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Effects of manufacturing
direction, heat-treatment and
surface operations on fatigue
life in additively manufactured
metals: An analysis based on
statistics and artificial intelligence

Mehmet F Yaren1,2 , Edward John2 and Luca Susmel3

Abstract
This study aimed to establish whether useful fatigue design stress-life curves could be estimated for additively
manufactured metals through statistical and machine learning analysis of a large quantity of experimental fatigue data.
The study focused on additively manufactured aluminium, steel and titanium. Three manufacturing parameters were
considered, namely the manufacturing direction, heat-treatment and surface operations, with the results presented for
0.1 and 21 loading ratios. By gathering experimental data for all parameters, the negative inverse slopes were found to
be concentrated between 3 and 6, and the mean endurance limit as a ratio to ultimate tensile strength was 0.18 and
0.21 for 0.1 and 21 loading ratios, respectively, without any statistical analysis. Surface operations were observed to
have a significant effect on the fatigue strength of additively manufactured aluminium, steel and titanium regardless of
other manufacturing parameters. Multiple linear regression analysis and several machine learning methods (Decision
Tree, Support Vector Machines, K-Nearest Neighbour, Multi-Layer Perceptron, Partial Least Squares and Gaussian
Process Regression) were used to develop predictive models. The results of these analyses highlight that the
conventional approach applied to fatigue of traditional metals does not suffice for additively manufactured metals.
While artificial intelligence presents a promising solution, our investigation indicates it is necessary to account for
parameters in addition to those considered here such as manufacturing processes, material properties, material
microstructure and defects to make reliable fatigue property estimates for additively manufactured metals using
machine learning.
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Introduction

Additive manufacturing (AM) has significant poten-
tial to develop production processes, offering advan-
tages in many industries. Additive manufacturing
makes it possible to design the interior part of prod-
ucts and produce complex geometries easily. This
technology has simplified the design and production
of many components in sectors such as aviation,
energy, healthcare, automotive and defence. For
example, it has been used to create lightweight com-
ponents like brackets and to produce complex parts
for engines in the aviation industry.1 In healthcare,
additive manufacturing enables personalised health
solutions, such as customised implants, prosthetics
and stents, thereby increasing the success rate of

treatments. It is also widely used in energy applica-
tions for turbines and heat exchangers. Furthermore,
additive manufacturing is a popular choice for design
and research teams due to its rapid and cost-effective
prototyping capabilities.
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Techniques in additive manufacturing are develop-
ing, and this technology is becoming more affordable.
Although additive manufacturing reduces material
waste and its efficiency is high, the full benefit of this
efficiency is not yet seen in the end product cost,
mainly due to the cost of materials. New printing
approaches, production technologies, parameters and
materials are continually being developed and
researched. Moreover, the characteristics of additively
manufactured parts, as well as the effects of para-
meters on these characteristics, are topics of scientific
research, and experimental data is increasing in the
literature rapidly.

The production parameters of additive manufac-
tured components can significantly affect the resul-
tant mechanical properties and fatigue performance.
Understanding the impact of manufacturing para-
meters on the material’s fatigue strength is crucial for
industrial applications. However, there are no stan-
dard rules that engineers can follow to construct
approximate SN curves when designing additively
manufactured components against high-cycle fatigue
loading. The following literature review summarises
some recent work done in the field of characterising
the high-cycle fatigue performance of additively man-
ufactured materials.

Materials including polymers, metals, concrete and
ceramics, are used in additive manufacturing. Among
these materials, metal-based materials have garnered
significant interest for industrial application. Additive
manufacturing methods used in producing metal
parts can be categorised into two main groups: Power
Bed Fusion (PBF) and Directed Energy Deposition
(DED). PBF further divides into laser (L-PBF) or
electron beam (E-PBF) based approaches. In DED
method, the material can be in the form of either
powder or wire. Additionally, there are some rarely
used different methods in the literature like bound
metal deposition, binder jetting etc. Each method
includes different production parameters such as
power, current, voltage, material feed rate, etc.

There are a limited number of studies in the litera-
ture that compare the effects of different production
methods.2–20 The studies generally investigate the
effects of chemical compounds of metals,21–23 manu-
facturing orientation,6,24–33 heat treatment,4,34–45 and
surface operations.29,39,46–54 In some studies about
additively manufactured metals, researchers investi-
gated the effects of materials and production methods
on fatigue behaviour.

Sun et al.28 investigated the effect of manufactur-
ing orientation on Ti-6Al-4V specimens produced
using Selective Laser Melting (SLM). A significant
influence of manufacturing orientation on the fatigue
performance of this alloy is reported. Chang et al.32

and Qian et al.30 also found that fatigue performance
changed with different manufacturing orientations on
the mentioned material with SLM but with annealed
conditions. On the other hand, Persenot et al.27 used

a machined specimen made of Ti-6Al-4V via EBM,
and they could not observe any significant difference
in fatigue properties related to manufacturing orien-
tation. SLM is also used in two other studies by
Yadollahi et al.26 and Zhao et al.25 to produce speci-
mens made of 17-4 PH and AlSi12Mg alloys, respec-
tively. Both studies highlight the significant influence
of build direction on fatigue. Yadollahi et al.26

explain the difference in fatigue strength between spe-
cimens with different manufacturing orientations by
considering the alignment of deposited layers relative
to the loading axis. Zhao et al.25 found that horizon-
tally built specimens exhibited a higher fatigue life
than vertically built ones for a similar pore size. On
the other hand, Nezhadfar et al.24 tested AIF357,
ALSi10Mg and AD1 specimens produced with the L-
PBF method but did not observe any differences in
fatigue strength related to build orientation. In sum-
mary, the literature is divided regarding influence of
build direction relative to loading direction on the
fatigue strength of additively manufactured titanium
or aluminium specimens.

Nezhadfar et al.47 found that performing a solu-
tion heat treatment before other heat treatment pro-
cedures, such as ageing, significantly improved the
fatigue strength of their as-built 17-4 PH specimens
produced with the L-PBF method. Baek et al.55 dis-
cuss AlSi10Mg material produced by SLM, finding
that direct ageing of the alloy gave the best fatigue
properties, while the T6 alloy had the lowest fatigue
limit. Another study by Schneller et al.45 using
AlSi10Mg produced through SLM shows that the
effect of heat treatment depends on the process tem-
perature. For example, heat treatments below a spe-
cific temperature can worsen fatigue properties of
AlSi10Mg. Hot isostatic pressing is revealed to be
more effective than heat treatments for improving the
fatigue life of Ti-6Al-4V produced through L-PBF.56

Kaletsch et al.36 and Ardi et al.44 both focused on
Inconel 718 material produced by L-PBF. High fati-
gue strengths were achieved after hot isostatic press-
ing, even with high initial porosity and argon content.
However, there may be a critical limit for high poros-
ity when specimens after hot isostatic pressing are
subjected to heat treatment without pressure.36

According to a study by Ardi et al.,44 hot isostatic
pressing is found to be effective in reducing porosities
and decreasing the porosity volume ratio. However, it
may not always contribute to enhancing the fatigue
performance of Inconel 718 parts. This may be due to
the presence of inclusions and brittle phases within
the material, as well as a reduction in yield strength
caused by hot isostatic pressing. The literature there-
fore shows that heat treatment processes can have a
positive influence on the fatigue strength of additively
manufactured titanium, steel and aluminium speci-
mens, however, a positive effect is not guaranteed
and the process must be carefully selected for each
material.
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The effect of machining on fatigue life has also
been investigated in the literature. Ti-6Al-4V pro-
duced by EBM showed lower fatigue resistance in as-
built specimens than machined ones.27 Lee et al.57

indicated that laser polishing and stress relief signifi-
cantly improved fatigue strength in Ti-6Al-4V pro-
duced via L-PBF. Witkin et al.29 found that surface
condition played a more important role in fatigue
strength than the specimen orientation for Inconel
718 produced via L-PBF. In another study with the
same production method,58 shot peening improved
the fatigue performance of Inconel 625 and Inconel
718. In reference,47 as expected, better fatigue strength
was obtained when the surface of the specimen was
machined after heat tempering specimens than for as-
built specimens made from 17-4 PH. Therefore, in
general, surface operations are reported to improve
the fatigue performance of additively manufactured
titanium and steel.

From the literature review above, previous studies
have explored various factors, including material,
manufacturing orientation, post-production treat-
ments and surface conditions. The studies show that
the fatigue strength of additively manufactured
metals is strongly influenced by complex interactions
between the manufacturing and post-processing para-
meters used. Based on the available literature it is not
possible to propose standard rules for estimating
design SN curves for additively manufactured metals.

This study aimed to establish whether useful design
SN curves could be estimated for additively manufac-
tured metals through statistical and machine learning
analysis of a large quantity of experimental fatigue
data. The fatigue data used for this analysis was
sourced from a recently published database59 compil-
ing the fatigue and fatigue crack growth behaviours
of additively manufactured metals from around 3000
papers. Fatigue data from this database was cate-
gorised and re-analysed to determine the SN-curve
parameters for each data set. The effectiveness of a
multiple linear regression model and several Artificial
Intelligence (AI) tools at predicting these SN-curve
parameters was then assessed.

Database and the method of the
statistical re-analysis

Data filtering and categorisation

In this study, the experimental results are obtained
from a database created by Zhang and Xu.59 The data-
base (FatigueData-AM2022) is generated with the help
of machine learning and image processing techniques
by using around 3000 scientific papers on fatigue or
crack propagation of additively manufactured metals
published until the end of 2022. Details of the data,
collecting methods and the precision of the data can be
seen in reference.59 The database tabulated the 3D
printing parameters, heat treatment processing, fatigue

and static test conditions. Some of the data are stress
(s & N) or strain-based (e & N) fatigue life data, and
the others are crack growth rate (da/dN).

This study focused on stress-based fatigue analysis,
so, fatigue data sets were only included in the statisti-
cal re-analysis if it included stress-life relation data (s
& N) and ultimate stress data under axial tensile load-
ing without any notch effect. Since a small number of
data were available for build orientations between 0�
and 90�, only the data for build orientations of 0�
and 90� were used. The materials given in the data-
base were categorised as either steel (S), aluminium
(A) or titanium (T). Post-processing operations were
categorised as heat treatment processes and surface
operations. Some of the data in the database were
heat-treated or hot isostatic pressed, however, for this
analysis data was categorised as either heat treated
(HT) or not heat treated (NHT). The surface opera-
tion categories machining, polishing and both
machining and polishing were used to investigate the
effect of surface operations on endurance limit in this
study. The testing temperature for all data sets ana-
lysed was 25� in an air environment, and the tests
were load controlled. The feedstock in the data ana-
lysed was mostly powder, with only 12 data sets with
a wire feedstock. For this reason, feedstock was not
considered in the analysis. Only datasets with a Ts

scattering ratio of 2 or less were included in the analy-
sis, for both Ps=90% and Ps=95%. For the statis-
tical assessment and the application of artificial
algorithms, z-scores were calculated based on the
ratio of s50/sUTS and the negative inverse slope val-
ues. Data points yielding z-scores greater than 3 were
excluded from the statistical evaluations. A summary
of the used data is given in Tables 1 and 2.

Fatigue data statistical re-analysis

The fatigue data selected according to the criteria
above were statistically re-analysed to obtain fatigue
curves for different probabilities of survival
(Ps=10%, 50% and 90%) with the value of endur-
ance limit calculated at 2.106 cycles to failure. Fatigue
curves can be calculated easily as a straight line in the
log-log scale with equation (1), where the endurance
limit sA corresponds to a number of cycles to failure
equal to NA. NA is the reference number of cycles to
failure, and k is the negative inverse slope. The distri-
bution of fatigue life at a given stress level can be
described with a log-normal distribution.140

sk:Nf =sk
A:NA ð1Þ

Calibration constants are required to obtain a prob-
ability of survival by using the least squares linear
regression method with the logarithm of life and stress
values, as seen in equation (2). The calibration con-
stants, c0 and c1 in equation (2) are calculated with
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Table 1. Summary of the re-analysed data for 0.1 loading ratio.

Ref. N. of
Data

Angle
(�)

Material Types
of AM

Heat
treatment

Surface
operation

sUTS

(MPa)
k 50 s50

(MPa)
s90

(MPa)
Ts 90

Kedziora et al.60 10 90 17-4 PH M. Ext. - B 496 5.65 64.0 51.1 1.57
Barr et al.61 26 0 300M steel P-DED - M 1722 4.96 246.1 197.2 1.56
Barr et al.61 4 0 300M steel P-DED - M 1560 13.12 339.5 317.1 1.15
Stern et al.21 6 0 316L L-PBF NHT M; P 656 7.35 127.9 118.3 1.17
Zhang et al.62 8 0 316L L-PBF NHT Edm; G 723 5.34 147.5 134.3 1.21
Zhang et al.62 5 90 316L L-PBF NHT Edm; G 620 7.10 168.4 157.9 1.14
Zhang et al.63 7 0 316L L-PBF NHT M 723 4.39 133.2 117.6 1.28
Zhang et al.63 6 0 316L L-PBF NHT M 708 5.56 152.3 128.8 1.40
Zhang et al.63 9 0 316L L-PBF NHT M 631 6.17 109.8 96.9 1.28
Zhang et al.63 9 0 316L L-PBF NHT M 692 5.56 127.0 105.0 1.46
Zhang et al.63 4 0 316L L-PBF HT M 673 5.96 139.3 127.1 1.20
Afkhami et al.64 13 0 316L L-PBF - M 654 12.39 208.9 198.3 1.11
Afkhami et al.64 12 90 316L L-PBF - M 569 11.29 181.0 174.2 1.08
Afkhami et al.64 9 90 316L L-PBF - B 553 4.38 110.4 88.4 1.56
Afkhami et al.64 5 90 316L L-PBF - 647 7.35 170.6 154.7 1.22
Spierings et al.65 11 90 316L L-PBF - M 760 4.56 123.0 96.6 1.62
Solberg et al.66 13 90 316L L-PBF - B 437 6.15 73.1 65.3 1.25
Thawon et al.67 7 0 316L BMD HT B 482 5.92 79.1 72.5 1.19
Voloskov et al.68 5 90 316L L-PBF NHT M 565 3.95 126.0 97.7 1.66
Kedziora et al.60 8 90 316L L-PBF HT B 533 8.58 139.1 136.9 1.03
Kedziora et al.60 8 90 316L M. Ext. - B 314 8.67 51.9 41.1 1.59
Kedziora et al.60 9 90 316L L-PBF HT B 571 4.00 94.3 86.8 1.18
Stern et al.21 6 0 316L + N L-PBF NHT M; P 714 4.19 113.9 103.3 1.22
He et al.69 8 0 Al-5024 L-PBF NHT B 304 4.43 33.4 28.5 1.37
He et al.69 6 0 Al-5024 L-PBF HT B 425 4.15 32.9 26.9 1.49
Lasagni et al.70 10 90 Al-Mg-Sc L-PBF HT M 546 7.07 68.2 51.9 1.73
Qin et al.71 18 0 Al-Mg-Sc-Zr L-PBF HT M; P 536 5.67 65.1 49.7 1.72
Qin et al.71 16 90 Al-Mg-Sc-Zr L-PBF HT M; P 530 4.62 37.1 29.5 1.58
Qin et al.72 16 90 Al-Mg-Sc-Zr L-PBF HT M; P 535 4.60 37.2 29.6 1.58
Wu et al.73 14 0 AlSi10Mg L-PBF HT G; P 273 5.32 47.9 39.0 1.51
Wu et al.73 14 90 AlSi10Mg L-PBF HT G; P 273 4.32 27.6 23.1 1.42
Qian et al.74 13 90 AlSi10Mg L-PBF HT M; P 273 4.33 27.6 23.0 1.44
Peng et al.75 13 90 AlSi10Mg L-PBF - M; P 273 4.34 27.7 23.0 1.44
Peng et al.75 15 0 AlSi10Mg L-PBF - M; P 273 5.35 48.4 39.5 1.50
Yan et al.76 8 90 AlSi10Mg L-PBF - P 430 6.18 47.7 41.2 1.34
Beretta et al.77 15 90 AlSi10Mg L-PBF - B 469 3.81 26.1 23.2 1.26
Beretta et al.77 14 90 AlSi10Mg L-PBF - M 469 6.51 59.7 53.0 1.27
Zhang et al.78 15 90 AlSi10Mg L-PBF - V 412 4.41 36.8 31.4 1.38
Zhang et al.78 13 90 AlSi10Mg L-PBF - S 412 11.41 65.5 58.4 1.26
Zhang et al.78 13 90 AlSi10Mg L-PBF - M; P 412 9.94 76.1 70.4 1.17
Zhao et al.25 9 90 AlSi12Mg L-PBF - M 434 6.48 58.0 50.7 1.31
Rao et al.79 9 90 AlSi7Mg0.6 L-PBF HT B 314 3.35 28.4 23.6 1.45
Rao et al.79 5 90 AlSi7Mg0.6 L-PBF HT M 327 5.12 62.0 50.6 1.50
Cacace et al.80 6 90 AlSi7Mg0.6 L-PBF HT S 254 9.78 58.2 54.1 1.15
Cacace et al.80 7 90 AlSi7Mg0.6 L-PBF HT S 254 8.84 54.5 45.9 1.41
Cacace et al.80 11 0 AlSi7Mg0.6 L-PBF HT S 254 8.64 51.1 44.4 1.32
Cacace et al.80 9 0 AlSi7Mg0.6 L-PBF HT S 254 9.51 50.8 46.1 1.22
Wang et al.81 4 0 ASTM A131 EH36 L-PBF - M; P 971 5.19 149.7 118.4 1.60
Wang et al.81 4 0 ASTM A131 EH36 L-PBF - M; P 921 5.46 129.1 103.4 1.56
Wang et al.81 4 0 ASTM A131 EH36 L-PBF - M; P 891 4.21 99.3 76.1 1.70
Wang et al.82 4 0 ASTM A131 EH36 L-PBF - Edm; P 971 5.18 170.2 134.4 1.60
Wang et al.82 4 0 ASTM A131 EH36 L-PBF - Edm; P 921 5.49 146.4 119.0 1.51
Wang et al.82 4 0 ASTM A131 EH36 L-PBF - Edm; P 891 4.17 115.8 88.8 1.70
Okazaki83 6 90 Co-28Cr-6Mo L-PBF - M 1156 8.86 293.4 260.5 1.27
, Wai Cho et al.84 8 90 CoCrMo L-PBF HT P 1118 11.03 224.9 204.3 1.21
Wai Cho et al.84 10 90 CoCrMo L-PBF HT P 1110 14.46 229.2 213.0 1.16
Kuzminova et al.85 4 90 CrFeCoNi L-PBF HT B 638 12.38 159.5 154.2 1.07
Kuzminova et al.85 4 90 CrFeCoNi L-PBF NHT M; P 658 4.21 196.7 181.3 1.18
Kuzminova et al.85 6 90 CrFeCoNi L-PBF HT M; P 638 10.55 204.8 176.5 1.35
He et al.86 13 0 ER4043 aluminium W-DED - M; P 164 4.75 28.4 22.4 1.62
He et al.86 8 0 ER4043 aluminium W-DED HT M; P 147 11.30 41.1 38.0 1.17
Xie et al.87 18 0 ER5087 aluminium W-DED - M 292 5.40 49.6 42.8 1.34
Shao et al.88 5 0 GH4169 P-DED - 903 8.75 160.2 124.7 1.65

(continued)
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equations (3) and (4), where xm and ym are the averages
of the logarithm of life and stress values, respectively.

log Nf

� �
= c0 + c1:log sð Þ ð2Þ

c1 =

Pnumber of data
i=1 log sið Þ � xm½ �:½log Nf, i

� �
� ym�Pnumber of data

i=1 log sið Þ � xm½ �2
ð3Þ

c0 = ym � c1:xm ð4Þ

The negative value of c1 gives the negative inverse slope
(k) which is an essential parameter in the calculation of
endurance limit sA,50% for Ps=50%. Equation (2) is
written in a simple form as equation (5) to make clear
the calculation of the endurance limit.

sA, 50% =
10c0

NA

� �1=k
ð5Þ

Although the fatigue data for additively manufactured
metals were compared by using sA,50% in this study,

Table 1. (Continued)

Ref. N. of
Data

Angle
(�)

Material Types
of AM

Heat
treatment

Surface
operation

sUTS

(MPa)
k 50 s50

(MPa)
s90

(MPa)
Ts 90

Han et al.89 15 90 Hastelloy-X L-PBF NHT P 620 3.72 95.2 87.4 1.19
Poulin et al.90 10 90 IN625 L-PBF HT M; P 955 14.90 287.7 277.4 1.08
Balbaa et al.58 9 90 IN625 L-PBF - B 901 4.12 115.9 91.7 1.60
Balbaa et al.58 5 90 IN625 L-PBF - SP 901 11.56 237.6 228.6 1.08
Theriault et al.91 7 90 IN625 P-DED HT M; P 744 13.54 193.3 178.8 1.17
Theriault et al.91 9 90 IN625 P-DED HT M; P 697 10.09 190.8 181.1 1.11
Klein Fiorentin et al.92 9 0 IN625 P-DED NHT M 810 8.70 218.9 201.0 1.19
Sarkar et al.93 10 90 IN718 P-DED HT Edm; P 1134 5.94 162.2 139.4 1.35
Sarkar et al.93 13 90 IN718 P-DED HT Edm; P 1134 3.67 135.0 110.1 1.50
Wan et al.94 6 0 IN718 L-PBF HT Edm; G; P; EP 1451 3.48 152.0 122.8 1.53
Wan et al.94 10 0 IN718 L-PBF HT Edm; G; P; EP 1451 4.50 170.9 151.3 1.28
Wan et al.94 7 0 IN718 L-PBF HT Edm; G; P; EP 1451 5.89 201.3 181.6 1.23
Wan et al.94 8 0 IN718 L-PBF HT Edm; G; P; EP 1451 10.22 214.9 180.9 1.41
Sabelkin et al.95 4 0 IN718 L-PBF NHT B 986 4.05 99.5 77.4 1.65
Musekamp et al.96 9 90 Scalmalloy L-PBF HT M 510 12.63 80.8 66.6 1.47
Musekamp et al.96 4 90 Scalmalloy L-PBF HT B 510 5.05 35.7 29.3 1.49
Shin et al.97 8 90 SS420 B jetting HT Edm; M; P 656 6.71 147.4 133.0 1.23
Zhou et al.98 4 0 Ti-13Nb-13Zr L-PBF - B 1064 5.83 73.7 65.0 1.29
Zhou et al.98 5 0 Ti-13Nb-13Zr L-PBF - B 1106 4.89 85.6 66.6 1.65
Zhou et al.98 5 0 Ti-13Nb-13Zr L-PBF - B 1085 5.59 86.6 69.0 1.58
Zhou et al.98 4 0 Ti-13Nb-13Zr L-PBF - B 1053 5.43 78.3 66.8 1.37
Dietrich et al.43 10 0 Ti-6Al-4V L-PBF HT M 1233 8.18 231.0 197.2 1.37
Dietrich et al.43 10 0 Ti-6Al-4V L-PBF HT M 1203 8.95 245.5 210.1 1.36
Greitemeier et al.18 10 90 Ti-6Al-4V E-PBF HT B 972 4.05 55.3 51.1 1.17
Greitemeier et al.18 10 90 Ti-6Al-4V L-PBF HT B 1165 3.61 62.4 52.1 1.43
Greitemeier et al.18 9 90 Ti-6Al-4V E-PBF HT M 972 4.22 90.4 73.0 1.54
Benedetti et al.99 7 90 Ti-6Al-4V L-PBF HT B 1090 3.74 80.7 62.1 1.69
Biswal et al.100 8 90 Ti-6Al-4V W-DED - M; P 859 13.33 303.3 286.6 1.12
Biswal et al.100 6 90 Ti-6Al-4V W-DED - M; P 859 11.53 265.5 251.7 1.11
Biswal et al.100 18 90 Ti-6Al-4V W-DED - M; P 842 4.68 135.5 104.9 1.67
Kahlin et al.20 7 90 Ti-6Al-4V L-PBF HT LP 1108 3.18 47.4 39.9 1.41
Le et al.101 9 90 Ti-6Al-4V L-PBF HT B 927 3.98 81.0 73.4 1.21
Le et al.101 12 90 Ti-6Al-4V L-PBF HT B 927 4.32 88.0 78.7 1.25
Syed et al.102 12 0 Ti-6Al-4V W-DED NHT P 951 8.41 269.1 230.3 1.37
Syed et al.102 12 90 Ti-6Al-4V W-DED NHT P 898 9.90 278.6 240.2 1.34
Gong et al.17 6 90 Ti-6Al-4V L-PBF NHT M 978 4.15 53.7 45.7 1.38
Franchitti et al.103 19 90 Ti-6Al-4V E-PBF NHT M 1020 7.80 428.8 357.5 1.44
Franchitti et al.103 15 90 Ti-6Al-4V E-PBF NHT B 919 4.47 112.4 86.2 1.70
Brika and Brailovski104 10 90 Ti-6Al-4V L-PBF HT M 930 5.97 178.8 139.7 1.64
Brika and Brailovski104 10 90 Ti-6Al-4V L-PBF HT M 1001 5.25 177.3 152.1 1.36
Wanjara et al.105 4 90 Ti-6Al-4V E-PBF - B 1015 3.84 73.2 71.1 1.06
Wanjara et al.105 5 90 Ti-6Al-4V E-PBF - B 981 4.03 54.1 49.9 1.18
Wanjara et al.105 5 90 Ti-6Al-4V E-PBF - M 1045 4.20 63.3 55.9 1.28
Jimenez et al.106 8 90 Ti-6Al-4V L-PBF HT M 879 6.48 197.7 172.0 1.32
Segurajauregi et al.107 6 90 Ti-6Al-4V L-PBF - B 1159 3.08 38.8 33.9 1.31
Segurajauregi et al.107 7 90 Ti-6Al-4V L-PBF - B 1115 3.60 44.4 41.0 1.17
Springer et al.108 19 0 Ti-6Al-4V W-DED NHT M; P 957 4.39 132.2 101.7 1.69

B: as-built; M: machined; G: grind; P: polished; LP: laser polished; EP: electropolished; V: vibrofinish; S: sandblast; T: tribofinish.
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Table 2. Summary of the re-analysed data for -1 loading ratio.

Ref. N. of
Data

Angle
(�)

Material Types
of AM

Heat-treatment Surface
operation

sUTS

(MPa)
k50 s50

(MPa)
s90

(MPa)
Ts 90

Nezhadfar et al.109 9 90 17-4 PH L-PBF HT M; P 1238 6.91 423.7 365.8 1.34
Nezhadfar et al.109 7 90 17-4 PH L-PBF HT M; P 1192 7.66 467.1 400.1 1.36
Yadollahi et al.26 8 90 17-4 PH L-PBF NHT M; P 940 6.44 197.2 156.1 1.60
Yadollahi et al.26 9 0 17-4 PH L-PBF NHT M; P 1060 7.12 263.7 212.5 1.54
Carneiro et al.110 18 90 17-4 PH L-PBF HT B 1110 5.75 271.0 205.2 1.74
Nezhadfar et al.47 8 0 17-4 PH L-PBF HT B 1117 3.83 119.7 105.2 1.29
Nezhadfar et al.47 7 90 17-4 PH L-PBF HT M 1117 5.52 333.6 304.8 1.20
Nezhadfar et al.47 9 90 17-4 PH L-PBF HT B 1132 3.34 120.0 102.5 1.37
Nezhadfar et al.47 6 90 17-4 PH L-PBF HT M; P 1132 4.03 282.4 246.3 1.31
Nezhadfar et al.47 6 90 17-4 PH L-PBF HT B 1167 4.04 182.4 150.0 1.48
Nezhadfar et al.47 6 90 17-4 PH L-PBF HT M; P 1167 7.65 441.2 372.7 1.40
Nezhadfar et al.47 9 90 17-4 PH L-PBF HT B 1375 3.47 147.9 112.5 1.73
Nezhadfar et al.47 5 90 17-4 PH L-PBF HT M; P 1375 5.42 368.2 355.8 1.07
Nezhadfar et al.47 6 90 17-4 PH L-PBF HT M; P 948 6.94 401.5 339.5 1.40
Molaei et al.111 4 90 17-4 PH L-PBF HT P 1193 6.50 348.5 270.8 1.66
Molaei et al.111 6 90 17-4 PH L-PBF HT M 1193 7.92 460.0 397.3 1.34
Yadollahi et al.112 12 90 17-4 PH L-PBF HT M; P 1150 4.58 148.5 115.3 1.66
Damon et al.113 16 0 18Ni300 L-PBF HT M; P 1926 3.63 199.8 168.8 1.40
Elangeswaran et al.114 20 90 18Ni300 L-PBF NHT B 1176 2.85 102.9 79.1 1.69
Elangeswaran et al.114 14 90 18Ni300 L-PBF HT S 1744 9.26 644.5 568.2 1.29
Elangeswaran et al.114 11 90 18Ni300 L-PBF NHT V 1176 9.70 479.5 441.9 1.18
Elangeswaran et al.114 11 90 18Ni300 L-PBF NHT S 1176 9.05 422.9 369.8 1.31
Elangeswaran et al.114 12 90 18Ni300 L-PBF HT B 1744 2.47 73.9 63.4 1.36
Elangeswaran et al.114 8 90 18Ni300 L-PBF HT V 1744 7.02 488.9 381.0 1.65
Cutolo et al.34 11 90 316L L-PBF NHT B 573 4.63 142.4 130.7 1.19
Cutolo et al.34 10 90 316L L-PBF HT B 570 3.73 123.0 109.2 1.27
Lai et al.115 6 90 316L L-PBF HT P 601 5.40 200.0 174.5 1.31
Lai et al.115 6 90 316L L-PBF NHT P 633 3.25 119.4 112.4 1.13
Elangeswaran et al.116 12 90 316L L-PBF NHT B 573 4.60 142.3 131.4 1.17
Elangeswaran et al.116 10 90 316L L-PBF HT B 570 3.71 122.7 109.0 1.27
Afkhami et al.64 4 0 316L L-PBF NHT Edm; G 723 7.45 245.6 227.6 1.16
Elangeswaran et al.117 11 90 316L L-PBF NHT B 573 4.63 142.4 130.9 1.18
Elangeswaran et al.117 10 90 316L L-PBF HT B 570 3.71 122.7 108.8 1.27
Blinn et al.118 10 0 316L L-PBF - M; P 678 12.85 317.7 306.1 1.08
Blinn et al.119 9 0 316L L-PBF HT B 681 4.74 172.4 141.4 1.49
Blinn et al.119 11 90 316L L-PBF HT B 600 3.36 106.4 92.5 1.32
Kotzem et al.120 4 0 316L L-PBF - M; P 685 11.87 297.4 230.6 1.66
Kotzem et al.120 5 0 316L L-PBF - M; P 596 10.88 240.2 214.9 1.25
Yu et al.121 14 0 316L L-PBF - Edm; EP 681 5.12 205.1 161.6 1.61
Yu et al.121 12 0 316L L-PBF - Edm; EP 706 4.49 185.2 157.2 1.39
Blinn et al.3 13 90 316L L-PBF - M; P 612 4.89 134.1 101.6 1.74
Blinn et al.3 10 90 316L P-DED - M; P 564 6.27 137.1 106.5 1.66
Blinn et al.3 10 0 316L L-PBF - M; P 681 6.34 205.2 171.5 1.43
Blinn et al.3 9 0 316L P-DED - M; P 629 11.52 222.6 191.4 1.35
Uematsu et al.122 6 0 420J1 SS P-DED - M; P 1737 7.47 477.2 392.9 1.47
Nezhadfar et al.24 6 90 AIF357 L-PBF HT M 390 6.80 97.8 85.5 1.31
Nezhadfar et al.24 6 0 AIF357 L-PBF HT M 370 5.08 70.3 53.9 1.70
Lai et al.40 7 90 AlSi10Mg L-PBF HT P 251 14.86 82.1 73.1 1.26
Nezhadfar et al.24 5 90 AlSi10Mg L-PBF HT M 350 14.41 116.7 108.2 1.16
Nezhadfar et al.24 6 0 AlSi10Mg L-PBF HT M 340 9.96 103.3 93.7 1.22
Romano et al.123 10 0 AlSi10Mg L-PBF NHT M 442 3.79 55.7 46.3 1.44
Zhang et al.124 4 90 AlSi10Mg L-PBF NHT M 478 5.03 79.0 68.6 1.33
Domfang Ngnekou et al.125 14 0 AlSi10Mg L-PBF HT M 338 6.00 84.7 68.6 1.53
Domfang Ngnekou et al.125 4 90 AlSi10Mg L-PBF HT M 350 11.88 91.4 84.0 1.18
Domfang Ngnekou et al.125 7 0 AlSi10Mg L-PBF HT M 328 7.59 81.4 75.4 1.17
Muhammad et al.126 6 90 AlSi10Mg L-PBF HT B 302 4.59 52.2 44.3 1.39
Muhammad et al.126 6 90 AlSi10Mg L-PBF HT B 366 4.84 58.3 48.5 1.45
Muhammad et al.126 5 90 AlSi10Mg L-PBF HT M 302 8.25 91.6 86.3 1.13
Muhammad et al.126 7 90 AlSi10Mg L-PBF HT M 366 7.82 104.7 97.2 1.16
Sausto et al.127 13 90 AlSi10Mg L-PBF HT B 382 3.39 33.0 29.2 1.27
Awd et al.128 4 0 AlSi10Mg L-PBF NHT M; G; P 380 12.13 106.5 84.5 1.59
Awd et al.128 4 90 AlSi10Mg L-PBF NHT M; G; P 352 3.31 46.2 40.0 1.33
Yamashita et al.129 4 0 IN718 L-PBF HT M; P 1467 4.55 286.8 219.4 1.71

(continued)
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one can calculate the scatter band of the data in the
desired confidence level by using equations (6) and (7)
with the help of q values and the formulation of the
standard deviation (s) in equation (8). q values are a
statistical index related to confidence level, and they
are available in the literature.141 The results of the sta-
tistical re-analysis are given in Tables 1 and 2.

sA,P% =sA, 50%
NA

10log NAð Þ+ q:s

� �1=k
ð6Þ

sA, (1�P)% =sA, 50%
NA

10log NAð Þ�q:s

� �1=k
ð7Þ

s=

Pnumber of data
1 log Nf, i

� �
� log NA

sA, 50%

si

� �k� �� �2

number of data� 1

0
BBB@

1
CCCA

0:5

ð8Þ

Statistical re-analysis results

To investigate whether any relationships were readily
apparent from the re-analysed fatigue data the calcu-
lated values of sA, 50% and k were plotted against the
material ultimate tensile strength (UTS). Figures 1 and
2 show representative examples of these plots for data
sets with a load ratio of 0.1 differentiated by material
and surface operations. Note that the 0:253 sUTS line
included in Figure 1 is provided as a reference and is
not a best-fit line. Examination of these plots for dif-
ferent combinations of variables showed no clear
trends or relationships. Although the data obtained
was scattered, many of the endurance limit data were
smaller than the 0.25 of their ultimate stress value for
both R=21 and 0.1, independent from the material
types and specimen direction. Additionally, 59% of
the k values were between 3 and 6 for R=21 and 0.1.

Mean stress effect at the endurance limit

The effect of non-zero mean stress on fatigue life was
investigated for the non-heat-treated 3D-printed

Table 2. (Continued)

Ref. N. of
Data

Angle
(�)

Material Types
of AM

Heat-treatment Surface
operation

sUTS

(MPa)
k50 s50

(MPa)
s90

(MPa)
Ts 90

Liu et al.130 4 0 IN718 L-PBF NHT M; EP 1176 6.82 277.0 240.4 1.33
Liu et al.130 9 0 IN718 L-PBF HT M; EP 1593 3.19 202.5 154.5 1.72
Yu et al.131 11 0 IN718 P-DED HT M 1309 4.95 327.7 277.1 1.40
Nishikawa et al.7 4 90 IN718 L-PBF HT M; P 1350 9.83 549.8 487.5 1.27
Nishikawa et al.7 4 90 IN718 L-PBF HT M; P 1350 5.24 366.2 329.0 1.24
Nishikawa et al.7 4 90 IN718 E-PBF HT M; P 1240 3.32 188.5 152.3 1.53
Doh et al.132 12 0 Maraging Steel L-PBF NHT B 1150 4.02 163.2 129.3 1.59
Doh et al.132 13 0 Maraging Steel L-PBF NHT M 1150 4.92 263.8 201.9 1.71
Doh et al.132 14 0 Maraging Steel L-PBF HT M 2037 3.75 258.2 198.8 1.69
Meneghetti et al.133 9 90 Maraging Steel L-PBF NHT P 1217 3.61 88.9 72.5 1.50
Meneghetti et al.133 9 90 Maraging Steel L-PBF HT P 2034 3.92 132.4 102.3 1.68
Meneghetti et al.133 9 0 Maraging Steel L-PBF NHT P 1203 5.99 192.7 147.5 1.71
Nezhadfar et al.24 4 90 QuesTek Al L-PBF HT M 496 5.76 110.5 95.5 1.34
Muhammad et al.126 8 90 QuesTek Al L-PBF HT B 496 2.92 23.9 18.6 1.64
Muhammad et al.126 6 90 QuesTek Al L-PBF HT M 496 4.76 87.1 66.4 1.72
Wei et al.134 10 0 Ti-5Al-2.5Sn L-PBF - M 1167 7.61 362.5 315.8 1.32
Cutolo et al.34 8 90 Ti-6Al-4V L-PBF HT B 1002 6.78 195.8 180.0 1.18
Cutolo et al.34 10 90 Ti-6Al-4V L-PBF NHT B 1246 2.95 57.2 48.7 1.38
Kaya et al.135 6 0 Ti-6Al-4V E-PBF NHT M 990 7.23 247.3 199.3 1.54
Bhandari and Gaur136 10 0 Ti-6Al-4V L-PBF HT B 948 5.88 207.3 167.5 1.53
Benedetti et al.99 11 90 Ti-6Al-4V L-PBF HT B 1090 3.92 142.4 113.0 1.59
Benedetti et al.99 9 90 Ti-6Al-4V L-PBF HT B 950 11.27 177.1 149.5 1.40
Benedetti et al.99 6 90 Ti-6Al-4V L-PBF HT EP 1090 7.85 247.5 203.8 1.48
Benedetti et al.99 8 90 Ti-6Al-4V L-PBF HT T 960 5.39 259.6 226.4 1.31
Sun et al.28 15 0 Ti-6Al-4V L-PBF HT M 936 4.90 207.9 167.5 1.54
Sun et al.28 19 90 Ti-6Al-4V L-PBF HT M 953 9.57 384.9 336.6 1.31
Karimi et al.137 12 90 Ti-6Al-4V L-PBF HT M 1043 2.98 63.4 53.1 1.43
Singla et al.138 7 90 Ti-6Al-4V L-PBF HT M 1228 6.87 311.5 248.7 1.57
Singla et al.138 4 90 Ti-6Al-4V L-PBF NHT M 1315 3.22 144.4 122.1 1.40
Singla et al.138 5 90 Ti-6Al-4V L-PBF HT M 986 3.24 128.6 102.6 1.57
Fousová et al.16 12 90 Ti-6Al-4V E-PBF NHT B 1132 3.42 110.1 93.6 1.38
Fousová et al.16 10 90 Ti-6Al-4V L-PBF HT B 1045 5.50 194.5 172.0 1.28
Williams et al.139 9 0 WE43 AFSD - Edm; P 264 9.87 95.9 80.8 1.41
Williams et al.139 7 90 WE43 AFSD - Edm; P 224 10.94 89.9 80.1 1.26

B: as-built; M: machined; G: grind; P: polished; EP: electropolished; V: vibrofinish; S: sandblast; T: tribofinish; AFSD: additive friction stir deposition.
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materials. The endurance limit data for four different
materials were used to generate the graph in Figure 3.
Stress amplitudes at the endurance limit was obtained
for different loading ratios and normalised by the
stress amplitude at the endurance limit under R=21
loading ratio. The mean stresses were normalised by
the ultimate tensile stress of each material in the con-
dition of as-built and non-heat-treated. Also included
in Figure 3 are the expressions of Goodman, Gerber,
Dietman and the elliptical relationship that are
known to analyse the effect of non-zero mean stresses
on fatigue are used to compare the experimental
results in a non-dimensional way. All the titanium
data plotted in Figure 3 fall within the Goodman
curve, whilst the only aluminium data point lies
above the Goodmand and Dietman curves but below
the Gerber and Elliptical curves. Two 316L data
points fall above all four curves with the remaining 6
points clustered close to the Goodman curve.

Main and interaction effect analysis

The graphs used to investigate the effect of different
parameters in the previous section were scattered, so
making a deduction with these graphs was not
straightforward. To investigate whether any para-
meters (main effect), or pairs of parameters (interac-
tion effect), had a significant influence on the
endurance limit or negative inverse slope the mean
values and 95% confidence intervals for all data cor-
responding to a given parameter were calculated and
compared. To enable cross-material comparison the
endurance limit was normalised by the material UTS.
The main effect and interaction effect analyses of the
mentioned parameters for endurance limit and nega-
tive inverse slope are given in the next subsections.

Main effect analyses for endurance limit

The main effect analyses were performed for stress
ratios R=21 and 0.1, and the results are given sepa-
rately. The results were calculated for specimen build
direction, material, heat treatment and surface opera-
tions separately. The endurance limit values were nor-
malised by ultimate tensile stress in Figures 4 and 5
and the intervals shown are the 95% confidence

Figure 2. Effect of surface operations on k-negative inverse
slope, R = 0.1.

Figure 1. Effect of surface operations on endurance limit,
R = 0.1.

Figure 3. Effect of non-zero mean stresses at endurance
limit on fatigue.

Figure 4. Mean and intervals of data for s%50/sUTS, R = 0.1.
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intervals. The number of data corresponding to each
specimen condition for stress ratios R=21 and 0.1
are given in Tables 3 and 4, respectively. Taking a
coarse view, using all data without any classification,
the mean s%50/sUTS values were 0.18 and 0.21 for
R=0.1 and R=21, respectively.

Suppose only the specimen direction is filtered and
the changes in other parameters are not taken into
account; the mean value is around 0.2 for both

specimen directions, 0� and 90� under for R=0.1
and R=21, separately. The intervals of the means
are seen on the graphs, and it is acceptable. So, one
can select s%50/sUTS value from the upper or below
limits of intervals according to conservation level. On
the other hand, by comparing the mean values
between 0� and 90�, any effect of specimen directions
on the endurance limit is not seen on results. The
mean values for different material types, heat treat-
ments, surface operations and their intervals are also
given in the figures. Due to the main stress effect
under R=0.1, the endurance limit of the material is
expected to be lower than R=21, and it is generally
seen to be so by comparison of the graphs. However,
this is not clear since the number of data and their
scatter band are not similar between two stress ratios.
Although a relationship cannot be seen clearly in
Figures 4 and 5 with the changes of specimen direc-
tions, material types, or heat treatment on s%50/
sUTS, it does increase with the effect of surface opera-
tions from as-built to machine & polishing. Since a
small number of data are available for only polished
materials, the interval of the data is very high and, its

Figure 5. Mean and intervals of data for s%50/sUTS, R = 21.

Table 3. Mean analyses of s50/sUTS for R = 0.1, 21 and used numbers of data.

Parameters s50/sUTS ; R = 0.1 s50/sUTS ; R = 21

Mean Std. dev. 95% CI upper Max.
Z-score

N Mean Std. dev. 95% CI upper Max.
Z-score

N

0� 0.1865 0.063 0.2146 21.75 19 0.2015 0.060 0.2293 1.70 18
90� 0.1784 0.095 0.2098 2.55 35 0.2139 0.103 0.2412 1.72 55
aluminium 0.1219 0.062 0.1571 2.54 12 0.2173 0.082 0.2553 22.05 18
steel 0.2168 0.056 0.2403 22.05 22 0.2192 0.099 0.2496 2.05 41
titanium 0.1779 0.102 0.2224 2.38 20 0.1779 0.093 0.2267 2.42 14
HT 0.1720 0.081 0.1985 1.84 36 0.2234 0.098 0.2490 2.05 56
NHT 0.1998 0.090 0.2413 21.61 18 0.1694 0.071 0.2029 21.74 17
as-build 0.1185 0.065 0.1513 2.2 15 0.1608 0.068 0.1863 21.70 27
machine 0.2032 0.074 0.2349 2.93 21 0.2336 0.084 0.2666 22.05 25
mach.&polish 0.1720 0.081 0.1984 1.84 13 0.2693 0.106 0.3248 21.56 14
polish 0.2309 0.064 0.2871 1.23 5 0.2056 0.114 0.2901 21.23 7
Mean 0.18 0.21

Table 4. Mean analyses of k for R = 0.1, 21 and used numbers of data.

Parameters k ; R = 0.1 k ; R = 21

Mean Std. dev. 95% CI upper Max.
Z-score

N Mean Std. dev. 95% CI upper Max.
Z-score

N

0� 6.349 2.035 7.264 2.43 19 5.440 1.673 6.213 2.70 18
90� 6.967 3.582 8.153 2.21 35 5.287 2.200 5.880 2.98 53
aluminium 6.026 2.932 7.685 1.80 12 7.096 3.575 8.748 2.17 18
steel 7.694 3.718 9.248 1.93 22 4.802 1.438 5.248 2.16 40
titanium 6.144 2.263 7.135 2.09 20 5.552 2.583 6.906 2.21 14
HT 7.307 3.454 8.435 2.19 36 5.540 2.209 6.135 2.87 53
NHT 5.634 1.947 6.533 2.18 18 4.571 1.408 5.240 1.80 17
as-build 4.239 0.660 4.598 21.35 13 4.119 1.040 4.518 2.56 26
machine 6.720 2.232 7.674 2.64 21 6.488 2.790 7.581 1.93 25
mach. & polish 7.672 3.904 9.795 1.85 13 5.952 1.860 6.926 21.41 14
polish 9.505 3.928 12.94 21.47 5 6.217 4.009 9.187 2.16 7
Mean 6.75 5.55
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mean value breaks the trend for the relation between
s%50/sUTS and surface operations.

Main effect analyses for negative inverse slope (k)

The main effect analyses for the negative inverse
slope, (k) values were performed for stress ratios

R=21 and 0.1, and the results are given separately.
The results were calculated independently for speci-
men direction, materials, heat treatments and surface
operations. Without any classification of data, the
mean values of the negative inverse slope were
obtained as 6.7 and 5.5 for 0.1 and 21 loading ratios,
respectively. So, the endurance limit could be esti-
mated by using only the negative inverse slope written
above and ultimate tensile stress values independent
from manufacturing direction, material type, or post-
processing history of the 3D-printed metals. In
Figures 6 and 7, mean and interval values can be seen
for selected parameters independently.

Interaction effects analyses for endurance limit and
negative inverse slope (k)

In this subsection, the interaction of parameters and
their effects on the endurance limit and negative
inverse slope are investigated. In Figures 8 to 11, each
line (in order from top to bottom) shows the effect of
interactions of parameters with specimen build direc-
tion, material type and heat treatment on s%50/sUTS

or k. The results are given at the right-side of the
graph for s%50/sUTS in Figures 8 and 9 for R=0.1
and 21, respectively. The symbols and the colours of
the parameters are seen on graphs. The material types
are given with the first letters for Aluminium, Steel
and Titanium. All values on the graphs are indepen-
dent. The individual effect of surface operations on
s%50/sUTS and negative inverse slope (k) can be seen
in the right column of the graphs. It is also mentioned
in the previous section. Except this, any effect of the
parameters on s%50/sUTS or negative inverse slope
(k) cannot be observed from the interaction graphs.

Figure 7. Mean and intervals of k values, R = 21.

Figure 6. Mean and intervals of k values, R = 0.1.

Figure 8. Interaction plots of sA,50/sUTS for R = 0.1.
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Multiple linear regression sensitivity
analysis

To further test for variables, or combinations of vari-
ables, which had a significant effect on the normalised
high-cycle fatigue reference value, s50=sUTS, or fati-
gue curve negative inverse slope, k50, a multiple linear
regression analysis was used.

Multiple linear regression model and t-tests

Two multiple linear regression models with first-order
interaction terms were fitted to the data set for each
material using the software Minitab,142 resulting in 6
regression models of the form:

y=b0 +b1x1 +b2x2 + � � � +b6x6 +b1, 2x1x2

+b1, 3x1x3 + � � � +b3, 6x3x6

In these multiple linear models y was either s50=sUTS

or k50 and xi were qualitative variables, which could
only take the values 0 or 1, corresponding to the spe-
cimen and test conditions listed in Table 5. For exam-
ple, to avoid model being confounded, for a s50=sUTS

or k50 value corresponding to as-built samples
x4, x5, x6 =0. The first-order interaction terms were
included in the models to explore the possibility that
combinations of variables had a more significant
effect than individual variables. The coefficients in the
above multiple linear models correspond to variables,

Figure 9. Interaction plots of sA,50/sUTS for R = 21.

Figure 10. Interaction plots of negative inverse slope (k) for R = 0.1.
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so b2 is the main effect of x2, whilst b3, 6 is the interac-
tion effect of x3 and x6.

To test the prediction effectiveness of each regres-
sion model, the R2 value was calculated. To test
whether a relationship could exist between s50=sUTS

or k50 and one, or a pair, of the explanatory variables
t-statistic significance tests were performed on each
coefficient in each model to test the hypothesis that
the coefficient was equal to zero.143 Tests were

conducted at a 90% level. If a test was passed, this
indicated that a relationship between s50=sUTS or k50
and the variable, or pair of variables and might exist.

Multiple linear regression sensitivity results

The low R2 values in Table 6 calculated for all 6 mod-
els show they are not suitable for predicting s50=sUTS

and k50. Several coefficients in the multiple linear
regression models passed the significance test at a
90% threshold (see Tables 7–9). Passing this test indi-
cates that a relationship exists between the explana-
tory variable and predicted variable (i.e. s50=sUTS or
k50), but it does not mean that the relationship is
appropriate for prediction.144 The way the variables
were set up in the models means that if a relationship
exists it represents a difference from the condition
where all xi =0. In terms of the effect on fatigue
strength, variables that passed the test for only the
s50=sUTS model must have an equal effect on fatigue
strength across all fatigue lives, whereas, variables

Table 5. Explanatory variables used in the multiple linear
regression models.

Condition group Condition Variable

Load ratio R = 21 x1 = 0
R = 0.1 x1 = 1

Build direction 0� x2 = 0
90� x2 = 1

Heat treatment Heat treated x3 = 0
Not heat treated x3 = 1

Surface finish As-built x4, x5, x6 = 0
Machined x4 = 1
Machined and polished x5 = 1

Polished x6 = 1

Figure 11. Interaction plots of negative inverse slope (k) for R = 21.

Table 6. R2 value calculated for each second-order
interaction linear regression model.

Material Regression model R2 (%)

Aluminium s50=sUTS 42.9
k50 20.7

Steel s50=sUTS 27.2
k50 38.2

Titanium s50=sUTS 27.2
k50 38.6

Table 7. Coefficients for the aluminium second-order
interaction linear regression models with a significance of 90%
or greater for either the s50=sUTS or k50 model.

Model
coefficient

Aluminium specimen
condition

Significance

s50=sUTS (%) k50 (%)

b2 Build direction 92.1 86.5
b4 Surface finish,

machined
97.1 81.4

b5 Surface finish,
machined and polished

93.9 61.8

b1, 3 Load ratio + Heat
treatment

99.9 63.6
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that passed the test for only the k50 model must only
affect fatigue strength at shorter fatigue lives. The
poor prediction effectiveness of the models means it is
not possible to state with certainty whether the effect
of a variable is to improve or reduce fatigue strength.

For the aluminium data, only coefficients in the
s50=sUTS model passed the significance test, indicat-
ing that the effects corresponding to these test condi-
tions occurred across the full range of fatigue lives
tested. Conversely, for the steel data only coefficients
in the k50 model passed the significance test, so the
effects were likely limited to shorter fatigue lives. Both
titanium models had some significant coefficients
making interpretation in this way more difficult.

The significance results indicate that a machined
surface finish has an effect on fatigue strength, rela-
tive to the as-built surface, for all three metals.
Aluminium and titanium were also sensitive to a
machined and polished surface finish, whereas steel
was not. Aluminium was the only metal to show sen-
sitivity to the build direction independently of other
test conditions. Interestingly, titanium showed sensi-
tivity to build direction only when the specimen sur-
face was machined and polished. Steel showed no
significant sensitivity to build direction. Load ratio
only appeared as a significant factor in combination
with either heat treatment or surface finish for all
three metals.

Prediction of fatigue curves using
artificial intelligence

In this section, the effect of variables on the endur-
ance limit and negative inverse slope is investigated
using artificial intelligence algorithms. The database
described in the previous sections was used.
Considered machine learning algorithms in this study
were Decision Tree, Support Vector Machines, K-
Nearest Neighbour, Multi-Layer Perceptron, Partial
Least Squares, Gaussian Process regression algo-
rithms that are widely used in the literature.

Decision tree (DT)145 algorithm is one of the most
commonly used algorithm for classification in the
machine learning studies. Categorical and continuous

variables can be used in this algorithm. A model like
a tree is created in this algorithm. The classification
starts from the root. The impurity status of the fea-
ture, determined by the Gini index or entropy values,
indicates a degree of inhomogeneity of the values.
Since the feature with the highest impurity value pro-
vides the most information gain, the feature selection
process is completed by selecting the feature with the
highest impurity value. After selecting a feature to
branch on, the decision tree establishes criteria by
comparing numbers. The tree then branches based on
the significance of these comparisons. When a branch
reaches a fully classified, the branch is considered
complete.

Support vector machines (SVM)146 is another
widely used algorithm in machine learning.
Essentially, it determines an optimal boundary line
that gives the maximum distances between classes.
When it separates the data into two classes, the
boundary line is linear. If more separations are
needed to better classify the data, it uses a hyperplane
that uses high-sized kernels. The support vectors are
the data points that are closest to the hyperplane and
have the most significant influence on the determina-
tion of the position of the hyperplane.

k-Nearest Neighbours (KNN)147 is a versatile
machine learning algorithm. It is a non-parametric
learning algorithm, and it can be used for both classi-
fication and regression. A critical parameter affecting
the model’s sensitivity to noise is the determination of
‘k’, which represents the number of neighbours
considered.

Multi-layer Perceptron (MLP)148 is an essential
type of artificial neural network. A multi-layer per-
ceptron (MLP) consists of three basic layers: the input
layer, the hidden layers and the output layer. Each
layer includes neurons, and the neurons are connected
to each other. Machine learning is achieved by using
the weights between the neurons in each layer. Each
neuron typically uses an activation function, such as a
sigmoid, hyperbolic tangent or linear unit, which

Table 9. Coefficients for the titanium second-order
interaction linear regression models with a significance of 90%
or greater for either the s50=sUTS or k50 model.

Model
coefficient

Titanium specimen
condition

Significance

s50=sUTS (%) k50 (%)

b4 Surface finish,
machined

99.9 53.5

b5 Surface finish,
machined and polished

97.0 100.0

b1, 6 Load ratio + Surface
finish, polished

99.4 85.6

b2, 5 Build
direction + Surface
finish, machined and
polished

85.0 100.0

Table 8. Coefficients for the steel second-order interaction
linear regression models with a significance of 90% or greater
for either the s50=sUTS or k50 model.

Model
coefficient

Steel specimen
condition

Significance

s50=sUTS (%) k50 (%)

Surface finish,
machined

83.9 98.2

b1, 3 Load ratio + Heat
treatment

32.8 95.3

b1, 4 Load ratio + Surface
finish, machined

67.3 97.2
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allows the learning of complex relationships between
layers. MLP allows data to be displayed hierarchically
due to its multi-layer structure.

Partial Least Squares (PLS) regression,149 which is
based on statistical methods, is a commonly used
method in the context of multivariate analysis and
predictive modelling. The purpose of PLS regression
is to define a linear relationship between the indepen-
dent variables (features) and the dependent variables
(responses) in a data set. It can be effective for data
sets with a high number of variables, multicollinear-
ity, or situations.

Gaussian Process Regression (GPR)150,151 is a
machine learning technique suitable for situations
with unknown or complex relationships between
input and output variables. This model uses kernel
functions like the Radial Basis Function (RBF) ker-
nel to determine the similarity between data points
and provide predictions and associated uncertainties.
Training the model requires a dataset of input-output
pairs, and the posterior distribution over functions is
computed using Bayes’ rule. GPR has several benefits
over other regression techniques, such as handling
noisy data, incorporating prior knowledge about the
problem and providing uncertainty estimates for pre-
dictions. However, it may face scalability issues when
dealing with large datasets. Despite these challenges,
GPR remains valuable in a diverse range of machine
learning applications because of its ability to provide
insightful predictions and uncertainties.

The machine learning algorithm was prepared in
Python programming language using The Scikit-
Learn library152 and run with Jupyter.

All input variables (or features) were defined cate-
gorically. The categories used were the same as those
detailed in Table 5 for the multiple linear regression
models. Dummy (one-hot) coding was used for catego-
rical definition. Twenty percent of the dataset was used
to train the algorithm, and 80% was used to validate
the algorithm. Additionally, 10-fold cross-validation
was employed for all algorithms. This cross-validation
technique is crucial for assessing the model’s perfor-
mance by examining how it generalises across different
subsets of the data used for training153,154

R-square and Mean Square Error values were ana-
lysed to evaluate the performance of the model. R-
square and Mean Square Error and the 10-fold cross-
validation values are given in Table 10. In addition,
the correlation matrix obtained from KNN regression
between inputs and outputs is given in Table 11. In
parallel with previous statistical studies, it was
observed that the algorithms used could not establish
a successful relationship between inputs and outputs.

Discussion

Additively manufactured metals have gained remark-
able interest in the industry, and many conventionally

manufactured components will be manufactured with
additive manufacturing once it reaches the desired
specifications. While the literature on the topic is still
limited, there are studies exploring the effects of addi-
tive manufacturing process parameters on fatigue life.
Due to the heterogeneous structure of the parts, the
different sub-production methods and their para-
meters, the effects of these parameters are unclear.
Researchers are also focused on enhancing the
mechanical properties of additively manufactured
components through post-processing methods, espe-
cially via heat treatment and surface treatments.
Considering the many microvoids created in the
structures by additive manufacturing, researchers
commonly use hot isostatic pressing (HIP) as a heat
treatment method to vanish or lessen the microvoids,
which has a positive effect on mechanical strength.
However, it should be noted that parameters such as
temperature, duration, pressure and environment
have restrictions, and their effects can be positive or
negative.

This study aimed to establish whether useful design
SN curves could be estimated for additively manufac-
tured metals through statistical and machine learning
analysis of a large quantity of experimental fatigue data.
In this study, a database compiling the papers that stud-
ied on fatigue behaviour of additively manufactured
metals in the literature59 was utilised. Stress-fatigue life
(S-N) curves in the database were re-analysed according
to the endurance limit at extrapolated 2.106 cycles, and
the effects of various parameters on fatigue life were
investigated. Due to the high scatter in the graphs,
deductions are not straightforward. Consequently, sta-
tistical and artificial intelligence analysis methods were
employed to identify trends and predict the data.

The mean s%50/sUTS values for all data sets were
0.18 and 0.21 for R=0.1 and R=21, respectively,
however the scatter was significant. The mean values
of the negative inverse slope were obtained as 6.7 and
5.5 for 0.1 and 21 loading ratios, respectively, with
59% of the k values falling between 3 and 6. The
Gerber, Goodman, Dietman and Eliptical mean stress
curves failed to provide a clear correlation of the
mean stress data, with some data points falling out-
side all four curves. Attempts to develop linear

Table 10. Performance assessment of performed AI
algorithm.

Machine
Learning
Algorithm

R square Mean
square
Error

10-Fold
CVMSE
(mean)

10-Fold
CVMSE
(Std. dev.)

Desicion Tree 20.11 0.010 0.013 0.003
Gaussiann Process 20.51 0.015 0.017 0.004
KNN Regression 20.29 0.013 0.014 0.003
MLP Regression 20.65 0.016 0.014 0.004
PLS Regression 20.39 0.014 0.012 0.002
SVM 0.35 0.013 0.015 0.003

14 Proc IMechE Part C: J Mechanical Engineering Science 00(0)



regression and machine learning models that could pre-
dict the endurance limit and negative inverse slope of
the fatigue data sets were unsuccessful, with all meth-
ods returning R2 values less than 0.45. As a result,
standard design curve rules or predictive models could
not be developed for AM metals using the database
available. The attempt presented here to train a
machine learning model to predict fatigue design
curves for AM metals was constrained by the available
data and insufficient data was available for important
parameters such as the manufacturing processes, mate-
rial properties, material microstructure and defects.
While AI presents a promising solution, our analysis
indicates it is necessary to include additional para-
meters to make reliable fatigue property estimates for
AM metals using machine learning. At present experi-
mental fatigue data for the combination of material
and manufacturing parameters is still needed for
robust fatigue design of AM metal components.

Through the investigations conducted for this
study, several quantitative trends were identified in
the data, which may benefit from additional investi-
gation. Surface operations consistently appeared to
have an effect on the fatigue strengths reported in the
data sets, regardless of any other variables, with the
effect of a machined surface finish being particularly
prominent. Aluminium was the only material to show
sensitivity to build direction independently of other
parameters, agreeing with the findings of Yadollahi
et al.26 and Zhao et al.25 Load ratio only appeared as
a significant factor in combination with either heat
treatment or surface finish for all three metals, which
may be explained by the ability of heat treatment and
surface operations to remove residual stresses from
the as-built material.

Conclusions

To aid designers using 3D-printed metals, this study
aimed to establish whether useful design SN curves
could be estimated for additively manufactured
metals through statistical and machine learning anal-
ysis of a large quantity of experimental fatigue data.
From the work detailed in this paper the following
conclusions were drawn:

� While AI presents a promising solution, our anal-
ysis indicates it is likely necessary to account for
parameters in addition to those considered here,
such as manufacturing processes, material proper-
ties, material microstructure and defects to make
reliable fatigue property estimates for AM metals
using machine learning.

� At present experimental fatigue data for the com-
bination of material and manufacturing para-
meters is still needed for robust fatigue design of
AM metal components.T
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� Surface operations, particularly surface machin-
ing, have a significant effect on the fatigue
strength of 3D-printed aluminium, steel and
titanium.

� The fatigue strength of 3D-printed aluminium is
sensitive to build orientation, whereas steel and
titanium are much less sensitive to build
orientation.

� Load ratio has a significant effect on the fatigue
strength of 3D-printed aluminium, steel and tita-
nium only when coupled with heat treatment (for
aluminium and steel) or surface operations (for
steel and titanium).

� The mean values of the negative inverse slope
were obtained as 6.7 and 5.5 for 0.1 and 21 load-
ing ratios, respectively, with 59% of the k values
falling between 3 and 6.
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16. Fousová M, Vojtěch D, Doubrava K, et al. Influence

of inherent surface and internal defects on mechanical

properties of additively manufactured Ti6Al4V alloy:

comparison between selective laser melting and electron

beam melting. Materials 2018; 11(4): 537.
17. Gong H, Rafi K, Gu H, et al. Influence of defects on

mechanical properties of Ti–6Al–4V components pro-

duced by selective laser melting and electron beam melt-

ing. Mater Des 2015; 86: 545–554.
18. Greitemeier D, Palm F, Syassen F, et al. Fatigue per-

formance of additive manufactured TiAl6V4 using elec-

tron and laser beam melting. Int J Fatigue 2017; 94:

211–217.
19. Kahlin M, Ansell H and Moverare JJ. Fatigue beha-

viour of notched additive manufactured Ti6Al4V with

as-built surfaces. Int J Fatigue 2017; 101: 51–60.
20. Kahlin M, Ansell H, Basu D, et al. Improved fatigue

strength of additively manufactured Ti6Al4V by sur-

face post processing. Int J Fatigue 2020; 134: 105497.
21. Stern F, Becker L, Cui C, et al. Improving the defect

tolerance of PBF-LB/M processed 316L steel by

increasing the nitrogen content. Adv Eng Mater 2023;

25(1): 1–13. DOI: 10.1002/adem.202200751
22. Chen C, Araby S, Demiral M, et al. Fatigue behavior

and tribological properties of laser additive manufac-

tured aluminum alloy/boron nitride nanosheet nano-

composites. J Mater Res Technol 2022; 20: 3930–3948.

16 Proc IMechE Part C: J Mechanical Engineering Science 00(0)

https://orcid.org/0000-0002-7739-0794
https://orcid.org/0000-0002-8707-4197
https://orcid.org/0000-0001-7753-9176


23. Zhan Z. Experiments and numerical simulations for the

fatigue behavior of a novel TA2-TA15 titanium alloy

fabricated by laser melting deposition. Int J Fatigue

2018; 121: 20–29.
24. Nezhadfar PD, Thompson S, Saharan A, et al. Struc-

tural integrity of additively manufactured aluminum

alloys: Effects of build orientation on microstructure,

porosity, and fatigue behavior. Addit Manuf 2021; 47:

102292.
25. Zhao J, Easton M, Qian M, et al. Effect of building

direction on porosity and fatigue life of selective laser

melted AlSi12Mg alloy. Mater Sci Eng A 2018; 729:

76–85.
26. Yadollahi A, Shamsaei N, Thompson SM, et al. Effects

of building orientation and heat treatment on fatigue

behavior of selective laser melted 17-4 PH stainless

steel. Int J Fatigue 2017; 94: 218–235.
27. Persenot T, Burr A, Martin G, et al. Effect of build

orientation on the fatigue properties of as-built electron

beam melted Ti-6Al-4V alloy. Int J Fatigue 2019; 118:

65–76.
28. Sun W, Ma Y, Huang W, et al. Effects of build direc-

tion on tensile and fatigue performance of selective laser

melting Ti6Al4V titanium alloy. Int J Fatigue 2020;

130: 105260.
29. Witkin DB, Patel D, Albright TV, et al. Influence of

surface conditions and specimen orientation on high

cycle fatigue properties of Inconel 718 prepared by laser

powder bed fusion. Int J Fatigue 2020; 132: 105392.
30. Qian G, Li Y, Paolino DS, et al. Very-high-cycle fatigue

behavior of Ti-6Al-4V manufactured by selective laser

melting: Effect of build orientation. Int J Fatigue 2020;

136: 105628.
31. Solberg K, Hovig EW, Sørby K, et al. Directional fati-

gue behaviour of maraging steel grade 300 produced by

laser powder bed fusion. Int J Fatigue 2021; 149:

106229.
32. Chang K, Liang E, Huang W, et al. Microstructural

feature and mechanical property in different building

directions of additive manufactured Ti6Al4V alloy.

Mater Lett 2020; 267: 127516.
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150. Albak B, Erden C, Ünal O, et al. Welding strength pre-
diction in nuts to sheets joints: machine learning and
ANFIS comparative analysis. Int J Interact Des Manuf

2024: 1–16. DOI: 10.1007/s12008-024-01805-2
151. Rasmussen CE and Christopher KW. Gaussian processes

for machine learning. Cambridge, MA: MIT Press, 2006.

152. Pedregosa F, et al. Scikit-Learn: machine learning in
Python. J Mach Learn Res 2011; 12(10): 2825–2830.

153. Shah M, Borade H, Dave V, et al. Utilizing TGAN
and ConSinGAN for improved tool wear prediction: a
comparative study with ED-LSTM, GRU, and CNN
models. Electronics 2024; 13(17): 3484.

154. Falessi D, Huang J, Narayana L, et al. On the need of
preserving order of data when validating within-
project defect classifiers. Empir Softw Eng 2020; 25(6):
4805–4830.

Yaren et al. 21


