0, 1, …, n) that best fit the given data. This esti
mation is often performed using the Ordinary Least Squares method,
which minimizes the sum of the squared residuals (the differences be
tween the actual target values and the predicted values).

Training a linear regression model involves feeding it with a labelled
dataset, where both the independent variables (features) and the
dependent variable (target) are known. The algorithm then iteratively
adjusts the regression coefficients to minimize the error until conver
gence occurs, creating the best-fitting line that describes the relationship
between the features and the target.

Linear regression is an interpretable and relatively simple algorithm,
making it a popular choice for various applications, trend analysis
included. However, it is essential to ensure that the data satisfies the
assumptions of the linear regression model, such as linearity, indepen
dence of errors, and homoscedasticity, to obtain reliable and accurate
predictions. In cases where the data exhibits non-linear relationships,
more complex regression models or feature transformations may be
required to achieve better results.

2.2. Support Vector Machines (SVM)

Support Vector Machines (SVM) [18] is a powerful and versatile
supervised ML algorithm used for both classification and regression
tasks. SVM is particularly effective in solving binary classification
problems, where the goal is to separate data points into two classes. The
algorithm operates by finding an optimal hyperplane in a high-

dimensional feature space that best separates the data points
belonging to different classes, while maximizing the margin (distance)
between the closest data points of each class. This hyperplane is also
referred to as the decision boundary.

The key concepts behind SVM involve: hyperplane, support vectors,
margin, and kernel trick.

In a binary classification problem with n features, the hyperplane is
an (n-1)-dimensional flat plane that separates the data points into two
classes (e.g. in a 2D space, the hyperplane is a line, and in a 3D space, it is
a plane, etc.).

Support vectors are the data points that lie closest to the decision
boundary on either side and have the most influence on determining the
position and orientation of the hyperplane. The support vectors are
crucial in defining the maximum margin that SVM seeks to achieve.

In the SVM algorithm, the margin is the distance between the support
vectors of different classes and the decision boundary. The primary
objective of SVM is to maximize this margin, as it improves the algo
rithm’s generalization ability and helps avoid overfitting. SVM can
efficiently handle non-linearly separable data by transforming the input
features into a higher-dimensional space using a kernel function. Com
mon kernel functions include Polynomial, Radial Basis Function (RBF),
and Sigmoid. The kernel trick allows SVM to implicitly compute the dot
product between the transformed feature vectors without explicitly
calculating the higher-dimensional coordinates, which can be compu
tationally expensive.

Training an SVM involves finding the optimal hyperplane that
maximizes the margin between classes. This process is formulated as a
convex optimization problem, and various optimization techniques,
such as the Sequential Minimal Optimization (SMO) algorithm, are
commonly used to efficiently solve it. Once the hyperplane is deter
mined, new data points can be classified by evaluating which side of the
decision boundary they fall on.

SVM has proven to be a robust and effective algorithm for a wide
range of applications, including image classification, text categorization,
and bioinformatics. Its ability to handle high-dimensional data and
nonlinear relationships, along with its strong theoretical foundation,
makes SVM a popular choice for both academic research and real-world
ML tasks. However, SVM’s performance can be affected by the choice of
the kernel and the appropriate regularization parameters, which should
be carefully selected to achieve optimal results.

2.3. Gaussian Process Regression

Gaussian Process Regression (GPR) [19] is a powerful non-
parametric ML algorithm used for regression tasks. It is a Bayesian
probabilistic approach that allows for flexible modelling of complex
relationships between input data and corresponding output values. GPR
is particularly well-suited for scenarios where data points are sparse or
noisy, and where the underlying function being modelled is unknown or
difficult to define explicitly.

The fundamental concept of GPR revolves around modelling the
relationship between input data points and output values as a distribu
tion of functions rather than a single deterministic function. It assumes
that any finite set of output values follows a joint multivariate Gaussian
distribution. In simpler terms, GPR treats each prediction as a random
variable with an associated mean and uncertainty.

A Gaussian process is defined by a mean function and a covariance
function (also known as a kernel function). The mean function captures
the overall trend in the data, while the covariance function defines the
similarity between data points. Popular kernel functions include the
Radial Basis Function (RBF), Matern, and Exponential kernels, among
others. The choice of kernel determines the smoothness and complexity
of the learned functions.

In GPR, prior beliefs about the relationship between input data and
output values are represented by the mean and covariance functions.
After observing data, the prior distribution is updated to a posterior

L. Susmel

International Journal of Fatigue 179 (2024) 108029

4

distribution, incorporating the newly acquired information. The poste
rior distribution represents the predictive distribution over functions,
enabling uncertainty quantification in predictions.

GPR involves hyperparameters, such as the kernel parameters and
noise variance, which need to be estimated from the data. The process of
finding optimal hyperparameters often involves maximizing the likeli
hood of the observed data under the Gaussian process model.

The outcome of GPR is a predictive distribution over functions for
new, unseen data points. The predictive distribution provides not only
the point estimate of the output value but also the associated uncertainty
(variance or confidence interval).

Training a Gaussian Process Regression model involves learning the
hyperparameters and inferring the mean and covariance functions from
the available data. The model can then make predictions for new data
points by computing the predictive mean and variance using the trained
Gaussian process.

Gaussian Process Regression excels in tasks with limited data, as it
provides a principled approach to handle uncertainty, which is crucial
when making predictions with sparse or noisy data. However, the al
gorithm’s computational complexity increases significantly with the
number of data points, which may limit its scalability for very large
datasets. Nevertheless, GPR remains a popular choice in various fields,
including robotics, finance, and engineering, where uncertainty esti
mation and high-quality predictions are essential.

2.4. Cross decomposition – Partial Least Squares (PLS) regression

Partial Least Squares (PLS) regression [20] is a powerful ML algo
rithm primarily used for multivariate regression tasks, especially when
dealing with high-dimensional and collinear data. PLS regression is well-
suited for scenarios where the number of features is much larger than the
number of samples, and traditional linear regression techniques may
suffer from overfitting or poor performance.

The PLS regression algorithm involves a process of extracting latent
variables (also known as components) that capture the most relevant
information from both the input features and the target variable. These
latent variables are constructed in a way that maximizes the covariance
between Xi and yi, aiming to find the underlying relationships that
explain the variability in both datasets.

In more detail, before applying PLS regression, data preprocessing
steps such as mean centering and standardization are often performed.
Mean centering ensures that the data has a zero mean, while standard
ization scales the data to have unit variance. These steps are crucial for
the PLS algorithm to work effectively, especially when dealing with
features of different scales.

PLS regression iteratively extracts a series of latent variables, each
representing a linear combination of the original input features and
target variable. These latent variables are derived to maximize the
covariance between Xi and yi, ensuring that the most relevant infor
mation from both datasets is captured.

The number of latent variables (components) to be extracted is a
crucial hyperparameter in PLS regression. This number can be deter
mined using various techniques, such as cross-validation or analyzing
the explained variance. Selecting an appropriate number of components
is essential to avoid overfitting and achieve a balance between model
complexity and performance.

Once the latent variables are extracted, PLS regression performs a
linear regression on these components to predict the target variable. The
coefficients of the linear regression are computed during the modelling
step, enabling predictions for new, unseen data.

PLS regression offers several advantages, including its ability to
handle multicollinearity (correlation between input features) and its
effectiveness in dealing with high-dimensional datasets. By capturing
the most relevant information in the form of latent variables, PLS
regression reduces the risk of overfitting, making it a valuable tool for
tasks involving a large number of features.

However, PLS regression’s performance heavily depends on the
appropriate selection of the number of components and the quality of
the extracted latent variables. Furthermore, it may not be the best choice
for datasets with non-linear relationships or when dealing with a small
number of samples.

2.5. Decision Tree Regression

Decision Tree Regression (DTR) [21] is a popular and versatile su
pervised ML algorithm used primarily for regression tasks. It employs a
tree-like model to make predictions based on the input features, where
each internal node represents a decision based on a specific feature, and
each leaf node corresponds to a predicted output value.

The key components of DTR are briefly summarised in what follows.
The DTR algorithm selects the best features and corresponding split
points to create decision rules. The primary objective is to minimize the
variance of the target variable within each subset, leading to more ho
mogeneous subsets with respect to the predicted values.

The process of creating a decision tree involves recursively splitting
the data into subsets based on the selected features and split points. Each
subset represents a branch in the tree, and the process continues until a
stopping criterion is met (e.g., reaching a predefined maximum tree
depth or having a minimum number of samples in each leaf node).

The predicted output value at each leaf node in the tree is calculated
as the average (or median) of the target variable values within that leaf
node’s subset. This prediction represents the regression model’s esti
mate for the corresponding region of the feature space.

Decision trees may have a tendency to overfit the training data,
capturing noise and small fluctuations in the data. To avoid overfitting
and improve generalization, post-processing techniques like pruning can
be applied. Pruning involves removing certain branches or nodes from
the tree that do not contribute significantly to the overall predictive
performance.

In a nutshell, training a DTR model involves finding the optimal split
points and feature selection that minimize the variance within the
resulting subsets. The process is performed recursively for each node,
leading to the construction of the full tree. Optionally, pruning may be
applied to refine the model and improve its performance on unseen data.

DTR offers several advantages, including its simplicity, interpret
ability, and ability to handle non-linear relationships between input
features and the target variable. It can capture complex patterns and
interactions in the data, making it particularly useful for tasks with non-
linear behaviour.

DTR is a flexible and intuitive algorithm that effectively handles
regression tasks with non-linear relationships. Its hierarchical decision-
making process makes it easy to interpret and visualize, making it a
valuable tool for both beginners and experienced data analysts. By
controlling overfitting and leveraging ensemble methods, DTR can
deliver accurate predictions in a wide range of real-world applications.

2.6. Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron (MLP) [22] is a widely used supervised ML
algorithm belonging to the family of artificial neural networks. It is
primarily used for various tasks, such as classification, regression, and
pattern recognition, and is well-known for its ability to model complex
relationships in data.

The fundamental building block of an MLP is the artificial neuron,
also known as a node or perceptron. An MLP consists of multiple layers
of interconnected neurons, each layer comprising an input layer, one or
more hidden layers, and an output layer. The neurons in each layer are
fully connected to the neurons in the subsequent layer, and each
connection is associated with a weight.

The key components and operations of MLP involve activation
function, forward propagation, loss function, and backpropagation.

Each neuron in an MLP applies an activation function to the

L. Susmel

International Journal of Fatigue 179 (2024) 108029

5

weighted sum of its inputs to introduce non-linearity into the model.
Common activation functions include the sigmoid, Rectified Linear Unit,
hyperbolic tangent, and softmax (used in the output layer for classifi
cation tasks).

To make predictions, data is fed into the input layer of the MLP. The
input data is then passed through the network layer by layer, where each
neuron computes its activation based on the weighted sum of its inputs
and applies the activation function. The outputs of the neurons in one
layer serve as inputs to the neurons in the next layer until the output
layer is reached, which generates the final predictions.

The MLP’s performance is evaluated using a loss function that
measures the difference between the predicted values and the actual
target values. Common loss functions for regression tasks include Mean
Squared Error (MSE), while for classification tasks, Cross-Entropy Loss
(log loss) is commonly used.

The process of training an MLP involves updating the weights of the
connections to minimize the chosen loss function. This is achieved
through an optimization algorithm known as backpropagation, which
computes the gradients of the loss function with respect to the model’s
weights. The weights are then adjusted in the direction that reduces the
loss, iteratively improving the model’s performance during the training
process.

MLP’s strength lies in its ability to learn complex patterns and rep
resentations from data, making it a powerful tool for a wide range of
applications, including image and speech recognition, natural language
processing, and time series prediction. However, MLP can be sensitive to
the choice of hyperparameters, such as the number of hidden layers, the
number of neurons in each layer, and the learning rate. Tuning these
hyperparameters and dealing with potential issues such as overfitting
can be essential for achieving optimal performance.

MLP is then a versatile and powerful neural network architecture
capable of handling various ML tasks. Its capacity to learn non-linear
relationships makes it particularly well-suited for complex data model
ling. By carefully tuning hyperparameters and managing training pa
rameters, MLP can produce accurate predictions in a wide range of
engineering applications.

2.7. Implementation of the selected machine learning algorithm

As far as open-source programming language Python is concerned,
open-access software environments for ML include:

• Scikit-Learn: a widely used Python library for machine learning that
provides a comprehensive set of tools for classification, regression,
clustering, and more.

• TensorFlow: an open-source deep learning framework for building
neural networks and deep learning models.

• PyTorch: an open-source deep learning framework known for its
flexibility and dynamic computation graph.

• Keras: a high-level neural networks API that can run on top of Ten
sorFlow, Theano, or CNTK, making it accessible and easy to use.

• XGBoost: an optimized gradient boosting library that is highly effi
cient and effective for a wide range of machine learning tasks.

The ML algorithms briefly described in Sections 2.1 to 2.6. were used
to estimate notch fatigue limits by taking full advantage of the Scikit-
Learn library [23]. This choice was dictated by the fact that Scikit-
Learn is the most popular and widely used open-source ML library for
Python. It provides a rich set of tools and algorithms for various ML
tasks, making it an effective, easy-to-use tool for ML-based analyses. The
Scikit-Learn library collects a very large numbers of ML algorithms that
are subdivided into the following six groups: Classification, Regression,
Clustering, Dimensionality Reduction, Model Selection and Pre
processing. The ML algorithms used in the present investigation belong
to the Regression group. To date, this group contains 17 subgroups,
allowing the user to employ more than 100 different ML algorithms. In

the present investigation, we selected a limited number of ML tech
niques, focusing our attention on those algorithms that are most widely
used to solve regression problems in different scientific disciplines. This
being said, the goal of this paper is to investigate the accuracy and
reliability of the ML-based approach in estimating notch fatigue limits,
with this being done by using some well-known, representative algo
rithms. In this setting, it can be highlighted that other than Python/
Scikit-Learn, there are some other vendors of commercial machine
learning solutions such as, for instance, Microsoft Azure Machine
Learning, Google Cloud AI Platform, SAS, MATLAB and many others.
Each of these software packages offers a range of tools and services
tailored to different needs. In the present investigation, we decided to
take full advantage of Python and the Scikit-Learn library because it is a
very popular/widely used open source/open access tool. Accordingly,
those researchers and engineers who are interested in employing ML to
predict notch fatigue limits can easily make direct use of the method
ology discussed in the present paper. This also explains the reason why
all the experimental data used in this investigation are reported in an
explicit form: the data summarised in Table 1 and the open access Scikit-
Learn library allow anyone either to replicate the calculations reported
below or to use ML to estimate notch fatigue limits for different mate
rials and/or for different notch geometries.

3. The high-cycle notch fatigue problem

Consider the notched component sketched in Fig. 2a. This compo
nent is subjected to either tension or bending and the material under
investigation is assumed to be linear-elastic. The stress field in the vi
cinity of the notch tip can be determined either numerically or analyt
ically. As to the latter strategy, for instance, Glinka and Newport [24]
suggested estimating the distribution of normal stress σy along the notch
bisector via the following well-known formulas:

Blunt notch under tension, Kt ≤ 4.5

σy = Ktσnet

[

1 − 2.33
(x

ρ

)
+ 2.59

(x
ρ

)1.5
− 0.907

(x
ρ

)2
+ 0.037

(x
ρ

)3
]

(2)

Sharp notch under tension, Kt > 4.5

σy = Ktσnet

[

1 − 0.235
(x

ρ

)0.5
− 1.33

(x
ρ

)
+ 1.28

(x
ρ

)1.5
− 0.337

(x
ρ

)2
]

(3)

Blunt notch under bending or bending and tension, Kt ≤ 4.5

σy = Ktσnet

[

1 − 2.33
(x

ρ

)
+ 2.59

(x
ρ

)1.5
− 0.907

(x
ρ

)2
+ 0.037

(x
ρ

)3
](

1 −
x
κ

)

(4)

In Eqs (2) to (4) σnet is the nominal net stress (defined as seen in Fig. 2), ρ
is the notch root radius and, finally, κ is a geometrical quantity that
depends on the stress gradient characterising the nominal net stress
distribution (Fig. 2b). According to Neuber [25] and Peterson [26], the
stress concentration factor referred to the net area, Kt, is defined as:

Kt =
σep

σnet
(5)

where σep is the elastic peak stress at the notch tip (Fig. 2).
Consider now the notched specimen shown in Fig. 3a. This specimen

(containing a known geometrical feature) is subjected to a nominal
uniaxial loading, i.e., either to a cyclic axial loading or to cyclic bending.
The fatigue strength of both the notched specimen and the parent ma
terial is summarised in the SN log–log chart of Fig. 3b. This diagram
plots the range of the nominal net stress, Δσnet, vs. the number of cycles
to failure, Nf. The upper fatigue curve refers to the plain material,
whereas the lower one to the notched specimens. According to Fig. 3b,
the reduction in fatigue strength due to the presence of the notch is
quantified through the fatigue strength reduction factor, Kf, which is
defined as [27]:

L. Susmel

International Journal of Fatigue 179 (2024) 108029

6

Table 1
Summary of the collected experimental results (CNB = circumferential notch cylindrical bar, CNP = centre notch in plate, DENP = double edge notch in plate, CBF =
cylindrical bar with fillet, AX = push–pull, B = bending, RB = rotating bending).

Material Ref. σUTS Specimen
Type

Load
Type

Δσ0 ΔKth R a dn dg ρ β Kt Δσ0n Kf

[MPa] [MPa] [MPa
̅̅̅̅
m

√
] [mm] [mm] [mm] [mm] [◦] [MPa]

AA356-T6 [40] 260 CNB RB 231 4.4 − 1 0.24 7.32 7.56 0.1 79.9 3.68 126.5 1.83
231 4.4 − 1 0.63 8.41 9.04 0.18 59.2 4.16 136.4 1.69
231 4.4 − 1 1.3 7.73 9.03 0.09 60.3 8.94 71.4 3.23
231 4.4 − 1 2.9 9.08 12 0.08 68.3 17.20 40.7 5.68

C45 [41] 632 CNB RB 582 8.1 − 1 0.01 5 5.01 0.05 60 1.67 550.0 1.06
582 8.1 − 1 0.01 5 5.01 0.02 60 2.06 550.0 1.06
582 8.1 − 1 0.01 5 5.01 0.01 60 2.52 560.0 1.04
582 8.1 − 1 0.01 5 5.02 0.05 60 1.95 490.0 1.19
582 8.1 − 1 0.01 5 5.02 0.02 60 2.52 500.0 1.16
582 8.1 − 1 0.01 5 5.02 0.01 60 3.19 490.0 1.19
582 8.1 − 1 0.1 5 5.2 0.6 60 1.58 420.0 1.39
582 8.1 − 1 0.1 5 5.2 0.3 60 1.89 380.0 1.53
582 8.1 − 1 0.1 5 5.2 0.1 60 2.72 360.2 1.62
582 8.1 − 1 0.1 5 5.2 0.05 60 3.54 360.0 1.62
582 8.1 − 1 0.1 5 5.2 0.02 60 5.21 360.0 1.62
582 8.1 − 1 0.5 5 6 0.6 60 1.86 360.0 1.62
582 8.1 − 1 0.5 5 6 0.3 60 2.39 300.0 1.94
582 8.1 − 1 0.5 5 6 0.1 60 3.80 280.0 2.08
582 8.1 − 1 0.5 5 6 0.05 60 5.19 280.0 2.08
582 8.1 − 1 0.5 5 6 0.02 60 7.94 290.0 2.01
582 8.1 − 1 0.5 5 6 0.01 60 11.00 290.0 2.01
582 8.1 − 1 1.5 5 8 0.6 60 1.91 350.0 1.66
582 8.1 − 1 1.5 5 8 0.3 60 2.52 280.0 2.08
582 8.1 − 1 1.5 5 8 0.1 60 4.09 250.0 2.33
582 8.1 − 1 1.5 5 8 0.05 60 5.66 250.0 2.33
582 8.1 − 1 1.5 5 8 0.02 60 8.78 250.0 2.33
582 8.1 − 1 1.5 5 8 0.01 60 12.30 260.0 2.24

C36 [42] 999 CNB RB 450 4.6 − 1 0.1 13 15 0.2 60 1.56 443.2 1.02
450 4.6 − 1 0.15 13 14.4 0.2 60 2.02 345.2 1.30
450 4.6 − 1 0.3 13 14 0.2 60 2.87 253.1 1.78
450 4.6 − 1 0.5 13 13.6 0.2 60 3.91 187.0 2.41
450 4.6 − 1 0.7 13 13.3 0.2 60 4.94 146.5 3.07
450 4.6 − 1 1 13 13.2 0.2 60 6.16 118.6 3.80

6060-T6 [43] 220 DENP AX 110 6.1 0.1 2.5 45 50 1.25 0 3.22 61.1 1.79
110 6.1 0.1 10 30 50 2 0 3.20 52.8 2.07
110 6.1 0.1 2.5 45 50 0.2 0 7.00 52.9 2.07
110 6.1 0.1 10 30 50 0.2 0 9.18 42.3 2.59

SM41B [44,45] 423 CNP AX 326 12.4 − 1 3 39 45 0.16 – 8.48 110.0 2.96
326 12.4 − 1 3 39 45 0.39 – 5.72 120.0 2.72
326 12.4 − 1 3 39 45 0.83 – 4.23 110.0 2.96
326 12.4 − 1 3 39 45 3 – 2.60 148.0 2.20
274 8.4 0 3 39 45 0.16 – 8.48 73.0 3.75
244 6.4 0.4 3 39 45 0.16 – 8.48 84.2 2.90

Mild Steel
(0.15 % C)

[46] 440 CNB AX 420 12.8 − 1 5.08 32.8 43 0.05 60 14.00 118.0 3.56
420 12.8 − 1 5.08 32.8 43 0.1 60 10.00 120.0 3.50
420 12.8 − 1 5.08 32.8 43 0.13 60 9.00 116.0 3.62
420 12.8 − 1 5.08 32.8 43 0.25 60 6.60 118.0 3.56
420 12.8 − 1 5.08 32.8 43 0.64 60 4.40 118.0 3.56
420 12.8 − 1 5.08 32.8 43 1.27 60 3.30 132.0 3.18
420 12.8 − 1 5.08 32.8 43 5.08 60 1.90 208.0 2.02

Mild Steel
(0.15 % C)

[46] 440 DENP AX 420 12.8 − 1 5.08 53.8 64 0.1 0 12.50 100.0 4.20
420 12.8 − 1 5.08 53.8 64 0.25 0 8.20 108.0 3.89
420 12.8 − 1 5.08 53.8 64 0.5 0 6.10 100.0 4.20
420 12.8 − 1 5.08 53.8 64 1.27 0 4.00 124.0 3.39
420 12.8 − 1 5.08 53.8 64 7.62 0 2.10 186.0 2.26

Al-2024-T351 [35] 466 CNP AX 248 5.0 − 1 0.12 44.8 45 0.12 – 2.98 160.0 1.55
248 5.0 − 1 0.25 44.5 45 0.25 – 2.96 124.0 2.00
248 5.0 − 1 0.5 44 45 0.5 – 2.94 124.0 2.00
248 5.0 − 1 1.5 42 45 1.5 – 2.82 90.0 2.76
172 4.0 0 0.12 44.8 45 0.12 – 2.98 172.9 0.99
172 4.0 0 0.25 44.5 45 0.25 – 2.96 114.3 1.51
172 4.0 0 0.5 44 45 0.5 – 2.94 109.4 1.57
172 4.0 0 1.5 42 45 1.5 – 2.82 91.9 1.87

SAE 1045 [35] 745 CNP AX 608 13.6 − 1 0.12 44.8 45 0.12 – 2.98 358.9 1.69
608 13.6 − 1 0.25 44.5 45 0.25 – 2.96 310.0 1.96
608 13.6 − 1 0.5 44 45 0.5 – 2.94 279.2 2.18
608 13.6 − 1 1.5 42 45 1.5 – 2.82 248.0 2.45
608 13.6 − 1 2.5 40 45 2.5 – 2.70 261.0 2.33
448 6.9 0 0.12 44.8 45 0.12 – 2.98 326.7 1.37
448 6.9 0 0.25 44.5 45 0.25 – 2.96 311.5 1.44
448 6.9 0 0.5 44 45 0.5 – 2.94 276.1 1.62
448 6.9 0 1.5 42 45 1.5 – 2.82 227.1 1.97

(continued on next page)

L. Susmel

International Journal of Fatigue 179 (2024) 108029

7

Table 1 (continued)

Material Ref. σUTS Specimen
Type

Load
Type

Δσ0 ΔKth R a dn dg ρ β Kt Δσ0n Kf

[MPa] [MPa] [MPa
̅̅̅̅
m

√
] [mm] [mm] [mm] [mm] [◦] [MPa]

448 6.9 0 2.5 40 45 2.5 – 2.70 235.1 1.91
Al-Alloy BS L65 [47] 486 CNB AX 300 4.2 − 1 5.08 32.8 43 0.01 55 27.00 80.0 3.75

300 4.2 − 1 5.08 32.8 43 0.05 55 14.00 77.0 3.90
300 4.2 − 1 5.08 32.8 43 0.1 55 10.00 46.0 6.52
300 4.2 − 1 5.08 32.8 43 0.2 55 7.30 46.0 6.52
300 4.2 − 1 5.08 32.8 43 0.51 55 4.85 62.0 4.84
300 4.2 − 1 5.08 32.8 43 1.270 55 3.30 93.0 3.23

2.25 Cr − 1 Mo
Steel

[48] 530 CNB AX 440 12.0 − 1 0.03 4.94 5 0.03 0 2.99 440.0 1.00
440 12.0 − 1 0.05 4.90 5 0.05 0 2.95 420.0 1.05
440 12.0 − 1 0.07 4.86 5 0.07 0 2.92 340.0 1.29
440 12.0 − 1 0.20 4.60 5 0.20 0 2.68 280.0 1.57
440 12.0 − 1 0.40 4.20 5 0.40 0 2.34 296.0 1.49
440 12.0 − 1 0.76 3.48 5 0.76 0 1.87 320.0 1.38

G40.11 [49] 538 CNP AX 464 15.9 − 1 0.20 69.60 70 0.20 – 2.98 338.0 1.37
464 15.9 − 1 0.48 69.04 70 0.48 – 2.96 242.0 1.92
464 15.9 − 1 4.80 60.40 70 4.80 – 2.59 238.0 1.95

AISI 304 [47] 505 CNB AX 720 12.0 − 1 5.08 32.8 43 0.05 60 14.00 124.0 5.81
Ni-Cr Steel [47] 869 CNP AX 1000 12.8 − 1 0.51 21.6 22.6 0.13 60 4.82 207.4 4.82

1000 12.8 − 1 5.08 32.8 43 0.05 60 18.33 54.6 18.31
1000 12.8 − 1 5.08 21.6 31.8 0.13 60 11.77 85.1 11.75

EN-GJS-800–8 [43] 800 DENP AX 440 8.1 0.1 0.4 19.2 20 0.04 90 7.52 144.7 3.04
440 8.1 0.1 1 18 20 0.1 90 6.29 109.6 4.02

Grey Iron [50] 249 CNB AX 155 15.9 − 1 3.18 23.6 30 0.3 90 5.60 146.6 1.06
99 11.2 0.1 3.18 23.6 30 0.3 90 5.60 96.6 1.02
68 8.0 0.5 3.18 23.6 30 0.3 90 5.60 70.9 0.96
48 5.2 0.7 3.18 23.6 30 0.3 90 5.60 51.5 0.93

2024-T3 [51,52] 497 DENP AX 304 − 1 9.53 38.1 57.2 1.45 0 4.35 96.0 3.17
304 − 1 9.53 38.1 57.2 8.06 0 2.14 165.0 1.84

7075-T6 [51,52] 569 DENP AX 414 − 1 9.53 38.1 57.2 1.45 0 4.35 103.5 4.00
414 − 1 9.53 38.1 57.2 8.06 0 2.14 213.1 1.94

SAE 4130 [51,52] 817 DENP AX 648 8.5 − 1 9.53 38.1 57.2 1.45 0 4.35 193.6 3.35
648 8.5 − 1 9.53 38.1 57.2 8.06 0 2.14 345.1 1.88

HT60 [53] 590 DENP AX 580 13.0 0 0.5 50 51 0.05 90 6.25 257.0 2.26
580 13.0 0 1 50 52 0.05 90 7.82 183.0 3.17
580 13.0 0 5 50 60 0.05 90 18.08 108.0 5.37
580 13.0 0 12.5 50 75 0.05 90 22.60 80.9 7.17
580 13.0 0 0.5 50 51 0.05 135 4.34 263.0 2.21
580 13.0 0 5 50 60 0.05 135 10.87 142.0 4.08
580 13.0 0 12.5 50 75 0.05 135 11.86 113.0 5.13

2024-T3 [54] 427 CNP AX 231 0 1.59 98.4 102 1.5 – 2.91 110.5 2.09
231 0 3.18 95.2 102 3.18 – 2.83 103.5 2.23
231 0 6.35 88.9 102 6.35 – 2.67 102.9 2.25
231 0 12.7 76.2 102 12.7 – 2.43 104.0 2.22
231 0 25.4 50.8 102 25.4 – 2.16 128.0 1.80
231 0 0.79 49.2 50.8 0.79 – 2.91 128.0 1.80
231 0 1.59 47.6 50.8 1.59 – 2.83 117.3 1.97
231 0 3.18 44.4 50.8 3.18 – 2.67 109.7 2.10
231 0 6.35 38.1 50.8 6.35 – 2.43 108.0 2.14
231 0 12.7 25.4 50.8 12.7 – 2.16 132.0 1.75

2024-T3 [54] 427 CNP AX 290 − 1 1.59 98.4 102 1.59 – 2.91 138.3 2.10
290 − 1 3.18 95.2 102 3.18 – 2.83 128.0 2.27
290 − 1 6.35 88.9 102 6.35 – 2.67 123.4 2.35
290 − 1 12.7 76.2 102 12.7 – 2.43 126.7 2.29
290 − 1 25.4 50.8 102 25.4 – 2.16 136.0 2.13
290 − 1 0.79 49.2 50.8 0.79 – 2.91 138.3 2.10
290 − 1 1.59 47.6 50.8 1.59 – 2.83 128.0 2.27
290 − 1 3.18 44.4 50.8 3.18 – 2.67 124.6 2.33
290 − 1 6.35 38.1 50.8 6.35 – 2.43 126.7 2.29
290 − 1 12.7 25.4 50.8 12.7 – 2.16 136.0 2.13

7075-T6 [54] 565 CNP AX 243 0 1.59 98.42 102 1.59 – 2.91 113.6 2.14
243 0 3.18 95.24 102 3.18 – 2.83 117.3 2.07
243 0 25.40 50.80 102 25.40 – 2.16 142.0 1.71
243 0 0.79 49.22 50.8 0.79 – 2.91 129.0 1.88
243 0 1.59 47.62 50.8 1.59 – 2.83 123.7 1.96
243 0 12.70 25.40 50.8 12.70 – 2.16 142.0 1.71

7075-T6 [54] 565 CNP AX 290 − 1 1.59 98.42 102 1.59 – 2.91 138.3 2.10
290 − 1 3.18 95.24 102 3.18 – 2.83 126.9 2.28
290 − 1 25.40 50.80 102 25.40 – 2.16 146.0 1.99
290 − 1 0.79 49.22 50.8 0.79 – 2.91 146.6 1.98
290 − 1 1.59 47.62 50.8 1.59 – 2.83 134.4 2.16
290 − 1 12.70 25.40 50.8 12.70 – 2.16 152.0 1.91

2024-T3 [51] 497 CNP AX 304 − 1 38.1 38.1 114 38.1 – 2.08 165.0 1.84
7075-T6 [51] 569 CNP AX 414 − 1 38.1 38.1 114 38.1 – 2.08 213.0 1.94
SAE 4130 [51] 817 CNP AX 648 8.5 − 1 38.1 38.1 114 38.1 – 2.08 345.0 1.88

(continued on next page)

L. Susmel

International Journal of Fatigue 179 (2024) 108029

8

Table 1 (continued)

Material Ref. σUTS Specimen
Type

Load
Type

Δσ0 ΔKth R a dn dg ρ β Kt Δσ0n Kf

[MPa] [MPa] [MPa
̅̅̅̅
m

√
] [mm] [mm] [mm] [mm] [◦] [MPa]

0.4 % C steel [55] 648 CNB B 664 − 1 0.51 7.62 8.64 0.01 55 18.00 358.2 1.85
3 % Ni steel [55] 526 CNB B 685 − 1 0.51 7.62 8.64 0.01 55 18.00 419.8 1.63
3/3.5 % Ni steel [55] 723 CNB B 704 − 1 0.51 7.62 8.64 0.01 55 13.30 605.2 1.16
Cr-Va steel [55] 752 CNB B 858 − 1 0.51 7.62 8.64 0.01 55 12.10 432.2 1.99
3.5 % NiCr steel [55] 895 CNB B 1081 − 1 0.51 7.62 8.64 0.02 55 8.70 537.2 2.01
3.5 % NiCr steel [55] 897 CNB B 1019 − 1 0.51 7.62 8.64 0.02 55 8.70 494.0 2.06
NiCrMo steel [55] 1000 CNB B 1321 − 1 0.51 7.62 8.64 0.03 55 7.50 543.4 2.43
Low Carbon

Steel
[56] 500 CNB AX 424.6 − 1 2.54 7.62 12.7 0.2 35 4.61 137.0 3.10

424.6 − 1 2.54 7.62 12.7 0.4 35 3.38 182.8 2.32
C40 Steel [57] 715 CNB AX 528 − 1 4 12 20 0.5 90 3.68 235.6 2.24
En3B [58] 676 CNB AX 668 − 1 1.5 5 8 0.2 60 3.80 170.0 3.93
SAE 1045 [59] 621 CBF B 392 − 1 5 40 50 5 – 1.42 377.2 1.04
39NiCrMo3 [60] 995 CNB AX 631 − 1 4 12 20 0.1 90 7.46 314.2 2.01
AISI 416 [61] 700 CNB AX 699 − 1 4 12 20 0.1 90 7.46 195.0 3.59

699 − 1 2 16 20 0.1 90 7.62 190.2 3.68
699 − 1 0.5 19 20 0.1 90 5.35 363.2 1.93

EN-GJS400 [62] 378 CNB AX 284 − 1 4 12 20 0.1 90 7.46 168.0 1.69
C40 Steel [63] 852 CNB AX 544 − 1 1.43 9.15 12 0.23 35 4.42 165.8 3.28
En6 [64] 701 CNB AX 343 − 1 10 18 38 1.5 0 2.69 116.1 2.95
SAE 1045 [65] 760 CNB AX 146.0 0.8 3.3 6 12.6 2 0 1.65 220.0 0.66

146.0 0.8 3.23 5.44 11.9 0.25 65 3.65 130.0 1.12
SAE 1045 [65] 1220 CNB AX 240.0 0.8 3.3 6 12.6 2 0 1.65 280.0 0.86

240.0 0.8 3.23 5.44 11.9 0.25 65 3.65 146.0 1.64
SAE 1045 [65] 2370 CNB AX 380.0 0.8 3.3 6 12.6 2 0 1.65 360.0 1.06

380.0 0.8 3.23 5.44 11.9 0.25 65 3.65 146.0 2.60
SAE 1045 [65] 760 CNB AX 72.0 0.9 3.3 6 12.6 2 0 1.65 110.0 0.65

72.0 0.9 3.23 5.44 11.9 0.25 65 3.65 100.0 0.72
SAE 1045 [65] 1220 CNB AX 120.0 0.9 3.3 6 12.6 2 0 1.65 170.0 0.71

120.0 0.9 3.23 5.44 11.9 0.25 65 3.65 120.0 1.00
SAE 1045 [65] 2370 CNB AX 230.0 0.9 3.3 6 12.6 2 0 1.65 240.0 0.96

230.0 0.9 3.23 5.44 11.9 0.25 65 3.65 140.0 1.64
Ti-6Al-4 V [66–68] 978 CNB AX 529 4.3 0.1 0.13 5.47 5.72 0.13 60 2.80 240.5 2.20

529 4.3 0.1 0.25 5.21 5.72 0.2 60 2.80 258.0 2.05
529 4.3 0.1 0.73 4.26 5.72 0.33 60 2.70 244.9 2.16

Ti-6Al-4 V [66–68] 978 DENP AX 529 4.3 0.1 0.13 5.25 5.51 0.15 60 2.72 235.1 2.25
529 4.3 0.1 0.64 4.24 5.51 0.43 60 2.72 195.9 2.70

Ti-6Al-4 V [66–68] 978 CNB AX 362 2.9 0.5 0.13 5.47 5.72 0.13 60 2.80 202.1 1.79
362 2.9 0.5 0.25 5.21 5.72 0.2 60 2.80 191.4 1.89
362 2.9 0.5 0.73 4.26 5.72 0.33 60 2.70 194.5 1.86

Ti-6Al-4 V [66–68] 978 DENP AX 362 2.9 0.5 0.13 5.25 5.51 0.15 60 2.72 196.6 1.84
362 2.9 0.5 0.64 4.24 5.51 0.43 60 2.72 165.2 2.19

Ti-6Al-4 V [66–68] 978 CNB AX 184 2.6 0.8 0.13 5.47 5.72 0.13 60 2.80 146.2 1.26
184 2.6 0.8 0.25 5.21 5.72 0.2 60 2.80 145.0 1.27
184 2.6 0.8 0.73 4.26 5.72 0.33 60 2.70 148.5 1.24

Ti-6Al-4 V [66–68] 978 DENP AX 184 2.6 0.8 0.13 5.25 5.51 0.15 60 2.72 164.5 1.12
184 2.6 0.8 0.64 4.24 5.51 0.43 60 2.72 141.7 1.30

Ti-6Al-4 V [66–68] 978 CNB AX 529 4.3 0.1 0.13 5.47 5.72 0.13 60 2.85 264.3 2.00
529 4.3 0.1 0.28 5.16 5.72 0.13 60 3.51 202.7 2.61
529 4.3 0.1 0.64 4.45 5.72 0.13 60 4.07 191.3 2.77
529 4.3 0.1 0.1 5.52 5.72 0.33 60 1.97 362.5 1.46
529 4.3 0.1 0.2 5.31 5.72 0.33 60 2.30 320.8 1.65
529 4.3 0.1 0.38 4.96 5.72 0.33 60 2.58 306.2 1.73
529 4.3 0.1 0.73 4.26 5.72 0.33 60 2.72 248.7 2.13

Ti-6Al-4 V [66–68] 978 CNB AX 362 2.9 0.5 0.13 5.47 5.72 0.13 60 2.85 193.7 1.87
362 2.9 0.5 0.28 5.16 5.72 0.13 60 3.51 160.4 2.25
362 2.9 0.5 0.64 4.45 5.72 0.13 60 4.07 135.4 2.67
362 2.9 0.5 0.1 5.52 5.72 0.33 60 1.97 250.6 1.44
362 2.9 0.5 0.2 5.31 5.72 0.33 60 2.30 210.6 1.72
362 2.9 0.5 0.38 4.96 5.72 0.33 60 2.58 174.6 2.07
362 2.9 0.5 0.73 4.26 5.72 0.33 60 2.72 156.2 2.32

Low Carbon
Steel

[69] 500 CNB RB 436.1 − 1 2.54 7.62 12.7 0.2 35 2.93 179.2 2.43
436.1 − 1 2.54 7.62 12.7 0.4 35 2.50 214.6 2.03

Ti-6Al-4 V [70,71] 978 CNB AX 522 3.9 0 0.1 0.05 45 3.92 522.0 1.00
522 3.9 0 0.3 0.2 45 3.16 480.4 1.09
522 3.9 0 0.3 0.05 45 5.71 347.6 1.50
522 3.9 0 0.5 0.05 45 6.61 245.6 2.13

FeP04 [72] 310 DENP AX 247 10.0 0.1 10 30 50 0.16 45 11.52 75.7 3.26
247 10.0 0.1 10 30 50 0.16 135 6.54 81.3 3.04
247 10.0 0.1 10 30 50 0.16 160 3.35 145.3 1.70

SS41 [73] 418 DENP AX 231 6.4 0.05 10 30 50 0.1 90 18.13 43.2 5.35
231 6.4 0.05 10 30 50 0.1 120 13.34 66.5 3.47

HT60 [73] 598 DENP AX 425 6.6 0.05 10 30 50 0.1 90 18.13 51.7 8.23
425 6.6 0.05 10 30 50 0.1 120 13.34 72.3 5.88

SAE 1010-HR [74] 326 CNP AX 320 11.8 − 1 0.5 44 45 0.5 – 2.94 220.7 1.45

(continued on next page)

L. Susmel

International Journal of Fatigue 179 (2024) 108029

9

Kf =
Δσ0

Δσ0n
(6)

In Eq. (6) Δσ0 and Δσ0n are the range of the plain and notch fatigue limit,
respectively. To compute Kf correctly, Δσ0 and Δσ0n are to be deter
mined either under the same load ratio or by setting the same mean
stress value.

Definition (6) and Fig. 3b make it evident that the experimental
approach is certainly the most accurate method for the quantification of

the fatigue strength reduction factors. However, owing to the fact that
this is not always feasible in practice, systematic research work has been
carried out since the early 1900s to formulate specific approaches
capable of estimating Kf for different materials and different notch
profiles [28,29].

At the beginning of the 1900s Neuber [25] argued that the detri
mental effect of geometrical features can be quantified by averaging the
stress in the vicinity of the assessed notch over materials units such as
grains or “arbitrary particles” of material (Fig. 4a). According to this
idea, fatigue strength reduction factor can directly be estimated as
follows:

Kf = 1+
Kt − 1

1 +
̅̅̅̅
αN
ρ

√ (7)

In Eq. (7) αN is a reference material length that is linked with the grain
size or an “arbitrary particle” of material. As suggested in Refs [29–31],
αN can be estimated from the material ultimate tensile strength, σUTS, via
the following empirical relationship (valid for σUTS < 1520 MPa):

αN = 10−
σUTS − 134

586 (8)

where αN = f(σUTS) is measured in units of [mm] and σUTS in units of
[MPa].

A few years later, the approach proposed by Neuber was further
simplified by Peterson [3] who proposed to assess notch fatigue strength
by referring to the stress determined at a given distance from the tip of
the stress raiser being designed (Fig. 4b). Based on this idea, the fatigue
strength reduction factor can then be estimated through the following

Table 1 (continued)

Material Ref. σUTS Specimen
Type

Load
Type

Δσ0 ΔKth R a dn dg ρ β Kt Δσ0n Kf

[MPa] [MPa] [MPa
̅̅̅̅
m

√
] [mm] [mm] [mm] [mm] [◦] [MPa]

320 11.8 − 1 1.5 42 45 1.5 – 2.81 205.1 1.56
SAE 1010-CR22 [74] 476 CNP AX 410 10.2 − 1 0.12 44.8 45 0.12 – 2.98 308.3 1.33

410 10.2 − 1 0.5 44 45 0.5 – 2.94 280.8 1.46
410 10.2 − 1 1.5 42 45 1.5 – 2.81 251.5 1.63

SAE 1010-CR56 [74] 525 CNP AX 546 8.4 − 1 0.12 44.8 45 0.12 – 2.98 339.1 1.61
546 8.4 − 1 1.5 42 45 1.5 – 2.81 254.0 2.15

SAE101-CR76 [74] 689 CNP AX 614 6.4 − 1 0.12 44.8 45 0.12 – 2.98 363.3 1.69
614 6.4 − 1 0.5 44 45 0.5 – 2.94 321.5 1.91
614 6.4 − 1 1.5 42 45 1.5 – 2.81 265.8 2.31

SAE 945X-HR [74] 558 CNP AX 500 13.4 − 1 0.12 44.8 45 0.12 – 2.98 390.6 1.28
500 13.4 − 1 0.5 44 45 0.5 – 2.94 301.2 1.66
500 13.4 − 1 1.5 42 45 1.5 – 2.81 290.7 1.72

SAE 945-CR30 [74] 621 CNP AX 588 12.4 − 1 0.12 44.8 45 0.12 – 2.98 374.5 1.57
588 12.4 − 1 0.5 44 45 0.5 – 2.94 321.3 1.83
588 12.4 − 1 1.5 42 45 1.5 – 2.81 307.9 1.91

SAE 945-CR61 [74] 752 CNP AX 630 12.0 − 1 0.12 44.8 45 0.12 – 2.98 406.5 1.55
630 12.0 − 1 0.5 44 45 0.5 – 2.94 324.7 1.94
630 12.0 − 1 1.5 42 45 1.5 – 2.81 310.3 2.03

Fig. 2. Notched component loaded in tension (a) and in bending (b); definition
of nominal net stress, σnet, and elastic peak stress, σep.

Fig. 3. Notched component subjected to fatigue loading (a) and SN diagram summarising the strength of the plain and notched material (b).

L. Susmel

International Journal of Fatigue 179 (2024) 108029

10

relationship:

Kf = 1+
Kt − 1
1 + αP

ρ
(9)

where again αP is a characteristic length which is different for different
materials. For steels having σUTS > 560 MPa material constant αP can be
estimated as follows [6]:

αP = f (σUTS) = 0.0254
(

2079
σUTS

)1.8

[mm] (10)

Even if their derivation was based on a different reasoning, in the late
1950s Heywood proposed two formulas similar to those devised by
Peterson and Neuber, i.e. [6,32]:

Kf =
Kt

1 + 2
̅̅̅̅
αH
ρ

√ (11)

Kf =
Kt

1 + 2
̅̅̅̅̅
αH
ρ

√ (
Kt − 1

Kt

) (12)

In Eqs (11) and (12) αH is a material constant that depends on both the
component geometry and the ultimate tensile strength. For instance, for
cast iron with spheroid graphite ̅̅̅̅̅aH

√ is equal to 173.6
σUTS

[mm1/2].
If attention is focused on Eqs (2) to (4), it is straightforward to

observe that, according to the way Glinka and Newport structured their
formulas, the shape of the linear-elastic stress field along the notch
bisector depends on both the stress concentration factor, Kt, and the
notch root radius, ρ. As mentioned earlier, Peterson and Neuber derived
their formulas by assuming that Kf depends on the distribution of the
local linear-elastic stress in the vicinity of the notch being assessed
(Fig. 4). These two remarks explain why Kf calculated according to Eqs
(7) and (9) depends on Kt and ρ. Further, the material constants in Eqs
(7), (9), (11) and (12) can all be estimated from the ultimate tensile
strength. Based on these considerations, the hypothesis can be formed
that Kf can directly be estimated from σUTS, Kt and ρ as follow:

Kf = f(σUTS,Kt, ρ) (12)

where f is a complex function that can take different forms.
If the threshold value of the stress intensity factor range, ΔKth, is

brought into play then the so-called material critical distance can be
determined according to the following definition [33,34]:

L =
1
π

(
ΔKth

Δσ0

)2

(13)

Critical length L can then be used as a further calibration information to
estimate Kf. For instance, DuQuesnay, Topper and Yu [35] suggested
estimating the fatigue strength reduction factor in the presence of sharp
notches by using the following formula:

Kf =
1
F

(

1+
̅̅̅
a
L

√)

(14)

where F is a geometric constant of the order of unity and a is the notch
depth.

Similarly, by applying Neuber’s line method (Fig. 4a) according to
Tanaka’s strategy [36], Atzori, Lazzarin, Meneghetti and Tovo devised
the following formula to estimate Kf [37,38]:

Kf =
Kt
̅̅̅̅̅̅̅̅̅̅̅̅
1 + 4L

ρ

√ (15)

where again the fatigue strength reduction factor depends on critical
distance L. As to Eq. (15), it is interesting to observe that the structure of
this formula is very similar to the one proposed by Lukáš and Klesnil
[39].

Eqs (13), (14) and (15) make it evident that, when critical length L is
used, Kf can directly be estimated as follow:

Kf = f(Δσ0,ΔKth,Kt, ρ) (16)

where, again, f is a complex function that can take different forms.
Having briefly reviewed our understanding of the notch fatigue

problem, the classic equations to estimate Kf that have been devised over
the last century clearly suggest two possible strategies - i.e., Eq. (12) and
(16) - to use ML to quantify the notch fatigue strength reduction factor.
Accordingly, in what follows, these two strategies will be reformulated
and expanded in order to use the ML algorithms reviewed in Section 2 to
directly estimate Kf.

4. Formulation of a machine learning-based approach to
estimate notch fatigue limits

When it comes to designing notched components against high-cycle
fatigue, engineers are supposed to know the static strength (σUTS) of the
material planned to be used. Further, independently of the strategy used
to estimate Kf, according to Eq. (6) the notch fatigue limit (Δσ0n) can be
estimated only if the plain fatigue limit is known (Δσ0). Thus, it is
possible to form the hypothesis that both σUTS and Δσ0 are available
during the fatigue design process. According to this initial assumption,
relationship (12) can then be expanded as follows:

Kf = f1(σUTS,Δσ0,Kt, ρ) − Strategy 1 (17)

In other words, Eq. (17) suggests that, according to Peterson, Neuber
and Heywood, Kf depends on two different pieces of information, i.e. the
material mechanical behaviour and the distribution of the local linear-
elastic stress field. The former is quantified via σUTS and Δσ0, whereas
the latter via Kt and ρ – see also Eqs (2) to (4). In what follows, this will
be referred to as Strategy 1.

Assuming again that, for the same reasons as above, both σUTS and
Δσ0 are known during the design process, then relationship (16) based
on the use of critical distance L, Eq. (13), can be rearranged as follows:

Kf = f2(σUTS,Δσ0,ΔKth,Kt, ρ) − Strategy 2 (18)

Fig. 4. Neuber’s line method (a) and Peterson’s point method (b).

L. Susmel

International Journal of Fatigue 179 (2024) 108029

11

As far this second strategy is concerned, while the profile of the
linear-elastic stress field is still assumed to depend on Kt and ρ, this time
the mechanical behaviour is modelled via three different material
properties, i.e. σUTS, Δσ0 and ΔKth.

In the next section, the accuracy in estimating notch fatigue limits of
Strategy 1, Eq. (17), and Strategy 2, Eq. (18), applied along with the MF
algorithms briefly reviewed in Section 2 will be tested based on a large
database of experimental results taken from the literature.

5. Validation by experimental data

5.1. The database

As per the flowchart seen in Fig. 1, the first step to use the ML
approach is to build a coherent database suitable for training and testing
the various algorithms being considered. As far as the notch fatigue
problem is concerned, the data collected from the technical literature to
create a suitable population of experimental results are summarised in
Table 1. These results were generated by testing notched specimens
having the geometries schematically sketched in Fig. 5. The technical
drawings of Fig. 5 also explain the meaning of the symbols used in
Table 1 to quantify the absolute dimensions of the various notched
samples being considered. The results listed in Table 1 were generated
under either axial loading (AX), bending (B) or rotating bending (RB),
with the load ratio (R = σmin/σmax = σnet,min/σnet,max) ranging in the
interval 1-0.9.

The values of the net stress concentration factor, Kt, listed in Table 1
were taken from the original sources and double-checked either by using
Peterson’s book [75] or via standard bi-dimensional linear-elastic
Ansys® Finite Element (FE) models.

Finally, it is important to point out that the values of both Δσ0 and
Δσ0n were reported in the original sources either as fatigue limits or as
endurance limits. The reader is referred to the original papers for detail
descriptions of the various experimental strategies being followed in
order to generate the individual experimental data listed in Table 1.

5.2. Selecting the most effective machine learning algorithm

As already mentioned in Section 2, the considered ML algorithms
were applied by making the most of the Scikit-Learn library for Python
[23]. In this regard, it is important to highlight here that the solvers
coded to use the various ML algorithms being investigated were all
characterised by the same level of programming complexity.

The accuracy of Strategy 1, Eq. (17), and Strategy 2, Eq. (18), was
assessed via the Root Mean Square Error (RMSE) defined as:

RMSE =

̅̅
1
n
∑n

i=1

(
Kf,i − Kf,i− est

)2

√

(19)

In Eq. (19) n is the sample size, whereas Kf,i and Kf,i-ext are (for the i-th
sample) the experimental and estimated value of the fatigue strength
reduction factor, respectively.

To apply the GPR algorithm, the “length_scale” hyperparameter in
the Radial Basis Function kernel was tuned using K-Fold Cross-
Validation. In the GPR algorithm the kernel determines how much in
fluence nearby data points have on the prediction for a given data point.
Different kernels will lead to different regression behaviours. K-Fold
Cross-Validation is a technique used to assess the performance of a ML
algorithm. In particular, the dataset is divided into K roughly equal-sized
“folds” or subsets and the ML algorithm under investigation is trained
and evaluated K times. In each iteration, one fold is used as the test set,
and the remaining K-1 folds are used for training. By so doing, the al
gorithm’s performance is quantified K times, typically using metrics like
accuracy or mean squared error. Subsequently, the K performance scores
are averaged to provide a single, more reliable estimate of the model’s
performance. K-Fold Cross-Validation helps to assess a ML algorithm’s
performance while reducing the risk of overfitting or underfitting, as it
tests the model on different subsets of the data. K-Fold Cross-Validation
was used to set the “length_scale” hyperparameter by taking K equal to
10, with this process resulting in an optimal value of 0.06 for our specific
datasets. This optimal value was determined by using the RMSE, Eq.
(19), to quantify the performance of the Scikit-Learn GPR algorithm.

In the PLS regression algorithm, the number of components refers to
the number of latent variables used to represent the relationships be
tween the predictors and the response variables. Choosing the appro
priate number of components is essential to strike a balance between
model complexity and its ability to capture the underlying relationships
in the data. Typically, the number of components is set by using cross-
validation techniques or by examining the prediction performance on
a validation dataset. As the number of components increases, the model
can potentially fit the training data better, but it might also become
more prone to overfitting. In this setting, the optimal choice may vary
depending on the specific dataset and the problem one is trying to solve.
Therefore, it is common practice to explore different values for the
number of components and select the one that gives the best balance
between model complexity and performance on new, unseen data. Ac
cording to the above consideration, to apply the Scikit-Learn PLS
regression algorithm, different values were explored and, via a simple
“trial and error” procedure, the best predictions - assessed via the RMSE,
Eq. (19) - were obtained by setting the number of components equal to 3.

Fig. 5. Geometries of the notched specimens and definition of the adopted symbols.

L. Susmel

International Journal of Fatigue 179 (2024) 108029

12

To apply Scikit-Learn’s MLP algorithm, the rectified linear unit
function was employed as the activation function in the hidden layers.
Further, the Limited-memory Broyden-Fletcher-Goldfarb-Shanno algo
rithm (which is suitable for small datasets) was used as optimization
routine to train the neural network. Finally, to specify the architecture of
the neural network, two hidden layers of sizes 100 and 50 neurons were
employed.

In contrast, the use of the other three ML algorithms (i.e., Linear
Regression, SVM and DTR) required no specific tuning, thus they were
used by adopting the pre-set values for the hyperparameters.

The considerations reported above make it evident that when the
Scikit-Learn ML algorithms being considered could not be employed by
directly using the pre-set values, the values for the relevant hyper
parameters were determined by following standard, simple optimisation
procedures. However, the goal of the present work, certainly, is not to
find the best values possible for the relevant hyperparameters. In
contrast, this research aims at formulating and validating an ML-based
strategy suitable for estimating notch fatigue limits. Here the ML pro
cess is informed through the notch fatigue knowledge gained over the
last century and briefly summarised in Section 3. This aspect is very
important because, given a specific ML algorithm, the optimal values for
the various hyperparameters vary not only as the adopted library
changes (for instance, moving from Scikit-Learn to TensorFlow or
moving from SAS to MATLAB), but also as size and quality of the input
dataset changes. As to the size of the input dataset, it is important to
highlight that, from a fatigue viewpoint, the database summarised in
Table 1 is certainly very large. However, as far as ML applications are
concerned, a database containing less than 300 data is considered to be a
relatively small dataset. All these key aspects should be borne in mind
since they are behind the results from the analyses discussed in what
follows.

Strategy 1 was trained and tested by referring to the entire popula
tion of the data summarised in Table 1 (i.e., 238 experimental results in
total). In contrast, Strategy 2 was trained and tested by using solely those
materials for which the experimental value of the threshold value of the
stress intensity factor range, ΔKth, was available (i.e., 167 experimental
results in total).

Using the above two datasets, the accuracy of Strategy 1 and Strategy
2 applied along with the considered ML algorithms was assessed in terms
of RMSE, Eq. (19), and the results are summarised in Table 2. The values
for the average, variance, and the standard deviation (S.D.) reported in
Table 2 were calculated (for any ML algorithm/strategy) from a popu
lation of 100 RMSEs coming from 100 independent testing trials. For any
of these 100 testing trials, 85 % of the input experimental results was
used to train the adopted ML algorithm, whereas the remaining 15 %
was used as test data. The reason behind this modus operandi, which
applies to any ML algorithm/strategy being investigated, is as follows.
Given the input dataset, the test data are extracted randomly, with the
remaining data being used to train the ML algorithm. Since every time
the individual experimental results used for calibration change, the
training process leads to slightly different values for the constants in the
ML constitutive relationship. In parallel, as the training experimental

data varies, the test data as well change. This makes it evident that any
testing trial is characterised by a different set of calibration results as
well as by a different set of validation data, with this obviously leading
to different RMSE values.

Another important aspect associated with the training/testing
approach described above is that increasing the number of testing trials
would obviously result in (slightly) different values for the average, the
variance, and the standard deviation of the RMSE. However, this is not
an issue because the results reported in Table 2 were calculated to assess
against each other the accuracy of the considered ML algorithms and not
to evaluate their absolute accuracy.

In order to interpret the results summarised in Table 2 correctly, one-
way analysis of variance (one-way ANOVA) was used to determine
whether or not there is a statistically significant difference between the
average values of the RMSE associated with the five ML algorithms being
investigated. The hypothesis test was based on the following two stan
dard hypotheses:

• Null Hypothesis (H0): the RMSE average values associated with the
five ML algorithms are equal;

• Research Hypothesis (Ha): at least one RMSE average value is
significantly different.

The one-way ANOVA analyses run to test Strategy 1 and Strategy 2
returned a p-value equal to 2.5⋅10-74 and to 3.6⋅10-58, respectively. Since
these statistical analyses were carried out by setting the α level equal to
0.05, the fact that both p-values are smaller than 0.01 means the results
are highly statistically significant, so that H0 can be rejected. This im
plies that at least one RMSE average value is significantly different from
the other ones.

Having clarified these important aspects, Table 2 makes it evident
that the most accurate results (i.e., the lowest values for the average, the
variance, and the standard deviation of the RMSE) were obtained by
applying DTR. Further, as far as the DTR algorithm is concerned, the use
of Strategy 1 resulted in values of the average, the variance and the
standard deviation of the RMSE that were slightly lower than those
obtained by adopting Strategy 2. This can simply be ascribed to the fact
that the population of calibration data used with Strategy 1 was more
numerous that the one used with Strategy 2 (i.e., 202 vs. 142 calibration
data).

5.3. Machine learning, Peterson’s formula and the Theory of Critical
Distances

The re-analyses discussed in the previous section suggest that,
amongst the ML techniques being considered, the highest level of ac
curacy in estimating the fatigue strength reduction factor is reached (in
relative terms) by using the DTR algorithm. Accordingly, in the present
section the predictive capability of this ML technique applied along with
Strategy 1, Eq. (17), and Strategy 2, Eq. (18), is assessed against the
accuracy of Peterson’s formula - i.e., Eq. (9) applied along with Eq. (10)
– as well as of the Point Method [34,36]. To this end, two specific

Table 2
Accuracy of the considered ML algorithm in estimating the fatigue strength reduction factor based on Strategy 1, Eq. (17), and on Strategy 2, Eq. (18).

Strategy 1 Strategy 2

Input Variables σUTS, Δσ0, ρ, Kt σUTS, Δσ0, L, ρ, Kt

Kf - RMSE Kf - RMSE

Average Variance S.D. Average Variance S.D.

Machine-Learning Algorithm Linear Regression 1.31 0.39 0.62 1.32 0.28 0.52
Support Vector Machines 1.42 0.46 0.68 1.65 0.62 0.78
Gaussian Process Regression 2.63 0.31 0.56 2.97 0.64 0.80
Cross decomposition – PLS regression 1.30 0.34 0.58 1.39 0.38 0.61
Decision Tree Regression 1.02 0.25 0.50 1.21 0.39 0.62
Multi-Layer Perceptron (MLP) 1.36 0.24 0.48 1.43 1.35 1.15

L. Susmel

International Journal of Fatigue 179 (2024) 108029

13

complete data sets were selected from the database reported in Table 1,
i.e. the notch results by Nisitani and Endo [41] and by Kobayashi and
Nakazawa [42] generated by testing, under rotating bending, C45 steel
and C36 steel, respectively.

As formulated by Tanaka [36] and Taylor [34], Peterson’s Point
Method is applied by taking the critical distance (i.e., distance DPM in
Fig. 4b) equal to L/2, where material length L is estimated via definition
(13). By so doing, a notched component is assumed to be in the fatigue
limit condition when the range of the linear-elastic stress at a distance of
L/2 from the apex of the assessed notch is equal to the plain material
fatigue limit, Δσ0. The local linear-elastic stress fields needed to apply
the Point Method to estimate the selected notch results were determined
from simple bi-dimensional linear-elastic models solved using com
mercial FE code Ansys®. In these models, the mesh in the notch region
was gradually refined until convergence occurred.

To train the DTR algorithm, the experimental results referring to the
notched specimens of C45 steel [41] and C36 steel [42] were removed
from the dataset of Table 1. Since to apply Strategy 2, Eq. (18), the range
of the threshold value of stress intensity factor range, ΔKth, was
required, clearly the population of training data used with this approach
was markedly less numerous than the population of data used to train
the DTR algorithm applied along with Strategy 1, Eq. (17).

The accuracy of the considered four approaches in estimating the
results generated by testing notched specimens of C45 steel [41] and
C36 steel [42] were quantified by defining the error, E, as follows:

E [%] =
Δσ0n − Δσ0n,est

Δσ0n,est
• 100 (20)

where Δσ0n and Δσ0n,est are the experimental and the estimated value of
the notch fatigue limit, respectively.

The results of this accuracy assessment exercise are summarised in
the Δσ0n vs. Δσ0n,est chart of Fig. 6 as well as in Table 3. Fig. 6 makes it
evident that the use of the DTR algorithm applied along with Strategy 1,
Peterson’s formula and the Point Method resulted in a similar level of

accuracy. This finding is further confirmed by Table 3 since the use of
these three notch fatigue design strategies resulted in very similar values
of both the average and standard deviation of error E calculated ac
cording to Eq. (20). In contrast, the estimates obtained by applying the
DTR algorithm along with Strategy 2 were characterised by a larger level
of scattering. Even if more data are needed to confirm this, this may be
ascribed to the fact that the dataset used to train the ML algorithm
contained a limited number of experimental results.

Turning back to Table 3 and Fig. 6, it is interesting to point out again
that the use of the DTR algorithm applied along with Strategy 1,
Peterson’s formula and the Point Method returned the same level of
accuracy. Both Peterson’s method and the Theory of Critical Distances
are approaches that are already used in industry on a daily bases. Thus,
the fact the DTR-Strategy 1 method is characterised by the same level of
accuracy as the other two standard methodologies suggests the ML-
based philosophy proposed in the present paper can safely be used to
address fatigue design problems of practical interest. This being said, the
advantage of the ML-based design method over the other existing
standard approaches is the intrinsic flexibility of ML algorithms. For
instance, the accuracy in estimating notch fatigue limits can easily be
increased by simply increasing size and quality of the dataset used to
calibrate the ML algorithms being employed. Additionally, because ML
regression models can handle high-dimensional datasets with numerous
input features, they are able to capture complex correlations between

Fig. 6. Accuracy of DTR – Strategy 1, DTR – Strategy 2, Peterson’s formula - - Eq. (9) applied along with Eq. (10) – as well as of the Point Method [34,36] in
estimating the notch fatigue limits of C45 steel [41] and C36 steel [42].

Table 3
Accuracy in predicting the notch fatigue strength of C45 [41] and C36 [42].

Approach Δσon - E [%]

Average S.D.

DTR - Strategy 1 0.4 18.4
DTR - Strategy 2 − 4.4 35.4
Peterson’s formula 5.2 18.7
Point Method − 5.2 11.1

L. Susmel

International Journal of Fatigue 179 (2024) 108029

14

input features and the target variable. This indicates that, by incorpo
rating additional material property-related input variables in the ML
analyses, the accuracy in estimating the notch fatigue limit can be
improved markedly.

6. Conclusions

This investigation deals with the accuracy and reliability in esti
mating notch fatigue limits of a number of popular ML algorithms. The
analyses discussed in the present paper were based on a large number of
experimental results generated by testing under uniaxial loading
notched specimens of various metallic materials, aluminium alloys and
titanium alloys. These experimental results were all collected from the
technical literature and then organised in a coherent database.

The strategies being proposed to use ML to assess notch high-cycle
fatigue strength were informed by learning from a number of classic
formulas specifically devised to estimate the fatigue strength reduction
factor. Based on the findings reported in the present paper, as long as ML
is applied in conjunction with the classic nominal stress approach, the
most relevant conclusions are summarised in what follows.

• If Kf is the target, σUTS, Δσ0, ΔKth, Kt and the notch root radius, ρ, can
be used as features to train standard ML algorithms.

• Amongst the considered ML algorithms, the highest level of accuracy
(in relative terms) in estimating Kf was obtained by using the DTR
algorithm.

• Amongst a number of other factors, the accuracy of a ML algorithm
also depends on the size of the training dataset. This explains why the
use of DTR – Strategy 1 resulted in more accurate estimates than
those obtained via DTR – Strategy 2.

• The use of the DTR algorithm applied along with Strategy 1 was seen
to lead to a level of accuracy similar to the one obtained by applying
both Peterson’s formula and the Point Method.

• More experimental work needs to be done in order to create a large
database of notch fatigue results that can be used to train ML
algorithms.

CRediT authorship contribution statement

Luca Susmel: Conceptualization, Methodology, Formal analysis,
Investigation, Writing – original draft.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] Miller KJ. The two thresholds of fatigue behaviour. Fatigue Fract Eng Mater Struct
1993;16:931–9.

[2] Akiniwa Y, Tanaka K, Kimura H. Microstructural effects on crack closure and
propagation thresholds of small fatigue cracks. Fatigue Fract Eng Mater Struct
2001;24:817–29.

[3] Miller KJ, O’Donnell WJ. The fatigue limit and its elimination. Fatigue Fract Engng
Mater Struct 1999;22:545–57.

[4] Sonsino CM. Course of SN-curves especially in the high-cycle fatigue regime with
regard to component design and safety. Int J Fatigue 2007;29(12):2246–58.

[5] Susmel L. Multiaxial Notch Fatigue: from nominal to local stress-strain quantities.
Woodhead & CRC, Cambridge, UK, ISBN: 1 84569 582 8, 2009.

[6] Lee Y-L, Pan J, Hathaway RB, Barkey ME. Fatigue Testing and Analysis. Elsevier
Butterworth-Heinemann; 2005.

[7] Ma X, He X, Tu ZC. Prediction of fatigue–crack growth with neural network-based
increment learning scheme. Eng Fract Mech 2021;241:107402.

[8] Bartošák M. Using machine learning to predict lifetime under isothermal low-cycle
fatigue and thermo-mechanical fatigue loading. Int J Fatigue 2022;163:107067.

[9] Hao WQ, Tan L, Yang XG, Shi DQ, Wang ML, Miao GL, et al. A physics-informed
machine learning approach for notch fatigue evaluation of alloys used in
aerospace. Int J Fatigue 2023;170:107536.

[10] Lian Z, Li M, Lu W. Fatigue life prediction of aluminum alloy via knowledge-based
machine learning. Int J Fatigue 2022;157:106716.

[11] Horňas J, et al. Modelling fatigue life prediction of additively manufactured Ti-6Al-
4V samples using machine learning approach. Int J Fatigue 2023;169:107483.

[12] Ciampaglia A, Tridello A, Paolino DS, Berto F. Data driven method for predicting
the effect of process parameters on the fatigue response of additive manufactured
AlSi10Mg parts. Int J Fatigue 2023;170:107500.

[13] Maleki E, Bagherifard S, Razavi N, Bandini M, du Plessis A, Berto F, et al. On the
efficiency of machine learning for fatigue assessment of post-processed additively
manufactured AlSi10Mg. Int J Fatigue 2022;160:106841.

[14] Bezazi A, Pierce SG, Worden K, Harkati EH. Fatigue life prediction of sandwich
composite materials under flexural tests using a Bayesian trained artificial neural
network. Int J Fatigue 2007;29(4):738–47.

[15] Fernández J, et al. Uncertainty quantification in Neural Networks by Approximate
Bayesian Computation: Application to fatigue in composite materials. Eng Appl
Artif Intell 2022;107:104511.

[16] Ben-Yelun I, et al. Self-learning locally-optimal hypertuning using maximum
entropy, and comparison of machine learning approaches for estimating fatigue life
in composite materials of the aerospace industry. Eng Struct 2023;283:115829.

[17] Matloff N. Statistical Regression and Classification - From Linear Models to
Machine Learning. Taylor & Francis Group, Florida, USA: CRC Press; 2017.

[18] Campbell C, Ying Y. Learning with Support Vector Machines. Switzerland: Springer
Nature; 2022.

[19] Rasmussen CE, Williams CKI. Gaussian Processes for Machine Learning.
Cambridge, MA, USA: MIT Press; 2006.

[20] Wegelin JA. A survey of Partial Least Squares (PLS) methods, with emphasis on the
two-block case. Department of Statistics, University of Washington, Seattle,
Washington, 98195 USA, Technical Report No. 371, 2000.

[21] Rokach L, Maimon O. Data mining with decision trees – Theory and Applications.
Singapore: World Scientific Publishing Co.; 2008.

[22] Marsland S. Machine Learning, 2nd Edition, CRC Press. Florida, USA: Taylor &
Francis Group; 2015.

[23] Raschka S, Liu Y, Mirjalili V. Machine Learning with PyTorch and Scikit-Learn:
Develop machine learning and deep learning models with Python. Birmingham,
UK: Pack Publishing; 2022.

[24] Glinka G, Newport A. Universal features of elastic notch-tip stress fields. Int J
Fatigue 1987;9(3):143–50.

[25] Neuber H. Kerbspannungslehre. Berlin Heildelberg, Germany: Springer Verlag;
1958.

[26] Peterson RE. Stress Concentration Design Factors. New York, USA: John Wiley;
1953.

[27] Peterson RE. Notch sensitivity. In Metal Fatigue, Eds: G. Sines and J. L. Waisman,
McGraw-Hill, New York, 1959, pp. 293-306.

[28] Weixing Y, Kaiquan X, Yi G. On the fatigue notch factor. Kf Int J Fatigue 1995;17
(4):245–51.

[29] Ciavarella M, Meneghetti G. On fatigue limit in the presence of notches: classical
vs. recent unified formulations. Int J Fatigue 2004;26(3):289–98.

[30] Kuhn P, Hardrath HF. An engineering method for estimating notch-size effect in
fatigue tests on steel. NASA Tech Note 2805, 1952.

[31] Dowling NE. In: Mechanical behavior of materials. 2nd edition. New Jersey, USA:
Prentice-Hall Inc; 1998.

[32] Heywood RB. Designing against fatigue. London, UK: Chapman & Hall; 1962.
[33] El-Haddad MH, Topper TH, Smith KN. Prediction of non-propagating cracks. Eng

Fract Mech 1979;11:573–84.
[34] Taylor D. Geometrical effects in fatigue: a unifying theoretical model. Int J Fatigue

1999;21(5):413–20.
[35] DuQuesnay DL, Topper TH, Yu MT. The Effect of Notch Radius on the Fatigue

Notch Factor and the Propagation of Short Cracks. In: The Behaviour of Short
Fatigue Cracks, EGF Pub. 1 (Edited by K. J. Miller and E. R. de los Rios, 1986,
Mechanical Engineering Pubblications, London, pp. 323-335.

[36] Tanaka K. Engineering formulae for fatigue strength reduction due to crack-like
notches. Int J Fract 1983;22:R39–45.

[37] Atzori B, Lazzarin P, Tovo R. Evaluation of the fatigue strength of a deep drawing
steel. Österreichische Ingenieur-und Architekten-Zeitschrift, Jg 1992;137:556–61.

[38] Lazzarin P, Tovo R, Meneghetti G. Fatigue crack initiation and propagation phases
near notches in metals with low notch sensitivity. Int J Fatigue 1997;19(8–9):
647–57.

[39] Lukáš P, Klesnil M. Fatigue limit of notched bodies. Mater Sci Eng 1978;34:61–9.
[40] Atzori B, Meneghetti G, Susmel L. Fatigue Behaviour of AA356-T6 cast aluminium

alloy weakened by cracks and notches. Eng Fract Mech 2004;71(4–6):759–68.
[41] Nisitani H, Endo M. Unified treatment of Deep and Shallow Notches in Rotating

Bending. In: Basic questions in fatigue: Vol. 1, ASTM STP 924, Edited by J. T. Fong
and R. J. Fields, pp. 136-153, 1988.

[42] Kobayashi H, Nakazawa H. The Effects of Notch Depth on the Initiation
Propagation and Non-propagation of Fatigue Cracks. Transactions of the Japan
Society of Mechanical Engineers 1969;35(277):1856–63.

[43] Susmel L, Taylor D. Fatigue Design in the Presence of Stress Concentrations.
J Strain Anal Eng 2003;38(5):443–52.

[44] Tanaka K, Nakai Y. Propagation and non-propagation of short fatigue cracks at a
sharp notch. Fatigue Fract Engng Mater Struct 1983;6:315–27.

L. Susmel

http://refhub.elsevier.com/S0142-1123(23)00530-3/h0005
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0005
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0010
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0010
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0010
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0015
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0015
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0020
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0020
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0030
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0030
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0035
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0035
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0040
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0040
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0045
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0045
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0045
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0050
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0050
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0055
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0055
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0060
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0060
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0060
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0065
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0065
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0065
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0070
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0070
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0070
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0075
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0075
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0075
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0080
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0080
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0080
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0085
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0085
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0090
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0090
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0095
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0095
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0105
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0105
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0110
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0110
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0115
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0115
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0115
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0120
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0120
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0125
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0125
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0130
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0130
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0140
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0140
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0145
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0145
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0155
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0155
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0160
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0165
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0165
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0170
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0170
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0180
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0180
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0185
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0185
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0190
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0190
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0190
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0195
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0200
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0200
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0210
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0210
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0210
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0215
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0215
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0220
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0220

International Journal of Fatigue 179 (2024) 108029

15

[45] Tanaka K, Akiniwa Y. Notch geometry effect on propagation threshold of short
fatigue cracks in notched components. In: Fatigue ’87, Vol. II, Edited by R. O.
Ritchie and E. A. Starke Jr., 3th Int. Conf. On Fatigue and Fracture Thresholds, pp.
739-748, 1987.

[46] Frost NE. A relation between the critical alternating propagation stress and crack
length for mild steel. Proc Inst Mech Engrs 1957;173:811–34.

[47] Frost, N. E. Non-propagating cracks in V-notched specimens subjected to fatigue
loading. Aeoronaut Quart 1957;VIII:1-20.

[48] Lukáš P, Kunz L, Weiss B, Stickler R. Non-damaging notches in fatigue. Fatigue
Fract Engng Mater Struct 1986;9:195–204.

[49] El Haddad MH. A study of the growth of short fatigue cracks based on fracture
mechanics. Waterloo, Ontario, Canada: University of Waterloo; 1978. PhD Thesis.

[50] Taylor D, Hughest M, Allen D. Notch fatigue behaviour in cast irons explained
using a fracture mechanics approach. Int J Fatigue 1996;18:439–45.

[51] Grover HJ, Bishop SM, Jackson LR. Axial-Load fatigue tests on notched sheet
specimens of 24S-T3 and 75S-T6 aluminum alloys and of SAE 4130 steel with
stress-concentration factors of 2.0 and 4.0. NACA report TN 2389, 1951.

[52] Grover HJ, Bishop SM, Jackson LR. Fatigue strengths of aircraft materials axial
load fatigue tests on unnotched sheet specimens of 24S-T3 and 75S-T6 aluminum
alloys and of SAE 4130 steel. NACA report TN 2324, 1951.

[53] Usami S. Short crack fatigue properties and component life estimation. In:
Tanaka T, Jono M, Komai K, editors. Current research on fatigue cracks.
Amsterdam: Elsevier; 1987. p. 119–47.

[54] Landers CB, Hardrath HF. Results of axial-load fatigue tests on electropolished
2024–T3 and 7075–T6 aluminum-alloy-sheet specimens with central holes. NACA
report TN 3631, 1956.

[55] Gough HJ. Engineering steels under combined cyclic and static stresses. Proc Inst
Mech Engrs 1949;160:417–40.

[56] Quilafku G, Kadi N, Dobranski J, Azari Z, Gjonaj M, Pluvinage G. Fatigue
specimens subjected to combined loading. Role of hydrostatic pressure. Int J
Fatigue 2001;23:689–701.

[57] Atzori B, Berto F, Lazzarin P, Quaresimin M. Multi-axial fatigue behaviour of a
severely notched carbon steel. Int J Fatigue 2006;28:485–93.

[58] Susmel L, Taylor D. The Modified Wöhler Curve Method applied along with the
Theory of Critical Distances to estimate finite life of notched components subjected
to complex multiaxial loading paths. Fatigue Fract Eng Mater Struct 2008;31(12):
1047–64.

[59] Kurath P, Downing SD, Galliart D. R. Summary of non-hardened notched shaft
round robin program. In: Multiaxial Fatigue (edited by G. E. Leese and D. F. Socie),
AE-14, Society of Automotive Engineers, pp. 13–32, 1989.

[60] Berto F, Lazzarin P, Yates JR. Multiaxial fatigue of V-notched steel specimens: a
non-conventional application of the local energy method. Fatigue Fract Engng
Mater Struct 2011;34:921–43.

[61] Berto F, Lazzarin P. Fatigue strength of structural components under multi-axial
loading in terms of local energy density averaged on a control volume. Int J Fatigue
2011;33:1055–65.

[62] Tovo R, Lazzarin P, Berto F, Cova M, Maggiolini E. Experimental investigation of
the multiaxial fatigue strength of ductile cast iron. Theor Appl Fract Mech 2014;73:
60–7.

[63] Susmel L, Taylor D. A critical distance/plane method to estimate finite life of
notched components under variable amplitude uniaxial/multiaxial fatigue loading.
Int J Fatigue 2012;38:7–24.

[64] Namiq ZF, Susmel L. Proportional/non-proportional constant/variable amplitude
multiaxial notch fatigue: cyclic plasticity, non-zero mean stresses, and critical
distance/plane. Fatigue Fract Eng Mater Struct 2019;42(9):1849–73.

[65] Pals TG, Stephens RI. The influence of high R ratio on mild and sharp notched and
unnotched fatigue behavior of 1045 steel with three different heat treatments. Int J
Fatigue 2004;26:651–61.

[66] Lanning DB, Haritos GK, Nicholas T. Influence of stress state on high cycle fatigue
of notched Ti–6Al–4V specimens. Int J Fatigue 1999;21:S87–95.

[67] Lanning DB, Nicholas T, Haritos GK. On the use of critical distance theories for the
prediction of the high cycle fatigue limit stress in notched Ti–6Al–4V. Int J Fatigue
2005;27:45–57.

[68] Chiandussi G, Rossetto M. Evaluation of the fatigue strength of notched specimens
by the point and line methods with high stress ratios. Int J Fatigue 2005;27:
639–50.

[69] Qylafku G, Azari Z, Kadi N, Gjonaj M, Pluvinage G. Application of a new model
proposal for fatigue life prediction on notches and key-seats. Int J Fatigue 1999;21:
753–60.

[70] Yamashita Y, Ueda Y, Kuroki H, Shinozaki M. Fatigue life prediction of small
notched Ti–6Al–4V specimens using critical distance. Eng Fract Mech 2010;77:
1439–53.

[71] Wanga J, Yang X. HCF strength estimation of notched Ti–6Al–4V specimens
considering the critical distance size effect. Int J Fatigue 2012;40:97–104.

[72] Atzori B, Lazzarin P, Meneghetti G. Estimation of fatigue limits of sharply notched
components. In: Proc. of Fatigue 2006, Atlanta, Georgia, USA, 2006.

[73] Kihara S, Yoshii A. A strength evaluation method of a sharply notched structure by
a new parameter, the equivalent stress intensity factor. JSME 1991;34:70–5.

[74] Yu MT, DuQuesnay DL, Topper TH. Notched fatigue behaviours of two cold rolled
steels. Fatigue Fract Engng Mater Struct 1991;14(1):89–101.

[75] Pilkey WD, Pilkey DF, Bi Z. Peterson’s stress concentration factors. 4th Edition.
John Wiley & Sons Inc; 2020.

L. Susmel

http://refhub.elsevier.com/S0142-1123(23)00530-3/h0230
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0230
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0240
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0240
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0245
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0245
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0250
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0250
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0265
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0265
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0265
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0275
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0275
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0280
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0280
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0280
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0285
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0285
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0290
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0290
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0290
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0290
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0300
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0300
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0300
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0305
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0305
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0305
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0310
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0310
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0310
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0315
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0315
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0315
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0320
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0320
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0320
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0325
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0325
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0325
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0330
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0330
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0335
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0335
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0335
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0340
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0340
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0340
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0345
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0345
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0345
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0350
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0350
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0350
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0355
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0355
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0365
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0365
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0370
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0370
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0375
http://refhub.elsevier.com/S0142-1123(23)00530-3/h0375

	Estimating notch fatigue limits via a machine learning-based approach structured according to the classic Kf formulas
	1 Introduction
	2 Considered machine learning techniques
	2.1 Linear Regression
	2.2 Support Vector Machines (SVM)
	2.3 Gaussian Process Regression
	2.4 Cross decomposition – Partial Least Squares (PLS) regression
	2.5 Decision Tree Regression
	2.6 Multi-Layer Perceptron (MLP)
	2.7 Implementation of the selected machine learning algorithm

	3 The high-cycle notch fatigue problem
	4 Formulation of a machine learning-based approach to estimate notch fatigue limits
	5 Validation by experimental data
	5.1 The database
	5.2 Selecting the most effective machine learning algorithm
	5.3 Machine learning, Peterson’s formula and the Theory of Critical Distances

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

