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Abstract 19 

Background: 20 

Accurate estimation of shelf-life is essential to maintain food safety, reduce wastage, and improve supply chain 21 

efficiency. Traditional methods such as microbial and chemical analysis, and sensory evaluation provide reproducible 22 

results but require time and labor and may not be suitable for real-time or high-throughput applications. The integration 23 

of artificial intelligence (AI) with advanced analysis techniques offers a suitable alternative for rapid, data-driven 24 

estimation of shelf-life in dynamic storage environments. 25 

 26 

Approach and Scope: 27 

The current review assesses the application of AI-based techniques such as machine learning (ML), deep learning 28 

(DL), and hybrid approaches in food product shelf life prediction. This study highlights how AI can be utilized to 29 
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examine data from non-destructive testing methods like hyperspectral imaging, spectroscopy, machine vision, and 30 

electronic sensors to enhance predictive performance. The review also describes how AI-based techniques contribute 31 

to managing food quality, reduce economic losses, and enhance sustainability by ensuring optimized food distribution 32 

and reducing waste. 33 

 34 

Key Findings and Conclusions: 35 

AI techniques overcome conventional techniques by considering intricate, multi-sourced information capturing 36 

microbiological, biochemical, and environmental factors influencing food spoilage. Meat, dairy, fruits and vegetables, 37 

and beverage case studies illustrate AI techniques' superiority in real-time monitoring and quality assessment. It also 38 

identifies limitations such as data availability, model generalizability, and computational cost, constraining extensive 39 

applications. Cloud and Internet of Things (IoT) platform integration into future applications has to be considered to 40 

enable real-time decision-making and adaptive modeling. AI can be a paradigm-changing tool in food industries with 41 

intelligent, scalable, and low-cost interventions in food safety, waste reduction, and sustainability. 42 

 43 
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1. Introduction 62 

Accurate prediction of the shelf life of food products is one of the most important concerns in the food industry 63 

worldwide for food safety,quality control and to maintain economic stability. With the increased demand for high 64 

quality food products with a long shelf life, there is a growing demand to practically and accurate predict when produce 65 

will expire (Cui et al., 2023). Food spoilage not only leads to considerable economic losses on the part of producers 66 

and retailers but also causes a lot of food to be wasted worldwide with associated negative environmental damage 67 

(Gao et al., 2020). It is estimated that up to 1.05 billion tonnes of food was lost across households, food services, and 68 

for retail it is approximately 132 kg per person per year (FAO, 2022). In this respect, the minimization of such losses, 69 

without compromising consumer safety, makes shelf-life prediction a very important topic for technological 70 

innovation. 71 

Traditionally, food shelf life has been estimated using microbial analysis, chemical testing, and sensory evaluation 72 

(Marin et al., 2021; Shi et al., 2023). While these methods are effective, they are labor-intensive, time-consuming, and 73 

may not fully account for the dynamic environmental conditions, such as fluctuations in temperature, humidity, and 74 

microbial load during storage and transportation (Cui et al., 2023; Goyal et al., 2024; Cui et al., 2024). To address 75 

these challenges, mathematical models have been introduced to predict shelf life based on data obtained from either 76 

destructive or non-destructive analytical techniques. The reliability of these models depends heavily on the quality 77 

and precision of the analytical methods used for data collection. Destructive methods, including microbial culturing 78 

and chemical assays, provide highly detailed information but are impractical for real-time monitoring and large-scale 79 

applications (dos Santos Formiga and Júnior, 2024; Nguyen et al., 2024). In contrast, advanced non-destructive 80 

analytical methods such as spectroscopy, hyperspectral imaging, and electronic sensors, allow for real-time, high-81 

throughput monitoring of food quality without compromising the integrity of the sample. These techniques provide 82 

comprehensive data on physicochemical changes in food, including microbial growth, biochemical transformations, 83 

and environmental influences, offering a more accurate and adaptable basis for predictive modeling. However, 84 

traditional mathematical models often rely on simplified assumptions that fail to fully capture the complexities of 85 

spoilage mechanisms, leading to potential inaccuracies in real-world applications (Gao et al., 2020; Marin et al., 2021; 86 

Cui et al., 2023). Therefore, integrating advanced analytical methods with artificial intelligence-driven approaches is 87 

essential to enhance the accuracy, scalability, and adaptability of shelf-life prediction, ultimately improving food 88 

safety, reducing waste, and optimizing supply chains. 89 

 90 

 91 

 92 
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Among the challenges in modeling and prediction, artificial intelligence (AI) has emerged as a potential solution, (Shi 97 

et al., 2023). AI can, through machine learning (ML) and deep learning, analyze large volumes of data and find patterns 98 

that may be hard to perceive under more traditional models (Wang et al., 2022; Lin et al., 2023). AI-based methods 99 

can include all kinds of variables including biochemical composition, conditions of storage, and microbial activity 100 

(Cui et al. ,2023). This capacity and predictive power make AI an ideal tool with which to understand with the very 101 

roots of food spoilage and extend shelf life. 102 

AI techniques have great potential for food shelf-life prediction of a wide array of products, such as meat and poultry 103 

(Cui et al., 2024; Esposito et al., 2024; Saeed et al., 2025), dairy (Sunithamani et al., 2024; Golzarijalal et al., 2024; 104 

Wang et al., 2025), fresh fruit and vegetables (Goyal et al.,2024; Kanjilal et al., 2025; Zhang et al., 2025) and, soft 105 

drink and beverages (Harris et al., 2023; Gao et al., 2024; Zhou et al., 2024). Each of these categories was subject to 106 

different forms of spoilage mechanisms, which, in turn, are under the influence of specific environmental and 107 

biological factors. AI flexibility in modeling these variable parameters is yet another evident advantage over traditional 108 

methods in terms of gaining higher accuracy and efficiency (Chhetri, 2024). 109 

AI application in predicting food shelf-life is a paradigm shift from traditional methods, with more accurate, real-time, 110 

and scalable predictions. Unlike traditional chemical and microbiological tests with high labor inputs and in many 111 

situations impossible in dynamic storage environments, AI-based models can evaluate enormous amounts of 112 

information from non-destructive analysis techniques and give rapid and adaptive predictions. This integration is very 113 

useful in food industries, as it maximizes shelf life to enhance quality control, reduce economic losses, and avert 114 

wastage of food (Cui et al., 2024; Zhang et al., 2025). Food wastage being a global issue with enormous environmental 115 

and economic implications, AI-based shelf-life prediction is a high-social value technological innovation. Through 116 

real-time monitoring and predictive evaluation, AI enables manufacturers, retailers, and consumers to make intelligent 117 

choices, reducing unnecessary disposal and ensuring food safety (Chhetri, 2024; Sunithamani et al., 2024; Saeed et 118 

al., 2025). This review particularly emphasizes AI's application in such a situation, systematically describing its 119 

potential, limitations, and future scope in reshaping food sustainability and supply chain management. 120 

A number of reviews detailing the application of machine learning in food safety are available in the literature (Wang 121 

et al., 2022; Lin et al., 2023; Feng et al., 2023; Chhetri, 2024). However, no review (to the best of our knowledge) 122 

exclusively focuses on the application of AI in the prediction of shelf life in food products. The novelty of the 123 

manuscript is that it focuses on the integration of AI with advanced analytical methods, gives a critical review of AI 124 

applications across diverse food categories, and addresses critical challenges and future opportunities. Unlike other 125 

reviews, this article puts the focus on actionable insights for food-specific applications and shows the practical and 126 



5 
 

transformative potential of AI for the food industry. This article reviews the potential for AI in the prediction of shelf 127 

life for food products. on the article will present some key AI approaches, together with their applications in smart 128 

systems like machine vision and spectroscopic techniques. This paper also presents AI applications across different 129 

categories of food and assesses the major economic and sustainability impacts. These sustainability impacts were 130 

addressed through examples in various case studies, such as the reduced wastage of fruits and vegetables due to 131 

accurate ripening predictions and energy savings in the meat industry through optimized refrigeration. It also considers 132 

contemporary challenges and limitations to the implementation of AI for shelf life prediction. The last section 133 

discusses the future directions of this approach and then outlines a vision of how this area of food shelf-life prediction 134 

will continue to evolve with AI. 135 

2. Traditional methods for predicting shelf life 136 

The traditional methods used to assess shelf life of food include chemical and microbiological analyses. The microbial 137 

growth studies have been the most instrumental since they monitor the increase of spoilage and pathogenic organisms 138 

with time. Bacteria, yeasts, and molds commonly act as spoilage indicators of foods (Chhetri, 2024). Parameters 139 

monitored to predict shelf life include lipid oxidation, protein degradation in meats and poultry (Saeed, et al., 2022), 140 

ethylene production and organic acid production in fruits and vegetables (Li, et al., 2024), lactic acid, pH, and acidity 141 

in dairy products (Freire et al., 2024) and alcohol content in beverages (Kyaw et al., 2024). Trained sensory panels 142 

regularly test at pre-defined intervals throughout the life cycle of the product. In most literature reviewed, it was stated 143 

that sensory methods require a large amount of operations and are costly to be run, hence they are usually less practical 144 

for routine use in large-scale shelf life prediction (Saeed et al., 2022; Cui et al., 2023; Chhetri, 2024). Although these 145 

techniques are highly valued in shelf life predictions, their dependency on periodical testing and specific markers 146 

affects their efficiency and adaptability to dynamic storage conditions. Within the past few years, various mathematical 147 

modeling approaches have been developed in order to enhance predictiveness and to account for the food spoilage 148 

complexity involving different circumstances. 149 

Predictive microbiology models extend conventional microbial growth studies to develop mathematical relationships 150 

between microbial growth and environmental factors (Cui et al., 2023). Most predictive microbiology models make 151 

use of kinetic equations in predicting the trends of microbial growth, therefore, predictive microbiology models can 152 

be useful in evaluating how products will respond to different storage environments. Prediction of shelf life for various 153 

food products available in the literature use first-order kinetic and Weibull models to predict chemical degradation 154 

processes and microbial survival curves (Gao et al., 2020; Tuly et al., 2023; dos Santos Formiga and Júnior, 2024; 155 

Cheng et al., 2025). Empirical data has been analyzed using pathogen modelling methods, together with model 156 

predictions for several microorganisms. While these empirical models provide quantitative predictions, most of them 157 

are bound within the limited scope of data collected and decrease the generalisation of a model across variable 158 

conditions. 159 

Although both empirical and kinetic models have a wide range of applications in traditional shelf life prediction, there 160 

are quite a number of limitations in their use. The most important of these is the dependency on historical data, 161 

specified for a product, which restricts generalization to new formulations or variable storage conditions(Bhagya Raj 162 
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and Dash,2022; Shi et al., 2023). This is because most of them are based on fixed parameters that cannot fully capture 163 

diverse environmental and composition factors affecting spoilage. In addition, these models normally work on 164 

simplified assumptions like linear or exponential reaction rates-outside the real-world food systems in which most 165 

factors are dynamic in microbial interactions and interplay (Cui et al., 2023; Rashvand et al., 2023; Taiwo et al., 2024). 166 

Considering these limitations, novel approaches have been attracting more interest. Literature has shown that AI could 167 

overcome some of these constraints imposed by traditional methods toward faster, more adaptable, and perhaps more 168 

accurate predictions (Gonzalez Viejo and Fuentes, 2020; Wang et al., 2022; Harris et al., 2023; Yıkmış et al., 2024; 169 

Zhang et al., 2025). 170 

Interactions among microorganisms, such as competition, synergy, and antagonism, are very prominent and can affect 171 

the dynamics of food spoilage and thus the accuracy of predictions (Dantigny, 2021; Cui et al., 2023). Cui et al . 172 

(2023) stated competitive interactions between bacteria and fungi may alter spoilage rates because some bacteria act 173 

to inhibit fungal growth or vice versa. There can also be synergistic interactions whereby metabolic by-products of 174 

one microorganism provide favorable conditions for the proliferation of another, accelerating spoilage. These complex 175 

dynamics, thus, are an illustration of constraints on developing traditional models of microbial growth in their 176 

descriptions, since such models often involve assumptions of one single dominant organism. 177 

Yeast, mold, and bacteria differ in characteristics that affect spoilage and hence the prediction of spoilage, its accuracy, 178 

and the approach to it (Dantigny, 2021). Yeasts cause spoilage in foods high in sugar or acids. They form volatile 179 

compounds and can be detected with intelligent sensors such as spectroscopy devices. Molds are aerobic and dominate 180 

in drier environments; they are often found on fruits, vegetables, and cheese. They also produce spores and secondary 181 

metabolites including mycotoxins, which have a bearing on safety and shelf life. Snyder et al. (2024) reported bacteria 182 

represent the most important spoilage agents in high-moisture foods. Rapid growth under favorable conditions often 183 

makes them the focus of traditional predictive methods. This justifies using advanced models of AI that are better 184 

positioned in handling such multi-dimensional data and interactions. Real-time data on microbial communities' 185 

interactions can be fed into AI methods for more robust, more accurate predictions under natural conditions. 186 

Figure 1 represents the overall frame of foods' shelf-life assessment and prediction as a function of various factors, 187 

indicators, and modeling techniques. The progress of freshness quality indicator (FQI) could be described as a function 188 

of time, passing through a stochastic path depending on the environmental conditions, until it crosses a failure 189 

threshold corresponding to the conclusions of shelf life. This is the maximum acceptable level beyond which quality 190 

degradation was no longer acceptable and defines remaining shelf life from any given observed point (Chen et al., 191 

2023). In addition, the figure indicates that ecological factors like temperature, illumination, humidity, and gas 192 

concentration drive the chemical reactions and microbial growth on meats that constitute spoilage. Shelf life was 193 

monitored by sensory, physicochemical, and microbiological indices that assessed critical thresholds of quality 194 

deterioration and established predictive shelf life models (Ren et al., 2022). Advanced statistical and kinetic models, 195 

such as zero-order kinetics and Arrhenius equations, were applied to understand dynamics in quality variation with 196 

time. The most accurate prediction of shelf-life could be achieved by an integrated model combining statistical models, 197 

quality dynamics models, and algorithms from AI for capturing complex interactions among the multiple factors 198 
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(Cheng et al., 2025). This integrated modeling approach will support quality management and, therefore, will allow 199 

producers to monitor the shelf life of various perishable foods more precisely and predict and extend it. 200 

 201 

Figure1. Integrated framework for shelf-life prediction and quality assessment of food products using ecological 202 

factors, quality indicators, and advanced modeling techniques (Reproduced from Ren et al., 2022; Chen et al., 2023, 203 

Cheng et al., 2025). 204 

Similar to meat products, respiration is a critical factor in the shelf life of plant-based products because it is among 205 

the fundamental metabolic processes in fruits and vegetables after their harvest. Pieczywek et al. (2024) and Yin et al 206 

(2024) demonstrated that the process of respiration includes degradation of stored carbohydrates and other substrates 207 

by cellular biochemical transformations to produce energy, which will be dissipated as carbon dioxide, water, and 208 

heat. This is very dependent on temperature, humidity, and the concentration of oxygen. Overall, literature have 209 

combined information on respiration rates with numerical modeling, using environmental conditions and alterations 210 

in metabolic activities to make better predictions in plant-based commodities (Wang et al., 2021; Rashvand et al., 211 

2023, Yin et al., 2024). 212 

 213 

3. Fundamental of Artificial Intelligence methods for shelf life prediction 214 

The accuracy and reliability of AI models for shelf-life prediction are highly dependent on the quality of data generated 215 

by analytical methods. Advanced analytical techniques play a crucial role in ensuring that the data fed into AI systems 216 

are precise, reproducible, and representative of real-world conditions. Inaccurate or low-quality data can lead to flawed 217 
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predictions, underscoring the need for selecting superior analytical approaches that consistently provide reliable 218 

information across various food categories and storage environments (Eş and Khaneghah, 2024). Both destructive and 219 

non-destructive analytical methods contribute significantly to AI-driven shelf-life modeling. Non-destructive 220 

techniques, such as hyperspectral imaging and Raman spectroscopy, enable real-time monitoring of food quality by 221 

capturing biochemical and structural changes without damaging the samples, making them ideal for continuous 222 

assessment and industrial applications. In contrast, destructive methods, including microbial enumeration and 223 

chemical assays, offer highly precise and detailed measurements of spoilage indicators but are invasive and impractical 224 

for large-scale or real-time monitoring. A comparative discussion of these techniques will be presented in the 225 

following sections, highlighting their respective advantages and limitations in enhancing the predictive power of AI-226 

based shelf-life estimation. 227 

 Besides this, the features extracted by such analytics methods, which are relevant in nature, such as the production 228 

of ethylene in fruits or variations of pH in dairy products, must be strongly related to the variation in shelf life if the 229 

AI models are to provide practical predictions.ML is a powerful tool capable of handling enormous data volumes 230 

include food chemical composition, storage temperature, humidity, and non-destructive evaluation sensors for 231 

highly accurate predictions of product shelf life(Çetin et al., 2022; Do et al., 2024; Haghbin et al., 2023). Various 232 

traditional and novel ML models have been developed and applied in the food industry. The traditional ML models 233 

usually require structured and hand-engineered features, interpretable, and suffer from high-dimensional and 234 

unstructured data. While deep learning has been designed to automatically learn feature representations from raw 235 

data using multiple layers of computation, performing exceptionally well on unstructured data like images (Chen et 236 

al., 2023). The key difference lies in their complexity and feature extraction. While classical machine learning 237 

involves manual feature engineering, deep learning models learn from raw data hierarchically and are hence flexible 238 

but, at the same time, computationally expensive. However, some of them have been utilized in the shelf life 239 

prediction of food product. In the following, common models that have been applied and developed in the literature 240 

were described. 241 

3.1. Traditional machine learning 242 

3.1.1. Linear models 243 

Linear models consist of Multiple linear regression (MLR), Generalized linear models (GLM) and Partial least squares 244 

regression (PLSR). These algorithms are well-suited for straightforward, structured datasets, such as those obtained 245 

from chemical analysis. For example, MLR has been effectively applied to correlate shelf-life indicators in dairy 246 

products where relationships between features and outcomes are largely linear (Golzarijalal.et al., 2024).  However, 247 

these models fall short when non-linear interactions such as microbial growth dynamics, or high-dimensional datasets 248 

are involved. MLR is a widely applied regression method assuming a linear relationship among predictors and the 249 

response variable. Since MLR illustrates how changes in the predictors influence the dependent variable by fitting a 250 

linear equation to the observed data, MLR models are straightforward to implement and interpret the linear 251 

relationships between the variables. MLR has been applied to correlate quality data with the shelf life indicators for a 252 
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variety of food products(Çetin et al., 2022; Dulger Altıner et al., 2024). However, some of the drawbacks to MLR 253 

models are non-linearity, inflated standard errors, unstable coefficient estimates, and overfitting to the data.  254 

GLM extend traditional linear regression to accommodate a wider range of data types and distributiosn that might not 255 

follow a linear relationship. They can modelvarious probability distributions for the dependent variable and therefore 256 

can be modeled with a variety of link functions such as an identity link in normal distribution, a logit link in binomial 257 

distribution, and a log link in Poisson distribution. According to Çetin et al. (2022) and Nturambirwe and Opara 258 

(2020), this was indicative that GLMs could become flexible in correlating a variety of data types. They also provide 259 

a unified framework for various regression models such as linear regression and logistic regression . However, the 260 

interpretation of coefficients in GLMs is less intuitive on many aspects when compared to linear regression analysis 261 

(Fan et al., 2019). 262 

PLSR is designed to model the relationships of independent and dependent variables and this method is considered an 263 

efficient tool in both dimensionality reduction and predictive modelling (Ren and Sun, 2022). PLSR build upon the 264 

extraction of new latent variables that are highly correlated with the dependent variables such that this approach is 265 

particularly useful when the number of predictors is large and highly collinear or for the case when the number of 266 

observations is smaller than the number of predictors. It is such challenges that are quite common in datasets that are 267 

intrinsically complex, which also relates to datasets associated with predicting the shelf life of food items (Çetin et al., 268 

2022; Goyal et al., 2024; Jiang et al., 2023; Pieczywek et al., 2024; Sharma et al., 2023). It has also been observed a 269 

number of times that PLSR had the tendency to overfit when dealing with highly complex models or small datasets, 270 

because it works on maximum covariance between the variables rather than pure prediction accuracy. Therefore, the 271 

other developed ML methods in this regard have been preferred by researchers (Xiao et al., 2024; Shao et al., 2024; 272 

Francis et al., 2025). 273 

3.1.2. Decision trees (DT) and random forests (RF) 274 

DT and RF algorithms are exceptionally good at dealing with diverse data from multiple sources, such as sensory, 275 

microbial, and environmental information. RF is much more effective on fruits and vegetables whose spoilage depends 276 

on several related factors, which interact with one another, such as those related to the production of ethylene, 277 

temperature, and moisture (Goyal.et al., 2024; Kanjilal et al., 2025). RF even prevents overfitting, enabling its 278 

application in real conditions. However, DT and RF are computationally intensive when dealing with extensive 279 

datasets, considering that optimization is necessary in such cases. DT operate by recursively splitting data into subsets 280 

based on their input features and makes a tree-like structure of decisions. In regression tasks, the model predicts the 281 

character of the new incoming data point by navigating the tree starting from the root node down to a leaf node (Hassan 282 

et al., 2024). RF is an ensemble learning method based on many decision trees to boost the accuracy of models and 283 

reduce overfitting. The methodology ensembles multiple decision trees to yield a more generalizable model. RF 284 

improves general model accuracy and robustness by averaging the predictions in the case of regression tasks or via a 285 

majority vote in case of classification tasks. 286 
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One of the key strengths of  decision trees is their interpretability. Nturambirwe and Opara (2020) and Palumbo et al. 287 

(2024) mentioned that the model structure gives one obvious visual information about how the model makes decisions, 288 

thus, it becomes easily understandable. Furthermore, applied DT are good at describing complex and nonlinear 289 

relationships between data without any need for transformation of features, normalizing, or scaling. By nature, they 290 

are versatile in handling continuous and categorical data, hence suitable for a wide range of datasets (Çetin et al., 291 

2022; Do et al., 2024; Nturambirwe and Opara, 2020; Palumbo et al., 2024; Sharma et al., 2023). On the other hand, 292 

DT and RF are prone to overfitting by the training data, especially in DTs with deep tree structures. Oliveira Chaves 293 

et al. (2023) found that with just a little change in the data, sometimes quite dramatic changes in the tree structure 294 

would result, meaning it was a less stable model. Therefore, RF reduces the risk of overfitting by taking an average 295 

of several decision trees' predictions and is less sensitive to outliers and noisy data; hence, they have the capability to 296 

handle large datasets with high-dimensional feature space(Oliveira Chaves et al., 2023; Goyal et al., 2024; Kanjilal et 297 

al., 2025). 298 

3.1.3. Support vector machines (SVM) 299 

SVM are supervised ML algorithms applied to establish regression models. The major goal of SVM is to find a 300 

decision boundary, normally referred to as the hyperplane, which splits various classes within data with maximum 301 

separation. Different from the other algorithms, which apply all data points to create decisions, SVM relies solely on 302 

the data points that might be closest to the decision boundary or hyperplane  (Wang et al., 2022). For this purpose, it 303 

is highly suitable for nonlinear data, generally obtained in the spectroscopy or sensor-based analysis of volatile organic 304 

compounds in meat and poultry products (Esposito et al., 2024; Liang et al., 2024). The computational performance 305 

of SVM greatly depends on the choice of kernel-for example, radial basis function-that involves adapting kernel 306 

selection to fit the complexity of the dataset. Although highly accurate, SVM suffers from high computational cost 307 

with large datasets, hence presenting limitations to real-time applications. Manthou et al. (2020) demonstrated that it 308 

was computationally more efficient and more robust to outliers, hence, possibly reducing overfitting. Further, Manthou 309 

et al. (2022) and Haghbin et al. (2023) applied different kernel functions for SVM, which can handle both data of 310 

linearly and nonlinearly separated classes; it is thus flexible for most calibration modeling tasks. One of the 311 

disadvantages of SVM presented in the literature was that the performance of the SVM depends on the choice of the 312 

kernel and associated tuning of the kernel parameters. Besides, the computational load of an SVM increases with 313 

dataset size, hence not always suitable for the analysis of large datasets (Çetin et al., 2022; Huang et al, 2023; Jiang et 314 

al., 2023;Nturambirwe and Opara, 2020). 315 

3.2. Deep learning and neural networks (NNs) 316 

3.2.1. Multilayer perceptron (MLP) 317 

MLPs can be considered one of the most used neural network architecture types in both classification and regression. 318 

Typically, MLP have more than three layers of nodes that are fully connected to each subsequent layer. Shi et al. 319 

(2023) and Deng et al. (2024) fully described the basic architecture of an MLP. The learning process in an MLP occurs 320 

through backpropagation and gradient descent. During the process of training, internally, the MLP adjusts internal 321 
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parameters like weights and biases by going forward with every step of the training data, computing loss and 322 

backpropagation so that for every MLR, the error between predicted and actual outputs gets minimized. MLP can be 323 

configured with respect to nonlinear relationship modeling. Moreover, works done by Anwar et al. (2023), Shi et al. 324 

(2023), and Karimi, (2025) have documented that this increase in the number of hidden layers gave the chance for an 325 

MLP to made deep representations of features that enhanced its generalization to new unseen data.  The addition of 326 

more hidden layers however carries an added risk which could result in overfitting of MLPs against a training set. 327 

Training MLP is often a resource intensive process that always requires high processing and memory. In addition 328 

selecting the optimal hyperparameters of the model is often time-consuming and use methods such as grid searchers 329 

(Do et al., 2024; W. Huang et al., 2023; Jiang et al., 2023). 330 

3.2.2. Recurrent Neural Networks (RNN) 331 

RNNs represent a class of ANNs which was specially designed to process sequential data. Unlike the traditional 332 

feedforward neural networks, such as MLP, these process their inputs independently. RNNs consist of directed cycles 333 

and this architecture can process any input sequences in a step-by-step manner (Nayak et al., 2020; Ma et al., 2024). 334 

Such architectures will possibly allow information to be kept over time and the information from the previous inputs 335 

is preserved, hence, the best-suited applications for RNNs include time-series forecasting tasks. Dhiman et al. (2021) 336 

and Kanjilal et al. (2025) evaluated a general-purpose multi-fruit system for the quality assessment of fruit by applying 337 

a recurrent neural network. They realized that in RNNs, the hidden state was a sort of memory that got updated at 338 

every input, and each hidden state at every time step got revised. 339 

3.2.3. Convolutional neural networks (CNN) 340 

The CNN is a special kind of neural network used to process data with grid-like topology. In particular, image and 341 

spectra data come as two important means of the effective prediction of shelf life. With the ability to detect significant 342 

features from raw input data using a convolutional filter, CNNs do an extremely good job in the identification of 343 

spatial patterns such as edges, textures, and shapes in images, hence being very powerful in performing tasks which 344 

concern visual data (Shi et al., 2023; Cui et al., 2023). While traditional feed-forward neural networks form the basis 345 

for a CNN, the convolutional layer applies a set of filters to the input data. For that reason, the researchers applied 346 

ANN, FNN, and CNN and then selected the best topology for use in their model to predict shelf life (Wu et al., 2022; 347 

Nayak et al., 2020; Goyal et al., 2024). CNN consists of an element-wise product of a filter with a portion of the input 348 

data, followed by a sum of products. Each filter then slides over the input data detecting specific features such as 349 

edges, corners, and textures. This process is repeated as the filter moves across the entirety of the input, thus creating 350 

a feature. 351 

Figure2 illustrated a comparison of the architectures of classical ML and DL, with the main methods in both. In 352 

Figure2a, the procedure of regression by SVM was presented, where a hyperplane could optimally predict with regard 353 

to features for a certain item. Critical data points near the decision boundary in that hyperplane were marked as support 354 

vectors. Single DT model represents the split of data at each internal node based on features, tracing down the tree 355 

through branches to leaves, and giving the final output of regression by majority voting or averaging, whichever 356 
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applies (Figure2b). This concept is extended in Figure 2.c to an ensemble of such trees, where multiple trees are 357 

making independent estimates for a dataset, the final prediction being given by majority vote among the results of 358 

these individual trees, further enhancing robustness (Lin et al., 2023). Figure 2d depicts an RNN with an input x< t > 359 

as a time-series flowing into time-step-dependent hidden layers to model in temporal relationships (Dhiman et al., 360 

2021). Figure 2.e shows a feedforward neural network architecture with input, hidden, and output layers was defined; 361 

neurons will be interconnected and process inputs via weighted summation and activation functions. Figure 2.f  shoes 362 

spectral-spatial feature learning in CNN - based models, for hyperspectral image analysis (Wang et al., 2024). Features 363 

were first extracted by convolutional filters in the layers and then the attention mechanisms sharpen both the spatial 364 

and spectral representations. These subfigures together present the evolution from the classical ML model to state-of-365 

the-art deep learning architectures. These are suited to different levels of complexity and types of data. 366 

 367 

Figure2. Comparison of Classical Machine Learning and Deep Learning Architectures: (a) Support Vector Machine 368 

(SVM) classifier illustrating decision boundary and support vectors; (b) Decision Tree model with hierarchical data 369 

splits; (c) Random Forest ensemble model combining multiple decision trees for robust prediction (Reproduced from 370 

Lin et al., 2023); (d) Recurrent Neural Network (RNN) for sequential data processing (Reproduced from Dhiman et 371 
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al., 2021); (e) Feedforward Neural Network with multiple hidden layers; (f) Convolutional Neural Network (CNN) 372 

(Reproduced from Wang et al., 2024). 373 

3.2.4. Transfer learning (TL) 374 

TL involves transferring knowledge gained from a source task to a new target task where limited data and 375 

computational resources exist. In fact, it aims at exploiting a model already developed for a particular task in 376 

performing well on another related but different task (Deng et al., 2024). This would be really useful in applications 377 

because training a deep neural network right from scratch would be computationally prohibitively expensive, or even 378 

impossible, given that there is no large labeled dataset available. Similar transfer learning was done by Kim et al. 379 

(2022) and Razavi et al. (2024) for predicting the shelf life and quality of egg and rice, respectively. They explained 380 

that through transfer learning, pre-trained models allow the reuse of features and representations previously learned, 381 

hence enhancing performance while reducing training times and data size. 382 

 383 

3.2.5. Hybrid models 384 

In addition to MLP, RNN, CNN, and transfer learning, which are widely used, other identified ANN architectures 385 

include radial basis function neural networks, autoencoders, and generative adversarial networks, all of which have 386 

great potential for application in predicting product quality and shelf life. These algorithms may provide higher 387 

prediction accuracy and faster convergence in predications regarding the shelf life of food (Haghbin et al., 2023; W. 388 

Huang et al., 2023). Hybrid models generally refer to the integration of two or more different algorithms into ML; in 389 

this way, the strengths developed with one approach complement the weaknesses found in another, and a more robust 390 

system is achieved. Hybrid models come into play especially when the performance by mono-models turns out to be 391 

unsatisfactory. Hybrid models combine algorithms in both parallel and/or sequential ways (Huang et al., 2023). 392 

4. Data processing and model development 393 

4.1. Data Collection and Processing 394 

Data collection and exploratory data analysis are the first step of any ML model development aimed at shelf life 395 

prediction, as they have an impact on the further quality and relevance of data input for model training and 396 

optimisation. Some ML methods may also require different types of input data, such as historical shelf life, 397 

environmental factors, intrinsic product characteristics, and conditions of packaging(Wang et al., 2022; Lin et al., 398 

2023). It is observed from the literature that in traditional ML, data collection mostly focuses on key predictive features 399 

such as time-temperature abuse and microbial counts obtained from experimental studies and controlled laboratory 400 

conditions (Gonzalez Viejo et al., 2018; Zhang et al., 2022; Ren et al., 2023; Yıkmış et al., 2024). Furthermore, 401 

Yudhistira et al. (2024),  Liao et al. (2023), Cui et al. (2024), and Esposito  et al. (2024) applied preprocessing methods 402 

including feature standardization or normalization to ensure that all features were on a comparable scale, making them 403 

suitable for models sensitive to feature scale. 404 
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Advanced ML techniques, such as neural networks and ensemble methods, require more sophisticated data quality 405 

and preprocessing since they are able to process complex nonlinear relationships among the input data (Ma et al., 406 

2024). Most researchers outlook  for capturing such subtle patterns, which could not be identified with simple models, 407 

these advanced ML algorithms had to be fed with large datasets. It was the sensor and IoT-generated data that provided 408 

real-time updates on the existing storage conditions and spoilage indicators(Nayak et al.,2020; Bhagya Raj and Dash, 409 

2022; Shi et al., 2023; Ma et al., 2024). Further, it was the resultant sensor and IoT-generated data which provide real-410 

time updates regarding existing storage conditions and spoilage indicators. Wu et al. (2022) applied convolution neural 411 

network combines with long short-term memory NN methods for predicting the shelf life of salmon with fluctuating 412 

temperature. Current microbial kinetic equations could predict freshness for certain conditions where temperature was 413 

fixed; once the temperature fluctuated, they became ineffective. They employed deep learning to determine the 414 

inherent relationship of variable temperature during storage and proposed a new model called CNN_LSTM. Overall, 415 

every ML technique therefore demands a specific process for data collection and treatment pertinent to their specific 416 

requirements as documented in the literature (Ropelewska and Noutfia, 2024; Pieczywek et al., 2024; Cheng et al., 417 

2025; Francis et al., 2025). Using preprocessed, engineered, and augmented data, researchers were confident that 418 

robust models of shelf life prediction emerged on a variety of food products and diverse storage environments could 419 

be achieved. 420 

4.2. Model training and validation 421 

Model training and validation include some of the key steps involved in the process when a ML model  is developed 422 

to create an effective prediction model for food shelf life. Data partitioning, hyper-parameters tuning, and model 423 

performance evaluation are required for model reliability and generalizability (Lin et al., 2023).  linear regression, 424 

DTs, and SVR perform training, usually by the selection of the most informative features from those that best correlate 425 

with shelf life, and optimization of model parameters in order to minimize the prediction errors ( Huang et al., 2023; 426 

Rong et al., 2024; Liao et al. 2023; Gonzales Viejo and Fuentes). Harris et al. (2023) tried hyperparameter tunning 427 

with the purpose of making sure that the model was well-calibrated against the datasets by using methodologies such 428 

as a Grid Search or a Random Search. 429 

Also, complex optimizers can be applied together with regularization techniques in the training process of deep models 430 

to avoid overfitting, according to Nayak et al. (2020), Dhiman et al. (2021), and Ma et al. (2024). K-fold cross-431 

validation in this context was used quite a lot for performing both types of cross-validation in order to make sure each 432 

subset of data was used both as a train and a test set to make the model more generalizable by testing across a variety 433 

of parts of the data. 434 

Performance metrics in general add up model structure and target objectives. When comparing this to the conventional 435 

ML model used by Liao et al. (2023), Yıkmış et al. (2024), and Esposito et al. (2024), very simple-type metrics were 436 

measured in these approaches. Additional verification of predictive validity was also pursued inside the derived 437 

models in the literature regarding performance measures characterized by values like R-squared, precision and recall, 438 

and F1-score (Bhagya Raj and Dash, 2022; Ropelewska and Noutfia, 2024; Francis et al., 2025). The extant literature 439 

further tends to suggest that robust and transferable models must entirely exploit the available validation metrics and 440 
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techniques. In detail, training, tuning, and validation for each model type may provide the researchers with an ability 441 

to produce an accurate and robust model for shelf-life prediction suitable for a wide variety of foods and conditions. 442 

5. Intelligent systems 443 

5.1. Machine vision 444 

Machine vision has been one of the most widely applied techniques to predict the shelf life of various food 445 

commodities, mainly based on changes in color, texture, shape, and surface of the commodity over time, as captured 446 

by any form of imaging technique. In meats and poultry products, machine vision displays color and surface texture 447 

changes that were associated with microbial growth and shelf life (Sánchez et al., 2023; Albano-Gaglio et al., 2025). 448 

It is possible for vision systems to detect parameters of shelf life for fruits and vegetables, including ripening, bruising, 449 

decaying, by imaging the external color shifts and surface deformation (Goyal et al., 2024; Shanthini et al., 2025). In 450 

the case of dairy products, machine vision helps monitor mold growth and discoloration(Bosakova-Ardenska, 2024; 451 

Loddo et al., 2025). These visual features, when processed through ML models, suggest effective non-destructive 452 

ways of predicting shelf life across a wide range of food categories as documented in scientific studies. 453 

Applications of machine vision systems can be automated for many uses to realize high-throughput assessments in 454 

real-time environments like production lines in various food industries. However, these have been  limited in real 455 

world application due to varied lighting conditions, noise in the background, and the complexity of product 456 

textures(Saeed et al., 2022; Oliveira Chaves et al., 2023; Peveler, 2024). The same type of food products comes in a 457 

variety of shape, size, and color, which introduce inconsistencies that have to be preprocessed extensively in order to 458 

calibrate the model for reliable results. Sánchez et al. (2023), Goyal et al. (2024) and Loddo et al. (2025) worked on 459 

the prediction of shelf life of beef, tomato and cheese, respectively and they identified  inconsistencies problem with 460 

the computer vision system coupled ML. They indicated, that although machine vision worked quite well for external 461 

changes in quality, it was inadequate to point out internal spoilage indicators that did not show up as visual features, 462 

such as the chemical changes in the case of beef or even microbial growth in cheese, hence necessarily needing other 463 

complementary techniques such as spectroscopy for a more holistic prediction model. 464 

5.2. Spectroscopy devices 465 

Spectroscopic methodologies span a wide application domain in the prediction of the shelf life of food products, 466 

considering their measurement is based on changes in chemical and molecular composition related to spoilage. Near 467 

infrared spectroscopy (NIR) has been used for the detection of protein degradation, lipid oxidation, and microbial 468 

growth-all factors to explore food  freshness and shelf-life determination(Gonzalez Viejo et al., 2018; Bisutti et al., 469 

2024; Albano-Gaglio et al., 2025). While Raman spectroscopy is effective in monitoring the oxidation of lipids and 470 

degradation of proteins, measurement of acidity and sugar content increases, among other changes in compositions, 471 

can also indicate the shelf life status of foods. This makes it a versatile tool in several other food categories(Campos 472 

et al., 2024; Zhao et al., 2025). Other spectroscopy methods such as Fourier Transform ( Gao et al., 2024), Mid- 473 

Infrared (Lan et al., 2022), fluorescence (Venturini et al., 2024), ultraviolet (Joshi et al., 2022), electrical impedance 474 
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(Huang et al., 2023) and hyperspectral imaging (combining computer vision and spectra data) (Francis et al., 2025) 475 

has been coupled with ML to predict the  shelf life of various products. 476 

These methods have some drawbacks when it comes to food shelf life prediction. A major limitation that spectroscopy 477 

methods had in the past was the fact that they dealt with very complex data, requiring advanced preprocessing. 478 

Baseline correction, de-noising, and normalization were required for the removal of variabilities brought about either 479 

by sample variability and/or environmental conditions using techniques such as Savitzky Golay algorithm (SGA) and 480 

Standard normal variate (SNV) used by Lan et al. (2022), Bisutti et al.(2024), Venturini et al. (2024), and Zhao et al. 481 

(2025). In these regards, another important factor that influences the measurement outcomes is related to the fact that 482 

spectroscopic equipment is sensitive to changes in environmental conditions concerning temperature and moisture 483 

changes. The literature expressed that further improvement through the parallel development of both spectroscopic 484 

hardware and data treatment is needed as a way of developing technology that will be increasingly unobtrusive and 485 

easy to use for ordinary shelf-life prediction applications. 486 

5.3. Miscellaneous sensors 487 

Advanced sensing technologies along with different data integration approaches were used in the prediction of the 488 

shelf life of food products with very high accuracy. An electronic nose has been employed in the prediction of the 489 

shelf life of food products through the detection of volatile organic compounds released during spoilage of the food 490 

(Anwar et al., 2023).Gonzalez Viejo and Fuentes, (2020) and Wijaya et al. (2023) investigated the pattern of volatile 491 

organic compounds profiles of beer and seafood using machine learning algorithms and an electronic nose. Likewise, 492 

during microbial growth, specific gases such as carbon dioxide and ethylene were emitted, hence gas sensors had also 493 

been applied for the prediction of shelf life in some food products. It could provide data input for AI models by 494 

monitoring the gas sensors for concentration and rate of change of those gases associated with spoilage (Liang et al., 495 

2024). The miscellaneous intelligent systems such as RGB-colourimetric resazurin assay (Thanasirikul et al., 2023), 496 

and DNA sensor array (Wang et al., 2025) have been improved food quality control thanks to better estimates of the 497 

residual shelf life due to fluctuating environmental and biological conditions. 498 

Table 1 presents an overview of several ML models for a diverse range of sensors and imaging systems applied for 499 

the shelf-life prediction. Dts, SVM, NN, RF, and Linear Regression have been some of the models most generally in 500 

use, with optimized hyperparameters for the tasks at hand, such as kernel selection in the case of an SVR, or a limit 501 

on the depth of the decision tree. Data preprocessing techniques vary by sensor type, specifically image normalization 502 

and color channel separation for machine vision; spectral smoothing and SNV transformation for hyperspectral 503 

imaging; and baseline correction for spectroscopy-based systems. Each model-sensor combination suffers from 504 

limitations, mostly due to environmental and sample variability factors. For example, Sánchez et al. (2023) and Zhang 505 

et al. (2025) stated that good lighting was required in the precision of their models since the basis of machine vision 506 

system and hyperspectral imaging is sensitive under conditions related to lighting and sample variability. Other 507 

disadvantages include recalibration upon the use of different products (Goyal et al., 2024) whereas other problems 508 

regard low detectability of compositional changes of lower magnitude, in general, for fluorescence spectroscopy 509 

(Venturini et al., 2024). These references draw a comparative look whereby, advanced ML models are improving the 510 
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predictive accuracy of robust preprocessing, maintaining experimental conditions in such a manner as to reduce 511 

possible limitations in different applications. 512 

Table1. Overview of Machine Learning Models, Data Preprocessing Techniques, and System Limitations Across 513 

Sensor-Based Analytical Applications 514 

Smart systems 

and sensors 

Utilized devices Applied ML 

models 

Hyper 

parameters and 

model settings 

Data pre-

processing 

Limitation of 

applied system 

coupled ML 

models 

References 

Machine Vision Sony DSC 

W830 

(compensating 

the exposure 

brightness to 

+1.0 in all 

cases), two LED 

light, t keep the 

interior light of 

the booth 

constant at 640 

lm 

Decision tree, 

multivariate 

normal 

distribution, 

logistic 

regression 

Color histogram 

bin count, 

resolution 

Image 

normalization, 

color channel 

separation 

(RGB to 

grayscale) 

Accuracy 

dependent on 

color uniformity 

and controlled 

lighting 

Sánchez et al. 

(2023) 

 One Plus 

AC2001 mobile 

camera, LED 

lights (9 W) 

Support vector 

regression, 

decision tree, 

random forest, 

neural network, 

SVR kernel, 

decision tree 

depth limit 

Mean centering, 

standardization, 

principal 

component 

analysis 

Susceptible to 

lighting 

variations, 

requires re-

calibration for 

different 

produce 

Goyal et 

al.(2024) 

 Nikon D750 Neural network, 

support vector 

regression, 

random forest, 

multiple linear 

regression 

Split criteria for 

decision tree, 

kernel selection 

for support 

vector 

regression 

Image resizing, 

Gaussian noise 

filtering 

Generalizability 

limited across 

product types; 

sensitive to light 

interference 

Loddo et al. 

(2025) 

Hyperspectral 

Imaging 

ImSpector 

V10E, Specim 

(380–1030 nm), 

two 150w 

tungsten halogen 

lamps (Fiber-

Lite DC950 

Illuminator, 

Dolan Jenner 

Industries Inc, 

USA), a 12-bit 

CCD camera 

Support vector 

regression, deep 

learning 

Layer count, 

regularization 

Savitzky-Golay 

smoothing, 

multiplicative 

scatter 

correction, 

standard normal 

variate, 

successive 

projections 

algorithm, 

competitive 

adaptive 

reweighting 

sampling, and 

iteratively 

retains 

Sensitive to 

lighting and 

sample 

variability 

Zhang et al. 

(2025) 
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informative 

variables 

 Specim IQ 

camera (400–

1000 nm) 

Deep neural 

networks 

Rank setting, 

layer 

configuration 

Spectral 

smoothing, 

standard normal 

variate, 

principle 

component 

analysis 

Sensitive to 

lighting, high 

computation for 

spatial 

variability 

Francis et al. 

(2025) 

 Spectronon, 

Resonon 

(wavelength 

range of 386–

1015 nm, 

encompassing 

300 wavebands 

at 2 nm 

intervals), Four 

50 W tungsten-

halogen lamps 

Robust 

regression 

Spectral 

bandwidth, 

calibration with 

standards 

Spectral 

filtering , 1st 

and 2nd 

derivative 

preprocessing 

Calibration 

needed across 

sources; limited 

in detecting 

subtle textural 

changes 

Albano-Gaglio 

et al. (2025) 

 HySpex-VNIR-

1800 camera (00 

nm to 1000 nm 

and a spectral 

sampling 

interval of 3.18 

nm) 

Support vector 

regression, 

neural network 

,decision trees, 

random forest 

Regularization 

Parameter, 

Kernel, n_ 

neighbors, Max 

Depth, n_ 

estimators 

Spectral 

smoothing, 

standard normal 

variate, Mean 

centering 

Sensitive to 

lighting; high 

computational 

power required 

Shanthini et al. 

(2025) 

 microPHAZIR™ 

RX Analyzer 

(1600–2396 nm) 

Linear 

regression, 

neural network 

Learning rate 

for neural 

network, feature 

standardization 

Baseline 

correction, 

Savitzky-Golay 

filter 

Limited for 

complex 

product, 

influenced by 

foam and 

turbidity 

variations 

Gonzalez Viejo 

et al. (2018) 

Multi 

spectroscopy 

Bruker Optics® 

(12500 to 4000 

cm−1 ), 

horizontal 

attenuated total 

reflectance 

(4000 cm−1 to 

800 cm−1 ), 

Confocal Raman 

Microscope 

Senterra II 

spectrometer (50 

to 3650 cm−1) 

Linear 

regression 

Number of 

components, 

spectral region 

selection 

Spectral 

smoothing, 

Savitzky-Golay, 

principle 

component 

analysis 

Limited in 

correlating 

complex 

textural traits; 

sensitive to 

sample 

preparation 

Lan et al. 

(2022) 

 NIR 256-2.5, 

Ocean Optic- 

QR400-7-VIS-

BX 

Support vector 

regression 

Regularization 

parameter, 

kernel, degree 

Standard 

Normal Variate, 

Multiplicative 

Scatter 

Correction , 

Savitzky Golay 

Limited 

accuracy for 

high-variation 

samples, 

Joshi et al. 

(2022) 
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derivatives, 

principal 

component 

smoothing, and 

Gaussian 

smoothing. 

affected by 

external lighting 

Infrared 

spectroscopy 

MilkoScan 

FT6000 (5011 to 

925 (cm−1) 

Random forest, 

deep learning 

Number of 

latent variables, 

spectral 

resolution 

Model's weights Limited to 

specific 

minerals, 

impacted by 

milk quality 

variations 

Bisutti et al. 

(2024) 

Raman 

spectroscopy 

Bruker RFS 100, 

Peltier-cooled 

CCD camera and 

coupled to a 

Leica 

Microscope 

(DM2500 M) 

Linear 

regression 

- - Less accurate 

for irregular 

shapes, sensitive 

to surface 

variations 

Campos et al. 

(2024) 

Fourier-

transform 

infrared 

spectroscopy 

PerkinElmer 

Frontier Optical 

(5005–1000 

cm−1 

Linear 

regression 

- Fourier 

smoothing, 

principle 

component 

analysis 

Limited to 

certain 

compounds of 

product 

Gao et al. 

(2024) 

Fluorescence 

spectroscopy 

- Linrear 

regression, 

random Forest 

Cluster count, 

number of 

estimators in 

random forest 

background 

subtraction, 

spectral filtering 

Limited in 

detecting subtle 

composition 

changes 

Venturini et al. 

(2024) 

Electrical 

impedance 

spectroscopy 

TH2816A, 

Tonghui 

Electronic Co 

Random forest, 

support vector 

regression 

Number of 

estimators, 

discriminant 

function 

Standardization, 

normalization 

Limited in 

distinguishing 

close profiles, 

affected by 

sample 

consistency 

Huang et al. 

(2023) 

Electronic nose MQ136, 

MQ137, MQ5, 

MQ8 

Random forest Number of 

estimators, max 

depth 

Data 

augmentation 

Sensor drift, 

influenced by 

environmental 

odors 

Wijaya et al. 

(2023) 

 Designed and 

fabricated by the 

authors 

Neural network Number of 

neurons, hidden 

layers, transfer 

function 

Standardization, 

noise filtering, 

Gaussian 

smoothing 

Limited in 

detecting subtle 

flavor 

compounds; 

sensor drift over 

time 

Gonzalez Viejo 

and Fuentes, 

(2020) 

Gas sensor MQ136, 

MQ137, 

MQ138, 

TGS2612, 

TGS822, and 

TGS26006 

Support vector 

regression, 

multiple 

regression  

Feature 

selection, 

stacking layer 

settings 

Spectral 

normalization, 

baseline 

correction 

Susceptible to 

ambient odors, 

influenced by 

humidity 

Liang et al. 

(2024) 
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RGB-

colourimetric 

resazurin assay 

ISL29125 colour 

sensor, SMD 

LED LiteOn 

LTW-150TK 

Support vector 

regression 

Kernel type Mean centering, 

RGB to 

grayscale 

transformation 

Sensitive to 

temperature, 

limited by 

colorimetric 

detection 

Thanasirikul et 

al. (2023) 

DNA sensor 

array 

- Multiple 

regression, 

neural network 

Hidden layer 

configuration 

for multiple 

regression 

Standardization, 

spectral 

smoothing 

Limited by 

probe 

specificity; 

sensor 

sensitivity 

constraints 

Wang et al. 

(2025) 

 515 

6. Case studies of AI in predicting shelf life 516 

6.1. Fruit and vegetables 517 

Shelf-life prediction of fruits and vegetables has great potential to reduce food losses, ensure quality, and improve 518 

supply chain management. Such methods integrated multiple data sources including but not limited to visual 519 

appearance, physicochemical indicators, volatile composition, and environmental conditions. Using these state-of-520 

the-art computational models, the main issues to be solved by researchers are non-destructive testing, speed 521 

classification, and resource efficiency; applications can reach both the industrial and consumer levels. These AI-driven 522 

applications, further, can analyze big datasets, anything from physical and chemical environmental parameters to those 523 

affecting ripeness and spoilage of the produce itself (Ren et al., 2023). 524 

Image-based machine learning applications have been inducted towards development of predictive systems which 525 

analyze appearance quality signals of fruits and vegetables. Adoption of several imaging techniques involving CCD 526 

camera (Knott et al., 2023; Han et al., 2022), hyperspectral (Logan et al.,2021; Shanthini et al., 2025), thermal imaging 527 

(Bhole and Kumar, 2021; Melesse et al., 2022), and Specialized modality like MRI (Yakatpure et al., 2022) . Knott et 528 

al. (2023) showed the great potential of pre-trained Vision Transformers, which could attain high classification 529 

accuracy with much smaller datasets on tasks such as apple defect detection and banana ripeness estimation. Similarly, 530 

Bhole and Kumar (2021) have highlighted the potential use of thermal imaging with CNN-based models for mango 531 

shelf-life prediction, which resulted in an accuracy above 98%. Likewise, thermal imaging has also been harnessed in 532 

creating a digital twin for bananas that provides optimum storage insight (Melesse et al., 2022). Logan et al. (2021) 533 

further made the comparison between traditional CCD camera and hyperspectral imaging and they revealed that 534 

hyperspectral imaging, when used as an input, outperforms the RGB method on freshness classification and age 535 

prediction of a number of products like potatoes and bananas. In contrast, Han et al. (2022) used only RGB datasets 536 

combined with ResNet and DenseNet architectures for freshness classification, with the results being robust, 537 

considering challenging factors such as data imbalance. 538 

Non-destructive analytical methods have been widely applied in relation to machine learning for the shelf-life 539 

prediction of fruits and vegetables by measuring texture, color, chlorophyll content, and water loss without damaging 540 

the product (Ren.et al., 2023). Hyperspectral imaging has been done to estimate biochemical changes such as sugar 541 
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levels and acidity in strawberries (Do et al., 2024) and mandarins (Zhang,et al., 2025) while the machine vision 542 

systems estimate visual cues of freshness in bananas (Kanjilal et al., 2025)and tomatoes (Goyal.et al., 2024). These 543 

non-invasive techniques enable real-time monitoring, thus offering good data for ML models to predict spoilage. On 544 

the other hand, destructive techniques include various chemical assays to observe ethylene output and organic acid 545 

levels of the commodity. These are really less suitable for continuous assessment. The potential integration of different 546 

non-destructive tools with AI fuels sustainability and improves precision in postharvest segments of the produce 547 

supply chain at all levels. 548 

Various techniques, such as machine vision coupled with AI for color and texture analysis (Dhiman et al., 2021; 549 

Ropelewska and Noutfia, 2024; Palumbo et al., 2024), and spectroscopy for the detection of changes in the molecular 550 

composition (Xiao et al., 2024; Shanthini et al., 2025; Francis et al., 2025), detect changes in quality, including internal 551 

bruises that may cause further decay. Recently, Shanthini et al. (2025) and Zhang et al. (2025) used hyperspectral and 552 

NIR spectroscopy for the detection of internal biochemical changes in fruits like strawberries and mandarins by 553 

capturing spectral data about water content, sugar levels, acidity, and chlorophyll degradation. Mukhiddinov et al. 554 

(2022) extended the application of image-based models to classify fruits and vegetables as fresh or rotten by 555 

incorporating YOLOv4 with enhanced activation functions. Their system was designed for operation in various 556 

lighting conditions and targeted industrial applications, such as supermarkets, and assistive technologies, like smart 557 

glasses for visually impaired persons. Applications can also reach as far as real-world tools, for instance, the mobile 558 

application suggested by Tata et al. (2022) makes use of CNNs for quality grading. Using a dataset of 2000 images 559 

per category of produce, their system rapidly provides scalable analysis of fruits and vegetables in marketplaces for 560 

bridging gaps between producers and consumers, hence smoothing the quality assessment processes. However, these 561 

tools must be adapted to the specific target group in view of their particular needs and the usability and interface 562 

design requirements of the tools in question (Senge et al., 2025). 563 

6.2. Meat and poultry 564 

AI has refined the preciseness of the applications used in the prediction of the shelf life of meat, fish, and poultry in 565 

food quality control. Recently, huge datasets derived from sensory, microbial data, chemical, and environmental ones 566 

have been used to train models for AI applications with high accuracy regarding spoilage and freshness level 567 

predictions (Wu et al., 2022; Saeed et al., 2025). By applying this knowledge in real time from the conditions of 568 

storage-tasked parameters, such as gas composition, AI is capable of predicting how these variables will affect 569 

microbial proliferation and enclave chemical changes that may appear in products. Several researchers developed 570 

machine learning algorithms for color, texture, and volatile organic compounds among several other spoilage 571 

indicators for real-time assessment of meat quality (Gong et al., 2023; Cui et al., 2024; Esposito et al., 2024). AI-based 572 

shelf-life prediction is further applied for perishable seafood like Rainbow trout (Saeed et al., 2025), Salmon (Wu et 573 

al., 2022), Balsa fish (Cao et al., 2025), and pacific white shrimp, cuttlefish, squid, and octopus (Wijaya et al., 2023). 574 

The methods for forecasting the shelf life of meat and poultry have both destructive and non-destructive techniques, 575 

which are now integrated with ML. Nondestructive tools include an electronic nose and hyperspectral imaging that 576 

have been applied on routine basis to detect the volatile compounds, color changes and surface texture-assumed as 577 
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vital signs from spoilage (Esposito.et al., 2024). Electronic noses detect ammonia and carbon dioxide gases produced 578 

by spoilage in rainbow trout (Saeed et al., 2025), while hyperspectral imaging detects the change in composition of 579 

fat and protein in pork and beef (Sánchez et al., 2023; Albano-Gaglio et al., 2025).These were complemented by more 580 

accurate, yet destructive, approaches-microbial culturing and chemical analysis of lipid oxidation and protein 581 

degradation-provide high-accuracy data to train the ML models. While destructive tests are still indispensable in some 582 

applications, there is an increasing trend towards the non-destructive technique in the field of real-time and continuous 583 

monitoring due to the reduction in waste and efficiency improvement on predictability. 584 

Some key parameters, as chemical indicators in estimating quality and shelf life with the help of digital technologies 585 

combined with ML are pH, water activity, lipid oxidation, or protein degradation. These were monitored with a high 586 

frequency to estimate spoilage processes for various items that were stored or shipped (Albano-Gaglio et al., 2025). 587 

On this aspect, microbial load, which expresses the presence and rate of development of spoilage organisms, has also 588 

been pointed out independently by Wu et al. (2022), Gong et al. (2023), and Luo et al. (2025) as another main factor 589 

in the determination of shelf life.  For this reason, advanced sensors of environmental conditions like temperature and 590 

gas composition were used, while ML models against them were employed for the creation of smart monitoring 591 

(Esposito et al., 2024; Saeed et al., 2025; Cao et al., 2025). Digital imaging technologies determine colors, texture, 592 

and changes in the appearance of the products (Gong et al., 2023; Sánchez et al., 2023; Albano-Gaglio et al., 2025), 593 

while electronic noses detect volatile organic compounds released during spoilage (Wijaya et al., 2023, Cui et al., 594 

2024). The data supplied through these sensors are then fed into ML models where, with the correlation of those 595 

parameters with the rate of spoilage, real-time prediction about shelf life is done. A combination of digital 596 

measurement technologies with machine learning forms a generic data-driven approach toward managing the quality 597 

of perishable meats. 598 

6.3. Dairy products 599 

AI models have been used to predict the shelf life of dairy products by analyzing microbial growth, storage conditions, 600 

and chemical composition to obtain a closer approximation of the product's longevity (Freire et al., 2024). Thus, ML 601 

algorithms use real-time data from temperature, humidity, and packaging to predict the rate of spoilage and the shelf 602 

life of varieties of cheese, milk, and yogurt (Bi et al., 2022; Golzarijalal et al., 2024; Wang et al., 2025). 603 

Precise prediction of shelf life of milk products is highly important for such extremely perishable products, due to 604 

susceptibility to microbial growth and changes caused by enzymatic and chemical activity (Mhapsekar et al., 2024; 605 

Sunithamani et al., 2024). Therefore, various new-generational technologies have been coupled with ML for the 606 

current study, including matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (Zhang et al., 607 

2022),  Fourier-transformed MIR spectroscopy (Bisutti et al., 2024), electrical impedance spectroscopy (Huang et al., 608 

2023), and a colorimetric device (Thanasirikul et al., 2023). AI could, therefore, predict, based on the microbial data 609 

analysis, when the bacterial levels will reach spoilage thresholds, enabling the accurate estimation of remaining shelf 610 

life. With ML, the real-time prediction is dynamic, improving the quality of the product through optimization of 611 

production with shelf-life forecasting, thus making it indispensable in the AI of perishable milk. 612 
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The same applies to the dairy sector, which has applied a mix of non-destructive and destructive methods coupled 613 

with ML in order to predict shelf life. Examples of such non-destructive methods are FTIR spectroscopy and electrical 614 

impedance spectroscopy. Indeed, both are among the most popular techniques to analyze changes in pH, protein 615 

degradation, and mineral content in milk and cheese (High et al., 2021; Bisutti.et al., 2024). In general, instruments 616 

based on this principle will provide a rapid, nondestructive test for indicators of spoilage. Other destructive methods 617 

of microbial enumeration or chemical analysis of the proteolysis have been used in the prediction of spoilage of 618 

Mozzarella and Cheddar cheese (Golzarijalal et al., 2024). For example, though destructive, Thanasirikul et al. (2023) 619 

reported RGB-colorimetric assays yield more accurate microbial data which the ML models can utilize for dynamic 620 

predictions of shelf-life. Coupling AI with nondestructive tools has proved to offer sustainable monitoring of spoilage 621 

in real time with reduced loss during testing of the product. 622 

AI also predicted the shelf life of a variety of cheeses by analyzing their complex physical and chemical properties, 623 

including pH, salt concentration, and microbial activity (Rocha et al., 2020; Chaturvedi et al., 2020; High et al., 2021; 624 

Loddo et al., 2022). Rocha et al. (2020) have applied ML models to process large datasets of both historical and real-625 

time data. They explained how those factors affect the growth of spoilage organisms and associated biochemical 626 

changes, including breakdowns of proteins and fat in minas cheese. Further, Golzarijalal et al. (2024) applied ML 627 

modeling to develop a relationship between proteolysis and observed spoilage rates of Mozzarella and Cheddar cheese, 628 

and finally, AI might give exact predictions for the shelf life of the cheese. Besides, sensory data such as color, texture, 629 

and odor changes were combined with chemical markers like levels of proteolysis to fine-tune predictions (High et 630 

al., 2021; Loddo et al., 2022). Literature indicated that the AI approach provides quality assurance in the dairy industry 631 

for optimized conditions of processes and storage with improved product shelf-life management. 632 

6.4. Soft drink and beverages 633 

AI transforms the beverage industry by making several improvements to the production process for greater customer 634 

satisfaction. Shelf-life forecasting of vegetable fruit beverages is one of the most complex challenges facing repetitive 635 

formula adjustments and continuous process optimization that impede rapid intervention. These diversified beverage 636 

demands are stretching the traditionally employed research and development methods to high costs and long 637 

development cycles. Researchers have been addressing the development of models for the integration of novel sensors 638 

with machine learning with the aim of predicting the shelf life and processing parameters of vegetable-fruit 639 

beverages (Liu et al., 2022; Ren et al., 2023; Liao et al., 2023; Yıkmış et al., 2024). Advanced data processing 640 

techniques, such as data fusion and imputation further increase the possibility of analysis by the model. For example, 641 

Ren et al. (2023) used RF and deep neural networks while predicting processes and shelf life based on the electronic 642 

sensing technologies for sea buckthorn-passion fruit juice beverages. They suggested that in future research, one might 643 

investigate the process of transfer learning, where parameters of a trained model can be transferred into new models, 644 

which then make it easier to predict processes for other kinds of beverage processes, such as fermentation. 645 

Fermentation levels and periods that the juice will survive are interlinked as it may generally impact its stability, 646 

safety, and quality over time. In non-pasteurized or poorly stored juices, fermentation can occur so rapidly that 647 

spoilage occurs, thereby reducing the product's shelf life, whereas, for pasteurized juices, this may not be the case 648 
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(Niu et al., 2024). Liao et al. (2023) and Zou et al. (2024) investigated the fermentation characteristics of blueberry 649 

and pomegranate juices, respectively, using regression modeling and ML optimization to predict the shelf life of these 650 

products. To investigate the relationship between fermentation characteristics and juice shelf life, 9 machine learning 651 

models were used to develop regression models. The linear models considered in this case included linear regression 652 

and ridge regression, with comparison to other non-linear models consisting of k-nearest neighbor, SVR, RF, adaptive 653 

boosting, gradient boosting, bootstrap aggregating, and ANN (Zou et al., 2024). Similarly, Liao et al. (2023) illustrated 654 

that ML was able to predict the blueberry juice shelf life based on the presence of S. thermophilus with L. fermentum 655 

or L. plantarum, along with total phenolic content. Further, ML has been used to predict the impact of non-thermal 656 

treatments such as ultrasound (Yıkmış et al., 2024) and high-pressure processing (Liu et al., 2022) on the quality of 657 

juice and, thus, its shelf life. The bioactive compounds and treatment parameters in both the referred studies were 658 

optimized using various ML techniques such as ANFIS and BPNN. The results showed that there was a high 659 

correlation between the empirical data and the predictions of the ML models, with residual values being very small. 660 

These ML models have also been efficient in predicting the shelf life and characteristics, such as bioactive and volatile 661 

compounds, of other beverages like beer and wine (Gonzalez Viejo et al., 2018; Gonzalez Viejo et al., 2020; Harris et 662 

al., 2023; Gao et al., 2024; Zhou et al., 2024). 663 

Quality attributes and shelf-life evaluation in wine is usually an expensive and time-consuming process as it is majorly 664 

carried out in a well-equipped laboratory containing several complex chemical and sensory analyses. Harris et al. 665 

(2023) assessed Shiraz wine for shelf life using NIR spectroscopy with an integrated low-cost electronic nose 666 

combined with ML models. The developed ML approach predicts wine shelf life with good accuracy while detecting 667 

specific flavor compounds in wine samples. In a similar direction, Gao et al. (2024) and Zhou et al. (2024) suggested 668 

that beer shelf life is related to its volatile compounds quantification through FTIR and multi-spectroscopies 669 

techniques such as Raman and NIR combined into ML approaches. Three different modelling methodologies 670 

consisting of partial least squares, least squares SVM, and ANNs were applied to divided datasets. These studies 671 

conclude that the use of spectroscopic methods coupled with ML models provides a quick and low-cost way of 672 

predicting the shelf life of beers. In any case, one of the main challenges for these models is the development of 673 

representative databases. The researchers consequently suggested increasing the sample size and enhancing the 674 

algorithms, while applying developed models to other food products (Gonzalez Viejo et al., 2020; Gao et al., 2024; 675 

Zhou et al., 2024). 676 

Literature diversifies AI into this area of shelf-life prediction by examining large datasets of sensory and chemical 677 

measurements that help identify spoilage markers or quality indicators. Applications of AI and sensor technology to 678 

predict the quality and shelf-life of various food products are presented in Table 2. It points out that tools such as e-679 

noses, hyperspectral imaging, and FTIR spectroscopy, in combination with ML models ANN, SVR, and RF, enable 680 

successful prediction based on the estimation of properties such as moisture, gas levels, volatile compounds, etc. SVR 681 

and MLR were habitual in the case of continuous data, such as gas levels and pH, where quality parameters were 682 

quantified with high precision by Huang et al. (2023), Goyak et al. (2024), Kanjilal et al. (2025), and Francis et al. 683 

(2025). Deep learning neural network models can only consider large datasets with complex patterns, making them 684 
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ideal in wide ranges assessing both chemical and microbial properties  (Ren.et al., 2023; Gong et al., 2023; Bisutti et 685 

al., 2024; Zhang et al., 2025). Additionally, decision tree-based models, such as RF and gradient boosting, are very 686 

good at multi-feature analysis, thus being effective basically for all variants of food, whether fresh produce or 687 

beverages (Ropelewska and Noutfia, 2024; Francis.et al., 2025; Zou et al., 2024). Therefore, AI has proved itself in 688 

the integration of data emanating from a wide variety of sensors toward more robust and proactive shelf-life 689 

management of the food industry. 690 

Table2. Overview of ML models and sensor technologies for shelf life prediction in food products 691 

Category Products Physicochemical 

parameters for 

Shelf Life 

prediction 

Applied device 

and ML 

ML 

Performance 

Reference 

Fruit and 

vegetables 

Fresh sea 

buckthorn, 

passion fruit 

Chemical 

properties 

E-nose and E-

tongue; RF and 

DNN 

R2: 0.91, 

RMSE: 0.055, 

MAE: 0.031 

Ren et al. (2023) 

 Tomato texture, taste, 

nutritional 

content, defects, 

and ripeness 

Machine vision; 

SVR,RF,DTs 

R2: 0.73, 

RMSE: 1.14, 

MAE: 0.87, 

MSE: 1.3 

Goyal et al. 

(2024) 

 Banana CO2 and O2 gas 

levels 

Gas sensor; 

MLR, RF, SVR 

R2: 0.958, 

RMSE: 0.206 

Kanjilal et al. 

(2025) 

 Mandarin anthracnose, 

black spot, 

decay, and 

scarring 

Hyperspectral 

imaging; SVR 

and DNN 

R2: 0.929, 

RMSE: 0.377, 

RPD: 3.765 

Zhang et al. 

(2025) 

 Strawberries volatile organic 

compounds 

Mass 

spectrometry; 

MLR, ANN 

R2: 0.984, 

RMSE: 0.390 

Do et al. (2024) 

  Internal texture Hyperspectral 

imaging;RF, 

SVR and DTs 

R2: 0.901, 

RMSE: 0.665 

Shanthini et al. 

(2025) 

 Apple respiration rate laser speckle 

imaging; DTs 

R2: 0.801, 

RMSE: 0.249 

Pieczywek et al. 

(2024) 

 Grape texture 

parameters of 

the fruit outer 

structure 

Machine vision; 

MLR, RF 

Overall 

accuracy: 0.91 

Ropelewska and 

Noutfia (2024) 

 Potato firmness, 

moisture content 

, and soluble 

solids content 

Hyperspectral 

system; SVR 

R2:0.897; 

RMSE: 0.036; 

RPD: 2.262 

Xiao et al. 

(2024) 
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 Watermelon Soluble Solids 

Content 

Hyperspectral 

system; SVR, 

MLR, DT,RF 

R2: 0.982, 

RMSE: 0.132 

Francis et al. 

(2025) 

 Winter Jujube Soluble Solids 

Content 

Hyperspectral 

imaging; SVR 

R2: 0.837, 

RMSE: 0.810, 

RPD: 2.47 

Shao et al. 

(2024) 

 Date Moisture 

content 

Dielectric 

spectroscopy; 

SVR, MLR 

R2: 0.87, 

RMSE: 9.4 

Karimi. (2025) 

 Apple, Banana, 

Pear, Guava, 

Grape, Mango, 

Pomegranate, 

Orange and 

Tomato 

Colour and 

texture 

Machine vision; 

RNN 

Overall 

accuracy: 0.98 

Dhiman et al. 

(2021) 

 Blueberry Water loss rate, 

pH, and VC 

content 

Gas and 

ethylene 

sensors; NN, 

RF, SVR 

R2:0.994, 

RMSE:0.035; 

MAE: 4.51  

Huang et al. 

(2023) 

 Fresh cut 

Papaya 

Weight loss and 

titratable acidity 

E-nose and E-

tongue; SVR 

R2: 0.991; 

RMSE: 0.13 

Rong et al. 

(2024) 

 Rocket leaves Chlorophyll and 

ammonia 

content 

Computer 

vision; MLR 

R2: 0.83; 

RMSE: 20.27 

Palumbo et al. 

(2024) 

Meat, fish and 

poultry 

Marine fish 

species 

Total volatile 

base nitrogen 

E-nose; NN R2: 0.991, 

RMSE: 0.127; 

MSE: 0.016, 

MAE:0.096 

Cui et al. (2024) 

 Chicken Nicotinamide, 

anserine, 

carnosine, and 

Biogenic amines 

Analysis 

sensors; SVR 

Overall 

accuracy: 0.96 

Esposito et al. 

(2024) 

 Rainbow trout trimethylamine, 

ammonia, 

carbon dioxide 

artificial sensory 

system, ANN 

RMSE: 1.512, 

MSE: 2.29, 

MAE: 0.783 

Saeed et al. 

(2025) 

 Fish Methacryloyl Machine vision; 

DNN 

Overall 

accuracy: 0.974 

Gong et al. 

(2023) 

 Salmon Microbial 

parameters 

Designed 

sensor; RNN 

R2: 0.99, 

RMSE: 0.1 

Wu et al. (2022) 

  Ammonia, 

formaldehyde, 

ethyl alcohol 

Gas sensor; 

MLR and SVR 

R2: 0.966, MSE: 

3.151 

Liang et al. 

(2024) 
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 Beef Color and 

texture 

Machine vision; 

DTs 

Overall 

accuracy: 0.98 

Sánchez et al. 

(2023) 

 Pork Firmness, 

fatness, and 

compositional 

properties 

Visible and 

near-infrared 

spectroscopy;  

R2:0.90; RMSE: 

4.37; RPD: 2.34 

Albano-Gaglio 

et al. (2025) 

  Microemulsions Fourier-

transform 

infrared 

spectroscopy; 

NN 

Overall 

accuracy: 0.913 

Luo et al. (2025) 

 Pacific white 

shrimp, 

cuttlefish, and 

squid, octopus 

Microbial 

parameters 

E-nose; RF, 

ANN and SVR 

R2: 0.995, 

RMSE: 0.03 

Wijaya et al. 

(2023) 

 Balsa fish Color and 

texture 

ATP/PI NFAs-

based 

colorimetric 

sensor array;RF 

R2: 0.966, 

RMSE: 

0.859,RPD: 3.89 

Cao et al. (2025) 

Dairy Products Milk Peptidomic 

profiling 

laser desorption 

time-of-flight 

mass 

spectrometry; 

SVR and RF 

Overall 

accuracy: 0.97 

Zhang et al. 

(2022) 

  Mineral 

elements 

Fourier-

transform 

infrared 

spectroscopy; 

RF and DNN  

R2: 0.78, 

RMSE: 7.38, 

RPD: 2.33 

Bisutti et al. 

(2024) 

  pH and total 

soluble solids 

Electrical 

impedance 

spectroscopy; 

SVR and RF 

R2: 0.88; 

RMSE: 0.3464 

Huang et al. 

(2023) 

  Microbial 

concentrations 

RGB-

colourimetric 

resazurin assay; 

SVR 

Overall 

accuracy: 0.96 

Thanasirikul et 

al. (2023) 

  Foodborne 

pathogenic and 

spoilage bacteria 

DNA sensor 

array; MLR, 

NN, SVR,RF 

Overall 

accuracy: 0.984 

Wang et al. 

(2025) 

  Microbial 

concentrations 

E-nose; SVR R2: 0.874 Cheng et al. 

(2025) 
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 Mozzarella and 

Cheddar cheese 

Coagulating 

enzyme 

concentration 

and calcium 

content 

The data was 

collected from 

literature; 

SVR,MLR and 

RF 

R2: 0.92, 

RMSE: 0.08, 

MAE: 0.13 

Golzarijalal et 

al. (2024) 

 Pecorino cheese Color and 

texture 

Computer 

vision; DL 

Overall 

accuracy: 0.964 

Loddo et al. 

(2022) 

 Indian Cheese Biochemical 

content and 

microbial counts 

Sensory 

instruments; 

ANN 

R2: 0.987, 

RMSE: 0.0091 

Chaturvedi et al. 

(2020) 

 Blue cheese Volatile 

compounds 

Mass 

spectrometry; 

MLR 

Overall 

accuracy: 0.94 

High et al. 

(2021) 

 Fresh cheese Texture features Computer 

vision; SVR, RF 

and MLR 

Overall 

accuracy: 0.99 

Loddo et al. 

(2025) 

 Yogurt Sensory 

attributes 

Sensory 

instruments; 

hybrid NN and 

SVR 

Overall 

accuracy: 

acceptable 

Bi et al. (2022) 

Soft drink and 

Beverages 

Gilaburu juice Total 

monomeric 

anthocyanin 

content and 

Total flavonoid 

content 

Sensory 

instruments; 

ANN 

R2: 0.998, 

RMSE: 0.004, 

MAE: 0.003 

Yıkmış et al. 

(2024) 

 Blueberry juice Total phenolic, 

ferulic acid, 

rutin 

Sensory 

instruments; 

MLR 

Overall 

accuracy: 

acceptable 

Liao et al. 

(2023) 

 Pomegranate 

juice 

Chemical 

properties 

Sensory 

instruments; 

SVR, RF and 

ANN 

R2: 0.912, MSE: 

0.024, MAE: 

0.123 

Zou et al. (2024) 

 Parsley Juice Total 

chlorophyll and 

ascorbic acid 

Sensory 

instruments; 

MLR 

R2: 0.99, 

RMSE: 1.11 

Dulger Altıner 

et al. (2024) 

 Beer Physical 

Parameters 

E-nose and near 

infrared 

spectroscopy; 

ANN 

R2: 0.95; MSE: 

0.02 

Gonzalez Viejo 

and  Fuentes 

(2020) 

  Total soluble 

solids, alcohol 

and pH 

Near infrared 

spectroscopy; 

ANN 

R2: 0.93, 

RMSE: 5.05 

Gonzalez Viejo 

et al. (2018) 
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  Total phenols 

and sugar 

Raman and Near 

infrared 

spectroscopy; 

NN and SVR 

R2: 0.998, 

RMSE: 0.862, 

RPD: 0.959 

Zhou et al. 

(2024) 

  Volatile 

compounds 

Fourier-

transform 

infrared; MLR 

Overall 

accuracy: 0.998 

Gao et al. 

(2024) 

 Wine Physicochemical 

measurements 

E-nose and near 

infrared 

spectroscopy; 

ANN 

R2:0.99, MSE: 

0.09 

Harris et al. 

(2023) 

  Physicochemical 

measurements 

The data was 

collected from 

literature; SVR 

and ANN 

R2: 0.779, 

RMSE: 0.267, 

MAE: 0.142 

Dahal et al. 

(2021) 

Note: RMSE, MAE, and MSE retain the same units as the predicted variable in each study (days for shelf life, % for moisture 692 
content, °C for temperature). R² and RPD are unitless indicators of model performance. 693 

Table 2 in the manuscript shows that AI models achieve accuracies exceeding 90% in most cases, with some models 694 

reaching 95-99% accuracy (R² > 0.90, RMSE < 0.5, and MAE < 0.1 in several instances), which were significantly 695 

better than the 70-85% typical in conventional microbiological and chemical predictions of shelf-life (Bhagya Raj & 696 

Dash, 2022; Cui et al., 2023).It shows that AI-based models not just compete with, but even outperform conventional 697 

predictive performance. AI's performance surpasses conventional methods because it continuously tracks real-time 698 

factors such as biochemical transformation, microbiological growth, and environmental fluctuations compared to 699 

conventional methods that depend on periodic sampling and static parameters. Such findings confirm AI's potential 700 

to make food shelf-life estimation a more precise, scalable, and flexible tool to ensure food safety, reduce waste, and 701 

enhance supply chains. 702 

7. Economical and sustainable impacts 703 

AI-powered models in shelf-life forecasting provide value from an economic point of view (Krupitzer and Stein 2021) 704 

but, more importantly, contribute to sustainability by the reduced waste of end products within the meat and poultry 705 

industries since the models further streamline the supply chain. That would most likely be through proper spoilage 706 

rate forecasting through microbial growth, temperature, and pH. Besides, avoiding overproduction tendencies means 707 

the extension of freshness and a reduction in economic loss on account of expired stock (Grassi et al., 2023; Jia et al., 708 

2023). Cui et al. (2023) and Viancy et al. (2024) have also identified that, through optimized logistics of storage and 709 

transportation strategies, energy was conserved due to reduced excessive refrigeration and, hence, the generation of 710 

greenhouse gas emissions from waste disposal. Yudhistira et al. (2023) investigated how the integration of AI with 711 

processing methods can further enhance process optimization, leading to additional reductions in energy consumption 712 

and greenhouse gas emissions. They proved that AI optimization in heat drying can save about 15-25% in energy, 713 

which translates to 0.6 to 1.0 tons of CO2 equivalent annually per ton of food processed. In further study by Yudhistira 714 

et al. (2024), the researchers claimed that AI, by enhancing the shelf-life predictions, would reduce food waste by 10-715 
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20%. That is considerable since disposal of 1 ton of food waste results in about 2.5 tons of CO₂-equivalent emissions. 716 

The better the AI forecasts the shelf life, the more value it will carry for sustainability by reducing the amount of meat 717 

that goes directly to trash, therefore reducing overall environmental impact arising from livestock production (Esposito 718 

et al., 2024). 719 

AI will affect the economic and sustainability metrics linked to the fresh fruit and vegetable sector, as it hopefully will 720 

make highly accurate forecasts of spoilage and ripening rates to improve inventory management and reduce post-721 

harvest losses (Li et al., 2024). AI models can be helpful in making decisions concerning supply chain (Krupitzer and 722 

Stein 2024), with variables such as ethylene production, humidity, temperature, and transport time, hence reducing 723 

waste and delivering only the supplies that match the demand (Pieczywek et al., 2024; Do et al., 2024; Kanjilal et al., 724 

2025). Decrease in carbon dioxide emission and water use resulting from post-harvest processes through reducing 725 

economic costs caused by the spoilage of agricultural products. Besides this, AI-driven storage conditions insights 726 

support sustainable practices through extended resource use in the process of preservation and distribution because of 727 

reduced rates of spoilage (Lin et al., 2023; Opara et al., 2024; Noutfia and Ropelewska, 2024). 728 

AI in the dairy industry also predicts the shelf life of products, and an important contribution is economic saving due 729 

to the avoidance of waste such as those products. It maintains inventories at an optimum level. Freire et al. (2024) has 730 

indicated that the AI model may analyze biochemical features that represent dairy sensitivity, such as fat and protein 731 

degradation and also with temperature and humidity factors that may have allowed producers to more precisely 732 

pinpoint the date of expiration (Zhang et al., 2022; Thanasirikul et al., 2023; Mhapsekar et al., 2024). It lessens 733 

financial losses by reason of wasted goods and ensures fresher products to the consumer. The energy and water 734 

footprint of dairy farming and processing is reduced greatly on account of less spoilage, thus making a path further 735 

toward the sustainability model of dairy production. 736 

Applications of AI in forecasting shelf life for soft drinks and beverages have gone hand in hand economically, 737 

ensuring sustainability by extending product quality and improving storage practices. In the ML models, the inclusion 738 

of chemical variables such as rate of carbonation and efficiency of preservatives among others, added to environmental 739 

conditions, performs predictions of optimum shelf life and distribution guidance (Gonzalez Viejo and Fuentes, 2020; 740 

Gao et al., 2024). Such data might be included into approaches for digital physico-chemical twins (Krupitzer et al. 741 

2022; Henrichs et al. 2022). Correct projections of expiration dates translate directly into producers' reducing expired 742 

products, thereby reducing financial losses as well as resources spent on cooling and storing beverages. This further 743 

cuts the waste disposal impacts, and the beverage manufacturing industry is closer to attaining sustainable production 744 

and consumption of goods (Peveler, 2024; Kyaw et al., 2024). 745 

8. Challenges and limitations of AI in shelf life prediction 746 

Although AI coupled with new sensors has tremendous potential to improve the precision in the shelf-life prediction 747 

of food products, several technical, organizational, and economic challenges impede its complete deployment. The 748 

application of AI, machine vision, and spectroscopy to food products has been seriously challenged by their inherent 749 

complexity and variability (Wang et al., 2022). Each variety has specific physical, chemical, and microbial 750 
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characteristics that affect the rate of spoilage of each commodity, as modified by handling practices such as storage 751 

conditions, packaging, and distribution. Most of the literature reports that machine learning algorithms need large and 752 

varied datasets to make an accurate model of the spoilage dynamics (Lin et al., 2023; Chhetri, 2024; Peveler, 2024). 753 

On the other hand, it may be difficult to generalize across samples due to various environmental and product 754 

characteristic variabilities in some cases. Besides, the spoilage processes depend on complex interactions among 755 

various biochemical and microbial factors, it is often so little understood that the establishment of correct, 756 

comprehensive models is hard to achieve (Cui et al., 2023). From this viewpoint, this variability will make it necessary 757 

to carefully calibrate any AI model, and its transferability might be limited even across different food types or even 758 

batches within one type. 759 

Traditional and hyper machine vision systems rely on surface-level indicators of spoilage, such as color change, 760 

surface mold, and variation in texture. However, this is a limited approach to the analysis of food products, in light of 761 

the fact that spoilage is often produced directly inside many food products or even at a microbial level that may not 762 

be well indicated until its development is quite advanced  (Gong et al., 2023; Ropelewska and Noutfia, 2024). There 763 

are foods that spoil from the interior outwards, making it quite hard for normal machine vision to reveal early signs 764 

of spoilage. Besides, depending on lighting conditions, surface reflectance, and natural varieties in appearance, can 765 

add noise, making the analysis of images more difficult and thus probably leading to wrong predictions (Goyal et al., 766 

2024). Also, the integration of machine vision systems within the food processing environment is a not-so-easy task 767 

from a technical point of view and can be pretty costly, especially for small and medium enterprises. Lastly, those 768 

techniques cannot support the analysis of foods in opaque packages, such as milk boxes or juice packages. 769 

Using spectroscopy for the determination of the chemical composition, internal spoilage factors in foods, such as pH, 770 

water activity, and microbial growth in food, can be established. These methods may be vulnerable to a variety of 771 

ambient conditions, such as moisture content, particle size, and sample thickness, that will interfere with the accuracy 772 

and consistency of spectral readings. For instance, high moisture content in dairy or meat reduces the clarity or strength 773 

of the signal, while a high variation in the level of sugar or pigment gives inconsistent analysis in fruits (Cozzolino et 774 

al., 2024). Besides being expensive, spectroscopy equipment is also burdensome due to the lack of in-depth training 775 

in proper data analysis. These limitations suggest that while spectroscopy can be highly useful for detailed chemical 776 

analysis, the application to rapid, real-time shelf-life prediction may be more limited (Zhao and Xu,2025;Francis et 777 

al., 2025). 778 

The work flow integration of AI and equipment necessary for data intake in either food processing or food distribution 779 

is still very logistically and economically burdensome, especially when this needs to be done in real time. Many 780 

technologies require very expensive infrastructures, including high-quality cameras, spectral sensors, and computers 781 

with a high performance capacity for data processing. For many small-scale producers, initial costs, as well as later 782 

maintenance and calibration, are a significant barrier. Apart from that, the management and analysis of real-time multi-783 

source data require complex systems in data integration (Henrichs and Krupitzer, 2022), which may be a bit hard to 784 

establish if there is no particular expertise. For businesses, balancing the benefits of these advanced methods with their 785 
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costs and operational impact remains a key limitation, particularly in cost-sensitive industries where traditional 786 

methods of shelf-life assessment are still the norm. 787 

9. Future directions and opportunities 788 

AI-based development in the prediction of food shelf life will be more closely interlinked with data and modeling 789 

techniques with increased accuracy in the future. These models will increasingly tie together data sources from a broad 790 

range, including environmental sensors, into one integrated real-time analysis of the factors that affect shelf life. While 791 

the prediction accuracy could be further improved by the identification of complex nonlinear patterns of multi-source 792 

data, deep learning and reinforcement learning-based emerging machine learning algorithms are conceptualized. 793 

Moreover, advances in IoT technology can enable continuous monitoring of storage and ambient conditions, and this 794 

can provide a real-time feedback loop that AI systems can use to dynamically update their shelf-life predictions. The 795 

integrated approach has the potential to further enhance the granularity of the predictions, thereby helping in the 796 

reduction of food waste and improvement in product quality. Especially, sensors integrated into packaging might 797 

support the dynamic analysis and determination of shelf life. Such concepts exists, e.g., Müller and Schmid (2019) or 798 

Henrichs et al. (2025). However, they have several open challenges, such as energy provision for the sensors, the 799 

required connection between sensors in packages for data collection and the computational devices for analysis, and 800 

the recycling of empty packages with sensors. Equally promising is developing non-destructive, real-time analysis 801 

techniques that can tell food freshness without affecting the product. In connection with this, new approaches using 802 

AI in combination with machine vision and spectroscopy are likely to be further refined so that one can have accurate 803 

internal quality evaluations based on actual internal rather than surface indices. Techniques like hyperspectral imaging, 804 

which identifies a wider range of wavelengths, will give increasingly detailed chemical profiles that enable AI models 805 

to identify early markers of spoilage on a molecular level. Improvement in portable spectroscopy devices and 806 

miniaturized sensors may even bring these technologies directly into retail and distribution environments for 807 

immediate shelf-life assessments for consumers and suppliers. Therefore, such innovation could accelerate the change 808 

to better, clearer expiry labeling, reducing the environmental impact of wasteful disposal of safe food. 809 

The future of AI in food shelf-life prediction will be further ensured once these technologies become more attainable 810 

and reasonably priced for more food producers, at least for SMEs. Advancement and scaling of cloud-based AI 811 

solutions may even enable much smaller companies to tap the benefits of sophisticated algorithms and high-812 

performance computing resources by paying for the usage of software and computational capacities, rather than 813 

owning it themselves. With AI systems also becoming easier to use with less specialized knowledge required for 814 

operating them, the rate of adoption is expected to go up at all levels of the food industry. Democratization of AI 815 

technology in shelf-life prediction could improve food sustainability and reduce waste across each stage of the food 816 

supply chain, starting from production to the consumer. 817 

10. Conclusion 818 

This review presents how AI is used in the prediction of shelf lives for food products, which represents a new but 819 

innovative approach to enhancing food safety, improving the quality control approach, and ensuring economic 820 
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viability within the food industry. Most traditional methods of estimating shelf life vary from microbial analysis to 821 

chemical and sensory evaluations and are usually labor-intensive, time-consuming, and limited in adaptability under 822 

variable conditions. Contrarily, AI-based models can process even highly complex datasets of biochemical, 823 

environmental, and microbial variables much more rapidly. AI-driven shelf-life prediction may completely 824 

revolutionize the food industry with real-time, nondestructive, and precise food-quality predictions of high accuracy 825 

for a wide category of products. Also, this innovation solves crucial challenges in the industry, reduction of food 826 

waste, optimization of supply chain efficiency, and a reduction in operational costs. In any case, when combined with 827 

advanced analysis devices such as spectroscopy, machine vision, and IoT-based sensors, AI will contribute to the shift 828 

away from these conventional, labor- and time-consuming approaches toward more adaptive and data-driven ones. 829 

The benefits of using such technologies will also include reduced spoilage and carbon emissions while offering a high 830 

level of consumer satisfaction related to improved food quality management. 831 

AI could integrate `these variables with a high degree of accuracy for predictions in real time with respect to spoilage 832 

dynamics, especially in conjunction with modern sensors and imaging systems. This synthesis of AI and sensor 833 

technology has been effective for various categories of foods, from meats to dairy, vegetables/fruits, and beverages, 834 

supporting major reductions in food waste and, therefore, greatly enhancing the food supply chain efficiency. 835 

Although there are certain drawbacks associated with data standardization, model transferability, and the costs of the 836 

technology, the future of AI for shelf life prediction is promising. In fact, the continuous development of IoT, data 837 

integration, and hybrid modeling certainly has the potential to support further refinement in predictive accuracy while 838 

maintaining the goal of overcoming current limitations and enabling scalable solution development for improving 839 

food quality management. In such a setting of challenging food industries that are increasingly adopting such advanced 840 

data-driven approaches, AI will lie at the core of underpinning sustainability to overcome global demands for safer, 841 

more durable foods.  842 
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