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Abstract
Pulsed electric field (PEF) is a novel non-thermal treatment for quality retention of fruits and vegetables (F&V) during 
postharvest processing. PEF helps to microbial control and retain several attributes such as the physical and chemical of 
F&V. This review outlines requirements and advances in electrical systems applied in PEF for F&V. In addition, it reviews 
the effect of PEF application on antioxidant activity, color, texture, weight loss, and other chemical properties affecting the 
shelf life of F&V. Attention is also drawn to the applicability of PEF technology as a pretreatment to assist design in the 
case of the emergence of sustainable bio-refineries based on F&V. PEF pretreatment enhances the extraction of valuable 
bioactive compounds and maintains quality characteristics of F&V which include color, phytochemicals, antioxidant capac-
ity, proteins, volatile compounds, and sensory attributes. Furthermore, the current study highlights that electroporation of 
the cell membrane by PEF treatment enhances mass transfer during the drying and moisture loss processes of F&V. In this 
context, the extraordinary rapidity of treatment applications leads to considerable reductions in processing time and total 
energy consumption concerning traditional methods. The adaptability and scalability of PEF secure its application in sizes 
varying from small-scale operations driven by supermarket demand up to food units. However, PEF has limitations in the 
postharvest process of F&V due to its potential for the high energy costs associated with the technology. In addition, PEF 
cannot guarantee the inactivation of all microorganisms, particularly the spores and certain resilient bacterial strains that 
cause microbial regrowth on storage. Overall, this technology can further increase the yield obtained from extraction and 
extend shelf life, which is essential for processing facilities and consumers’ benefit.

Keywords  Non-thermal processing · Waste valorization · Drying · Shelf life · Pulsed electric field

Introduction

The sustainability of the world’s food supply has been of 
great concern to the food industries. Under this scenario, 
these two sectors give priority to the development of pro-
cessing technologies that would both preserve and add 

value to the nutritional quality of fresh fruits and vegetables 
(F&V) by promoting the presence of bio-accessible com-
pounds (Brito & Silva, 2024). One of the promising non-
thermal methods for F&V quality maintenance is the pulsed 
electric field (PEF) technique. This technology is used to 
inactivate several microorganisms and enzymes or reduce 
their activities in agricultural products. It also destroys the 
cell membranes in the food matrix without adversely affect-
ing the characteristics of the products (Arshad et al., 2021a, 
2021b; Giannoglou et al., 2021; Younis et al., 2023).

The success of PEF in the cell membrane permeabili-
zation depends upon (i) process parameters that include 
electric field strength, treatment time, specific energy, 
pulse shape, pulse width, frequency, and temperature; (ii) 
food sample characteristics that include pH and electrical 
conductivity of the sample; and (iii) characteristics of the 
target cells, such as size, shape, food matrix or structure 
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membrane, and envelope structure (Arshad et al., 2020; 
Zhang et al., 2023a, 2023b). Recently, engineering aspects 
of PEF technology and its contribution to quality features of 
treated products have been well documented in the literature 
(Li et al., 2021a, 2021b; Moens et al., 2021; Palumbo et al., 
2022; Salehi, 2020; Saletnik et al., 2022; Wu et al., 2020; 
Zhang et al., 2022a, 2022b). However, continued research is 
directed to enhance the PEF system and its treatment method 
regarding the physical, mechanical, and chemical properties 
of F&V through the manipulation of water activity. In F&V, 
water is essential for microorganism growth and enzymatic 
reactions (Chang et al., 2023a, 2023b; Zárate-Carbajal et al., 
2024). PEF is not just a lethal action of microorganisms but 
also induces structural modifications that allow these pro-
cesses to be used in valuable applications, such as waste val-
orization (Chatzimitakos et al., 2023; Faria & Silva, 2024; 
Naliyadhara et al., 2022).

Waste valorization is a process with enormous potential, 
and it is thought to bring an improvement in waste man-
agement (Giancaterino et al., 2024a, 2024b; Ramaswamy 
et al., 2024). PEF has been evidenced to be a valuable tool 
for the recovery of essential compounds from different fruit 
pomaces and skins in several studies (Nowacka et al., 2019a, 
2019b; Andreou et al., 2020; Wang et al., 2020a, 2020, 
2020b; Plazzotta et al., 2021; Shiekh et al., 2021; Macías-
Garbett et al., 2022; Theagarajan et al., 2024; Rrucaj et al., 
2024). Thus, PEF would be a process that would bring out 
benefits in terms of extracting value-added compounds. In 
addition, PEF application would optimize the drying process 
without nutrient quality loss of foods; due to the electropo-
ration of cell membranes, enhancing mass (e.g., moisture) 
transfer during drying (Punthi et al., 2022). Researchers 
have applied PEF pretreatment followed by integrated hot 
air, vacuum, and freeze drying to food products such as car-
rots (Alam et al., 2018; Kim et al., 2023; Liu et al., 2020a, 
2020b), mushrooms (Dadan et al., 2023; Li et al., 2021a, 
2021b), basil leaves (Telfser and Galindo, 2019; Thamkaew 
& Galindo, 2020), potatoes (Shorstkii et al., 2022), kiwifruit 
(Llavata et al., 2024), and apple (Matys et al., 2023). These 
studies further reported that PEF prevents localization of 
high temperatures in F&V, which can lead to undesirable 
changes in color, flavor, and nutrition while helping to main-
tain an acceptable texture. It is reported to soften the tissue 
by lowering the turgor pressure, leading to textural changes 
for the ease of subsequent handling, cutting, and peeling 
(Koch et al., 2022; Moens et al., 2021). PEF-assisted peel-
ing makes it possible to minimize weight loss and reduce 
chemical consumption and environmental pollution (Kemp-
kes et al., 2017; Koch et al., 2022; Giancaterino and Jaeger, 
2023). Thus, PEF-assisted peeling is an optimistic technique 
for the postharvest processing of F&V.

A number of reviews detailing the application of PEF in 
the sustainable food industry (Arshad et al., 2021a, 2021b), 

extraction escalation (Naliyadhara et al., 2022), drying (Pun-
thi et al., 2022), and solid foods processing (Zhang et al., 
2023a, 2023b) are available in the literature. However, no 
review (to the best of our knowledge) exclusively focuses on 
the potential of PEF in the postharvest process of fresh fruit 
and vegetables. Therefore, the current review introduces the 
application of PEF on the shelf life of the F&V and also 
describes optimum processing operation of PEF treatment 
of food wastes for waste valorization aims. Furthermore, the 
effect of PEF on the drying process of F&V and its effect 
on their chemical compounds, macro/microstructure, and 
drying kinetics are explained. This review aims to motivate 
researchers to gather data that is credible, replicable, and 
free from methodological flaws.

Mechanism

PEF technology treats the food product with short, high-
intensity electrical pulses. PEF can be effectively imple-
mented using two electrode plates, with the food material 
placed between them. This arrangement allows high-voltage 
pulses to directly act upon the food (Gomez et al., 2019). 
A typical PEF system comprises a treatment chamber, a 
high-voltage pulse generator, and a controller (Buchmann 
et al., 2018). The high-voltage pulse generator utilizes either 
a direct current power supply or alternating current from 
the source that is then rectified into a direct current within 
a particular rectifier stage. The final direct current voltage 
is stored in a source of capacitors as an energy reservoir. 
A designed high-voltage switch discharges the capacitor in 
controlled pulses to deliver the desired electrical treatment 
(Taha et al., 2022).

The pulses are produced by a high-voltage pulse gen-
erator and are targeted toward the electrodes present in the 
treatment chamber. The food product is placed between the 
electrodes and treated. Based on two categories of the physi-
cal state of the product to be treated, the treatment chamber 
can be classified into batch or continuous treatment cham-
bers 2. For design of electric chamber, standard methods 
that affect treatment capacity include parallel, coaxial, and 
co-linear designs (Ramaswamy et al., 2024). Therefore, the 
design for the PEF chamber (parallel and co-linear designs) 
must provide the distribution of the electric field within the 
treatment area (Arshad et al., 2020).

Compared to parallel and co-linear designs, the parallel 
design gives the most uniform field with the lowest energy 
consumption and temperature increase. The co-linear design 
creates hot spots due to the non-uniformity of the field 
(Masood et al., 2018). However, the co-linear chambers will 
have a higher treatment capacity (Arshad et al., 2020). The 
choice among these designs thus fundamentally depends on 
the specific requirements and priorities of the application 
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and treatment method (Arshad et al., 2020; Lombergar et al., 
2024).

Figure 1a indicates the general electrical configuration of 
most PEF processing setups that include a treatment cham-
ber, a pulsed power supply, and a control/monitoring sys-
tem. Figure 1b describes the design steps in numerical order 
for calculating the process parameters for any particular 

application or product. The optimization of these param-
eters can be obtained by keeping a few constants and finding 
out the rest dependent parameters in this sequence of the 
figure (Arshad et al., 2020). Work on the development of an 
optimum treatment protocol is highly relevant to successful 
process scaling. It will also be helpful in understanding and 
documentation of research pertaining to this technology. The 

Fig. 1   (a) Schematic diagram 
of a PEF-based F&V process-
ing system. (b) Flow chart 
describes the interdependence 
of PEF-based food processing 
parameters associated with each 
part (Arshad et al., 2020). (c) 
Graphical representation of the 
PEF process and system setup 
for F&V products
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most common pulse shapes used in food processing with 
PEF are rectangular, square, exponential, oscillatory, and a 
combined number of narrow and wide pulse duration pulses 
(Qin et al., 2022).

Figure 1c illustrates a graphical presentation of PEF sys-
tem. The pulsed power generator generates high-voltage 
pulses to the treatment chamber filled with food. A typi-
cal such generator would normally include passive discrete 
components. Power switches are essential apparatus in the 
process of energy transfer that is stored either in the capaci-
tors or magnetic fields within inductors. Precautions should 
be made so that the energy transfer occurs cost-effectively, 
as this is going to have a great impact on the general elec-
trical design (Arshad et al., 2020). Depending on the raw 
material, the feeding system can be continuous for liquids 
(here juice) or static (here foods and vegetables). Continu-
ous feeding systems depend on a pump to feed the chamber 
continuously. Chambers can be linear, coaxial, co-linear (as 
addressed in most research), or in other shapes depending on 
desired properties. Finally, a cooling system can be utilized 
to cool down the final product.

Researchers mainly use the rectangular and exponential 
decay (ED) waveforms to treat food products (Arshad et al., 
2020; Zhang et al., 2018). The waveform can effectively 
affect electrodes and electrolysis, and high-intensity bipolar 
pulses may reduce it. It was found out that the non-oscillat-
ing exponential impulse presented the best performance in a 
study (Qin et al., 2022). It can be observed that high-inten-
sity bipolar pulses and non-oscillating exponential impulses 
can be effective in reducing electrode disappearance and 
electrolysis during electrical stimulation. Also, there is an 
inverse relationship between field strength and pulse width. 
Lower field intensity with a broader pulse width can have 
similar results to higher field intensity with a narrower pulse 
width. The pulse width is limited to microseconds due to 
local thermal effects and oxygen production by electrolysis 
when the electric field is high (Guionet et al., 2015; Tim-
mermans et al., 2019). Timmermans et al. (2019) found that 
more long pulses were efficient in comparison to shorter 
pulses and also should heed to the chamber design.

The treatment chamber design is a key to realizing uni-
formity in the electric field distribution. Several chamber 
designs are beneficial concerning efficiency and tempera-
ture control. However, careful consideration must be taken 
to realize optimum treatment results and avoid issues such 
as electrode disappearance and electrolysis. It is equally 
essential that parameters such as pulse width, pulse shape, 
and pulse frequency be optimized such that the efficacy and 
economic feasibility of PEF treatment are related (Arshad 
et al., 2020; Lombergar et al., 2024). Qin et al. (2022) have 
proposed a PEF chamber, with BaTiO3 dielectric layers 
included, for the chamber to be released from electrode cor-
rosion and work effectively. They observed that the chamber 

with dielectric layers successfully limited the generated iron 
ion in the treated yeast suspension compared with a standard 
chamber. Several pulse electric field setups from the litera-
ture are shown in Fig. 2.

Researchers mostly utilized cylindrical chambers for 
PEF treatment of the samples in liquid media. Koubaa et al. 
(2016) utilized a cylindrical batch treatment chamber, and 
two parallel stainless electrodes for the treatment of pears in 
a liquid solution. Most of the setups for F&V are static and 
consist of two parallel electrodes as the chamber (Fig. 2a). 
Chang et al., (2023a, 2023b) used chambers consisting of two 
copper plate electrodes; the setup was not protected from the 
air (Fig. 2c) and Chen et al. (2022) setup consisting of paral-
lel copper electrode chambers combined with a refrigerator 
(Fig. 3b). The static setup with two parallel electrodes is very 
commonly used in treating fruits and fresh slices of it due 
to its simple and economic characteristics. In addition, PEF 
treatments coupled with refrigeration showed an innovative 
approach to maintaining the quality of the samples which 
need to be cooled throughout the treatment process. Astráin-
Redín et al. (2023) used a cylindrical PEF chamber with 
parallel electrodes for the treatment of the carrots (Fig. 2d) 
and Yamakage et al. (2021) treated spinach samples between 
plate electrodes (Fig. 2e). Chambers with parallel electrodes 
are usually considered most effective in uniform electric field 
distribution and uniform treatment (Masood et al., 2018). 
Indeed, it can adapt different electrode setups to the specific 
features of each vegetable under treatment, ensuring effective 
contact and optimal PEF delivery. Such adaptability renders 
PEF technology versatile in food processing; hence, one 
should be very careful while choosing the chamber and the 
configuration of electrodes. Parniakov et al. (2016a) setup 
consists of two round electrodes for the treatment of the apple 
tissues (Fig. 2f). Generally, the application of PEF treatment 
for foods has been tested with multiple setups and configura-
tions to obtain the best treatment effectiveness. The setup is 
optimized to achieve a good balance between, for example, 
electric field distribution, sample integrity, and process effi-
ciency. Continuous innovation of setup design is also further 
needed to keep expanding the application of PEF technology 
within a wide variety of food matrices.

Shelf Life

PEF pretreatment enhances the shelf life of F&V by disrupt-
ing cell membranes, which reduces microbial load and enzy-
matic activity while preserving nutritional and sensory quali-
ties. This non-thermal technology is particularly effective as 
a pre-processing step, extending freshness and improving the 
efficiency of subsequent preservation methods. Changes in 
physical and chemical properties provoke changes in the F&V 
appearance and quality. Treatment is expected to extend shelf 
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life and retain F&V properties during storage (Arshad et al., 
2021a, 2021b). Using PEF as a non-thermal way of inhibiting 
microorganisms leads to the retention of several physical and 
chemical attributes of the F&V (Guo et al., 2022). Several 

results have indicated the efficiency of PEF on the antioxidant, 
color, texture, weight loss, and other chemical properties that 
are responsible for the shelf life of the F&V.

Fig. 2   (a) Experimental setup of PEF and fusion by other non-ther-
mal systems (Koubaa et  al., 2016, (b) PEF processing system and 
storage device (Chen et al., 2022). (c) The process of PEF processing 
Atemoya (Chang et al., 2023a, 2023b). (d) Schematic of a longitudi-
nal section of the treatment chamber together with the carrot sample 

during application of the PEF treatment. P1 and P2 refer to the area 
where the carrot and treatment medium temperature were measured, 
respectively (Astráin-Redín et al., 2023). (e) Picture of reactor in PEF 
system (Yamakage et al., 2021). (f) The scheme of PEF-assisted vac-
uum cooling (Parniakov et al., 2016a, 2016b)
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Fig. 3   Application of PEF on the a microstructures of the surface of 
dried samples (Yamakage et  al., 2021). (b) Macroscopic photos of 
untreated and treated samples (Parniakov et  al., 2016a, 2016b). (c) 
Homogeneous surface color of red pepper (Won et  al., 2015). (d) 

Albedo residues of oranges (Koch et al., 2022). (e) Chemical proper-
ties of the sample (Bobinaitė et al., 2015). (f) Force versus the time 
for the cutting tests of pomelo whole fruit (El Kantar et al., 2018)
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Antioxidant Properties

Researchers have discovered the PEF technology to be effec-
tive in maximizing the beneficial health effects such as the 
antioxidant properties (Souli et al., 2023; Liu et al., 2024a, 
2024b). Antioxidants enhance well-being by scavenging 
the reactive substances that could cause adverse meta-
bolic effects. The extraordinarily high levels of detrimental 
free radicals and reactive oxygen species (ROS) indicate 
that raising the concentrations of antioxidants may reduce 
chronic disease risks (Morales-De la Peña et al., 2021; Ali 
et al., 2024).

Research reported an increase in the antioxidant capac-
ity of apples after PEF treatment applied 0.4–2 kV cm−1 
(0.008–1.3 kJ kg − 1) as total specific energy input to the 
apple samples. A significant increase in antioxidant activity, 
by 43%, was obtained at 0.008 kJ kg−1 energy level after 12 h 
of storage at 4 °C, in comparison with untreated samples and 
other energy level treatments, and 15% after 24 h at 22 °C. 
The same tendency was observed for phenolic content: at 
an energy level of 0.008 kJ kg−1, the optimum increment in 
total phenolics was reached after 24 h in storage at 22 °C, 
by 13% (Soliva-Fortuny et al., 2017). Similarly, Giannoglou 
et al. (2021) showed a rapid rise in phenolic content, which 
results in the release of antioxidant compounds after pulsed 
electric medium field (PEMF) treatment at 240 V, 96 J per 
pulse, 300 MHz. Researchers reported an increased amount 
of phenolic content in samples treated with PEMF and stored 
for 14 days. Both studies noticed an increase in phenolic 
content after applying the respective treatments and also 
low electric fields and pulsed electromagnetic fields seem 
to be effective. Although the initial rise could be immediate, 
enhanced phenolic content appears to be maintained over 
long storage periods.

The browning index is a critical quality parameter for 
evaluating food products, as it quantifies color changes that 
may result from enzymatic or non-enzymatic browning 
reactions. Studies have demonstrated a positive correlation 
between the antioxidant potential of fruits and vegetables 
and their contents of vitamin C and phenolic compounds, 
including phenolic acids and flavonoids (Dermesonlouo-
glou et al., 2018; Li et al., 2023a, 2023b, 2023c). Chen 
et al. (2022) examined the effects of pulsed electric fields 
(PEF) on the phenolic compounds of atemoya fruit during 
extended storage and observed a decline in total phenolic 
compounds in untreated samples. In contrast, PEF treatment 
enhanced the antioxidant content and nutritional value of 
fruits and vegetables. Nevertheless, further investigation 
into the underlying mechanisms and the optimization of 
PEF parameters for different food matrices is necessary. 
Additionally, comprehensive long-term studies are crucial 
to assess the efficacy of PEF in boosting antioxidant capacity 
and its synergistic potential with other preservation methods.

Textural Impact

Texture analysis reveals the firmness of fruits and vegeta-
bles, which is a crucial factor in their resistance to mechani-
cal impacts. PEF destroys the cell membranes, through 
which the cell sap runs out and reduces the turgor pres-
sure, hence the initial softening of the fruit (Giancaterino & 
Jaeger, 2023; Koch et al., 2022). In addition, activation of 
enzymes, including pectinases and cellulases, by PEF treat-
ment degrades cell wall components and thus causes soften-
ing (Li et al., 2023a, 2023b, 2023c). 

The firmness level can be controlled by being very sensi-
tive to the intensity, time, and frequency of electric pulses. 
Chen et al. (2022) studied PEF treatment of bananas after 
storage for 20 days. The peel toughness increased during 
storage, registering the highest value on the 10th day after 
PEF treatment. Firmness of the PEF-treated group was sig-
nificantly lower than that of the untreated group throughout 
the storage period. Chen et al. (2022) treated atemoya fruit 
using optimized PEF system with different energy 25, 50, 
and 100 kV/m and they reported the moderate PEF treatment 
leads to a lower firmness loss. In contrast, Giannoglou et al. 
(2021) and Li et al., (2023a, 2023b, 2023c) assessed firm-
ness of strawberries and apple under PEF treatment. Both of 
them reported there were no significant differences in firm-
ness between the tested and control samples during the stor-
age time. The effect of PEF on food firmness had a different 
inflection from the leveraged perspective, as indicated by the 
contradictory inducible responses to PEF found in various 
studies. While in treatment with PEF-softened potato sam-
ples, no effect on firmness was observed in apples (Li et al., 
2023a, 2023b, 2023c).

The color of F&V is an appearance characteristic of their 
quality for consumers and can indicate underlying chemical 
changes. Color is influenced by several factors, including the 
antioxidants they contain. The browning index (BI) is used 
to measure overall color changes and reflects brown color 
purity in the presence of sugar-content food samples. Enzy-
matic browning could be measured by biochemical indices 
such as polyphenol oxidase activity or physical indices, 
including surface color.

Since some phenolic compounds are color contributors of 
a fruit, color change measurements can provide information 
on a quantitative level of the amount of the phenolic under 
PEF treatments. Chen et al. (2022) showed the optimal prop-
erties for reducing browning in bananas were 32 kV m−1, 
frequency 278 Hz, treatment time 32 min, and width 600 µs, 
inhibiting the degree of browning by 131.6%. During storage 
at 7 °C for 20 days, PEF treatment showed a better perfor-
mance of postponing browning by about 5 days. The obtained 
findings revealed that the PEF pretreatment offered a promis-
ing rise in lightness of kiwifruits and also showed the fastest 
speed of color shifting among other properties utilized.
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Li et al., (2023a, 2023b, 2023c) and Chen et al. (2022) con-
firmed that PEF-treated samples had a slower increase in the 
browning index compared with the untreated control sample 
during the storage time at various temperatures. They claimed 
that PEF can delay browning on the F&V and 50 kV/m treat-
ment was the most effective, reducing the browning index con-
siderably compared to the untreated group.

Weight Loss

There are some doubts about the effect of PEF on weight 
loss. On the one hand, some researchers reported that the 
PEF treatment can reduce microbial activity with less break-
down of the produce and, consequently, less weight loss dur-
ing storage (Chang et al., 2023a, 2023b; Dadan et al., 2020; 
Li et al., 2023a, 2023b, 2023c; Lin et al., 2024). Li et al., 
(2023a, 2023b, 2023c) observed a 15% reduction in weight 
loss during 10 days of storage at 4 °C in five different apple 
variety samples. Similarly, Chen et al. (2022) investigated 
weight loss of PEF-treated bananas (with various properties) 
compared to untreated samples. The samples were stored at 
7 c for 20 days. During the first 5 days, no significant dif-
ference was observed. However, after 10 days, the treated 
sample retained their weight better than the control samples.

On the other hand, some researchers claimed PEF causes 
structural changes in F&V, which might lead to shrinkage 
and weight loss (Rahaman et al., 2019; Trusinska et al., 
2023; Wu et al., 2020). Giannoglou et al. (2021) investigated 
the effect of PEF on quality attributes of strawberry stor-
age at various temperature levels as observed in the weight 
loss of strawberries significantly increased with storage time 
and temperature during the storage period. Although the 
results obtained highlighted the potential for the prevention 
of weight loss in some F&V, more research is required to 
ascertain the desired inactivation mechanism and to investi-
gate the applicable tune-in of various F&V.

PEF treatment creates short bursts of high-voltage elec-
tric fields, permeating cell membranes. It has several effects 
on F&V enzymes, including polyphenol oxidase. PPO is an 
enzyme that causes fruits to go brown when cut or damaged. In 
this way, PEF application can inactivate PPO, hence lowering 
enzymatic browning in fruit. This maintains the color, flavor, 
and nutritional quality of the fruit (Evrendilek & Özkan, 2024; 
Li et al., 2023a, 2023b, 2023c; Liu et al., 2024a, 2024b).

The effect of different PEF treatments on the PPO dur-
ing storage time in apples has been evaluated by Li et al., 
(2023a, 2023b, 2023c). PEF-treated groups maintained PPO 
activity significantly lower than control during storage, 
reflecting the effectiveness of the inactivation of the PPO 
enzyme. The significant effect of PEF treatment on the mod-
ulation of PPO activity was confirmed again using storage. 
Almost the same results were gotten in another experiment 
on similar products. The results show that the POD activity 

of PEF treatment during storage is significantly less than 
in the control group. Although the POD activity of all PEF 
groups is lower, the group 3 kV/cm has the most pronounced 
effect. These findings confirmed PEF as a feasible approach 
to reduce browning reactions in apples by decreasing both 
PPO and POD activity. It seems that PEF decreases PPO 
and POD activity by inducing structural changes in these 
enzymes, which can lead to their inactivation or reduced 
functionality during storage. Additionally, PEF treatment 
disrupts cellular integrity, limiting the interaction between 
enzymes like PPO and POD with their substrates, thereby 
reducing the enzymatic browning reactions in apples.

Also, the permeability of cell membranes in F&V can 
lead to an increase in the measured total soluble solid (TSS). 
Younis et al. (2023) evaluated the effect of PEF treatment 
on the TSS of Barhi dates. At first, as more intense PEF and 
exposure time, TSS decreased, maybe due to enzyme inac-
tivation or water loss. At the highest PEF settings, however, 
this trend reversed. In contrast, a further increase in the num-
ber of pulses during the process with PEF treatment raised 
TSS to a critical value, after which TSS decreased. These 
results indicate that PEF parameters have to be well chosen to 
obtain the desired TSS reduction in Barhi dates during stor-
age. Although the PEF treatment appears to be effective in 
reducing enzymatic browning in some F&V, the underlying 
mechanisms need more study. Similarly, the effects of PEF on 
the chemical properties were complex. Table 1 summarizes 
the performed research to assess the application of PEF treat-
ment on the shelf life parameters of the various F&V.

Waste Valorization

PEF pretreatment facilitates waste valorization of F&V by 
enhancing the extraction of valuable bioactive compounds, 
such as polyphenols, antioxidants, and pigments, from by-
products. This energy-efficient, non-thermal technology 
optimizes the recovery of high-value components from 
waste streams, contributing to sustainable processing and 
circular economy practices. In the pursuit of deriving end 
products from F&V, various components such as trimmings, 
peels, seeds, unused flesh, shells, leaves, and stems often 
end up being discarded as waste (Jara-Quijada et al., 2023; 
Okuthe, 2024). The primary sources of food waste are pre-
dominantly the by-products generated during the production 
of oil, starch, sugar, and juice. The prevalence of this type of 
practice carries a big challenge, especially in the era of mod-
ern industrial processing, for the requirements of sustainable 
development and environmental protection. These essential 
components have great potential to be removed from food 
waste and applied later in postharvest processing because of 
their significant biological activities (Arshad et al., 2021a, 
2021b; Zhang et al., 2023a, 2023b). Various non-thermal 
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methods such as high-pressure processing (Eslami et al., 
2024; Li et al., 2022), ultrasound (Nabi et al., 2024), cold 
plasma (Zargarchi et al., 2024), and PEF (Faria & Silva, 
2024; Jara-Quijada et al., 2024) have been used to optimize 
waste valorization process.

Several research on the suitability of PEF technology as 
a pretreatment option to enable the designing of sustainable 
bio-refineries of F&V have been performed (Andreou et al., 
2020; del Carmen Razola-Díaz et al., 2024; More et al., 
2022; Nirmal et al., 2023; Plazzotta et al., 2021). Many 
benefits of PEF technology have had a turn in extensive 
application in the valorization of by-products derived from 
apple (Wang et al., 2020a, 2020, 2020b), kiwi fruit (Shorst-
kii et al., 2023), pomegranate (Faria and Silva, 2024), mil-
let (Lohani & Muthukumarappan, 2016), berries (Bobinaitė 
et al., 2015; Medina-Meza et al., 2016), tomatoes (Andreou 
et al., 2020), and beetroot (Nowacka et al., 2019a, 2019b). 
For this reason, PEF is a favorable method compared to con-
ventional extraction of fruits’ by-products.

Since peels are the major part of fruits’ by-products and 
are a good source of phytochemicals such as phenols and 
anthocyanins, they are popular in waste valorization. Medina-
Meza and Barbosa-Cánovas (2015) observed PEF with 290 
L/h flowrate, 25-mm chamber diameter, 26-mm gap, 25 kV 
voltage, 10 Hz frequency, and 6 µs pulse width was successful 
at enhancing the extraction of anthocyanins and flavonoids 
from grape peels. Leaves are also among other waste parts 
of F&V that contain a significant amount of valuable com-
pounds. The extraction of the compounds with the assistance 
of PEF showed enhanced values of them. Shiekh et al. (2021) 
assessed the potential of PEF in the custard apple leaf extrac-
tion using 6 kV/cm, 300 pulses, and 142 kJ/kg for 5 min. The 
study’s findings suggest that PEF’s enhancement of extraction 
efficiency resulted in reduced bactericidal content. Overall, 
there is a good potential for research on the effect of PEF on 
leaves and future studies can focus on this issue.

PEF can be a complementary method that increases yield 
extraction of other methods.  The increased surface area 
and intracellular spaces due to the PEF treatment enhanced 
the pectin yield compared to the traditional process. PEF, 
when combined with complementary methods like ultra-
sound, intensifies cell disruption, promoting the release of 
intracellular components. This synergistic approach signifi-
cantly enhances pectin extraction efficiency from fruit waste 
powder, demonstrating its effectiveness as a method that 
maximizes yield while minimizing heat application (Mura-
konda & Dwivedi, 2022; Faria and Silva, 2024; del Carmen 
Razola-Díaz et al., 2024).

Several studies have claimed that PEF treatment success-
fully decreases extraction time (Table 2). The highlighted 
studies revealed that the optimal extraction conditions depend 
on the type of by-product and its target compounds. These 
results further call for extraction conditions to be matched with Ta
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by-product characteristics and compound targets. In another 
view, efficient recovery of high-added value compounds ben-
efits waste valorization because it changes by-products into 
valuable resources by supporting sustainable practices.

To maximize extraction yield, it is essential to identify 
and assess the key factors involved in the extraction pro-
cess. Electroporation is a key factor in PEF performance as 
it makes PEF applicable to various F&V. Electroporation 
through PEF increases plant cell permeability, leading to the 
enhancement of waste valorization of F&V (Andreou et al., 
2020). Also, Wang et al., 2020a, 2020, 2020b) and Andreou 
et al. (2020) found that the extraction efficiency of different 
bio-compounds from various fruit peels can depend on the 
disintegration index and the applied value of PEF intensity.

Although PEF demonstrated better extraction yields than 
other non-thermal treatment methods in some cases (Barba 
et al., 2015a, 2015b; Parniakov et al., 2016a, 2016b), its perfor-
mance was not better in the recovery of intracellular valuable 
compounds compared to other products (Macías-Garbett et al., 
2022; Roselló-Soto et al., 2015). Roselló-Soto et al. (2015) 
explained that the application of electrical discharges to differ-
ent biological materials results in the fragmentation of treated 
particles of F&V sample due to the propagation of the shock 
waves and explosion of cavitation bubbles, thus facilitating 
the extraction of phenolic compounds. Furthermore, phenolic 
compounds can form complexes with proteins, starch, cellu-
lose, minerals, and other substances. Therefore, the application 
of various non-thermal methods can affect phenolic binding 
thus increasing the extractability of these compounds. This 
shows that the initial concentration of F&V waste can affect 
the superiority of one extraction method over another along-
side the target valuable compounds (Arshad et al., 2021a, 
2021b; Faria and Silva, 2024).

Dryers

PEF is one of the promising technologies recommended for 
industrial use as a pretreatment of drying operations (Shorst-
kii et al., 2022). Several scientific studies have revealed the 
effect of PEF on plant cell membranes, providing explana-
tions for the processes of pore formation under external elec-
tric fields. The latter caused an increase in membrane perme-
ability and, hence, an increment in mass transport in plant 
tissue matrices (Fauster et al., 2020; Giancaterino et al., 
2024a, 2024b; Punthi et al., 2022). The treatment involved 
bears all the benefits of efficient food production processes 
with raised production efficiency and product quality from 
the reduction of mass transfer resistance (Boateng, 2024; 
Lammerskitten et al., 2019; Matys et al., 2022; Rahaman 
et al., 2024).

Due to its ability to provoke electroporation of the cell 
membrane, it therefore increases mass transfer, hence 

promoting moisture removal during drying. It relieves such 
constraints to ease processing temperatures and time to the 
optimal drying protocols (Naveed Arshad et al., 2021a, 2021b; 
Zhang et al., 2023a, 2023b). Thus, PEF becomes a proper 
solution to add value during drying. Understanding these 
mechanisms and their variants of PEF treatment and its influ-
ence on the quality and structural attributes of various F&V 
becomes imperative to gauge its efficacy comprehensively.

Mass Transfer

Water mass transfer velocity, an indispensable feature of 
the drying process, depends on cell permeability as one of 
the critical factors (Rahaman et al., 2021). PEF treatment, 
through the exerted non-thermal effect on the membranes of 
plant cells, leads to damage to their anatomy and integrity 
(Shorstkii et al., 2022). It has been notified that electropora-
tion of cell membranes resulting from the PEF treatment 
contributes toward enhanced mass transfer throughout the 
drying and moisture evacuation processes (Ali et al., 2024; 
Zhang et al., 2023a, 2023b). Disintegration index of cells 
and the diffusion coefficient of water are most important 
parameters for performing massive mass transfer of the F&V 
(Mohammed et al., 2024; Punthi et al., 2022).

The cell disintegration index reflects the extent of disruption 
or breakdown of the cell structures of the produce. In contrast, 
the water diffusion coefficient will depict the ease of movement 
of the water molecules through the cellular matrix (Rahaman 
et al., 2021; Wang et al., 2023). Rahaman et al. (2019) revealed 
that the increasing value of electric field intensity substantially 
increased the index of cell disintegration. In addition, Liu et al. 
(2022) and Kim et al. (2023) reported that the disintegration 
of cells is mainly increased, leading to an increase in the rate 
of mass transfer during drying.

On the other hand, some studies showed that PEF treat-
ment alone might not be so effective. For example, del 
Carmen Razola-Díaz et al. (2023) observed insignificant 
changes in the mass loss of strawberries and kiwifruits 
treated with PEF. Similarly, Dermesonlouoglou et  al. 
(2018) and Dermesonlouoglou et al. (2018) studied PEF 
pretreatment of kiwifruit and goji berries, respectively. 
They claimed initial drop in OD (osmotic dehydration) did 
not go hand in hand with the difficulty of the OD technique 
in measuring the mass change, a problem that was mainly 
ascribed to the high resistance of cellular membranes. 
Using PEF combined with OD led to a faster initial loss in 
moisture; thus, a mass transfer can be effectively achieved 
before entering the drying process.

The positive effect of the fusion of PEF and other high-
tech systems has encouraged researchers to combine PEF 
and other non-thermal methods such as ultrasound to achieve 
better performance. Further, Rahaman et al. (2021) used 
ultrasound treatment to develop cavitation by forming a 
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sponge-like matrix within the product. The co-application 
of ultrasound with PEF shows a better development in mass 
transfer during plums drying. It has been observed that 
increasing the intensity of the PEF enhances the removal of 
moisture removal.

While the improvement of mass transfer effectiveness due 
to PEF is quite well described, a gap is observed in some of 
the more recent works concerning a more detailed discussion 
related to the dynamics of mass transfer. Considering numeri-
cal modeling as an advanced method in studying physical 
processes, Zhang et al., (2023a, 2023b) proposed using it to 
explain the mechanism of the effect of PEF treatment on dry-
ing and changing laws of heat and mass transfer. Correspond-
ingly, Shorstkii et al. (2022) developed such a model for drying 
potato, onion, and carrot tissues pretreated by PEF with an 
error of the mean below 4%. Consequently, it has been inferred 
that this model enables the prediction of moisture potential 
transfer progress and, consequently, the drying behavior of 
PEF-treated material at various levels of electroporation.

The model presented in the literature offers a comprehen-
sive elucidation of PEF pretreatment, laying a strong foundation 
for its potential application in the drying of F&V. As recom-
mended, applied models could be effectively utilized in the can-
dying process to optimize PEF pretreatment to produce F&V 
characterized by high dehydration levels and reduced sugar 
content. Future research may thus focus on the optimal PEF 
parameters to allow for targeted drying but exclude adverse 
effects on product quality that are usually unfavorable to the 
treated produce. It would be interesting for both industry and 
academia to investigate further how the PEF treatment affected 
the rehydration properties, nutritional content, and sensory 
attributes of dehydrated F&V during long-term storage.

Quality Characterizations

The preservation of key parameters is the main part of PEF-
pretreated F&V as the importance of healthy and hygienic 
postharvest processing. Calín-Sánchez et al. (2020) stated 
that quality parameters of dried F&V include color, bulk 
density, porosity, shrinkage, phytochemicals, antioxidant 
capacity, sugars, proteins, volatile compounds, and sensory 
attributes. Polyphenol content, energy aspects, texture, and 
shrinkage parameters have been also mentioned by  Akter 
et al. (2022), and Li et al., (2023a, 2023b, 2023c). Many 
research has claimed these parameters for ascertaining the 
nutritional values, stability during the shelf life period, and 
sensory appeal of understanding in an overall manner the 
consumer acceptance of F&V (Calín-Sánchez et al., 2020; 
Rajoriya et al., 2021).

Liu et al., (2020a, 2020b) revealed although PEF could 
be attributed to a shorter drying time, it had negative effect 
on the color of dried sample. Further research into opti-
mum drying time for different PEF-pretreated F&V that Ta
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minimizes the adverse effect of PEF on the color of the prod-
ucts should be carried out since, from the above discussion, 
PEF-pretreated samples indicated lower total color changes 
at shorter drying times. It should be noted that PEF-treated 
samples exhibit higher residual moisture during the initial 
drying stages. Due to the increased surface water content 
after PEF treatment, less vaporization can be achieved. It 
is also evident that higher PEF intensities do not lead to 
a decreased drying time (Punthi et al., 2022; Zhang et al., 
2023a, 2023b). Therefore, relevant to establish the magni-
tude of energy consumed within the PEF treatment as well 
as further drying processes in the method that is used to 
evaluate further the justifiably sustainable and cost-effective 
nature of the research method. Overall, the effect of the PEF 
on the drying process of various F&V has been interesting 
for researchers and their finding has shown that the PEF had 
a positive effect (Table 3).

PEF treatment has shown notable enhancements in the 
quality of dehydrated F&V. When it comes to drying rate, 
PEF speeds up the process, cutting down drying durations 
for items such as parsnips by as much as 28% at 70 °C and 
carrots by 27–49% (Alam et al., 2018). Color retention in 
both carrots and apples is influenced by PEF, with carrots 
showing higher redness and apples displaying increased 
lightness (Lammerskitten et al., 2019). The texture advan-
tages are significant, as PEF-treated samples are often 
crunchier and more brittle because of increased porosity, 
as seen in freeze-dried apples and red beet (Ammelt et al., 
2021; Lammerskitten et al., 2019).

Another benefit is the retention of bioactive compounds, 
leading to notable enhancements in phenolic levels in fruits 
such as mangoes (Lammerskitten et al., 2020) and apples 
(Lammerskitten et al., 2019). Nevertheless, there may be 
a decrease in antioxidant activity, indicating the necessity 
for parameter optimization. Rehydration ability is typically 
enhanced, as demonstrated in apples and red beet, point-
ing to enhanced structural integrity (Ammelt et al., 2021). 
PEF also leads to positive alterations in the microstructure, 
including increased pore size (Parniakov et  al., 2016a, 
2016b) and decreased shrinkage (Yamakage et al., 2021), 
improving texture and rehydration characteristics. Even 
though there are advantages, the impact of PEF can differ 
between various F&V, stressing the need for customized 
PEF settings for each item.

Total phenolic content (TPC) indicates the potential 
health benefits of products. It influences the taste, color, and 
shelf life of F&V (Mikulic‐Petkovsek et al., 2020). Lam-
merskitten et al. (2019) reported that PEF treatment sig-
nificantly increased the TPC of freeze-dried apples. During 
PEF processing, biochemical reactions can take place, and 
new compounds can be formed. The changes found for the 
TPC of mangos dried using PEF were also investigated by 
Lammerskitten et al. (2020). Both conventional and vacuum 

drying enhanced TPC retention when PEF pretreatment was 
applied. This enhancement effect resulted from a reduced 
thermal impact and enabled accelerated water evaporation.

Also, PEF treatment significantly affected the antioxidant 
activity of F&V (Niu et al., 2021; Surano et al., 2022). del 
Carmen Razola-Díaz et al. (2023) reported that the appli-
cation of PEF treatment affected the antioxidant activity 
and capacity of strawberries and kiwifruits differently. For 
strawberries, a higher electric field strength (200 V/cm) 
increased antioxidant capacity and activity by 13.6% and 
11.5%, respectively. On the other hand, for kiwifruits, an 
even better outcome was obtained with the lower electric 
field strength of 100 V/cm, which increased antioxidant 
capacity and activity by 7.0% and 15.6%, respectively; these 
are meaningful results in terms of the bioactive potential of 
this fruit. Morales-De la Peña et al. (2021) and Pashaza-
deh et al. (2020) reported that some F&V showed higher 
antioxidant capacity and activity than others, most prob-
ably due to a higher content of polyphenols and a protective 
role of sucrose in strawberries. In contrast, though ascorbic 
acid was found to be sensitive to environmental factors, it 
displayed a lower antioxidant capacity and activity, which 
should be ascribed to increased exposure of some F&V to 
the treatments (Pérez-Lamela et al., 2021; Su et al., 2024; 
Zhang et al., 2021, 2023a, 2023b).

Macro/Microstructural Analysis

PEF-treated dried F&V are affected in their microstructures 
significantly. PEF makes the shape more uniform, maintains 
volume better, and improves visual quality about the pro-
cessed material (Li et al., 2023a, 2023b, 2023c; Shams et al., 
2024). The assessments also showed the distribution to be 
more homogeneous, with an increased pore thickness repre-
senting the main difference from the corresponding controls 
(Lammerskitten et al., 2020). PEF treatment minimizes the 
phenomena of shrinkage, enhances the rehydration capac-
ity, and improves the mechanical properties of FD products, 
hence reducing the volume losses and improving firmness 
(Giancaterino & Jaeger, 2023). In addition, processing with 
the PEF affects the Tg of solid products and raises the molec-
ular mobility within the system, which induces a less stable 
matrix that can be detected in various F&V such as in apple, 
carrot, and potato tissues ( Castagnini et al., 2020; Iaccheri 
et al., 2022; Liu et al., 2023; Bao et al., 2024). PEF has 
shown promise as a non-thermal technology to enhance the 
microstructure and shape of dried F&V during processing.

Shapes of dried fruit influence sensory expectations and 
consumer preferences. Parniakov et al., (2016a, 2016b) and 
Liu et al., (2020a, 2020b) reported that PEF-pretreated sam-
ples could almost return to their original shape and size. 
The untreated dried samples exhibited noticeable deforma-
tion and shrinking of the macro-shape, homogenization of 



	 Food and Bioprocess Technology

the tissue structure, and the absence of visible micro-pores. 
By contrast, PEF treatment before drying maintained the 
macro-shape well, not causing shrinkage. Furthermore, 
Ali et al. (2024) reported that the electroporated samples 
showed that more excellent pores were developed, indicating 
the PEF treatment favored maintaining the structural integ-
rity while increasing the porosity during the drying process. 
PEF pretreatment was observed to reduce the microstruc-
tural changes in dried samples significantly. Micrographs 
from PEF-pretreated samples were better than those from 
untreated samples. This effect was very well correlated with 
the PEF treatment, which mostly maintained the tissue struc-
ture of the cells during drying (Giancaterino et al., 2024a, 
2024b; Liu et al., 2020a, 2020b; Trusinska et al., 2023).

Also, to assess the rehydration capability, it is recom-
mended to evaluate the dependent parameter of rehydra-
tion such as the cell disintegration index (Parniakov et al., 
Ammelt et al., 2021; 2016; Rahaman et al., 2024). Parnia-
kov et al., (2016a, 2016b) reported that the deformations 
and remarkable shrinkage were observed in untreated sam-
ples, and micropores were not easily visible so the value 
for rehydration capacity would be around one such that it 
would be wholly rehydrated. By contrast, the PEF-treated 
samples kept their macro-shape and seem to prevent the 
shrinkage, hence higher rehydration capacity. Such an “over-
rehydration” phenomenon may indicate an increase in pore 
size because of the PEF treatment and an improvement in 
the ability of the tissue to rehydrate rapidly and efficiently 
(Chauhan et al., 2018; Kim et al., 2023). Additionally, rehy-
dration significantly enhances the efficiency of electropo-
ration by restoring the cell membrane’s fluidity, making it 
more susceptible to electrical pulses. Hence, the effect of 
PEF on electroporation should be assessed (Demir et al., 
2023).

The electroporation in the PEF may effectively modify 
the molecular structure, which will be influenced by Tg. 
Kempkes et al. (2017) found that PEF makes lower Tg for 
F&V. This effect of the decrease in the Tg, as was dem-
onstrated in the underlying research, is a highly significant 
effect that must be taken into account given the applica-
tion of PEF treatment to F&V. Research has shown that the 
protein structure has been altered in the F&V, which has a 
change in the TgII, which has also changed the secondary 
protein structure: α-helix and β-sheets. Such a phenomenon 
will be argued to have given satisfaction in both the effec-
tiveness of the drying and the quality characteristics of the 
products obtained in the end (Dadan et al., 2020; Iaccheri 
et al., 2022;Guo et al., 2024a, 2024b; Shams et al., 2024).

There exist intensive ruptured structures of cells dur-
ing the electroporation phenomenon provoked by PEF; in 
this case, water removal rises during drying, which in turn 
might influence the protein structure of those products that 
get dried. This emphasizes that PEF treatments are needed 

to induce changes in protein structure in dried F&V; hence, 
it is a valuable tool to maintain quality and inherent char-
acteristic products during drying. In addition, the literature 
revealed that electroporation facilitates the peeling of fruit 
by creating microscopic pores in the skin, which weakens its 
structural integrity. This technique enhances the efficiency of 
peeling processes, resulting in smoother and faster removal 
of the fruit’s outer layer (Koch et al., 2022; Giancaterino 
and Jaeger, 2023; Shorstkii et al., 2022). Figure 3 shows the 
potential of PEF on the micro/macrostructure of the F&V 
during the drying and peeling processes.

The dried control spinach (Fig. 3a) displayed numerous 
wrinkles caused by shrinkage in the surface microstructure. 
In contrast, the dried PEF-pretreated samples exhibited 
significantly fewer wrinkles, indicating that shrinkage was 
inhibited. The macroscopic images of untreated and PEF-
pretreated apple samples after vacuum freeze drying are 
shown in Fig. 3b. The initial apple disc–shaped samples 
had a diameter of 29 mm and a thickness of 5 mm before 
drying. The data indicate significant deformation and shrink-
age in the untreated freeze-dried samples. In contrast, PEF 
pretreatment before vacuum freeze drying resulted in good 
retention of the macro-shape and inhibition of shrinkage. By 
contrast, visual inspection of red pepper immediately after 
PEF treatment revealed no significant differences in shape 
and structure between the control and PEF-pretreated sam-
ples (Fig. 3c). However, after the drying process, a notable 
difference in surface color was observed. The control red 
pepper exhibited several white spots on the surface, while 
the PEF-pretreated sample displayed a very homogeneous 
surface color.

The variations in peeling ability, skin weight, and skin 
size could be attributed to the individual conditions and 
quality of the fruit. These factors seem to have a more sig-
nificant impact on the values observed than the PEF treat-
ment itself. The presence and thickness of the albedo (white 
spongy layer) are crucial, as a thicker albedo layer makes 
peeling more difficult. This aligns with the subjective peel-
ing ability analysis, where oranges treated with 5.2 kJ/
kg displayed less albedo (Fig. 3d) and were easier to peel 
(Koch et al., 2022). Similarly, Fig. 3e illustrates the effect 
of PEF on the cutting and peeling ability of pomelo. The 
same blade displacement in the fruit, the untreated pomelo 
was cut, whereas the PEF-treated pomelo remained intact. 
This outcome is due to the softening effect of PEF treat-
ment, which allows the product to deform without being 
cut. Consequently, the resistance of the pomelo to the blade 
displacement is reduced (El Kantar et al., 2018). Overall, a 
considerable impact of PEF treatment on the preservation of 
shape in dried F&V has been discerned. Nevertheless, there 
exists a discernible lacuna in comprehending the precise 
influence of individual PEF parameters on this preservation 
aspect, thus necessitating additional research.
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Economic and Environmental Impact

Sustainability is crucial for social, technical, and economic 
development. It sets up a regenerative model of the economy 
and ensures that social needs are constantly supplied. Com-
pared with all the traditionally used methods of thermal food 
processing approaches, PEF technology is much more envi-
ronmentally benign. Therefore, PEF treatment is regarded 
as a sustainable replacement. The advantages of such a sys-
tem include lower consumption of energy (Arshad et al., 
2021a, 2021b; Shams et al., 2024). Other pressing concerns 
for most commercial systems of food production include 
food losses, under-utilization of by-products or processing 
residues, and degradation in quality, which affect the large 
scale and are complex in nature (Guo et al., 2024a, 2024b; 
Taha et al., 2022). The researchers focused on the technical 
transition approach relative to sustainable technology in food 
production for efficiency, which pointed out the efficiency 
of replacing outdated technologies with new ones (Giteru 
et al., 2018; Golberg et al., 2016; Zhang et al., 2021), while 
others focus on studying and utilizing existing technologies 
in food treatment (Hassoun et al., 2024).

Life cycle assessments analyze the viability of PEF from 
both environmental and economic perspectives. From an 
environmental standpoint, PEF application reduces the wast-
age of F&V by environmentally friendly means. From the 
literature, it has been indicated that PEF is essential in the 
recovery of compounds within the pomace, skin, and flesh 
of varied fruits and vegetables, which are otherwise irre-
coverable from all other techniques (Chatzimitakos et al., 
2023; Naliyadhara et al., 2022; Xi et al., 2021). Further-
more, PEF is a non-chemical method of treating wastewater 
that works fairly dependably for the safe disposal of sludge 
with substantial cost savings, perhaps up to 30–50% of 
the overall operating process cost and low environmental 
impact (Capodaglio, 2021; Martínez et al., 2023; Bocker & 
Silva, 2024). Moreover, many researchers have determined 
that PEF technology can efficiently reduce toxicants and 
contaminants in food processing systems (Gavahian et al., 
2020; Pallarés et al., 2020; Tang et al., 2023; TK et al., 2022; 
Zhang et al., 2022a, 2022b). It has been concluded that the 
degradation pathway of pesticides during the PEF process 
may vary according to their chemical nature. However, the 
exact chemical pathways involved were not revealed in those 
studies; hence, no firm conclusion can be drawn at this point.

From the viewpoint of economic sustainability, technol-
ogy enables food processing to be conducted at a cheaper 
cost in terms of energy. Continuous application of PEF 
has been indicated to be more energy-efficient than most 
thermal treatments by a large body of literature (Arshad 
et al., 2021a, 2021b; Guo et al., 2024a, 2024b; Zhang et al., 
2023a, 2023b). Moreover, PEF pretreatment is considered 

particularly promising for the industrial sector because of 
less energy consumption and the production of quality prod-
ucts compared to conventional drying techniques (Punthi 
et al., 2022). The reduction in the energy requirement was 
reported to be 30–65% for drying different F&V through 
various reviewed papers. This manifests the effectiveness of 
PEF pretreatments through this decrease in thermal energy 
needs for consequent processing steps (Liu et al., 2020a, 
2020b; Ostermeier et  al., 2018; Punthi et  al., 2022). In 
addition, treated plant cells led to easier peeling and con-
sequently lowered resistance during cutting. Consequently, 
the final product is cut more accurately yet with less energy. 
Koch et al. (2022) and Giancaterino and Jaeger (2023) have 
evaluated the potential of PEF regarding the peeling process 
of a variety of F&V and ascertained that peeling treatment 
significantly increases peeling efficiency by a factor of 3–5 
times and enhances product yield up to 41.53% when com-
pared to untreated samples. Therefore, the application of 
novel strategies, for example, PEF processing in postharvest 
industries, minimizes product loss, increases final quality, 
and reduces environmental impact and energy consumption 
that is associated with conventional peeling methods.

Challenges and Future Work

PEF has limitations in the postharvest process of F&V due 
to its potential for the high energy costs associated with the 
technology. The pulse generators must be designed to realize 
the short, high-intensity pulses needed for efficient treat-
ment, hence making them very specialized and expensive 
to manufacture (Arshad et al., 2020). The electrodes in PEF 
systems also need to be constructed from materials that can 
withstand high voltage and are resistant to corrosion (Gho-
shal, 2023; Gómez et al., 2019). In addition, high voltage 
creates the need for proper insulation and safety measures 
for both the operators and the system. Since high-voltage 
systems have been invested in, the insulation and the safety 
mechanism that is practiced lead to significant expenses 
(Arshad et al., 2020; Wang et al., 2018). High initial invest-
ment costs hinder the adoption of the PEF technology, espe-
cially among the small food industries. Future work on the 
PEF technology needs to focus on energy efficiency and the 
cost reduction of pulse generators for better accessibility. 
Research in the areas of advanced electrode materials with 
resistivity to corrosion and innovation in insulation design is 
necessary to reduce manufacturing and operating costs. The 
other important aspect for improving operator protection and 
reducing complexity is safety mechanisms for high-voltage 
systems. Eventually, modular and scalable PEF systems can 
be developed that may allow easier adoption by minor agri-
cultural and horticultural industries with a lower cost.
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Some questions remain regarding the extension of shelf 
life for fruits and vegetables (F&V) treated by pulsed elec-
tric fields (PEF). PEF cannot guarantee the inactivation of 
all microorganisms, particularly spores and certain resil-
ient bacterial strains that cause microbial regrowth during 
storage. The susceptibility to PEF varies among individual 
microorganisms, largely influenced by their structural dif-
ferences. Generally, Gram-positive bacteria are more resist-
ant to PEF treatment due to their thick peptidoglycan layer, 
which offers greater protection against the electric fields. 
In contrast, Gram-negative bacteria, with their thinner 
peptidoglycan layer and outer membrane, tend to be more 
susceptible. Additionally, yeasts are generally more sensi-
tive to electric fields than bacteria, which can lead to more 
effective inactivation during PEF treatment (Demir et al., 
2023; Li et al., 2023a, 2023b, 2023c). While PEF be used 
to inactivate some enzymes, such an approach cannot be 
generally applied. Not every enzymatic process can be suc-
cessfully mitigated and, more importantly, inactivated to 
prevent spoilage and the loss of quality over time (Arshad 
et al., 2021a, 2021b). Furthermore, minimal residual enzy-
matic activity under mild conditions may lead to spoilage or 
modify the sensory attributes of food products during stor-
age (Morales-De la Peña et al., 2021; Zhang et al., 2023a, 
2023b). PEF processing still incurs degradation of labile 
vitamins and minerals over time and ultimately results in a 
lower quality from a nutritional point of view. Further stud-
ies should be directed toward the application of this technol-
ogy in combination with other preservation methods to guar-
antee inactivation of resistant microorganisms and further 
improve enzyme control so as to prevent spoilage. Besides, 
further optimization of process parameters of PEF is needed 
in the interest of reducing losses of vitamins and minerals to 
sustain for a longer period, the nutritional quality of fruits 
and vegetables after treatment.

Although the PEF technology has established its great 
potential for the waste valorization of F&V, there are some 
critical limitations to be managed to maximize this potential. 
F&V waste is quite heterogeneous in composition, moisture 
content, and physical properties, which challenges one to 
develop a general PEF treatment protocol. These features 
of fibrous plant materials offer low amenability to the PEF 
treatment, often requiring intense further processing (Chat-
zimitakoset al., 2023; Faria and Silva, 2024). The conditions 
used in the PEF procedure might hinder the stability of the 
bioactive compounds or other valuable extracts from their 
quality by causing possible malfunction or degradation. The 
variation of raw waste material does not allow consistency in 
valorized product quality (Arshad et al., 2021a, 2021b). Such 
optimization and validation of PEF treatment parameters for 
the different waste types would probably be quite an invest-
ment in resources and time, representing a considerable 
amount of money expended on research and development. In 

prospects, PEF technology for the valorization of F&V waste 
should be focused on treatment protocol optimization, taking 
into account variations in the waste composition that would 
provide for maximum extraction of bioactive compounds 
without any quality degradation. Further improvements in 
the efficiency of the PEF treatment of fibrous materials and 
the elaboration of scalable systems will lead to a constant 
product quality with reduced processing costs.

While PEF can reduce drying time and energy consump-
tion in the subsequent drying processes, the pretreatment 
consumes a significant amount of energy. Various F&V 
respond to PEF treatment differently, where the protocols 
have to be adjusted and therefore make it cumbersome 
(Punthi et al., 2022). Considerable modifications and infra-
structure investment of already existing lines are needed to 
fit them into the integration of PEF technology in drying 
(Radojčin et al., 2021; Zhang et al., 2022a, 2022b). Many 
existing drying systems must be engineered and even have 
their processes adjusted to incorporate PEF in a manner that 
many processing plants simply do not find viable. Solving 
such issues is very important to help realize the full poten-
tial derived from PEF technology for postharvest processes 
involving F&V. Further research on PEF technology for the 
treatment of F&V should give more emphasis to two main 
aspects: enhancing the energy efficiency of the pretreatment 
and developing adaptable protocols for different F&V. The 
development will be required to translate into cost-effective 
methods that result in the integration of PEF into existing 
drying systems without significant infrastructure modifica-
tion, making it industrially practical for application.

Conclusion

Advantages of PEF in postharvest processing of F&V are 
many-faceted, from food preservation while keeping the qual-
ity to energy efficiency, low environmental impact, and safety. 
Since PEF is non-thermal, it does not lead to any nutritive 
losses; all nutrients, such as vitamins, antioxidants, and other 
bioactive compounds, are heat-sensitive. PEF technology 
facilitates the efficiency of extraction of bioactive compounds 
and other valuable substances from F&V. The rapid applica-
tion of electric pulses significantly reduces processing time 
and total energy consumption compared to traditional meth-
ods. Thus, PEF technology is more energy-saving than tra-
ditional thermal treatment methods. Although the numerous 
benefits associated with the PEF technology and applications 
are tangible, engineers and researchers still try to overcome 
some challenges coupled with developing the PEF systems.

They assess the factors of adaptability and scalability, 
as these enable a broad size range, from small-scale opera-
tions driven by supermarket demand to large agricultural and 
horticultural units. Furthermore, with future developments 
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of PEF technology, it will be possible to better influence the 
texture and flavor properties of processed F&V, allowing 
for still more consumer-oriented end-products. PEF tech-
nology may also allow both categories of products to result 
in better extraction yields and longer shelf life, both at the 
processing level and among consumers. More investigations 
into these mechanisms and effects on different F&V will 
further deepen the understanding and optimization of the 
technology. The future of PEF technology is promising for 
producing high-quality F&V. Advanced development and 
application in the food industry using PEF would contribute 
to making healthier products and friendliness to the environ-
ment. Life cycle assessments analyze the viability of PEF 
from both environmental and economic perspectives. PEF 
application reduces the wastage of F&V by environmentally 
friendly means. PEF is essential in the recovery of com-
pounds within the pomace, skin, and flesh of varied fruits 
and vegetables, which are otherwise irrecoverable from all 
other techniques. In addition, scalability of PEF secures its 
application in sizes varying from small-scale operations 
driven by supermarket demand up to large-scale food units.
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