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Abstract. Social robots are becoming more prevalent in our daily life
and will soon become part of our society. To answer this challenge, sev-
eral studies focused on how we could integrate those technologies into
the current world to help humans in their daily tasks. Many areas are
involved in those challenging issues, and there is a particular focus on
taking inspiration from psychology studies to develop autonomous ma-
chines. One of them is interested in using Theory of Mind(ToM), a human
ability that enables us to infer our own mental states and other people’s
mental states. However, it is a challenging task to integrate this ability in
robotics. Through an analysis of the literature, we aim to provide some
examples and guidelines on applying ToM in robotics to improve their
behaviours. This review gives researchers a general view of the domain
and insights on how they can contribute to its development.

Keywords: Theory of Mind, Human-Robot Interaction, Social Robotics,
Artificial Intelligence

1 Introduction

Over the years, new technologies have appeared in our daily lives, and robots
have become increasingly present in our society, indicating that interacting with
them will soon be usual. In that case, it is crucial to have technologies that
can personalise and adapt their behaviours to our personalities, preferences and
needs. Indeed, several studies have discussed that personalisation requires fluid
interactions between humans and robots, as it leads to increase user engagement
during the interactions [1–3].

In response to this need, many researchers have focused on exploring the
intersection of child development and psychology by analysing the notion of
the ToM. ToM is a cognitive ability that humans develop during childhood to
infer our own and other people’s mental states, such as beliefs, desires and in-
tentions [4]. Numerous experiments have been conducted to analyse children’s
social interaction, with a key focus on false-belief understanding. This explo-
ration investigates the child’s ability to recognise the moments when individuals
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hold beliefs that contradict reality [5, 6]. In that case, researchers introduced an
experiment called the “Sally-Anne”test to evaluate ToM in false belief scenario
[5], which has been adapted for use in robotics studies.

In this paper, we reviewed key literature that explicitly focus on ToM for
Human-Robot Interaction(HRI) and autonomous agents. Specifically, we would
like to consider papers developing cognitive models replicating ToM skills in
social settings with humans. We decided to separate those papers in terms of
Artificial Intelligence methods they exploit in three main classes: (1) “Proba-
bilistic models” encompassing methods using Bayesian inference and Bayesian
Networks (BNs); (2) “Deep and Reinforcement Learning models” containing
methods that use Deep Learning (DL) models with Neural Networks and Re-
inforcement Learning (RL) models; and (3) “Hybrid models” which includes
models using various methods going from probabilistic to DL models to imple-
ment ToM in their robotics systems. To conclude, we provide pros and cons for
each main idea and discuss the points to improve in the future.

2 Probabilistic models

The first models designed to approach ToM used BNs, a graphical model for data
analysis and a popular representation for encoding uncertain expert knowledge in
expert systems [7]. It was suggested that these models could effectively represent
the knowledge and learning of infants, wherein it was argued that they represent
the world by using a causal map[8]. Among the first attempts, Goodman et al. [9]
proposed two causal Bayesian models to illustrate false belief understanding from
children. The first model, known as copy theorist (CP), suggested that only the
world affects beliefs. The second model, perspective theory (PT), proposes that
perception and the world jointly influence the causal relation to change beliefs,
which can sometimes be false. The authors compared their models’ predictions to
children’s predictions and explanations in the Sally-Anne test with an exchange-
item-location task. Following these ideas, Asakura et al. [10] decided to introduce
a new BN by taking into account the concept of simulation theory [11], arguing
that children make predictions through a simulating process by imagining being
in the position of someone else. As a test, the authors used a determined Band-
Aid box’s content experiment, where the child needs to predict whether the box
will include Band-Aids or another item. The BN is built with three types of
variables: the World W representing the true box content’s state, the Visual
access V indicating whether the child can observe what is inside of the box
or not, and the Belief B of the child. The particularity of their models was to
design the causal relation between the mental states of the child and others in
order to illustrate the children’s ability to detect false beliefs and represent their
formations during the unexpected content task. Figure 1 displays their proposed
BN, referred to as Model (b). They drew inspiration from Model (a) in [9],
incorporating two internal mental states: the children’s own mental states (VS

and BS), and the mental states of others (VO and BO). These papers serve as



Review of Theory of Mind and Robotics 3

Fig. 1. BNs models from [9](a) and [10](b). Each model depicts the causal relation
between the world W, visual access V, and belief B. The model (b) from [10] took
inspiration from model (a) which follows the PT’s assumptions, by indicating two
internal models: the S for the mental states of “self”, and the O for the mental states
of “others”.

valuable resources for understanding the design of computation models for ToM
and their applications in child developmental studies.

Probabilistic models utilised for robotics are less present compared to other
models. Vinanzi et al. [12] investigated using a BN to build a robot’s ToM
model for trust in HRI. Inspired by an experiment conducted by Vanderbilt et
al. [13], the robot has to ask the help of a participant to find a sticker hidden in
two possible positions. As part of the experiment, the informants could either
indicate the correct position or the wrong one, and the BN then learns to build
trustworthiness about the informants. After a familiarisation phase to mature the
robot’s ToM model, the robot’s cognitive model was put to the test in two phases.
In the decision-making phase, the robot has to trust the informant according to
the previous interactions when indicating a position to find the stickers. The last
phase, the belief estimation phase, was introduced to assess the model’s ability
to track the informants’ beliefs about the sticker’s location and predict their
suggestions in case the robot asks for help. In addition to their BN, the authors
introduced an episodic memory module to apprehend surprises or betrayals from
the users.

At the frontier of robotics and autonomous agents, researchers have explored
the ability to understand the mental states of virtual agents using the princi-
ples of ToM. More specifically, they have studied the intentions of goal-oriented
agents to explain their behaviours. Pantelis et al. 2014 [14] built a model to
infer the mental states of autonomous agents based on their observable actions
in a two-dimensional virtual environment. These agents, called Independent Mo-
bile Personalities (IMPS), navigated in a survival environment with their lim-
ited sensory capabilities and were driven by their beliefs, intentions, and one
of four distinct goals: attacking, exploring, fleeing, and gathering food. These
goals were considered the agent’s mental state. The authors implemented a Dy-
namic Bayesian Network (DBN), a BN that tracks and predicts uncertainty over
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time, portraying how agents’ goals and environments could impact their actions.
With Bayesian inference and inverting the entities’ plans, the model could pre-
dict the potential goals of the agents based on their actions. In a test, human
participants were asked to observe different scenes with four virtual agents and
estimate their goals. Afterwards, they compared the human judgements to the
model predictions to identify analogies between both inferences.

Zhi-Xuan et al. [15] proposed a Bayesian model for boundedly rational plan-
ners capable of inferring an agent’s goals through optimal and non-optimal se-
quences of actions. In doing so, they developed a Sequential Inverse Plan Search
(SIPS), a probabilistic program performing Bayesian inference over the agent’s
plan to determine its goal. The model uses Inverse Reinforcement Learning (IRL)
to observe the agent’s behaviour and invert its plans to understand its inten-
tion. Both successful and failed plans were considered for online inference of
the agent’s intentions. Their experiments took problems from four domains in
simulated environments, one of which involved an agent navigating in a maze
with doors, keys, and gems. The agent aimed to collect one of the gems in the
environment, each of which was locked behind one or more doors that could
be opened with the keys. The model was able to predict the agent’s interest
regarding the gems as it moved through the maze, even when the agent could
not reach its goal. Similar to [14], the authors compared the model’s results to
human inferences in order to investigate the similarities. The idea was to evalu-
ate whether the model’s ToM embodiment exhibited a similar process to human
reasoning in those scenarios.

Those probabilistic methods accurately describe how the human mind works,
especially in inferring the mental states of entities by observing their behaviours.
However, those models are limited in their ability to generalise to situations
beyond those they have been trained on, which is a known challenge in modern
AI studies.

3 Deep Learning and Reinforcement Learning models

In this section, we explore data-driven models, including DL and RL meth-
ods, which have become a significant part of AI sectors utilised in various do-
mains such as industries, healthcare or even public settings such as museums and
restaurants. Researchers have investigated different ways to implement ToM by
using those methodologies, which require training on a consequent amount of
data if they want to learn. Rabinowitz et al. [16] established one of the well-
known ToM neural networks called ToMnet, which aims to predict agents’ next
behaviours according to a set of their previous behavioural actions. The authors
argue that ToM is essentially an issue of “meta-learning” or “learning to learn”
[17], which can be summarised as the ability of an agent to choose the appropri-
ate algorithm to learn according to the issues it’s facing. They described ToMnet
with two central concepts: (1) the ability of the network to estimate common
behaviours on a set of agents by learning the weights of the network, and (2) the
learning of an agent-specific character and mental state that makes it distinct
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from others. The model was then evaluated in several simulations that involved
designing agents moving in a grid world with distinct behaviours. For exam-
ple, they might have different environmental goals, or the environment might
change during the process. The latter was executed to test the model’s abil-
ity to detect when agents held false beliefs. The agents could differ from their
observation spaces or the algorithms they used, going from random policies to
policies learned with deep RL. In their results, the authors demonstrated that
with meta-learning, the ToMnet could flexibly learn behaviour from different
agents while generalising the processes controlling the agents’ decision-making.
In the future, they would like to adapt the cognitive model to more complex set-
tings, such as 3D environments, and add real design to the observers’ visibility,
which was open in their situations.

Following this methodology, Oguntola et al. [18] developed a similar cog-
nitive ToM model based on the belief, desires and intentions (BDI) model, a
concept well-defined in folk psychology [19]. This model was designed to infer
the mental states of an observed entity, similar to human reason and behaviour.
In doing so, the authors divided their models into three main modules: a “Belief
Model” to illustrate the agent’s beliefs and update them according to the obser-
vation space, a “Desire Model” to compute the agent’s intent given the updated
belief, and an “Action Model” which is responsible for generating or predict-
ing the agent’s actions given the beliefs and intents. They exploited a rule-based
model to interpret and update the belief states according to the observations. On
the other hand, they used encoder-decoder neural networks for the desires and
inverse-action models inspired by U-Nets [20]. Additionally, they incorporated
the “concept whitening” to modify the neural network’s layers [21] and increase
its interpretability. To evaluate their model, they built a simulated search and
rescue task in a Minecraft environment, wherein human participants were asked
to rescue as many victims as possible. The model predicted the participants’
actions regarding different concepts, such as their intent to rescue the victims
present in the field of view and their injuries (critical or non-critical).

Another big field in Machine Learning methods is the study of RL models
utilised in different issues, especially focusing on making multi-agent systems to
learn how to perform complex tasks in a specific environment, usually grid-types.
Researchers investigated these methods to demonstrate ToM-like behaviours
with those agents. Freire et al. [22] proposed a model-free RL called Control-
based Reinforcement Learning (CRL) implemented with two agents competing
against each other in a 2D environment to obtain rewards with different val-
ues. The agents were simulated as mobile robots that can move and sense the
elements within the environment, including the presence of different rewards.
The baseline ToM model consists of two layers: a “Reactive Layer”, working
at a low level to make the agent learn how to use its sensors and actuators to
detect the rewards and escape from the opponent. A second layer incorporat-
ing a Temporal-Difference RL algorithm (TD-learning) [23], to learn a policy
strategy for maximising the rewards given the environmental state. The inter-
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action between these layers formed the model’s foundation, enabling the agents
to select the best course of action. Moreover, the authors extended this basic
model by implementing two additional versions. The first variant is responsible
for inferring the other agent’s actions, while the second version has a different
strategy. Specifically, it predicts the outcome of the other agent by simulating its
behaviours. Although not explicitly discussed in the paper, it could be argued
that these versions try to mimic the main theories introduced by psychologists
in ToM. Specifically, the second model’s version can be linked to the “simulation
theory” principles. Mentioned in Section 2, this theory states that ToM is carried
out through a process of role-taking to determine the mental state of someone.
By contrast, the first model follows the idea in “theory-theory”, suggesting that
ToM resides in applying causal relations in the world with human psychology,
enabling someone to predict the mental states of others [24]. More precisely, how
a person perceives the world and the actors interacting and moving within the
environment greatly influence their attributions of mental states to these differ-
ent actors. Following these two theoretical approaches, the authors conducted
an experiment comprising two 2D robots in a simulated environment to catch a
reward out of two options with different values. With the help of their sensors,
they could detect whether the reward was high or low within a certain range. If
both robots reached the same goal, no points were awarded. On the other hand,
if one robot reached a reward, it received the points attached to it, while the
other received the points attached to the alternative reward.

In the field of HRI, Zeng et al. [25] proposed a Brain-inspired Model of
Theory of Mind (Brain-ToM model), which was implemented in a humanoid
robot performing two false belief tasks. The model uses a Spiking Neural Network
(SNN), an Artificial Neural Network where neurons process temporal inputs
and outputs. More specifically, the authors were inspired by the Voltage-driven
Plasticity-centric SNN [26], a methodology to feed-forward SNN. As a test-bed,
the authors conducted an HRI experiment with two NAO robots from Aldebaran
United Robotic Group, a small humanoid robot predominantly used for HRI
research. Two false belief tasks were conducted during the experiment: “Opaque-
and-Transparent Blindfold Test”(OTBT) and “Turn Around Test”(TAT). The
settings of both experiments were the same, with slight differences between them.
It included two robots facing each other across with a ladybird and two boxes
(green and yellow). One robot played the actor role, and the other one played
the role of the participant. During the experiment, the ladybird was hidden in
the yellow box. The actor robot was then blindfolded with a transparent or
opaque blindfold, and an experimenter changed the ladybird’s location to the
green box. Finally, the blindfold was removed, and the participant robot was
asked “in which box the actor robot thinks the ladybird is” and “where the real
location of the ladybird is”. Using the Brain-ToM model to detect and recognise
the object, the model predicted the robot’s action according to the question
and the environmental inputs. The authors then tested the model with the same
setting but changed the action of the actor robot turning its head around to avoid
seeing the table. This second experiment considered whether the robot turned
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its head (False Belief condition) or not (True Belief condition). The results from
both experiments were compared with children’s performance in similar trials.

In summary, the literature demonstrates that only a few data-driven models
specifically address ToM’s challenge. Substantial ToM cognitive models combine
multiple independent architectures, a topic we will explore in the next section.

4 Hybrid models

As pointed out in the last paragraph, an essential part of ToM computational
models is built with different modules, leading to the emergence of hybrid models
with distinct functions to infer particular mental states and their interactions.
Patacchiola et al. [27] created a cognitive architecture for trust and ToM in
humanoid robots. This model integrates an Actor-Critic framework to interpret
biological observations combined with a model called ERA [28], an architecture
gathering self-organising maps (SOM) as functions approximator, and a BN
to represent the intrinsic environment’s values. The model is used to compute
trust in object-naming learning, assisting the robot in learning new objects with
human assistance. The model is divided into three main parts:

– Actor: the ERA model used the SOMs to cluster the information from the
speech and vision received from the robot’s sensor and convert them into
beliefs.

– Intrinsic environment: The BN represents the cognitive model’s internal
module to define trust. It uses the beliefs and computes a negative, positive,
or null cost to bootstrap the RL mechanisms and build an internal reward
model when external rewards are unavailable.

– Critic: The Critic uses the cost from the BN to update functions and the
Actor’s functions essential to generate the appropriate actions for the robot.

In their proposed methods, the model does not utilise external rewards from the
environments. Instead, the reward is computed from the BN, which outputs a
cost based on the predicted beliefs. Two experiments were set up to evaluate the
application of the model. The first included a simulation of a trust experiment
from Vanderbilt et al. [13] building by using Python. This involved a scenario
where a child learned to trust an adult according to their answers in a hiding-
sticker game. The child observed an adult consistently pointing to the correct
location of a sticker and then observed another adult purposely pointing to
the wrong location. This process helped build trust in the reliable adult and
distrust in the unreliable adult. The same method was used in the simulation to
build the trust module for the robot. In the second experiment, the researcher
implemented an object name learning task for the robot with the help of two
humans: one who gave the right name for the object and one who did not. The
robot had to learn which one of the humans to trust through a training trial
(familiarisation) and make its decision in the test trial (explicit judgement and
endorsement). During the endorsement trial, two informants introduced a new
object to the robot by proposing new names. Based on the level of trust for each
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informant built during the training trial, the robot chose the appropriate name
for the object.

As an extension of their previous work [12], Vinanzi et al. [29] proposed a
model for intention reading and trust in human-robot collaboration. They im-
plemented an agent possessing the ability to infer the non-verbal intentions of
others and to evaluate how likely they are to achieve their goals, jointly under-
standing what kind and which degree of collaboration they require. The model
proposed is divided into two main modules. One is responsible for reading the
intentions of people, and the other module is for the robot’s trustworthiness
toward the human when participating in the collaborative task. For the evalu-
ation, the authors set up a collaborative game wherein the robot and the user
must work together to align blocks with different colours in specific settings. In
their setting, a goal sequence represents a full line of 4 coloured blocks. During
the task, if the human was trusted or the partial sequence was valid, the robot
would collect the next predicted blocks and hand them over to the user. In the
case of an unreliable collaborator, the robot would position the blocks on the
building area in what it considered the correct order, attempting to rectify the
errors that had been committed. The robot would also explain why the partial
sequence was invalid in the latter case. This experiment is among the few in the
literature that embodies a ToM computational model into a robot and evaluates
it in a human-robot collaboration task.

In another domain, Baker et al. [30, 31] introduced a well-known model
for ToM called the Bayesian Theory of Mind (BToM). As a continuation of
their study in understanding human action using Bayesian inverse planning [32],
BToM is a probabilistic model used to infer people’s goals by observing their be-
haviours. By conceiving their problem as a partial observable Markov decision
process (POMDP) and combining it with Bayesian inference, the model aims
to explain the behaviour of autonomous agents by predicting their beliefs and
preferences. The model is based on the “principal of rational action” arguing
that agents choose their actions to maximise a reward function regarding their
desires. In doing so, they are using their observations about the environment
and, hence, what they believe is the true state of the environment. These ideas
are formulated as POMDPs to represent the agents’ planning, incorporating
Bayesian inference to capture agents’ beliefs and to update them. By inverting
the agent’s plans, BToM succeeds in extracting its beliefs and preferences. For
example, the authors built a 2D-grid environment with different food trucks in
which an agent was placed. The agent’s goal was to find a place to eat based
on their preferences and the availability of foods among three options: Korean,
Lebanese and Mexican. Additionally, the agent could only observe a partial sec-
tion of the environment, which increased the complexity of the problem. In that
setting, BToM was utilised to track the agent’s mental state according to (1) the
agent’s preference regarding the three food options and (2) its belief about the
food trucks’ locations. Subsequently, they compared the model’s result to hu-
man participants on the predictions of those mental states in order to evaluate
the similarities between human judgement and the model’s inferences. They also
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tested another scenario to demonstrate the versatility of their model, illustrated
by a similar scenario. Unlike the first experiment, the foods’ preferences were
known, and their locations were unknown during the interaction. To add further
complexity, certain food trucks could be closed or open. While the agent moved
in the environment, human participants and the BToM predicted the carts’ lo-
cation. Some researchers have pursued their proposed ideas, exploiting BToM to
different challenges where ToM is a key point to solve their issues.

For instance, Poppel et al. [33] proposed the hierarchical active inference
for collaborative agents (HAICA), a combination of BToM processes with a
perception-action system based on predictive processing and active inference.
With this model, the authors aimed to allow an agent to infer other agents’ men-
tal states, such as intentions and goals, which they called “belief resonance”, and
adapt their behaviour to collaborate and achieve a common task. The collabo-
rative scenario is from the Overcooked game, a 2D environment where multiple
agents work together to prepare as many ordered meals as possible in a limited
time. Utilising ToM to enhance collaboration between the chef agents seems ap-
propriate given the setting. To optimise the efficiency of an agent’s task, HAICA
is divided into two main parts, illustrating the mental states of the concerned
agent and the mental of the other agent. Each main structure comprises two
hierarchical layers that display the agent’s intention and goal. The goal’s layer
determines the agent’s main task that it wants to achieve, such as preparing
the soup. This part is crucial to deciding on the necessary steps to achieve the
goal, which are specified in the low-level layer called the intention layer. Ob-
servation inputs continuously update the agent’s intention and goal, computing
predictions to produce the agent’s actions. Complementing the first part, a men-
talising component based on the BToM process provides information about the
other agent’s goal and intention through observations.

In another study, Hellou et al. [34] experienced BToM in HRI situations to
improve the behaviours of social robots by integrating advanced cognitive skills.
They were particularly interested in developing helping behaviours in false belief
scenarios, highlighting the importance of using ToM to enhance the robot’s skills.
The researchers designed a cognitive architecture suitable for humanoid robots,
which comprised different modules they could use to interpret users’ mental
states, such as vision. Their experiment replicated a psychology study by Butte-
lam et al. [35], evaluating the ability of children to help adults when they were
holding false beliefs in a swapping toys’ location situation. In their experiment,
the researchers used BToM to infer the preferences and beliefs of a human in-
teracting with different toys and placing them in specific boxes. By intentionally
changing the toys’ locations, the authors wanted to create false beliefs in the per-
son’s mind and analyse the robot’s answer. The initial experiment was realised by
simulation to validate the performance of the computational ToM model in such
situations and its use in real-time experiments. Finally, a demonstration with
the humanoid robot Pepper from Aldebaran United Robotics Group confirmed
the robot’s cognitive skills to assist users in this particular scenario. The authors
claimed that this model could be operated in more complex environments.
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Fig. 2. The cognitive model’s architecture proposed in [36] to interpret a driver’s men-
tal state by using BToM. The central part (in blue) determines the mental states,
including the beliefs and preferences. The mental states influence the actions of the
drivers (in red), which directly impact the environment’s states (in grey). Here, the
ADAS uses the information on the drivers to improve their driving experiences accord-
ing to their beliefs and preferences.

In a more realistic scenario, Darwish et al. [36] took advantage of BToM
and POMDPs to learn the behaviours of drivers and assist them in improving
their driving experiences through an advanced driver assistance system (ADAS).
Their main model, illustrated in Figure 2, predicts a specific driver mental model
through the BToM (in blue) according to the environment’s state (in grey) and
the driver’s actions (in red), having a direct impact on the environment. Com-
bined with an artificial neural network (ANN), the BToM aims to determine
the driver’s preferences or driving styles, which could be aggressive or conserva-
tive, and their knowledge (beliefs) about acceptable actions regarding the situa-
tions. The authors experienced their modified BToM with the driving simulator
CARLA [37], including a deep RL method to adapt the speed control system
of the car. The proposed cognitive model is used to modify the speed control
system by suggesting personalised speed based on drivers’ preferences while en-
suring their safety. To evaluate the versatility of their model, the authors altered
the environment by adjusting the weather. As a future direction, they plan on
adapting more elements from the environment, such as the type of road or the
traffic.

Lee et al. [38] exploited the BToM to adapt the nonverbal behaviours of a
social robot in a storytelling scenario. They conducted a user-robot experiment
where children and parent participants were recruited to tell a story to a robot.
During the interaction, the cognitive model adapts the robot’s attention while
listening to the children to manipulate their beliefs. The author’s idea was to
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evaluate the robot’s influence on the storytellers’ behaviours, whose role was to
catch their attention. Furthermore, they assessed the participants’ awareness of
the robot’s behaviours in terms of human likeness and intelligence. The results
showed that the BToM model, which adjusted the robot’s attention, was per-
ceived as more human-like and acceptable by the parents compared to a model
with a consistently high level of attention throughout the interactions.

5 Discussion

For many years, ToM has been the subject of numerous studies and hypotheses
from psychologists in cognitive development who seek to understand its pro-
cess in the human mind. These studies have led to the emergence of different
theories, such as “theory-theory” [24] or “simulation theory” [11], which pro-
vide explanations for the cognitive components involved in ToM. As a result,
we have gained a deeper understanding of the functioning of the human mind
and fundamental mental states, such as desires, perceptions, beliefs, knowledge,
thoughts, intentions, and feelings. They also contributed to the development of
several experiments, which are still relevant nowadays, such as false belief un-
derstanding experiments, and have also been helpful in the creation of cognitive
computational models for autonomous systems.

In this current literature review, we explored some of these methods to repli-
cate ToM for autonomous systems such as robots. Among these methods, prob-
abilistic models are the first ones exploited, and a large number of them are
based on the different techniques proposed by Bayesian inference. This was also
the technique that psychologists used to explain the functioning of ToM in chil-
dren, making it an important starting point for researchers in the field. It also
goes hand in hand with how the human mind works to represent the belief,
which can intuitively be seen as a Bayesian problem. BN was the main model
that the investigators used due to their versatility, ease of creation, and good
performance, especially in tracking people’s beliefs. It can integrate time de-
pendence with DBN and demonstrate a high level of cognition, such as trust
in HRI. However, their structures can only be designed for specific problems,
showing their limitations in terms of generalisation to more significant topics.
To address this limitation, BN can be combined with other AI models, which can
bring additional abilities to build complete cognitive architectures. Those cog-
nitive architectures can resolve the issue of generalisation by using data-driven
models, including DL and RL with neural networks, which have been popular in
the field of AI in the past decades.

However, DL models are limited due to the lack of data, especially in sce-
narios involving false belief understanding. RL models can use simulation to
overcome data limitations. Additionally, many problems have been designed as
POMDPs to represent the BDI of an agent and extract those mental states to
reason on the agent’s behaviour. It was especially efficient with hybrid models
that use strong points from the different categories pointed out earlier. For in-
stance, BToM successfully uses POMDPs combined with Bayesian inference to
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track the beliefs and desires of an autonomous agent. By successfully replicating
human-like cognitive processes, BToM has been subject to different applications,
particularly HRI for social robots. However, the models mentioned above have
mainly been learnt in particular settings, such as 2D grid environments, chal-
lenging their integration into the real world. Some attempts have been made
to embody ToM skills in an autonomous machine, specifically with humanoid
robots, to investigate whether the user of ToM could improve their behaviours in
social interactions with humans. These studies included integrating BToM into
HRI experiments to produce proactive behaviours for social robots in complex
situations, including false belief situations, and exploring the use of ToM for
trust in human-robot collaboration. It can be particularly useful when robots
and humans are working together, such as industrial robotic arms operating
on lines with the help of human workers, or social robots helping nurseries or
hospitals. Some researchers decided to investigate the impact on real user-case
scenarios such as the development of social robots for educational purposes with
Lee et al. [38], or the improvement of driving skills with personalised advanced
driver assistance system [36].

While there have been some efforts to apply ToM in real-life scenarios, espe-
cially for robotics, more studies are needed to assess how these cognitive skills
can be effectively integrated with machines and their impact on human perspec-
tives.

6 Conclusion

In this concise literature review, we outlined several helpful examples for re-
searchers interested in taking inspiration from psychological studies, particularly
in child developmental psychology, to improve machine behaviour. We provided
details about the different techniques used in the AI domain, categorising them
into three main sections to clarify their pros and cons. We hope this might assist
researchers in choosing appropriate methods for their problems and motivate
them to create new models replicating ToM abilities. Finally, we discussed the
limitations encountered when attempting to connect ToM and Robotics, making
those issues challenging for the following years.
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