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Abstract. This work presents the development of a virtual agent de-
signed specifically for use in the Metaverse, video games, and other vir-
tual environments, capable of performing intention reading on a human-
controlled avatar through a cognitive architecture that endows it with
contextual awareness. The paper explores the adaptation of a cognitive
architecture, originally developed for physical robots, to a fully virtual
context, where it is integrated with a Large Language Model to create
highly communicative virtual assistants. Although this work primarily
focuses on virtual applications, integrating cognitive architectures with
LLMs marks a significant step toward creating collaborative artificial
agents capable of providing meaningful support by deeply understand-
ing context and user intentions in digital environments.

Keywords: Metaverse · Virtual Agent · Cognitive Architecture · Large
Language Model · Intention Reading.

1 Introduction

The Metaverse will become an increasingly integral part of our lives, offering
a decentralized, immersive, and persistent 3D online environment where users,
represented by avatars, can engage in creative and collaborative interactions [9].
These interactions encompass human users and AI-driven non-player charac-
ters (NPCs), whose realism in appearance and behavior markedly enhances the
user experience. Research in artificial intelligence and cognitive science concen-
trates on developing cognitive capabilities and autonomy for NPCs. In light of
recent advances in AI, particularly those about large language models (LLMs),
it seems inevitable that AI-controlled avatars will assume a significant role in the
Metaverse, particularly in the context of service-oriented activities [7, 5]. Chat-
bots based on LLM technology demonstrate potential as autonomous agents
due to their capacity to simulate human intelligence. Recent advancements have
enhanced their utility as virtual assistants, motivating ongoing research to aug-
ment their cognitive capabilities, including memory and action planning, with
an emphasis on context awareness [15].
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The use of cognitive architectures in virtual environments is a prevalent
methodology for imparting context awareness and autonomy to virtual agents.
Game engines such as Unity and Unreal Engine are well-suited for the devel-
opment of the Metaverse and other interactive virtual environments so several
studies have integrated cognitive architectures like SOAR or ACT-R with these
platforms to create autonomous virtual agents [13, 11, 6], though this often neces-
sitated intricate adaptations. The integration of a native cognitive architecture
within a single development environment would offer substantial advantages,
fully utilizing the engine’s capabilities and circumventing compatibility issues,
thereby simplifying the creation and maintenance of complex applications.

This paper outlines the implementation of a virtual agent utilizing the "Cog-
nitive Architecture for Social Perception and Engagement in Robots" (CASPER)
[14], adapted for Unity. CASPER was created to provide real-world robotic as-
sistance. However, a virtual version has the potential to apply to several other
contexts, including the Metaverse, video games, and virtual reality. The new
system has been augmented by integrating it with an LLM, which is tasked with
communicating in discursive form the operations performed by the cognitive ar-
chitecture in recognizing the user’s intentions. This approach enables the agent
to communicate in a more human-like manner, thereby significantly improving
the quality of the interaction.

The paper is structured as follows: Section 2 will describe the motivations
behind this work followed by a description of the CASPER architecture; Section
3 will outline the work of readjusting the architecture from the original environ-
ment to that of Unity; Section 4 is devoted to a discussion of the performances;
Section 5 will present the conclusions and envision future developments.

2 Background

This work is part of a larger research project aimed at developing virtual moral
agents capable of guiding users within the Metaverse. In the preceding phase,
LLM-based virtual agents were developed, but their contextual knowledge was
entered manually via prompts [4]. Therefore, a cognitive architecture was con-
sidered to serve as a bridge between the operating environment and the LLM.
The environment and virtual agents were developed in Unity, selected for its
flexibility, power, and ease of use in Metaverse development [8], as well as its
comprehensive library of assets and plugins and its large community of develop-
ers.

Several relevant cognitive architectures already interface with virtual real-
ity and have great potential. However, these architectures often use more than
one programming language, such as Prolog, Common LISP, C++, and Python,
making them complex and less accessible to the programming community [1, 12].
Some of them also depend heavily on ROS to function [10], which adds further
complexity. Bringing these architectures into C# would have been very compli-
cated, requiring not only a complete rewrite of the code but also the adaptation
of features closely related to physical robotics that are irrelevant in the context



Intention Reading Architecture for Virtual Agents 3

of the Metaverse. CASPER, on the other hand, is written in only one language,
Python, and was born and already tested in a virtual environment, that of We-
bots, making it much more suitable to be ported to Unity natively and without
excessive complications.

2.1 Casper Architecture and the Qualitative Spatial Reasoning

CASPER is a platform-independent cognitive architecture designed to enable
robots to perform intention reading (IR) and collaborative behavior in Human-
Robot Interaction (HRI) scenarios. It employs a combination of symbolic and
data-driven artificial intelligence methodologies, emphasizing the use of Qualita-
tive Spatial Relations (QSRs) to predict the actions and intentions of a human
partner and to calculate an optimal collaborative behavior. QSRs are abstract
representations that qualitatively describe spatial relationships between entities,
rather than relying on precise quantitative measurements. Instead of measuring
the exact distance between two objects, a QSR might categorize the objects
as "near" or "far." This approach aligns with how humans typically perceive
spatial relationships and allows for efficient and generalizable reasoning about
space. QSRs enable the robot to understand the movements and interactions of
a human partner relative to objects in the environment without needing precise,
continuous measurements, thus supporting scalable and context-independent in-
tention recognition.

CASPER’s architecture comprises several key modules that perform percep-
tion, reasoning, and action planning. Below is a concise overview of each module.
As the objective of this paper is not to present CASPER but rather a specific
use case, we strongly encourage readers to consult the dedicated paper for a deep
understanding of the employed algorithms and models.

– Perception Module: it converts visual observations from the robot’s sen-
sors into QSRs. The QSR descriptors include Qualitative Distance Calcu-
lus (QDC), Qualitative Trajectory Calculus (QTC), Moving or Stationary
(MOS), and Holding Object (HOLD). These descriptors are computed us-
ing the QSRlib library, an open-source tool that processes spatial data into
qualitative relations [2].

– Low-Level Action Recognition: it performs bottom-up inference, iden-
tifying and aggregating the human’s movements into actions. It comprises
three submodules:
• Focus Estimator : calculates an attention score for each Object of Interest

(OOI) using a probabilistic model incorporating QDC, QTC, and gaze
direction. The OOI with the highest score, exceeding a threshold, is
identified as the target.

• Movement Classifier : a decision tree model is employed to map QSRs to
specific movements like “Still,” “Walk,” “Pick,” etc. This model is trained
on labeled data collected from simulated environments.

• Action Predictor : actions are predicted using a Markov-chain Finite
State Machine (FSM) ensemble, which maps sequences of movements
to higher-level actions such as "Pick and Place" or "Use."
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– High-Level Goal Prediction: it uses a Plan Library that models goals
as non-binary trees of actions and sub-goals. The intention reading process
involves matching observed actions to potential plans in the library. The
high-level goal is predicted by selecting the plan with the highest score,
balancing between observed and unobserved actions.

– Verification Module: it acts as a filter, ensuring that the predictions
from the Low-Level and High-Level modules are logically consistent with
the known properties of the world, stored in an ontology. The ontology is
implemented using OWL2, with the Pellet reasoner verifying each inferred
action or goal.

– Collaborative Intelligence (Supervisor Module): it integrates infor-
mation from other components to generate a collaborative plan. Based on
the validated explanations from the High-Level module, it determines which
part of the goal remains unachieved and which tasks can be assigned to the
robot.

3 Methods

This section describes the process of converting CASPER from the Webots and
Python environment to that of Unity and C#. We will call this new version
CASPER for Metaverse (CASPER-MV) to distinguish it from the original ver-
sion, called simply CASPER. Although it is difficult to imagine someone pretend-
ing to cook and eat in the Metaverse, we decided to recreate the same scenario
used for the CASPER experiments, i.e., an agent observing a human-controlled
avatar moving around a kitchen to have breakfast, lunch, and drink. This choice
was driven by the need to have an immediate example to follow and a quick
comparison. As can be seen, the moral aspects mentioned above have been com-
pletely ignored at this stage and will be taken up in a later work. All CASPER
modules have been implemented in CASPER-MV as C# classes.

Fig. 1. Game view of the experimental environment. The grey capsule on the right
represents the agent.
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3.1 Objects detection

In contrast to the physical world, where robots recognize objects visually, a
virtual agent in a virtual environment can directly access encoded information
about objects, such as size, location, material, and name. The Unity development
environment offers several methods to achieve this result. To avoid momentary
focus on a single scene area we used the one called Overlap Sphere, which de-
tects objects within an invisible sphere. The sphere is centered on the agent’s
body, represented by a simple capsule, and the radius is been set to 2 meters.
The LayerMask parameter of Overlap Sphere allows filtering the objects to be
detected, limiting the search to objects belonging, in our case, to the "OOI"
layer (see Fig2). Along with objects, the user’s location is also detected.

Fig. 2. Schematic of Unity’s Overlap Sphere. Objects in the OOI layer that touch or
are inside the sphere are detected (highlighted in green), while others are ignored.

3.2 Perception

Given the absence of dedicated libraries for QSRs in C#, it was necessary to
program a QSR Engine for QSR calculations. The functions for calculating QDC,
QTC, MOS, and HOLD on the data obtained from the Overlap Sphere were
created using the built-in vector calculation functions provided by Unity.

The QDC values were calculated by determining the distance between the
user’s position vector and the OOI’s position vector. The function returns one of
five strings, depending on the value obtained: "IGNORING," "FAR," "MEDIUM,"
"NEAR," and "TOUCH."

The QTC values are derived from the vector product between the user and
the OOI position. A positive value returns "APPROACHING" while a negative
value returns " LEAVING".

The MOS was calculated by determining the distance between the position
vectors of two consecutive user positions. If a non-zero value is returned, it is
converted to "MOVING." Otherwise, it is converted to "STATIONARY."
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Ultimately, the HOLD value is determined by assessing the distance between
the user’s hand position vector and the OOI position vector. A value approaching
zero indicates that the hand and the object are in the same position, thereby
yielding a "YES" result; otherwise, a "NO" result is obtained.

The resulting computations are stored in a C# dictionary (list of key-value
pairs) called QSRLibrary, and ordered by time. In particular, the keys are the
names of the OOIs, while the values are dictionaries comprising the names of
the QSRs and their respective values in strings.

3.3 Low-Level

The Low-level module retained a high degree of similarity to that of CASPER,
largely due to the availability of libraries that corresponded to those of Python
within the C# NuGet package manager. Its submodules are here implemented
as methods and they draw data from the QSRLibrary and execute the requisite
calculations.

To obtain the target OOI corresponding to the user’s action, the FocusEsti-
mator converts the string values of QDC and QTC into numerical values between
0.00 and 0.5. It then applies a probabilistic calculation to these values, taking
into account the user’s orientation, to obtain a score for each OOI. The OOI
with the highest score is designated as the target.

The MovementClassifier employs a DecisionTree created with ModelBuilder
of ML.Net. It is trained on a dataset of 300 random combinations of QSRs
generated through the user’s movement in 3D space. Subsequently, the labels
"Pick," "Place," "Still," "Walk," and "Transport" are manually associated. The
movements identified by the decision tree are entered as strings into a list that
is read by the action predictor.

ActionPredictor employs a Markov-chain FSM ensemble as in CASPER.
Each chain within this ensemble describes an action. To illustrate, the "Pick
and Place" action is defined by the string chain of movements "Pick Transport
Place." Each chain is then compared with the list of observed movements to
identify the action the user is performing. Subsequently, a list of strings is gen-
erated, wherein the predicted actions are entered. A salient feature of this novel
implementation is that recognized actions are linked to their respective target
objects before being stored in the list.

3.4 High-Level

In the High-Level module, one of the numerous goal planners available in the
NuGet Gallery was utilized. Once the initial states, goal states, subgoals, and
actions have been defined, the goal planner generates a plan for each goal. Sub-
sequently, a function transforms each plan into a list of strings, denoting node
names, and inserts it into a dictionary. The goal name is designated as the key,
thereby generating a Goal Library. Each plan within the Goal Library is com-
pared with the sequence of observed actions derived from the Low-level module.
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This comparison determines the user’s most probable goal, based on the per-
centage of observed versus unobserved nodes.

3.5 Supervisor Module

In CASPER, once the user’s goal is recognized, the Supervisor Module leverages
a goal planner to plan how to assist the user. In CASPER-MV we chose instead
to integrate an LLM as an intermediary between the architecture and the user.
Now the agent communicates the results of the architecture’s IR processes and
provides advice based on the information already collected by the architecture.

The incorporation of the LLM into the module was achieved through the
Microsoft Azure API, which facilitates access to a GPT-4 model and is entirely
compatible with Unity. An initial prompt instructs the model on how to behave
as if it were a role-playing game:

"""You are part of a cognitive architecture for a virtual agent that observes
a human-controlled avatar. The architecture consists of four modules. You are
part of the final module and receive information from the other modules about
the environment, the user, and the user’s goal. You have to ask if the goal is
indeed the one predicted and propose a way to help him taking into account what
is present in the environment."""

All data from the previous modules (user position, target, OOIs, current
action, and user goal) are entered into a variable-based sentence that is then
transmitted to the LLM.

4 Performance Test and Discussion

The performance tests previously conducted with CASPER were repeated with
CASPER-MV yielding results that closely mirror those reported in the original
study, with some notable improvements in the performances. For convenience
and considering that this would not have affected the agent’s perception, the
experiment was conducted using a desktop and keyboard to control the human
avatar rather than a VR kit. The results of the predictions generated by the
various modules of the system are displayed in a textual format directly on the
screen. This setup could readily be adapted for use in a VR context. The OOIs
included the meal, plate, microwave, biscuits, sink, bottle, and glass. The human-
controlled avatar was directed to complete a series of tasks: Breakfast (Pick and
Place Biscuits, Eat, Pick and Place Plate, Wash), Lunch (Pick and Place Meal,
Cook, Pick and Place Meal, Eat, Pick and Place Plate, Wash), and Drink (Pick
and Place Bottle, Drink, Pick and Place Glass, Sink).

The Focus Estimator demonstrated a high degree of accuracy in identifying
the target object. However, some challenges were observed, particularly when the
human avatar was engaged in eating, where both the plate and the meal were
within its line of sight, and when washing the plate, where both the plate and
the sink represented potential targets. In these instances, the Focus Estimator
occasionally misidentified the target, particularly when the gaze direction was
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unclear or slightly off-center. The estimator is dependent on exceeding a thresh-
old value of 0.5 to confirm a target. This threshold was typically only exceeded
when the user’s gaze was perfectly aligned with the object, which highlights the
system’s reliance on precise gaze alignment for accurate target identification.

The Movement Classifier, trained using ML.Net’s Model Builder, demon-
strated robust performance, with an average accuracy of 94% in recognizing
the avatar’s movements. During the training process, Model Builder explored
533 distinct models over a total experimental duration of 58 seconds. The top-
performing models, including the LbfgsLogisticRegressionOva and FastForestOva
trainers, demonstrated a macro accuracy of 1.0000. In conclusion, the Fast-
ForestOva model was chosen due to its optimal balance of accuracy and per-
formance, with a duration of 0.323 seconds. The classifier effectively mapped
the observed QSRs to discrete movement categories, thereby enabling the sys-
tem to accurately track the avatar’s actions within the environment.

In action recognition, the FSMs were assigned generating three sequences
of nine movements, following the methodology employed in the CASPER test.
Each FSM was assigned a score based on the Ratcliff-Obershelp pattern recog-
nition algorithm, with scores ranging from 0 to 1. A threshold of 0.8 was used
to determine when an FSM had sufficiently matched the observed sequence of
movements, allowing for the prediction of the ongoing action. The accuracy of
the algorithm was consistently high, achieving maximum precision in all cases,
thereby ensuring reliable and real-time action classification.

The Goal Reasoner, which associates actions with specific targets (e.g., "Pick
and Place Biscuits" instead of a generic "Pick and Place"), has markedly en-
hanced the system’s capacity to accurately infer the intended goals of the user.
In the absence of consideration of the target, as in CASPER, the generation of
actions frequently resulted in considerable ambiguity when the number of obser-
vations was limited. However, the incorporation of target consideration enabled
the system to attain 100% certainty in goal recognition, even with the obser-
vation of a single action. Furthermore, this allows for the identification of the
specific stage of the plan at which the current action is situated.

In the Supervisor Module, the LLM model successfully processes the infor-
mation and responds following the initial prompt with a message on the screen.
The following is an illustration of the model’s response after the identification
of the objective, "Lunch", following the observation of the actions "Pick and
Place Meal" and "Eat": "It looks like you’re having lunch, can I help you with
the dishes when you’re done eating?"

The LLM also proved useful as a filter for the operations performed by the
low-level and high-level. Therefore, instead of implementing a standalone verifi-
cation module, it was decided to use the knowledge base of the model itself. As
can be noted, the component of the CASPER Supervisor Module designated for
the agent’s interaction with the environment to assist the user has not been im-
plemented in CASPER-MV. Nevertheless, the deployment of an LLM presents
an intriguing opportunity in this regard, particularly in light of the Function
Calling functionality offered by the Azure OpenAI Service. This feature enables
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language models to interact with user-defined functions, thereby expanding the
potential applications of such models. However, this implementation is specific
to the particular scenario and thus left for others to implement freely.

In conclusion, the adaptation of CASPER-MV to a different virtual scenario
can be done without significant changes to the code. Each module is based on
classes with attributes and parameters accessible from the Unity interface. These
characteristics of flexibility and code reuse are significant advantages, but further
refinements are necessary to ensure the full modularity and portability of the
architecture.

5 Conclusions and future steps

We presented CASPER-MV, a repurposing for Unity of the CASPER architec-
ture to create virtual agents in the Metaverse capable of intention reading. For
this purpose, the architecture was enriched with an LLM.

However, key issues need further attention. It is essential to enhance the mod-
ularity and portability of the architectural framework to guarantee its adaptabil-
ity to diverse virtual scenarios without substantial code modifications. Improv-
ing user interaction to be more natural and intuitive through speech recognition,
text-to-speech, and multimodal interactions, is also a priority. Furthermore, rig-
orous evaluations and user experience studies must be conducted to ascertain
the technology’s impact and to inform future development.

The CASPER-MV GitHub repository is freely available for use, modification,
and improvement in this research field [3].
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