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Multi-fingered Grasp Planning Based on Gaussian
Process Implicit Surface and its Partial Differentials

Hanzhong Liu, Suhas Kadalagere Sampath, Ning Wang , Member, IEEE, Chenguang Yang , Fellow, IEEE

Abstract—Grasp planning for irregularly shaped objects using
multi-fingered robotic hands is challenging due to the high
dimensionality of the search space and a lack of proper modeling
methods for object geometry. To address these issues, we propose
a grasp planning approach based on Gaussian process implicit
surfaces (GPIS). To explore the object geometry and identify
feasible contact positions and normals, our method introduces
several moving points called attractors along with a dynamical
system. The dynamical system constrains and guides the attrac-
tors with the partial differentials of the GPIS, which can be
conveniently obtained through the linear expression of a Gaussian
process (GP). The hand motion is also guided by the dynamical
system. Additionally, an inverse kinematics (IK) method, which
considers finger joint limits, is developed to simultaneously adjust
the palm pose and finger joint angles for a feasible grasp. The
performance of our method is demonstrated using various robotic
hands and objects, and real robot experiments are conducted to
validate the planned grasp’s effectiveness in reality. Experimental
evaluation demonstrates that the method works for different
robotic hands and objects of varying shapes, with a higher
likelihood of generating grasps with better quality.

Index Terms—Grasp planning, Gaussian process implicit sur-
faces (GPIS), multi-fingered inverse kinematics.

I. INTRODUCTION

Over the past few years, research on robotic grasping has
grown rapidly [1]. A variety of robotic hands with multiple
fingers or high degrees of freedom have been developed to
improve the dexterity of grasping [2], [3]. Despite the great
progress in robotic hand design, grasp planning for everyday
objects remains an open challenge due to the complexity of
the object shapes and the hand kinematics, which leads to a
high dimensionality of searching space for a feasible grasp.

Typically, a grasp can be classified as a power grasp
and a precision grasp [4], [5]. The former aims to afford
substantial stability for grasping, e.g., holding a heavy tool
like a hammer or a wrench, and the latter provides increased
dexterity, which mainly depends on the next-step manipulation
tasks after grasping [6]. From the view of grasp planning, pre-
cision grasps can be considered a simplified version of power
grasps, with fewer contact areas and kinematic constraints.
Therefore, this work focuses on precision grasp planning,
tackling the challenges posed by complicated shapes and hand
kinematics. Besides, precision grasps show huge potential for
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a wide application in dexterous manipulation, e.g., grasping
small/flat objects or executing high-precision in-hand manip-
ulation tasks [4], [7].

Grasp-planning methods can be broadly categorized as
learning-based and analytical approaches [8], [9]. Automatic
power grasps and precision grasps are planned using human
demonstrations [10]–[13]. Neural networks have also been
validated as efficient ways to combine the perception of
the object pose and shape with grasp planning [14]–[18].
[19] proposes a high-DOF grasp planning method with good
sample efficiency, dynamic adaptability, and cross-category
generality. Frictions between the object and the fingers are also
learned to perform reliable grasp planning and execution [20].
Su et al. [21] carry out compliant grasps with high accuracy by
compensating the errors with the enhanced kinematic model
and the sparse online Gaussian process. Li et al. [22] combine
GPIS with the learning of robotic hand IK and encode the hand
configurations with virtual frames. However, learning-based
methods are confined to human demonstrations or artificially
setting rules, which more or less depend on the analytical
modeling of a grasp. Besides, learning-based approaches rely
on a large amount of training data, which is not a trivial issue.

There have been plenty of analytical approaches for grasp
planning [23], [24], which propose efficient ways to model
the multi-rigid-body dynamics during a grasp and generate
feasible finger postures by considering the hand-object con-
tacts and frictions. However, these methods rely on manually
setting the palm pose of the robotic hand or sampling a series
of palm poses around the object, which is not a trivial step
since it’s quite difficult for users to imagine the suitable palm
pose before hand closing, and the sampling number for the
palm poses is hard to determine. Many analytical approaches
aim to find a specified number of grasping locations on the
object’s surface [25]–[27]. Among most of these researches,
the grasp quality is calculated with the grasp wrench space
(GWS) [28], [29], which indicates all the feasible grasping
wrenches produced by the contact areas. Nevertheless, these
methods merely consider the contact forces or the object’s
geometry, or simplify the robotic hand kinematics with some
grasping representations, but the complete robotic hand kine-
matics is not taken into account. Moreover, these methods
cannot specify the contact positions on the robotic hands,
which hinders the later dexterous manipulation after grasping.
Some grasping methods utilize compliance control to improve
the robustness against uncertainties of the object’s shape and
position [30], [31], but robotic hands with extremely sensitive
force, torque or tactile sensors are needed.

Approaches combining learning-based and analytical meth-
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ods take both their advantages and can achieve fast and
accurate grasp planning [32]–[34]. However, many of these
methods introduce constraints such as finger joint angles
coupling, while others rely on well-behaved demonstrations
or wide-covering grasping data-set.

Different from the above grasp planning studies that try to
find the grasping locations on the object first and then integrate
the robotic hand inverse kinematics, [35] proposes a multi-
dimensional iterative surface fitting (MDISF) method, which
integrates the robotic hand IK into the grasp planning process
and solves it as an optimization problem. GPIS potentials
are used to guide the fingers in a potential field [36], but
the contact positions on the robotic hands are not specified
either. Furthermore, it adopts the Gaussian covariance func-
tion, including parameters to be tuned according to the prior
knowledge, e.g., the size of the robotic hand.

Similarly, we utilize the Gaussian process implicit surface
and its partial differentials, and additionally, we introduce
several intermediate points called attractors, which are driven
by a dynamical system. Within the dynamical system, the
attractors guide the IK of multi-fingered robotic hands with
a moving palm, which also considers the finger joint limits.

The main contributions of our work are as follows:
1) We introduce several points called attractors into grasp

planning. The attractors slide on the object’s surface and
search for the feasible grasping locations, at which the
normal vectors of the object’s surface are aligned to
those of the fingertips. With the attractors as interme-
diation, the parameters of GPIS need not to be tuned
according to the workspace size of the robotic hand, but
only the size of the object.

2) A novel constraining and surface normals searching
dynamical system for the attractors is designed, which
utilizes the partial differentials of GPIS. During grasp
planning, the dynamical system is driven by the posi-
tional and angular deviation between the fingertips and
the attractors, which also intuitively reveals the deviation
between the current grasp and a feasible grasp.

II. RELATED WORK

A. Object Surface Modeling for Grasping
Object geometry is one of the most important considera-

tions in grasping. Different from many previous works which
attempted to characterize the object geometry with the shape
primitives [37], [38], many everyday objects are irregularly
shaped. Among different modeling methods for object shapes,
the implicit surface [39] is a suitable choice because it defines
the surface with a continuous scalar-valued function over the
domain R3 and allows an easy specification of the locations
of points on the surface. The surface normals can also be
specified with the partial differentials of the scalar-valued
function. Williams et al. [40] propose the Gaussian process
implicit surfaces (GPIS), which fits the object shape well and
also provides a meaningful probabilistic interpretation. The
partial differentials [41] of the Gaussian process are exploited
to derive the surface normals [22], [42], which also inspires
our work to constrain the aforementioned attractors on the
object’s surface.

B. Multi-fingered Hand Inverse Kinematics

Inverse kinematics for robotic hands with multiple fingers
is another interesting issue [43]–[45]. Because of the low
DoFs of each robotic finger, IK solutions in explicit forms
can be easily derived [43], [46], [47]. However, such methods
ignore the 6 DoFs provided by the moving palm, which can
be crucial in the scenario of grasping an object. Besides,
the targeting position and orientation of each fingertip are
specified in advance, which cannot satisfy our needs to search
both the suitable contact locations on the object’s surface
and the corresponding configurations of the palm and fingers.
Inverse kinematics based on the inverse or transpose of the
hand Jacobian [48], [49] provides iterative methods which
converge to the desired fingertip poses, while the moving palm
remains unconsidered. Qiu et al. [50] estimate the desired
palm pose while reaching the object and the palm pose is
further adjusted by the pose errors of the fingertips, but the
adjustments for the palm and fingers are carried out alternately
and predefined targeting poses of the fingertips are still needed.
Similar to our previous hierarchical inverse kinematics (HIK)
method [45] which makes online decisions for multi-fingered
motions during a grasp, this work adopts the inverse-Jacobian
based HIK, but in a global grasp planning scenario. Moreover,
finger joint limits are well tackled by adjusting the null-space.

The rest of this paper is structured as follows. Section III
explains the details of our method. Section IV provides the
experimental results. Section V concludes the paper and dis-
cusses possible future work.

III. METHODOLOGY

A. Overview

Fig. 1. Overview of the grasp planning algorithm.

As illustrated in Fig. 1, in our grasp planning algorithm,
an accurate point cloud with surface normals is first sampled
from the surface of the object whose geometry is known, and
GPIS takes it to model the object shape (III-B). In III-D, we
introduce several moving points called attractors along with a
dynamical system, which is defined by the partial differentials
of GPIS. The dynamical system constrains the attractors and
guides them towards the position where the surface normal is
opposite to the fingertip’s normal. The attractors also guide the
fingertips to touch the object and form a grasp. The guided
motion of the robotic hand is calculated with a task-oriented
IK method described in Part III-C.

The grasp planning process iterates until each fingertip
achieves feasible contact with the object, i.e., the position



Fig. 2. The mesh models on the left show the original shapes of the objects and the cyan surfaces on the right are the corresponding objects’ surfaces
modelled by GPIS. The red spheres denote the point cloud sampled from the original object’s surface.

of the attractor and the corresponding surface normal are
overlapped with those of the fingertip. At last, a feasible grasp
is planned and is denoted as follows:

G∗ = {T ∗
palm, q∗

1 , · · · , q∗
n} (1)

where T ∗
palm is the planned desired palm pose for the robotic

hand and q∗
i is the desired finger joint angles for the ith fin-

ger. With the grasping configuration, downstream autonomous
grasps can be executed with a given targeting object pose.

B. Object modeling

1) Gaussian process implicit surfaces: We model the ob-
ject’s surface along with the surface normal directions with
GPIS [40], [42], which is trying to fit an implicit surface
function:

g(x) = y (2)

where x ∈ R3 denotes the given point in the 3-D space in
which the targeting object is placed. Each point x is expressed
in the object frame whose origin locates at the center of the
object’s point cloud and the object frame is resized according
to Eq. (9). The output y ∈ R4 is defined as follows:

y =
[
l nT

]T
(3)

where [∗]T denotes the transpose of a matrix or a vector and
l is defined as a signed distance with the following meaning:

l

 < 0, x is inside the object,
= 0, x is on the object surface,
> 0, x is outside the object.

(4)

and n is the unit normal vector of the equipotential surface
at position x. The equipotential surface is made up of points
with the same value of l and happens to be the object’s surface
in the case when l = 0.

Given the training data including the inputs and outputs
mentioned above, the function Eq. (2) can be fit by the
Gaussian process. While a new testing position x̂ is given
to predict its output ŷ, the expectation and covariance of ŷ
are:

E(ŷ) = K∗[K(X,X) + σ2I]−1Y (5)

cov(ŷ) = k(x̂, x̂)−K∗[K(X,X) + σ2I]−1KT
∗ (6)

where X ∈ Rm×3 and Y ∈ R4m×1 are the input and output
of the training data-set with m samples and σ2 denotes the
variance of noise in the output. Symbols K∗ and K(X,X)

are in the typical formula of GP and their detail is included
in Appendix A.

2) Object modeling with point cloud: After preprocessing,
we have a point cloud of the object’s surface, denoted as the
red spheres in Fig. 2:

P = {p1,p2, · · · ,pm} (7)

and the surface normals of the point cloud P:

N = {n1,n2, · · · ,nm} (8)

where pi is the position of the ith point and ni is the surface
normal at pi. To achieve both detailed modeling and less com-
putation, we choose an appropriate size of the training data-set
according to the modeling results in previous work [22], [42],
i.e., 60 sampling points on the object’s surface.

Given the point cloud, we first normalize the point cloud as
the GPIS inputs:

X =

{
xi

∣∣∣∣xi =
pi − p

pmax

}
(9)

in which pmax is the Euclidean distance between the farthest
pair of points and p is the center of the point cloud.

The outputs are piled up with elements from Eq. (3):

Y =
[
yT
1 yT

2 · · · yT
m

]T
(10)

Additionally, we add one extra training sample inside the
object at the center of point cloud:{

xin =
[
0 0 0

]T
,

yin =
[
−1 0 0 0

]T (11)

and 14 extra training samples outside the object, which are
uniformly distributed on a sphere with a unit radius:{

xouti = ri,

youti =
[
1 rTi

]T (12)

where ri is the Cartesian position of the ith point on the unit
sphere’s surface.

C. Multi-fingered Hand IK

1) Hand Jacobian: Since the robotic hand is mounted on
the robot end-effector, the palm pose and the finger joint angles
can be easily controlled. Here we take their derivatives as the
controlled variable:

U =
[
V T
palm q̇T

1 q̇T
2 · · · q̇T

n

]T
(13)



where Vpalm is the palm twist and q̇i is the finger joint
velocities of the ith finger.

Since we expect to plan motions for all the fingertips, we
have:

V =
[
V T
1 V T

2 · · · V T
n

]T
(14)

where Vi is the ith fingertip’s twist and a hand kinematic Jaco-
bian Jk (Appendix B) can describe the linearized relationship
between the controlled variable and the fingertips’ twists:

V = JkU (15)

2) Task-oriented inverse kinematics: To formulate our iter-
ative inverse kinematics with the robotic hand, we first define
the task goal for the ith fingertip, i.e., to achieve the desired
position p∗

i and fingertip normal n∗
i . Together with the current

position pi and fingertip normal ni, the task deviation is
derived directly:

∆Oi =
[
p∗T
i − pT

i 1− cosψi

]T
(16)

where ψi denotes the angle between n∗
i and ni and 1− cosψi

reflects the angular deviation with a range of between 0 and 2.
In practice, the term cosψi is substituted with the inner product
nT

i n
∗
i , which is convenient for the derivative and therefore

derives the bottom right part of the Jacobian in Eq. (52).
For all the fingertips, we have

∆O =
[
∆OT

1 ∆OT
2 · · · ∆OT

n

]T
(17)

The linearized relationship between the fingertips’ twists
and the derivatives of the tasks can be expressed as another
Jacobian Jtask (Appendix C):

Ȯ = JtaskV (18)

Substituting Eq. (15) into Eq. (18), we have

Ȯ = JU (19)

where J = JtaskJk, and now we can formulate our task-
oriented IK method:

U = J†∆O (20)

where [∗]† denotes the pseudo-inverse of the matrix [∗].
In each planning step of the hand IK, the desired position

and normal of each fingertip are given with those of the corre-
sponding attractor, which is not static since it is simultaneously
exploring the object’s surface.

3) Null-space adjustment for joint limits avoidance: Most
multi-fingered robotic hands are designed to have very limited
finger joint ranges, which effectively avoids self collision and
reduces the search space for planning a grasp. However, the
limited joint ranges make it easier to fall into joint limits,
which frequently traps the palm in the wrong pose and the
fingers in the wrong postures and slows down the planning.

Therefore, we flexibly adjust the null-space to encourage
the robotic hand to leave the joint limits during the planning.
When a joint achieves its limits, we set the corresponding
column of J to 0. Besides, we add a secondary task goal to
the task-oriented IK:

U = αJ†∆O + β(I − J†J)U∗ (21)

where α determines the weight of the original task goal same
as Eq. (20) and β determines the weight of the secondary task
within the null-space. The secondary task goal is designed as
follows:

U∗ =
[
V ∗T
palm q̇∗T

1 q̇∗T
2 · · · q̇∗T

n

]T
(22)

in which q̇∗
i is derived with the deviation between the current

joint angles and the desired ones, i.e., q∗
i −qi, and the desired

finger joint angles are chosen with a pre-designed natural hand
posture far away from joint limits. While achieving the limit,
the joint is excluded from solving the primary task by setting
the corresponding column of J to 0. Meanwhile, the secondary
task drives it towards the pre-designed angle and thus the joint
can get rid of joint limits.

For the desired palm twist V ∗
palm =

[
v∗T
palm ω∗T

palm

]T
in

the secondary task, we use the prior knowledge that in a well-
planned grasp, the fingertips should be surrounding the object.
Hence, the palm linear velocity is trying to move the average
position of the fingertips towards the center of the point cloud:

v∗
palm = p− 1

n

n∑
i=1

pi (23)

where p is the center of the object surface’s point cloud and
pi is the ith fingertip position, and ω∗

palm is set to zero.

D. Grasp Planning with Attractors

1) Derivatives of Gaussian process: According to our def-
inition, the partial derivative of our GPIS output with respect
to the input x has the following form:

∂E

∂x
=

[
∂l
∂x
∂n
∂x

]
∈ R4×3 (24)

where E denotes the output of GPIS in Eq. (5).
Since the training data is constant, only K∗ in Eq. (5) will

change along with x. Thus we have

∂E

∂x
=
∂K∗

∂x
[K(X,X) + σ2I]−1Y (25)

where we define a tensor ∂K∗
∂x ∈ R4×4m×3 to denote the

partial derivative of the matrix K∗, and for clarity, here we
present the partial derivative with respect to the kth (k =
1, 2, 3) dimension of x, and denote it as ∂K∗

∂xk ∈ R4×4m:

∂K∗

∂xk
=

∂

∂xk
[
k(xa,x1) · · · k(xa,xm)

]∣∣
xa=x

(26)

where ∂
∂xk k(xa,xb)|xa=x ∈ R4×4 is the partial derivative

of the kernel with the incoming input x and the bth training
sample, and it can be expanded as:

∂

∂xk
k(xa,xb)|xa=x =

∂

∂xk

[
cov(la, lb) cov(la,nb)
cov(na, lb) cov(na,nb)

]∣∣∣∣
xa=x

(27)

The content of ∂
∂xk cov(la, lb)

∣∣
xa=x

∈ R is as follows:

∂

∂xk
cov(la, lb)

∣∣∣∣
xa=x

= 6(dist(x,xb)− ψ)∆k
b (28)



Fig. 3. Planning results on the teacan with different initial palm poses: The color shades indicate the grasp quality with a CoF of 0.6, and the boxes indicate
that a feasible grasp is successfully planned with the given initial palm pose. The result shows that the baseline (joint-space-searching method) plans with a
success rate of 20.5% (82 in 400) and that of the proposed method is 39.25%. The average grasp quality within the feasible grasps planned by the baseline
method is 0.094578, and that of the proposed method is 0.272625.

where ψ denotes the maximum distance in the training data
X , same as that in Eq. (41), and ∆k

b ∈ R is the deviation
between x and xb in the kth dimension:

∆k
b = xk − xkb (29)

The entries of ∂
∂xk cov(na, lb)

∣∣
xa=x

∈ R3×1 are as follows:[
∂

∂xk
cov(na, lb)

∣∣∣∣
xa=x

]
i

=

6(xi − xib)
∆k

b

dist(x,xb)
+ 6

∂xi

∂xk
(dist(x,xb)− ψ)

(30)

The entries of ∂
∂xk cov(na,nb)

∣∣
xa=x

∈ R3×3 are[
∂

∂xk
cov(na,nb)

∣∣∣∣
xa=x

]
i,j

=

6Di
bD

j
bD

k
b − 6

∂xi

∂xj
Dk

b − 6
∂xi

∂xk
Dj

b − 6
∂xj

∂xk
Di

b

(31)

in which the term Di
b is defined as follows:

Di
b =

xi − xib
dist(x,xb)

(32)

and the terms Dj
b and Dk

b are defined similarly.
While dist(x,xb) is closed to 0, the limit of Di

b does
not exist, and the value of Di

b will change between -1 and
1, depending on the relative position between x and xb.
Therefore, in our motion planning for the attractor, we simply
set the value of Di

b according to the approaching velocity v
of the attractor:

lim
x→xb

Di
b :=

vi

∥v∥
(33)

where ∥v∥ denotes the Euclidean length of the vector v.

2) Attractors dynamics: For an n-fingered robotic hand,
we introduce n attractors with a dynamical system to guide
the fingertips to form a feasible grasp. Within the dynamical
system, the attractors are maintained on the object’s surface
through the constraints in the surface’s normal directions. At
the same time, the dynamical system defines the tangential
motion of the attractors, i.e., sliding towards the position where
the surface normal is opposite to the fingertip’s normal.

First of all, we set the initial positions of the attractors,
which are shown in Fig. 4. To keep the figures clean, a 2-
fingered example of the initialization is illustrated, but actually,
the grasp planning method works on robotic hands with more
than 3 fingers and we have validated the planning method with
a 3-fingered DoraHand and a 4-fingered Allegro Hand. With
an initial palm pose Tpalm0

and hand posture q0, n lines are
drawn from the fingertips to the center of the object, i.e., the
center of the object’s point cloud. Then the crossing points
over the surface are taken as the initial positions.

Fig. 5 shows the formation of the attractors’ velocities in the
tangential subspace within the object’s surface. With the partial
derivatives of GPIS, we set the velocity of the ith attractor in
the tangential direction to

vtani
= ktan

(
∂n

∂p

)†

(−nfini
− natti) (34)

where ktan is a small gain, nfini
is the normal of the ith

fingertip and natti is the normal of the object’s surface at the
current position of the attractor. The term ∂n

∂p can be calculated
with the partial differentials derived from Part III-D1:

∂n

∂p
=

∂n

pmax∂x
(35)

where pmax denotes the normalizing scale same as that in
Eq. (9).

For the velocity in the normal direction, a simple feedback
law is defined to keep the attractors within the surface:

vnmli = − knmll

nT
atti

∂l
∂p

(36)



where knml is a small gain, and ∂l
∂p is also calculated with the

partial differentials derived from Part III-D1:

∂l

∂p
=

∂l

pmax∂x
(37)

Fig. 4. Initialization of the attractors. To keep the figures clean, only 2 fingers
are shown in Fig. 4, Fig. 5 and Fig. 6, but the proposed method can plan grasps
with more than 3 fingers.

3) Fingertips-attractors dynamical system: In addition to
the attractors’ dynamics, the dynamical system also defines the
motion of the robotic hand, which tries to guide the positions
and normal directions of the fingertip towards those of the
corresponding attractors.

With the task goals considering both the positions and
normals, the task deviation in Eq. (16) can be determined.
Fig. 6 shows the guidance provided by the attractors to the
fingertips, with which the hand IK is integrated into the
dynamical system.

Fig. 5. The tangential velocity vtani of the attractor is derived with the
normal directions’ deviation between the fingertip and the attractor (see
Eq. (34)).

During grasp planning, an iterative process is performed. In
each iteration, the attractors move a little step through Eq. (34)
and Eq. (36). Then the robotic hand moves towards the attrac-
tors through the task-oriented IK. The iteration repeats until
the positional deviation and the normal direction’s deviation
between the attractors and the fingertips are small enough.
We limit the maximum number of iterations, and also break
the iterative loop when the motions of the attractors and the
robotic hand are too small, which is useful in cases when a
local minimum is encountered.

Fig. 6. In each grasp planning step, patti − pfini
provides the positional

task deviation in Eq. (16), and the remaining part of task deviation is provided
by the deviation between −natti and nfini

.

IV. EXPERIMENTS

We have tested our grasp planning method on some objects
chosen from the YCB dataset and visualized the planned
grasps with MuJoCo. The planning process and the grasp
quality of the planned grasps are analyzed. Comparative
experiments are conducted to investigate the advantages of
our method over the baseline. We also carry out real-world
experiments with some of the objects, where tiny objects’ pose
estimation errors and control errors may affect the grasping
performance.

A. Grasp Planning Process Analysis

Fig. 7. a) A planned grasp for the teacan with the Dorahand; b) a planned
grasp for the mustard bottle with the Allegro Hand.

Fig. 7 shows a planned grasp for the teacan with the
Dorahand (Fig. 7 a), and a planned grasp for the mustard bottle
with the Allegro Hand (Fig. 7 b). The modeling performance
by GPIS is illustrated in Fig. 2. To explain the process
of grasp planning more detailedly, we present the fingertip
positions and finger joint angles within the iteration process
of a single grasp planning trial. Fig. 8 shows the positions of
the fingertips and the attractors, where the distances between
the corresponding pairs of fingertips and attractors gradually
decrease, and the attractors move within the neighbour space
of the object’s surface. Fig. 9 shows the finger joint angles
during planning, which occasionally get into the joint limits
while this situation doesn’t deteriorate the solution of IK.
During this situation the corresponding joint is temporarily
stopped and taken place by other joints or the moving palm



Fig. 8. The trajectories of the fingertips and attractors during grasp planning.
The spheres indicate the initial positions of the fingertips or the attractors. The
initial positions of the three fingertips (denoted as the red, green, and blue
spheres) are initialized outside the object. After grasp planning, the positions
of the fingertips overlap those of the corresponding attractors, e.g., the blue
line (denoting the position of the first fingertip) intersects with the purple line
(denoting the position of the first attractor).

TABLE I
PLANNING SUCCESS RATES WITH DIFFERENT ROBOTIC HANDS.

Object name teacan mustard bottle banana

Dorahand 39.25% 41.5% 62.5%
Allegro Hand 20.25% 10.5% 32.75%

until the secondary task goal moves it away enough from the
limiting values. Fig. 10 shows that the average deviation of the
positions and normal directions decreases to a small value at
the 1455 th iteration step, after which the planning procedure
is stopped and we obtain the feasible grasping configuration.

B. Grasp Planning on Different Objects and Robotic Hands

To investigate the feasibility of the proposed grasp planning
method on different objects and robotic hands, we plan grasps
for 3 objects of different shapes with both the Dorahand and
the Allegro Hand. The Dorahand is a three-fingered robotic
hand with 8 DoFs, and the Allegro Hand is a four-fingered
hand with 16 DoFs. Grasp planning with both the Dorahand
and Allegro Hand is conducted with plenty of initial palm
poses, which are generated through the coordinate grid method
with a spherical coordinate system. Fig. 11 (b) shows one of
the initial palm poses. A spherical coordinate system, whose
origin is the center of the object point cloud, is used in the
coordinate grid method to sample initial palm poses for grasp
planning. The azimuthal angles θ are evenly sampled from 0
to 2π (2π excluded) and the polar angles ϕ are evenly sampled
from −π

2 to π
2 (both ends included). The radial distance r is

fixed to the value with which the closing fingers can just reach
the object and the palm poses are chosen to make the palm
facing towards the object. Table I shows the planning success
rates on different objects for both hands.

C. Planning Success Rates and Grasp Quality

The largest-minimum resisted wrench matrice [29] is widely
used to measure the grasp quality, which finds the direction
where the least disturbance wrench, i.e., force and torque,

TABLE II
PLANNING SUCCESS RATES ON DIFFERENT OBJECTS.

Object name teacan mustard bottle banana

Baseline 20.5% 2% 48.25%
Proposed method 39.25% 41.5% 62.5%

TABLE III
AVERAGE GRASP QUALITY ON DIFFERENT OBJECTS WITH A COF OF 0.6.

Object name teacan mustard bottle banana

Baseline 0.094578 0.004929 0.10446
Proposed 0.272625 0.201174 0.168635

is needed to break the grasp, and the value of the least
disturbance wrench is taken as the grasp quality. Since our
proposed method does not take this matrice into consideration
directly, we investigate the grasp quality of the grasps planned
by our method. We use the initial pose generating method in
part IV-B and compare the qualities of the grasps planned by
a joint-space-searching method, i.e., the baseline. The joint-
space-searching method is similar to the auto-closing method
provided by GraspIt! [51] but provides a wider variety in finger
joint configurations, in which the fingers search in the whole
joint space and the palm is fixed at the initial palm poses.

In our experiment, we choose the joint-space-searching
method as the baseline and conduct comparative experiments
on 3 objects. Fig. 3 shows that the proposed method suc-
cessfully plans feasible grasps in a wider area, and Table II
leads to the same conclusion. The planning success rates for
some objects are low, especially for the 4-fingered Allegro
Hand. The main reason is that the position’s and the normal
direction’s deviation between the attractor and the fingertip
doesn’t converge to a value below the threshold, which may
converge at last with more planning steps. While in some
cases, the planning is trapped in a local minimum, which
cannot be solved by increasing the planning steps. Table III
shows that higher average grasp quality is achieved with the
proposed method, even though it doesn’t directly consider the
grasp quality, but only encourages the fingertips to surround
the object. However, the proposed grasp planning process is
quite time-consuming, which takes 62.124 microseconds in
average for each planning step and most of the planning ends
up between 1300 and 1500 steps.

D. Grasping in Real World

The real-robot experiments are carried out on a 3-fingered
Dorahand, mounted on a 6-DoF Elite EC-66 robot, as illus-
trated in Fig. 12. All the fingertips and finger pulps of the
Dorahand are covered by planar tactile sensors, which provide
real-time measurement of contact force in the normal direction.

Since small deviations may occur, e.g., modeling errors
between the GPIS model and the actual object geometry, we
integrate a simple touch-and-stop grasping controller, which
first moves the palm to the pre-grasping pose calculated with
the detected object pose and the planned grasping configura-
tion. Then it will try to achieve the finger joint angles provided



Fig. 9. Angles of the 8 finger joints during grasp planning: In each box, the blue line indicates the joint angle during the planning and the two horizontal
red lines indicate the upper and lower bounds respectively. The two red vertical lines indicate the interval where the 7th and 8th joints are in joint limits.
The joints are named with the same order as that in Fig. 11 (a).

Fig. 10. The general position’s and normal direction’s deviation between
the fingertips and the attractors: Top panel: the average distance between the
fingertip and the corresponding attractor among 3 fingers. Bottom panel: the
average deviation angle between the fingertip’s normal and the surface normal
at the location of the corresponding attractor.

by the grasping configuration until the tactile sensor detects
contacts. If the fingertip does not touch the object, the angle
of the endmost finger joint will be increased by 4 degrees at
most. After all fingertips touch the object, the aforementioned
joint angles are increased again by 4 degrees to exert enough
grasping forces.

To provide an accurate pose of the targeting object, we
designed a positioning plate, as shown in Fig. 13. With the
four slots, the object can be precisely placed at the center
of the positioning plate. Six marker points are located in a
noncoplanar space, which can be reached by the end-effector
of the robot arm and hence the position and orientation of the
positioning plate and the object are calculated.

The grasping procedure of 3 of the evaluated objects is

Fig. 11. (a) The joints of the Dorahand. (b) One of the initial palm poses
generated through the coordinate grid method with a spherical coordinate
(r, ϕ, θ): r, ϕ, and θ denote the radial distance, polar angle, and azimuthal
angle, respectively. The coordinate’s origin 0 is set to be the center of the
object surface’s point cloud.

Fig. 12. Overview of the experiment platform.

shown in Fig. 14. The robotic hand first moves to the pre-
grasping pose and then closes the fingers. It tries to lift the
object once the grasp is established and all the chosen objects
are successfully grasped except for the banana. The failure of
the banana is mainly because of the unexpected change of the
object pose during hand closing, which seriously deteriorates
the grasp stability and may be improved by using compliance



Fig. 13. A positioning plate is designed to accurately locate the targeting
object. The objects are placed on the four slots. The two upholders, both with
a marker point on the top, can be removed to avoid collision during grasping.

controllers with more sensitive tactile sensors.

Fig. 14. Each row shows a set of grasping processes of the different objects,
i.e., the teacan, mustard bottle and banana. The grasp of the banana fails
because of the unexpected change of the object pose during hand closing.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a multi-fingered grasp planning
method based on GPIS. We model the targeting object with
GPIS and introduce some sliding points called attractors along
with a dynamical system. The dynamical system utilizes the
partial differentials of GPIS and constrains the attractors within
the object’s surface. The attractors are also guided by the
dynamical system towards the positions where the surface
normals are opposite to the fingertips’ normals. The fingertips
are guided by the dynamical system and an IK method for
multi-fingered robotic hands is integrated. Experimental results

show our method works on objects of different shapes and
different robotic hands and joint limits are well tackled. There
is a higher probability for our method to plan a grasp with
higher grasp quality. We also validated our grasp planning
method with real robot experiments.

However, our method doesn’t directly consider the grasp
quality during planning, in terms of this issue, our current
solution is to generate several initial palm poses for grasp
planning. Our future work is to reasonably consider the grasp
quality during the grasp planning process. Moreover, we
hope to tackle the issue of uncertain object shape during the
grasp planning. The geometrical uncertainty is expected to be
quantified by the variance of GP and the fingertips would
be encouraged to reach the positions with less uncertainty.
The planning is expected to be accelerated by optimizing the
code, e.g., pre-allocating memory for the matrices. It is also
worth noting that the exploitation of the partial differentials
is not limited to GPIS, all the GP-based object modeling
methods can derive their partial differentials conveniently, and
we are trying to utilize the gradient of other GP-based object
modeling methods for grasp planning.

APPENDIX

A. Contents of the Gaussian Process Expression

K(X,X) and K∗ are composed of the kernels with
different inputs:

K(X,X) =

k(x1,x1) · · · k(x1,xm)
...

. . .
...

k(xm,x1) · · · k(xm,xm)

 (38)

K∗ =
[
k(x̂,x1) · · · k(x̂,xm)

]
(39)

where k(xa,xb) is the covariance function or so called kernel
calculated with the ath and bth input of the training data, and
we use the kernel from [42]:

k(xa,xb) =

[
cov(la, lb) cov(la,nb)
cov(na, lb) cov(na,nb)

]
(40)

whose entries are defined as follows:

cov(la, lb) = 2∥xa − xb∥3 − 3ψ∥xa − xb∥2 + ψ3 (41)

cov(la,nb) =
∂

∂xb
cov(la, lb) ∈ R1×3 (42)

cov(na, lb) =
∂T

∂xa
cov(la, lb) ∈ R3×1 (43)

cov(na,nb) =
∂2

∂xaxb
cov(la, lb) ∈ R3×3 (44)

where ψ is the Euclidean distance between the farthest pair of
points in the training inputs X .

The entries of Eq. (43) are as follows:[
cov(na, lb)

]
i
= 6(xia − xib) (dist(xa,xb)− ψ) (45)

where [∗]i denotes the ith entry in the column vector [∗],
dist(∗) denotes the Euclidean distance, and xk denotes the
kth (k = 1, 2, 3) dimensional component of a 3-D point.



The entries of Eq. (42) can be determined with

cov(la,nb) = −cov(na, lb)
T (46)

The entries of Eq. (44) are as follows:[
cov(na,nb)

]
i,j

= 6
∂xi

b

∂xj
b

(ψ − dist(xa,xb))− 6
(xia − xib)(x

j
a − xjb)

dist(xa,xb)

(47)

where [∗]i,j denotes the entry at the ith row and the jth column
in the matrix [∗], and the partial differential is calculated as
follows:

∂xi
b

∂xj
b

=

{
1, when i = j,
0, when i ̸= j.

(48)

B. Definition of the Hand Kinematic Jacobian

Jk =


Jpalm1 J1 0 · · · 0
Jpalm2

0 J2 · · · 0
...

...
. . .

Jpalmi
0 · · · 0 Jn

 (49)

in which Ji is the ith finger’s Jacobian and Jpalmi describes
the contribution from palm twist to the twist of the ith

fingertip. According to our definition of twist V =
[
vTωT

]T
,

where v is the linear velocity and ω is the angular velocity,
Jpalmi

is written as

Jpalmi
=

[
I3×3 −[palmpi]×
0 I3×3

]
(50)

where palmpi represents the position of the ith fingertip from
the origin of the palm frame, expressed in the static world
frame, and [palmpi]× is its corresponding skew-symmetric
matrix.

C. Definition of the Task-oriented Jacobian

Jtask =


Jtask1

0 · · · 0
0 Jtask2

· · · 0
...

. . .
0 · · · 0 Jtaskn

 (51)

where Jtaski
is written as

Jtaski
=

[
I3×3 0
0 −n∗T

i [ni]×

]
(52)
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